Fundamental optimization of steam Rankine cycle power plants

•Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net power output, and second law efficiency were maximized.•Gas to water mass flow rate ratio and plant heat transfer areas were optimized.•Opti...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 289; p. 117148
Main Authors Porto-Hernandez, L.A., Vargas, J.V.C., Munoz, M.N., Galeano-Cabral, J., Ordonez, J.C., Balmant, W., Mariano, A.B.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0196-8904
DOI10.1016/j.enconman.2023.117148

Cover

Abstract •Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net power output, and second law efficiency were maximized.•Gas to water mass flow rate ratio and plant heat transfer areas were optimized.•Optimal parameters are robust for several geometric and operating conditions. This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the plant irreversibilities are predominant in the heat exchangers, thus exergy destruction in the turbine, pump, fittings, tubes and other internal components are neglected. The NTU-effectiveness method was utilized to model the heat exchangers, and water was considered as the working fluid, which changes phase in both heat exchangers. Acknowledging that entropy is generated in any physical system, the fundamental optimization problem selected the dimensionless net power output, and second law efficiency as the objective functions to be maximized, after the identification of plant geometric and operating parameters to be optimized based on the intersection of asymptotes method, subject to a fixed total heat exchangers area realistic physical constraint, i.e., for a finite size plant. As a result, two levels of optimization were identified: i) the working fluid to hot stream mass flow rate ratio, M, and ii) the steam generator, xH, and condenser, xL, area fractions of the plant fixed total heat exchangers area. The model was experimentally validated for a heat recovery driven power plant. Sharp maxima were obtained in both levels, which is illustrated with a base case by ∼ 60 % second law efficiency variation in comparison to the obtained maximum for 0.05 < M < 0.25 in the first optimization level, and ∼ 30 % for 0.2 < xH < 0.7 in the second optimization level, so that (xf,H,xfg,H,xg,H)2wo=(0.14,0.13, 0.23), with (M,xH)2wo=(0.16,0.5), in the base case considered in this study. The two-way optima results sensitivity to several plant geometric and operating parameters were thoroughly investigated. The optimized parameters are shown to be robust with respect to several system’s design and operating conditions. Therefore, the herein reported fundamental optimization results are important for whatever actual SRC power plant.
AbstractList This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the plant irreversibilities are predominant in the heat exchangers, thus exergy destruction in the turbine, pump, fittings, tubes and other internal components are neglected. The NTU-effectiveness method was utilized to model the heat exchangers, and water was considered as the working fluid, which changes phase in both heat exchangers. Acknowledging that entropy is generated in any physical system, the fundamental optimization problem selected the dimensionless net power output, and second law efficiency as the objective functions to be maximized, after the identification of plant geometric and operating parameters to be optimized based on the intersection of asymptotes method, subject to a fixed total heat exchangers area realistic physical constraint, i.e., for a finite size plant. As a result, two levels of optimization were identified: i) the working fluid to hot stream mass flow rate ratio, M, and ii) the steam generator, xH, and condenser, xL, area fractions of the plant fixed total heat exchangers area. The model was experimentally validated for a heat recovery driven power plant. Sharp maxima were obtained in both levels, which is illustrated with a base case by ∼ 60 % second law efficiency variation in comparison to the obtained maximum for 0.05 < M < 0.25 in the first optimization level, and ∼ 30 % for 0.2 < xH < 0.7 in the second optimization level, so that (xf,H,xfg,H,xg,H)2wo=(0.14,0.13, 0.23), with (M,xH)2wo=(0.16,0.5), in the base case considered in this study. The two-way optima results sensitivity to several plant geometric and operating parameters were thoroughly investigated. The optimized parameters are shown to be robust with respect to several system’s design and operating conditions. Therefore, the herein reported fundamental optimization results are important for whatever actual SRC power plant.
•Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net power output, and second law efficiency were maximized.•Gas to water mass flow rate ratio and plant heat transfer areas were optimized.•Optimal parameters are robust for several geometric and operating conditions. This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the plant irreversibilities are predominant in the heat exchangers, thus exergy destruction in the turbine, pump, fittings, tubes and other internal components are neglected. The NTU-effectiveness method was utilized to model the heat exchangers, and water was considered as the working fluid, which changes phase in both heat exchangers. Acknowledging that entropy is generated in any physical system, the fundamental optimization problem selected the dimensionless net power output, and second law efficiency as the objective functions to be maximized, after the identification of plant geometric and operating parameters to be optimized based on the intersection of asymptotes method, subject to a fixed total heat exchangers area realistic physical constraint, i.e., for a finite size plant. As a result, two levels of optimization were identified: i) the working fluid to hot stream mass flow rate ratio, M, and ii) the steam generator, xH, and condenser, xL, area fractions of the plant fixed total heat exchangers area. The model was experimentally validated for a heat recovery driven power plant. Sharp maxima were obtained in both levels, which is illustrated with a base case by ∼ 60 % second law efficiency variation in comparison to the obtained maximum for 0.05 < M < 0.25 in the first optimization level, and ∼ 30 % for 0.2 < xH < 0.7 in the second optimization level, so that (xf,H,xfg,H,xg,H)2wo=(0.14,0.13, 0.23), with (M,xH)2wo=(0.16,0.5), in the base case considered in this study. The two-way optima results sensitivity to several plant geometric and operating parameters were thoroughly investigated. The optimized parameters are shown to be robust with respect to several system’s design and operating conditions. Therefore, the herein reported fundamental optimization results are important for whatever actual SRC power plant.
ArticleNumber 117148
Author Ordonez, J.C.
Balmant, W.
Galeano-Cabral, J.
Vargas, J.V.C.
Porto-Hernandez, L.A.
Mariano, A.B.
Munoz, M.N.
Author_xml – sequence: 1
  givenname: L.A.
  surname: Porto-Hernandez
  fullname: Porto-Hernandez, L.A.
  organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA
– sequence: 2
  givenname: J.V.C.
  surname: Vargas
  fullname: Vargas, J.V.C.
  email: viriato@ufpr.br
  organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA
– sequence: 3
  givenname: M.N.
  surname: Munoz
  fullname: Munoz, M.N.
  organization: Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, PGMEC, and Sustainable Energy Research & Development Center, NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980 Curitiba, PR, Brazil
– sequence: 4
  givenname: J.
  surname: Galeano-Cabral
  fullname: Galeano-Cabral, J.
  organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA
– sequence: 5
  givenname: J.C.
  surname: Ordonez
  fullname: Ordonez, J.C.
  organization: Department of Mechanical Engineering, Energy and Sustainability Center and Center for Advanced Power Systems, Florida State University, FSU, Tallahassee, FL 32310–6046, USA
– sequence: 6
  givenname: W.
  surname: Balmant
  fullname: Balmant, W.
  organization: Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, PGMEC, and Sustainable Energy Research & Development Center, NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980 Curitiba, PR, Brazil
– sequence: 7
  givenname: A.B.
  surname: Mariano
  fullname: Mariano, A.B.
