Fundamental optimization of steam Rankine cycle power plants
•Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net power output, and second law efficiency were maximized.•Gas to water mass flow rate ratio and plant heat transfer areas were optimized.•Opti...
Saved in:
Published in | Energy conversion and management Vol. 289; p. 117148 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0196-8904 |
DOI | 10.1016/j.enconman.2023.117148 |
Cover
Abstract | •Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net power output, and second law efficiency were maximized.•Gas to water mass flow rate ratio and plant heat transfer areas were optimized.•Optimal parameters are robust for several geometric and operating conditions.
This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the plant irreversibilities are predominant in the heat exchangers, thus exergy destruction in the turbine, pump, fittings, tubes and other internal components are neglected. The NTU-effectiveness method was utilized to model the heat exchangers, and water was considered as the working fluid, which changes phase in both heat exchangers. Acknowledging that entropy is generated in any physical system, the fundamental optimization problem selected the dimensionless net power output, and second law efficiency as the objective functions to be maximized, after the identification of plant geometric and operating parameters to be optimized based on the intersection of asymptotes method, subject to a fixed total heat exchangers area realistic physical constraint, i.e., for a finite size plant. As a result, two levels of optimization were identified: i) the working fluid to hot stream mass flow rate ratio, M, and ii) the steam generator, xH, and condenser, xL, area fractions of the plant fixed total heat exchangers area. The model was experimentally validated for a heat recovery driven power plant. Sharp maxima were obtained in both levels, which is illustrated with a base case by ∼ 60 % second law efficiency variation in comparison to the obtained maximum for 0.05 < M < 0.25 in the first optimization level, and ∼ 30 % for 0.2 < xH < 0.7 in the second optimization level, so that (xf,H,xfg,H,xg,H)2wo=(0.14,0.13, 0.23), with (M,xH)2wo=(0.16,0.5), in the base case considered in this study. The two-way optima results sensitivity to several plant geometric and operating parameters were thoroughly investigated. The optimized parameters are shown to be robust with respect to several system’s design and operating conditions. Therefore, the herein reported fundamental optimization results are important for whatever actual SRC power plant. |
---|---|
AbstractList | This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the plant irreversibilities are predominant in the heat exchangers, thus exergy destruction in the turbine, pump, fittings, tubes and other internal components are neglected. The NTU-effectiveness method was utilized to model the heat exchangers, and water was considered as the working fluid, which changes phase in both heat exchangers. Acknowledging that entropy is generated in any physical system, the fundamental optimization problem selected the dimensionless net power output, and second law efficiency as the objective functions to be maximized, after the identification of plant geometric and operating parameters to be optimized based on the intersection of asymptotes method, subject to a fixed total heat exchangers area realistic physical constraint, i.e., for a finite size plant. As a result, two levels of optimization were identified: i) the working fluid to hot stream mass flow rate ratio, M, and ii) the steam generator, xH, and condenser, xL, area fractions of the plant fixed total heat exchangers area. The model was experimentally validated for a heat recovery driven power plant. Sharp maxima were obtained in both levels, which is illustrated with a base case by ∼ 60 % second law efficiency variation in comparison to the obtained maximum for 0.05 < M < 0.25 in the first optimization level, and ∼ 30 % for 0.2 < xH < 0.7 in the second optimization level, so that (xf,H,xfg,H,xg,H)2wo=(0.14,0.13, 0.23), with (M,xH)2wo=(0.16,0.5), in the base case considered in this study. The two-way optima results sensitivity to several plant geometric and operating parameters were thoroughly investigated. The optimized parameters are shown to be robust with respect to several system’s design and operating conditions. Therefore, the herein reported fundamental optimization results are important for whatever actual SRC power plant. •Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net power output, and second law efficiency were maximized.