  organization: Department of Electrical Engineering, Graduate Program in Materials Science Engineering, PIPE, and Sustainable Energy Research & Development Center, NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980 Curitiba, PR, Brazil
BookMark eNqFkD1PwzAQhj0UibbwF1BGlgR_xUmlDqCKAhISEoLZcp2L5JLYwXZB5dfjElhYutwt7_Pq7pmhiXUWELoguCCYiKttAVY72ytbUExZQUhFeD1BU0wWIq8XmJ-iWQhbjDErsZii5XpnG9WDjarL3BBNb75UNM5mrs1CBNVnz8q-GQuZ3usOssF9gs-GTtkYztBJq7oA5797jl7Xty-r-_zx6e5hdfOYa8bLmEPFGlxXrVKKEkprQnCd5oZs0hVK4LLkjcBctBwzQbluaVlRoYluK6oFpWyOLsfewbv3HYQoexM0dOkIcLsgac04FYxUVYoux6j2LgQPrdQm_jwUvTKdJFgeRMmt_BMlD6LkKCrh4h8-eNMrvz8OXo8gJA8fBrwM2qQkNMaDjrJx5ljFN50Xiac
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2024_124233
crossref_primary_10_3390_ma17081906
crossref_primary_10_3390_pr12061059
crossref_primary_10_3390_sci5030033
crossref_primary_10_1016_j_applthermaleng_2024_122661
crossref_primary_10_1016_j_ecmx_2024_100550
crossref_primary_10_1016_j_csite_2024_104945
crossref_primary_10_2139_ssrn_4892190
crossref_primary_10_48084_etasr_7277
crossref_primary_10_1016_j_psep_2024_09_012
Cites_doi 10.1016/j.enconman.2016.09.022
10.1016/S0017-9310(99)00146-5
10.1002/er.804
10.1016/j.energy.2021.121688
10.1016/j.enconman.2015.05.043
10.1016/j.enconman.2019.03.039
10.1016/j.energy.2017.02.174
10.1016/j.enconman.2017.09.004
10.1016/j.enconman.2019.112353
10.1002/wene.420
10.1119/1.18306
10.1016/j.rser.2018.09.030
10.1016/0360-5442(80)90088-2
10.18186/thermal.726076
10.1016/j.enconman.2012.12.020
10.1016/B978-0-08-101940-5.00003-8
10.1016/j.applthermaleng.2012.12.004
10.1002/ese3.227
10.3390/su13115864
10.1051/meca/2017065
10.1557/mrs2005.124
10.1016/j.enconman.2006.06.003
10.1016/j.energy.2012.11.001
10.1016/j.resconrec.2021.105850
10.1038/35104599
10.1016/0017-9310(94)00184-W
10.1016/0017-9310(88)90064-6
10.1016/j.energy.2021.122620
10.1115/1.2911449
10.1016/j.enconman.2018.02.032
10.1021/acsenergylett.7b01187
10.1016/S0360-5442(99)00052-3
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2023.117148
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enconman_2023_117148
S0196890423004946
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-e73d087faaa212281108281b1b003a60554d6046f403624cf25726c1cf72c6223
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Sun Sep 28 09:52:43 EDT 2025
Thu Apr 24 23:16:21 EDT 2025
Wed Oct 01 03:42:45 EDT 2025
Tue Dec 03 03:44:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mass flow rates ratio
NTU-effectiveness method
Ideal gas model
Entropy generation
Internal structure
Steam actual properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-e73d087faaa212281108281b1b003a60554d6046f403624cf25726c1cf72c6223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834263177
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834263177
crossref_citationtrail_10_1016_j_enconman_2023_117148
crossref_primary_10_1016_j_enconman_2023_117148
elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dokl, Gomilšek, Čuček, Abikoye, Kravanja (b0070) 2022; 239
Hussaini, Zubair, Antar (b0190) 2007; 48
Ma, Zhao, Zhang, Liu, Yang, Li (b0040) 2022; 238
Kyriakidis, Sørensen, Singh, Condra (b0110) 2017; 151
World energy consumption by energy source 2050. Statista n.d. https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source/ (accessed April 1, 2022).