•Gas to water mass flow rate ratio and plant heat transfer areas were optimized.•Optimal parameters are robust for several geometric and operating conditions. This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the plant irreversibilities are predominant in the heat exchangers, thus exergy destruction in the turbine, pump, fittings, tubes and other internal components are neglected. The NTU-effectiveness method was utilized to model the heat exchangers, and water was considered as the working fluid, which changes phase in both heat exchangers. Acknowledging that entropy is generated in any physical system, the fundamental optimization problem selected the dimensionless net power output, and second law efficiency as the objective functions to be maximized, after the identification of plant geometric and operating parameters to be optimized based on the intersection of asymptotes method, subject to a fixed total heat exchangers area realistic physical constraint, i.e., for a finite size plant. As a result, two levels of optimization were identified: i) the working fluid to hot stream mass flow rate ratio, M, and ii) the steam generator, xH, and condenser, xL, area fractions of the plant fixed total heat exchangers area. The model was experimentally validated for a heat recovery driven power plant. Sharp maxima were obtained in both levels, which is illustrated with a base case by ∼ 60 % second law efficiency variation in comparison to the obtained maximum for 0.05 < M < 0.25 in the first optimization level, and ∼ 30 % for 0.2 < xH < 0.7 in the second optimization level, so that (xf,H,xfg,H,xg,H)2wo=(0.14,0.13, 0.23), with (M,xH)2wo=(0.16,0.5), in the base case considered in this study. The two-way optima results sensitivity to several plant geometric and operating parameters were thoroughly investigated. The optimized parameters are shown to be robust with respect to several system’s design and operating conditions. Therefore, the herein reported fundamental optimization results are important for whatever actual SRC power plant. |
ArticleNumber | 117148 |
Author | Ordonez, J.C. Balmant, W. Galeano-Cabral, J. Vargas, J.V.C. Porto-Hernandez, L.A. Mariano, A.B. Munoz, M.N. |
Author_xml | – sequence: 1 givenname: L.A. surname: Porto-Hernandez fullname: Porto-Hernandez, L.A. organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA – sequence: 2 givenname: J.V.C. surname: Vargas fullname: Vargas, J.V.C. email: viriato@ufpr.br organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA – sequence: 3 givenname: M.N. surname: Munoz fullname: Munoz, M.N. organization: Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, PGMEC, and Sustainable Energy Research & Development Center, NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980 Curitiba, PR, Brazil – sequence: 4 givenname: J. surname: Galeano-Cabral fullname: Galeano-Cabral, J. organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA – sequence: 5 givenname: J.C. surname: Ordonez fullname: Ordonez, J.C. organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA – sequence: 6 givenname: W. surname: Balmant fullname: Balmant, W. organization: Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, PGMEC, and Sustainable Energy Research & Development Center, NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980 Curitiba, PR, Brazil – sequence: 7 givenname: A.B. surname: Mariano fullname: Mariano, A.B. organization: Department of Electrical Engineering, Graduate Program in Materials Science Engineering, PIPE, and Sustainable Energy Research & Development Center, NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980 Curitiba, PR, Brazil |