García-Pabón, Méndez-Méndez, Belman-Flores, Barroso-Maldonado, Khosravi (b0060) 2021; 13
Vargas, Bejan (b0170) 2000; 25
Dresselhaus, Thomas (b0035) 2001; 414
Mohammadi, Ashouri, Ahmadi, Bidi, Sadeghzadeh, Ming (b0075) 2018; 6
Hajabdollahi, Ahmadi, Dincer (b0085) 2011
Klemeš, Varbanov, Walmsley, Jia (b0230) 2018; 98
Bejan (b0135) 1996; 64
Lemmon, Huber, McLinden (b0205) 2010
Holik, Živić, Virag, Barac (b0065) 2019; 188
Bejan (b0160) 1995; 38
El-Wakil (b0045) 1985
Bejan (b0010) 1995
Yang (b0175) 2018; 162
Bejan (b0140) 2002; 26
Wang, Cheng, Liang (b0095) 2013; 68
Bejan (b0155) 1988; 31
Sanaye, Khakpaay, Chitsaz, Hassan Yahyanejad, Zolfaghari (b0180) 2020; 205
Fan, Li, ter Heijne, Buisman, Chen (b0055) 2021; 175
Elahifar, Assareh, Nedaei (b0115) 2018; 19
Bejan (b0195) 1993
Naemi, Saffar-Avval, Behboodi Kalhori, Mansoori (b0090) 2013; 52
Eftekhari̇, Ali̇Ehyaei̇ (b0120) 2020
Bejan (b0145) 2000
Bejan, Mamut (b0130) 1999
Vargas, Ordóñez, Bejan (b0165) 2000; 43
Nazari, Heidarnejad, Porkhial (b0185) 2016; 127
Cui, Geng, Zhu, Han (b0080) 2017; 125
Eriksen VL, Scroeder JE. Fundamentals. In: Eriksen VL, editor. Heat recovery steam generator technology, Cambridge, MA: Woodhead Publishing, Elsevier; 2017, p. 45-63.
Bejan (b0005) 2020
.
Yuan, Mei (b0105) 2015; 101
Muñoz, Rovira, Montes (b0050) 2022; 11
Kays, London (b0200) 1998
The Editorial Board (b0220) 1994; 116
Chen, De Angelis, Jin, Sun, Kamat (b0030) 2018 Jan 12; 3
Bejan (b0125) 1982
Smalley (b0025) 2005; 30
Domingues, Santos, Costa (b0100) 2013; 49
Bejan, Lorente (b0150) 2008
Randers (b0020) 2012
Kestin (b0215) 1980; 5
Bejan (b0210) 2016
The Editorial Board (10.1016/j.enconman.2023.117148_b0220) 1994; 116
Bejan (10.1016/j.enconman.2023.117148_b0140) 2002; 26
Bejan (10.1016/j.enconman.2023.117148_b0160) 1995; 38
Bejan (10.1016/j.enconman.2023.117148_b0125) 1982
Lemmon (10.1016/j.enconman.2023.117148_b0205) 2010
Kyriakidis (10.1016/j.enconman.2023.117148_b0110) 2017; 151
Muñoz (10.1016/j.enconman.2023.117148_b0050) 2022; 11
Elahifar (10.1016/j.enconman.2023.117148_b0115) 2018; 19
Holik (10.1016/j.enconman.2023.117148_b0065) 2019; 188
Dresselhaus (10.1016/j.enconman.2023.117148_b0035) 2001; 414
Smalley (10.1016/j.enconman.2023.117148_b0025) 2005; 30
Domingues (10.1016/j.enconman.2023.117148_b0100) 2013; 49
Yuan (10.1016/j.enconman.2023.117148_b0105) 2015; 101
Bejan (10.1016/j.enconman.2023.117148_b0195) 1993
Chen (10.1016/j.enconman.2023.117148_b0030) 2018; 3
Bejan (10.1016/j.enconman.2023.117148_b0145) 2000
Kays (10.1016/j.enconman.2023.117148_b0200) 1998
Bejan (10.1016/j.enconman.2023.117148_b0150) 2008
10.1016/j.enconman.2023.117148_b0225
Bejan (10.1016/j.enconman.2023.117148_b0130) 1999
Hussaini (10.1016/j.enconman.2023.117148_b0190) 2007; 48
Eftekhari̇ (10.1016/j.enconman.2023.117148_b0120) 2020
Bejan (10.1016/j.enconman.2023.117148_b0010) 1995
Wang (10.1016/j.enconman.2023.117148_b0095) 2013; 68
Klemeš (10.1016/j.enconman.2023.117148_b0230) 2018; 98
Hajabdollahi (10.1016/j.enconman.2023.117148_b0085) 2011
Ma (10.1016/j.enconman.2023.117148_b0040) 2022; 238
Mohammadi (10.1016/j.enconman.2023.117148_b0075) 2018; 6
Dokl (10.1016/j.enconman.2023.117148_b0070) 2022; 239
Naemi (10.1016/j.enconman.2023.117148_b0090) 2013; 52
Vargas (10.1016/j.enconman.2023.117148_b0170) 2000; 25
Bejan (10.1016/j.enconman.2023.117148_b0005) 2020
Bejan (10.1016/j.enconman.2023.117148_b0135) 1996; 64
Sanaye (10.1016/j.enconman.2023.117148_b0180) 2020; 205
El-Wakil (10.1016/j.enconman.2023.117148_b0045) 1985
García-Pabón (10.1016/j.enconman.2023.117148_b0060) 2021; 13
10.1016/j.enconman.2023.117148_b0015
Vargas (10.1016/j.enconman.2023.117148_b0165) 2000; 43
Kestin (10.1016/j.enconman.2023.117148_b0215) 1980; 5
Cui (10.1016/j.enconman.2023.117148_b0080) 2017; 125
Fan (10.1016/j.enconman.2023.117148_b0055) 2021; 175
Bejan (10.1016/j.enconman.2023.117148_b0210) 2016
Nazari (10.1016/j.enconman.2023.117148_b0185) 2016; 127
Bejan (10.1016/j.enconman.2023.117148_b0155) 1988; 31
Yang (10.1016/j.enconman.2023.117148_b0175) 2018; 162
Randers (10.1016/j.enconman.2023.117148_b0020) 2012
References_xml – volume: 162
  start-page: 189
  year: 2018
  end-page: 202
  ident: b0175
  article-title: Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine
  publication-title: Energ Conver Manage
– volume: 43
  start-page: 191
  year: 2000
  end-page: 201
  ident: b0165
  article-title: Power extraction from a hot stream in the presence of phase change
  publication-title: Int J Heat Mass Transf
– year: 2020
  ident: b0005
  article-title: Freedom and Evolution: Hierarchy in Nature, Society and Science
– volume: 64
  start-page: 1054
  year: 1996
  end-page: 1059
  ident: b0135
  article-title: Models of power plants that generate minimum entropy while operating at maximum power
  publication-title: Am J Phys
– volume: 98
  start-page: 439
  year: 2018
  end-page: 468
  ident: b0230
  article-title: New directions in the implementation of Pinch Methodology (PM)
  publication-title: Renew Sustain Energy Rev
– reference: Eriksen VL, Scroeder JE. Fundamentals. In: Eriksen VL, editor. Heat recovery steam generator technology, Cambridge, MA: Woodhead Publishing, Elsevier; 2017, p. 45-63.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  ident: b0035
  article-title: Alternative energy technologies
  publication-title: Nature
– volume: 25
  start-page: 15
  year: 2000
  end-page: 33
  ident: b0170
  article-title: Thermodynamic optimization of the match between two streams with phase change
  publication-title: Energy
– year: 2016
  ident: b0210
  article-title: Advanced engineering thermodynamics
– year: 1982
  ident: b0125
  article-title: Entropy Generation through Heat and Fluid Flow
– volume: 30
  start-page: 412
  year: 2005
  end-page: 417
  ident: b0025
  article-title: Future Global Energy Prosperity: The Terawatt Challenge
  publication-title: MRS Bull
– volume: 38
  start-page: 433
  year: 1995
  end-page: 444
  ident: b0160
  article-title: Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment
  publication-title: Int J Heat Mass Transf
– volume: 238
  year: 2022
  ident: b0040
  article-title: Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study
  publication-title: Energy
– volume: 48
  start-page: 568
  year: 2007
  end-page: 575
  ident: b0190
  article-title: Area allocation in multi-zone feedwater heaters
  publication-title: Energ Conver Manage
– year: 2010
  ident: b0205
  article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data
  publication-title: Program
– year: 1999
  ident: b0130
  article-title: Thermodynamic Optimization of Complex Energy Systems
– volume: 205
  year: 2020
  ident: b0180
  article-title: A comprehensive approach for designing, modeling and optimizing of waste heat recovery cycle and power generation system in a cement plant: A thermo-economic and environmental assessment