BookMark | eNqFkD1PwzAQhj0UibbwF1BGlgR_xUmlDqCKAhISEoLZcp2L5JLYwXZB5dfjElhYutwt7_Pq7pmhiXUWELoguCCYiKttAVY72ytbUExZQUhFeD1BU0wWIq8XmJ-iWQhbjDErsZii5XpnG9WDjarL3BBNb75UNM5mrs1CBNVnz8q-GQuZ3usOssF9gs-GTtkYztBJq7oA5797jl7Xty-r-_zx6e5hdfOYa8bLmEPFGlxXrVKKEkprQnCd5oZs0hVK4LLkjcBctBwzQbluaVlRoYluK6oFpWyOLsfewbv3HYQoexM0dOkIcLsgac04FYxUVYoux6j2LgQPrdQm_jwUvTKdJFgeRMmt_BMlD6LkKCrh4h8-eNMrvz8OXo8gJA8fBrwM2qQkNMaDjrJx5ljFN50Xiac |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2024_124233 crossref_primary_10_3390_ma17081906 crossref_primary_10_3390_pr12061059 crossref_primary_10_3390_sci5030033 crossref_primary_10_1016_j_applthermaleng_2024_122661 crossref_primary_10_1016_j_ecmx_2024_100550 crossref_primary_10_1016_j_csite_2024_104945 crossref_primary_10_2139_ssrn_4892190 crossref_primary_10_48084_etasr_7277 crossref_primary_10_1016_j_psep_2024_09_012 |
Cites_doi | 10.1016/j.enconman.2016.09.022 10.1016/S0017-9310(99)00146-5 10.1002/er.804 10.1016/j.energy.2021.121688 10.1016/j.enconman.2015.05.043 10.1016/j.enconman.2019.03.039 10.1016/j.energy.2017.02.174 10.1016/j.enconman.2017.09.004 10.1016/j.enconman.2019.112353 10.1002/wene.420 10.1119/1.18306 10.1016/j.rser.2018.09.030 10.1016/0360-5442(80)90088-2 10.18186/thermal.726076 10.1016/j.enconman.2012.12.020 10.1016/B978-0-08-101940-5.00003-8 10.1016/j.applthermaleng.2012.12.004 10.1002/ese3.227 10.3390/su13115864 10.1051/meca/2017065 10.1557/mrs2005.124 10.1016/j.enconman.2006.06.003 10.1016/j.energy.2012.11.001 10.1016/j.resconrec.2021.105850 10.1038/35104599 10.1016/0017-9310(94)00184-W 10.1016/0017-9310(88)90064-6 10.1016/j.energy.2021.122620 10.1115/1.2911449 10.1016/j.enconman.2018.02.032 10.1021/acsenergylett.7b01187 10.1016/S0360-5442(99)00052-3 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.enconman.2023.117148 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_enconman_2023_117148 S0196890423004946 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-e73d087faaa212281108281b1b003a60554d6046f403624cf25726c1cf72c6223 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Sun Sep 28 09:52:43 EDT 2025 Thu Apr 24 23:16:21 EDT 2025 Wed Oct 01 03:42:45 EDT 2025 Tue Dec 03 03:44:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mass flow rates ratio NTU-effectiveness method Ideal gas model Entropy generation Internal structure Steam actual properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-e73d087faaa212281108281b1b003a60554d6046f403624cf25726c1cf72c6223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2834263177 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834263177 crossref_citationtrail_10_1016_j_enconman_2023_117148 crossref_primary_10_1016_j_enconman_2023_117148 elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Energy conversion and management |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dokl, Gomilšek, Čuček, Abikoye, Kravanja (b0070) 2022; 239 Hussaini, Zubair, Antar (b0190) 2007; 48 Ma, Zhao, Zhang, Liu, Yang, Li (b0040) 2022; 238 Kyriakidis, Sørensen, Singh, Condra (b0110) 2017; 151 World energy consumption by energy source 2050. Statista n.d. https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source/ (accessed April 1, 2022). García-Pabón, Méndez-Méndez, Belman-Flores, Barroso-Maldonado, Khosravi (b0060) 2021; 13 Vargas, Bejan (b0170) 2000; 25 Dresselhaus, Thomas (b0035) 2001; 414 Mohammadi, Ashouri, Ahmadi, Bidi, Sadeghzadeh, Ming (b0075) 2018; 6 Hajabdollahi, Ahmadi, Dincer (b0085) 2011 Klemeš, Varbanov, Walmsley, Jia (b0230) 2018; 98 Bejan (b0135) 1996; 64 Lemmon, Huber, McLinden (b0205) 2010 Holik, Živić, Virag, Barac (b0065) 2019; 188 Bejan (b0160) 1995; 38 El-Wakil (b0045) 1985 Bejan (b0010) 1995 Yang (b0175) 2018; 162 Bejan (b0140) 2002; 26 Wang, Cheng, Liang (b0095) 2013; 68 Bejan (b0155) 1988; 31 Sanaye, Khakpaay, Chitsaz, Hassan Yahyanejad, Zolfaghari (b0180) 2020; 205 Fan, Li, ter Heijne, Buisman, Chen (b0055) 2021; 175 Elahifar, Assareh, Nedaei (b0115) 2018; 19 Bejan (b0195) 1993 Naemi, Saffar-Avval, Behboodi Kalhori, Mansoori (b0090) 2013; 52 Eftekhari̇, Ali̇Ehyaei̇ (b0120) 2020 Bejan (b0145) 2000 Bejan, Mamut (b0130) 1999 Vargas, Ordóñez, Bejan (b0165) 2000; 43 Nazari, Heidarnejad, Porkhial (b0185) 2016; 127 Cui, Geng, Zhu, Han (b0080) 2017; 125 Eriksen VL, Scroeder JE. Fundamentals. In: Eriksen VL, editor. Heat recovery steam generator technology, Cambridge, MA: Woodhead Publishing, Elsevier; 2017, p. 45-63. Bejan (b0005) 2020 . Yuan, Mei (b0105) 2015; 101 Muñoz, Rovira, Montes (b0050) 2022; 11 Kays, London (b0200) 1998 The Editorial Board (b0220) 1994; 116 Chen, De Angelis, Jin, Sun, Kamat (b0030) 2018 Jan 12; 3 Bejan (b0125) 1982 Smalley (b0025) 2005; 30 Domingues, Santos, Costa (b0100) 2013; 49 Bejan, Lorente (b0150) 2008 Randers (b0020) 2012 Kestin (b0215) 1980; 5 Bejan (b0210) 2016 The Editorial Board (10.1016/j.enconman.2023.117148_b0220) 1994; 116 Bejan (10.1016/j.enconman.2023.117148_b0140) 2002; 26 Bejan (10.1016/j.enconman.2023.117148_b0160) 1995; 38 Bejan (10.1016/j.enconman.2023.117148_b0125) 1982 Lemmon (10.1016/j.enconman.2023.117148_b0205) 2010 Kyriakidis (10.1016/j.enconman.2023.117148_b0110) 2017; 151 Muñoz (10.1016/j.enconman.2023.117148_b0050) 2022; 11 Elahifar (10.1016/j.enconman.2023.117148_b0115) 2018; 19 Holik (10.1016/j.enconman.2023.117148_b0065) 2019; 188 Dresselhaus (10.1016/j.enconman.2023.117148_b0035) 2001; 414 Smalley (10.1016/j.enconman.2023.117148_b0025) 2005; 30 Domingues (10.1016/j.enconman.2023.117148_b0100) 2013; 49 Yuan (10.1016/j.enconman.2023.117148_b0105) 2015; 101 Bejan (10.1016/j.enconman.2023.117148_b0195) 1993 Chen (10.1016/j.enconman.2023.117148_b0030) 2018; 3 Bejan (10.1016/j.enconman.2023.117148_b0145) 2000 Kays (10.1016/j.enconman.2023.117148_b0200) 1998 Bejan (10.1016/j.enconman.2023.117148_b0150) 2008 10.1016/j.enconman.2023.117148_b0225 Bejan (10.1016/j.enconman.2023.117148_b0130) 1999 Hussaini (10.1016/j.enconman.2023.117148_b0190) 2007; 48 Eftekhari̇ (10.1016/j.enconman.2023.117148_b0120) 2020 Bejan (10.1016/j.enconman.2023.117148_b0010) 1995 Wang (10.1016/j.enconman.2023.117148_b0095) 2013; 68 Klemeš (10.1016/j.enconman.2023.117148_b0230) 2018; 98 Hajabdollahi (10.1016/j.enconman.2023.117148_b0085) 2011 Ma (10.1016/j.enconman.2023.117148_b0040) 2022; 238 Mohammadi (10.1016/j.enconman.2023.117148_b0075) 2018; 6 Dokl (10.1016/j.enconman.2023.117148_b0070) 2022; 239 Naemi (10.1016/j.enconman.2023.117148_b0090) 2013; 52 Vargas (10.1016/j.enconman.2023.117148_b0170) 2000; 25 Bejan (10.1016/j.enconman.2023.117148_b0005) 2020 Bejan (10.1016/j.enconman.2023.117148_b0135) 1996; 64 Sanaye (10.1016/j.enconman.2023.117148_b0180) 2020; 205 El-Wakil (10.1016/j.enconman.2023.117148_b0045) 1985 García-Pabón (10.1016/j.enconman.2023.117148_b0060) 2021; 13 10.1016/j.enconman.2023.117148_b0015 Vargas (10.1016/j.enconman.2023.117148_b0165) 2000; 43 Kestin (10.1016/j.enconman.2023.117148_b0215) 1980; 5 Cui (10.1016/j.enconman.2023.117148_b0080) 2017; 125 Fan (10.1016/j.enconman.2023.117148_b0055) 2021; 175 Bejan (10.1016/j.enconman.2023.117148_b0210) 2016 Nazari (10.1016/j.enconman.2023.117148_b0185) 2016; 127 Bejan (10.1016/j.enconman.2023.117148_b0155) 1988; 31 Yang (10.1016/j.enconman.2023.117148_b0175) 2018; 162 Randers (10.1016/j.enconman.2023.117148_b0020) 2012 |
References_xml | – volume: 162 start-page: 189 year: 2018 end-page: 202 ident: b0175 article-title: Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine publication-title: Energ Conver Manage – volume: 43 start-page: 191 year: 2000 end-page: 201 ident: b0165 article-title: Power extraction from a hot stream in the presence of phase change publication-title: Int J Heat Mass Transf – year: 2020 ident: b0005 article-title: Freedom and Evolution: Hierarchy in Nature, Society and Science – volume: 64 start-page: 1054 year: 1996 end-page: 1059 ident: b0135 article-title: Models of power plants that generate minimum entropy while operating at maximum power publication-title: Am J Phys – volume: 98 start-page: 439 year: 2018 end-page: 468 ident: b0230 article-title: New directions in the implementation of Pinch Methodology (PM) publication-title: Renew Sustain Energy Rev – reference: Eriksen VL, Scroeder JE. Fundamentals. In: Eriksen VL, editor. Heat recovery steam generator technology, Cambridge, MA: Woodhead Publishing, Elsevier; 2017, p. 45-63. – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: b0035 article-title: Alternative energy technologies publication-title: Nature – volume: 25 start-page: 15 year: 2000 end-page: 33 ident: b0170 article-title: Thermodynamic optimization of the match between two streams with phase change publication-title: Energy – year: 2016 ident: b0210 article-title: Advanced engineering thermodynamics – year: 1982 ident: b0125 article-title: Entropy Generation through Heat and Fluid Flow – volume: 30 start-page: 412 year: 2005 end-page: 417 ident: b0025 article-title: Future Global Energy Prosperity: The Terawatt Challenge publication-title: MRS Bull – volume: 38 start-page: 433 year: 1995 end-page: 444 ident: b0160 article-title: Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment publication-title: Int J Heat Mass Transf – volume: 238 year: 2022 ident: b0040 article-title: Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study publication-title: Energy – volume: 48 start-page: 568 year: 2007 end-page: 575 ident: b0190 article-title: Area allocation in multi-zone feedwater heaters publication-title: Energ Conver Manage – year: 2010 ident: b0205 article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data publication-title: Program – year: 1999 ident: b0130 article-title: Thermodynamic Optimization of Complex Energy Systems – volume: 205 year: 2020 ident: b0180 article-title: A comprehensive approach for designing, modeling and optimizing of waste heat recovery cycle and power generation system in a cement plant: A thermo-economic and environmental assessment publication-title: Energ Conver Manage – volume: 19 start-page: 505 year: 2018 ident: b0115 article-title: Exergy analysis and optimization of the Rankine cycle in steam power plants using the firefly algorithm publication-title: Mech Ind – volume: 3 start-page: 261 year: 2018 Jan 12 end-page: 263 ident: b0030 article-title: Energy Research Outlook. What to Look for in 2018 publication-title: ACS Energy Lett – volume: 239 year: 2022 ident: b0070 article-title: Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry publication-title: Energy – volume: 125 start-page: 681 year: 2017 end-page: 704 ident: b0080 article-title: Review: Multi-objective optimization methods and application in energy saving publication-title: Energy – year: 2000 ident: b0145 article-title: Shape and Structure, from Engineering to Nature – volume: 49 start-page: 71 year: 2013 end-page: 85 ident: b0100 article-title: Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle publication-title: Energy – volume: 188 start-page: 333 year: 2019 end-page: 345 ident: b0065 article-title: Optimization of an organic Rankine cycle constrained by the application of compact heat exchangers publication-title: Energ Conver Manage – start-page: 8 year: 2011 ident: b0085 article-title: An Exergy-Based Multi-Objective Optimization Of A Heat Recovery Steam Generator (HRSG) In A Combined Cycle Power Plant (CCPP) Using Evolutionary Algorithm publication-title: Int J Green Energy – volume: 26 year: 2002 ident: b0140 article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture publication-title: Int J Energy Res – year: 1993 ident: b0195 article-title: Heat Transfer – year: 1995 ident: b0010 article-title: Entropy Generation Minimization – volume: 127 start-page: 366 year: 2016 end-page: 379 ident: b0185 article-title: Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application publication-title: Energ Conver Manage – start-page: 65 year: 2020 end-page: 91 ident: b0120 article-title: Optimization Of A New Configuration Of Power Tri-Generation Cycle By The Use Of A Multi-Purpose Genetic Algorithm. Journal of publication-title: Therm Eng – volume: 175 year: 2021 ident: b0055 article-title: Heat potential, generation, recovery and utilization from composting: A review publication-title: Resour Conserv Recycl – reference: . – year: 2012 ident: b0020 article-title: 2052: A Global Forecast for the next Forty Years – volume: 52 start-page: 371 year: 2013 end-page: 384 ident: b0090 article-title: Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches publication-title: Appl Therm Eng – year: 2008 ident: b0150 article-title: Design with Constructal Theory – reference: World energy consumption by energy source 2050. Statista n.d. https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source/ (accessed April 1, 2022). – volume: 5 start-page: 679 year: 1980 end-page: 692 ident: b0215 article-title: Availability: The concept and associated terminology publication-title: Energy – volume: 68 start-page: 82 year: 2013 end-page: 88 ident: b0095 article-title: Entropy and entransy analyses and optimizations of the Rankine cycle publication-title: Energ Conver Manage – volume: 31 start-page: 1211 year: 1988 end-page: 1219 ident: b0155 article-title: Theory of heat transfer-irreversible power plants publication-title: Int J Heat Mass Transf – volume: 13 start-page: 5864 year: 2021 ident: b0060 article-title: A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle publication-title: Sustainability – volume: 6 start-page: 506 year: 2018 end-page: 522 ident: b0075 article-title: Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle publication-title: Energy Sci Eng – volume: 11 start-page: e420 year: 2022 ident: b0050 article-title: Thermodynamic cycles for solar thermal power plants: A review publication-title: WIREs Energy Environ – volume: 101 start-page: 216 year: 2015 end-page: 228 ident: b0105 article-title: Energy, exergy analysis and working fluid selection of a Rankine cycle for subsea power system publication-title: Energ Conver Manage – volume: 151 start-page: 286 year: 2017 end-page: 295 ident: b0110 article-title: Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines publication-title: Energ Conver Manage – year: 1998 ident: b0200 article-title: Compact heat exchangers publication-title: Third edition Krieger Pub Co – volume: 116 start-page: 797 year: 1994 end-page: 798 ident: b0220 article-title: Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy publication-title: J Heat Transfer – year: 1985 ident: b0045 article-title: Powerplant Technology – year: 2010 ident: 10.1016/j.enconman.2023.117148_b0205 article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data publication-title: Program – volume: 127 start-page: 366 year: 2016 ident: 10.1016/j.enconman.2023.117148_b0185 article-title: Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2016.09.022 – year: 1995 ident: 10.1016/j.enconman.2023.117148_b0010 – year: 1985 ident: 10.1016/j.enconman.2023.117148_b0045 – volume: 43 start-page: 191 issue: 2 year: 2000 ident: 10.1016/j.enconman.2023.117148_b0165 article-title: Power extraction from a hot stream in the presence of phase change publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(99)00146-5 – volume: 26 issue: 7 year: 2002 ident: 10.1016/j.enconman.2023.117148_b0140 article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture publication-title: Int J Energy Res doi: 10.1002/er.804 – year: 1993 ident: 10.1016/j.enconman.2023.117148_b0195 – volume: 238 year: 2022 ident: 10.1016/j.enconman.2023.117148_b0040 article-title: Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study publication-title: Energy doi: 10.1016/j.energy.2021.121688 – volume: 101 start-page: 216 year: 2015 ident: 10.1016/j.enconman.2023.117148_b0105 article-title: Energy, exergy analysis and working fluid selection of a Rankine cycle for subsea power system publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2015.05.043 – volume: 188 start-page: 333 year: 2019 ident: 10.1016/j.enconman.2023.117148_b0065 article-title: Optimization of an organic Rankine cycle constrained by the application of compact heat exchangers publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2019.03.039 – volume: 125 start-page: 681 year: 2017 ident: 10.1016/j.enconman.2023.117148_b0080 article-title: Review: Multi-objective optimization methods and application in energy saving publication-title: Energy doi: 10.1016/j.energy.2017.02.174 – year: 2020 ident: 10.1016/j.enconman.2023.117148_b0005 – volume: 151 start-page: 286 year: 2017 ident: 10.1016/j.enconman.2023.117148_b0110 article-title: Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2017.09.004 – volume: 