  publication-title: Energ Conver Manage
– volume: 19
  start-page: 505
  year: 2018
  ident: b0115
  article-title: Exergy analysis and optimization of the Rankine cycle in steam power plants using the firefly algorithm
  publication-title: Mech Ind
– volume: 3
  start-page: 261
  year: 2018 Jan 12
  end-page: 263
  ident: b0030
  article-title: Energy Research Outlook. What to Look for in 2018
  publication-title: ACS Energy Lett
– volume: 239
  year: 2022
  ident: b0070
  article-title: Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry
  publication-title: Energy
– volume: 125
  start-page: 681
  year: 2017
  end-page: 704
  ident: b0080
  article-title: Review: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
– year: 2000
  ident: b0145
  article-title: Shape and Structure, from Engineering to Nature
– volume: 49
  start-page: 71
  year: 2013
  end-page: 85
  ident: b0100
  article-title: Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle
  publication-title: Energy
– volume: 188
  start-page: 333
  year: 2019
  end-page: 345
  ident: b0065
  article-title: Optimization of an organic Rankine cycle constrained by the application of compact heat exchangers
  publication-title: Energ Conver Manage
– start-page: 8
  year: 2011
  ident: b0085
  article-title: An Exergy-Based Multi-Objective Optimization Of A Heat Recovery Steam Generator (HRSG) In A Combined Cycle Power Plant (CCPP) Using Evolutionary Algorithm
  publication-title: Int J Green Energy
– volume: 26
  year: 2002
  ident: b0140
  article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
  publication-title: Int J Energy Res
– year: 1993
  ident: b0195
  article-title: Heat Transfer
– year: 1995
  ident: b0010
  article-title: Entropy Generation Minimization
– volume: 127
  start-page: 366
  year: 2016
  end-page: 379
  ident: b0185
  article-title: Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application
  publication-title: Energ Conver Manage
– start-page: 65
  year: 2020
  end-page: 91
  ident: b0120
  article-title: Optimization Of A New Configuration Of Power Tri-Generation Cycle By The Use Of A Multi-Purpose Genetic Algorithm. Journal of
  publication-title: Therm Eng
– volume: 175
  year: 2021
  ident: b0055
  article-title: Heat potential, generation, recovery and utilization from composting: A review
  publication-title: Resour Conserv Recycl
– reference: .
– year: 2012
  ident: b0020
  article-title: 2052: A Global Forecast for the next Forty Years
– volume: 52
  start-page: 371
  year: 2013
  end-page: 384
  ident: b0090
  article-title: Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches
  publication-title: Appl Therm Eng
– year: 2008
  ident: b0150
  article-title: Design with Constructal Theory
– reference: World energy consumption by energy source 2050. Statista n.d. https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source/ (accessed April 1, 2022).
– volume: 5
  start-page: 679
  year: 1980
  end-page: 692
  ident: b0215
  article-title: Availability: The concept and associated terminology
  publication-title: Energy
– volume: 68
  start-page: 82
  year: 2013
  end-page: 88
  ident: b0095
  article-title: Entropy and entransy analyses and optimizations of the Rankine cycle
  publication-title: Energ Conver Manage
– volume: 31
  start-page: 1211
  year: 1988
  end-page: 1219
  ident: b0155
  article-title: Theory of heat transfer