205 year: 2020 ident: 10.1016/j.enconman.2023.117148_b0180 article-title: A comprehensive approach for designing, modeling and optimizing of waste heat recovery cycle and power generation system in a cement plant: A thermo-economic and environmental assessment publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2019.112353 – volume: 11 start-page: e420 issue: 2 year: 2022 ident: 10.1016/j.enconman.2023.117148_b0050 article-title: Thermodynamic cycles for solar thermal power plants: A review publication-title: WIREs Energy Environ doi: 10.1002/wene.420 – volume: 64 start-page: 1054 issue: 8 year: 1996 ident: 10.1016/j.enconman.2023.117148_b0135 article-title: Models of power plants that generate minimum entropy while operating at maximum power publication-title: Am J Phys doi: 10.1119/1.18306 – year: 2008 ident: 10.1016/j.enconman.2023.117148_b0150 – year: 1982 ident: 10.1016/j.enconman.2023.117148_b0125 – volume: 98 start-page: 439 year: 2018 ident: 10.1016/j.enconman.2023.117148_b0230 article-title: New directions in the implementation of Pinch Methodology (PM) publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.09.030 – volume: 5 start-page: 679 issue: 8 year: 1980 ident: 10.1016/j.enconman.2023.117148_b0215 article-title: Availability: The concept and associated terminology publication-title: Energy doi: 10.1016/0360-5442(80)90088-2 – start-page: 65 year: 2020 ident: 10.1016/j.enconman.2023.117148_b0120 article-title: Optimization Of A New Configuration Of Power Tri-Generation Cycle By The Use Of A Multi-Purpose Genetic Algorithm. Journal of publication-title: Therm Eng doi: 10.18186/thermal.726076 – ident: 10.1016/j.enconman.2023.117148_b0015 – volume: 68 start-page: 82 year: 2013 ident: 10.1016/j.enconman.2023.117148_b0095 article-title: Entropy and entransy analyses and optimizations of the Rankine cycle publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2012.12.020 – year: 2000 ident: 10.1016/j.enconman.2023.117148_b0145 – ident: 10.1016/j.enconman.2023.117148_b0225 doi: 10.1016/B978-0-08-101940-5.00003-8 – volume: 52 start-page: 371 issue: 2 year: 2013 ident: 10.1016/j.enconman.2023.117148_b0090 article-title: Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.12.004 – volume: 6 start-page: 506 issue: 5 year: 2018 ident: 10.1016/j.enconman.2023.117148_b0075 article-title: Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle publication-title: Energy Sci Eng doi: 10.1002/ese3.227 – volume: 13 start-page: 5864 issue: 11 year: 2021 ident: 10.1016/j.enconman.2023.117148_b0060 article-title: A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle publication-title: Sustainability doi: 10.3390/su13115864 – year: 1999 ident: 10.1016/j.enconman.2023.117148_b0130 – volume: 19 start-page: 505 issue: 5 year: 2018 ident: 10.1016/j.enconman.2023.117148_b0115 article-title: Exergy analysis and optimization of the Rankine cycle in steam power plants using the firefly algorithm publication-title: Mech Ind doi: 10.1051/meca/2017065 – year: 2012 ident: 10.1016/j.enconman.2023.117148_b0020 – volume: 30 start-page: 412 year: 2005 ident: 10.1016/j.enconman.2023.117148_b0025 article-title: Future Global Energy Prosperity: The Terawatt Challenge publication-title: MRS Bull doi: 10.1557/mrs2005.124 – year: 2016 ident: 10.1016/j.enconman.2023.117148_b0210 – volume: 48 start-page: 568 year: 2007 ident: 10.1016/j.enconman.2023.117148_b0190 article-title: Area allocation in multi-zone feedwater heaters publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2006.06.003 – volume: 49 start-page: 71 year: 2013 ident: 10.1016/j.enconman.2023.117148_b0100 article-title: Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2012.11.001 – volume: 175 year: 2021 ident: 10.1016/j.enconman.2023.117148_b0055 article-title: Heat potential, generation, recovery and utilization from composting: A review publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2021.105850 – start-page: 8 year: 2011 ident: 10.1016/j.enconman.2023.117148_b0085 article-title: An Exergy-Based Multi-Objective Optimization Of A Heat Recovery Steam Generator (HRSG) In A Combined Cycle Power Plant (CCPP) Using Evolutionary Algorithm publication-title: Int J Green Energy – volume: 414 start-page: 332 issue: 6861 year: 2001 ident: 10.1016/j.enconman.2023.117148_b0035 article-title: Alternative energy technologies publication-title: Nature doi: 10.1038/35104599 – volume: 38 start-page: 433 issue: 3 year: 1995 ident: 10.1016/j.enconman.2023.117148_b0160 article-title: Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(94)00184-W – volume: 31 start-page: 1211 issue: 6 year: 1988 ident: 10.1016/j.enconman.2023.117148_b0155 article-title: Theory of heat transfer-irreversible power plants publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(88)90064-6 – year: 1998 ident: 10.1016/j.enconman.2023.117148_b0200 article-title: Compact heat exchangers publication-title: Third edition Krieger Pub Co – volume: 239 year: 2022 ident: 10.1016/j.enconman.2023.117148_b0070 article-title: Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry publication-title: Energy doi: 10.1016/j.energy.2021.122620 – volume: 116 start-page: 797 year: 1994 ident: 10.1016/j.enconman.2023.117148_b0220 article-title: Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy publication-title: J Heat Transfer doi: 10.1115/1.2911449 – volume: 162 start-page: 189 year: 2018 ident: 10.1016/j.enconman.2023.117148_b0175 article-title: Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2018.02.032 – volume: 3 start-page: 261 issue: 1 year: 2018 ident: 10.1016/j.enconman.2023.117148_b0030 article-title: Energy Research Outlook. What to Look for in 2018 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b01187 – volume: 25 start-page: 15 issue: 1 year: 2000 ident: 10.1016/j.enconman.2023.117148_b0170 article-title: Thermodynamic optimization of the match between two streams with phase change publication-title: Energy doi: 10.1016/S0360-5442(99)00052-3 |
SSID | ssj0003506 |
Score | 2.4817262 |
Snippet | •Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net... This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117148 |
SubjectTerms | administrative management entropy Entropy generation exergy generators (equipment) geometry heat recovery Ideal gas model Internal structure mass flow Mass flow rates ratio mathematical models NTU-effectiveness method power plants steam Steam actual properties streams system optimization |
Title | Fundamental optimization of steam Rankine cycle power plants |
URI | https://dx.doi.org/10.1016/j.enconman.2023.117148 https://www.proquest.com/docview/2834263177 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgPvFZInhN291N9gFeSrFUxR7UQm8hm2Shpd1dtD148bc7sw-tIvTgYRd2SUKYZB4h33xDyLUbKxEGiceE8RIGmmhYKLhmMVhCHRphtMUb3ceRPxzz-4mYNEi_zoVBWGVl-0ubXljr6k-nkmYnn047z8jsEkaI6yhITpB2G9m_YE-3P75hHp4o6mtiY4at17KEZ23kikwXCnlQXQ_vLx2sA_S3g_plqgv_M9gju1XgSHvl3PZJw6YHZGeNTvCQ3AwwraNk66cZ2IJFlWRJs4Tiai7ok8JSCZbqdxiE5lgijeZzxMIckfHg9qU_ZFV1BKY9LpbMBp7pgpiVUuB-3BDx_PCOHVRUBacUwY0Pp9-Eo5PiOgHldH3t6CRwtQ9RwTFppllqTwhFThjrGM-xEee6GyoImmyc-LGJHHiCUyJqkUhdUYdjBYu5rDFiM1mLUqIoZSnKU9L56peX5Bkbe0S1xOWPbSDBwm_se1UvkQQdwYsPldps9SYhhEJeeicIzv4x_jnZxq8S_XdBmsvXlb2EiGQZt4ot1yJbvbuH4egTh43fVg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPrfQa6pJdpMIvYhUtD4OrYK3ZbPZgKJRWj3033fGJGJLwUMPySHJLGF255tZduYbgEcnVCLwY9cSkRtbaImRFQiurRCRUAeRiLShE91e32sN-etIjArQyGthKK0yw_4U09donT2pZNqsLMbjyjsxuwQ1yutYk5x4e1DiAjG5CKV6u9PqbwDZFesWm_S9RQJbhcKTJ6KLTGaKqFAdl44wbWoF9LeP-oXWaxfUPIajLHZk9fT3TqBgklM43GIUPIPnJlV2pIT9bI5wMMvqLNk8ZjShM_amqFuCYfoLB2EL6pLGFlNKhzmHYfNl0GhZWYMES7tcLC3ju1EVNa2UQg_kBJTSj_fQJltVuFERPPJwAxxz8lNcx2ifjqdtHfuO9jAwuIBiMk_MJTCihTF25NqmxrmuBgrjJhPGXhjVbLz8MohcJVJn7OHUxGIq8zSxicxVKUmVMlVlGSobuUXKn7FTopZrXP5YCRJBfqfsQz5FEs2Ezj5UYuarT4lRFFHT275_9Y_x72G_Neh1Zbfd71zDAb1JkwFvoLj8WJlbDFCW4V22AL8BLDfiAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+optimization+of+steam+Rankine+cycle+power+plants&rft.jtitle=Energy+conversion+and+management&rft.au=Porto-Hernandez%2C+L.A.&rft.au=Vargas%2C+J.V.C.&rft.au=Munoz%2C+M.N.&rft.au=Galeano-Cabral%2C+J.&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.volume=289&rft_id=info:doi/10.1016%2Fj.enconman.2023.117148&rft.externalDocID=S0196890423004946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |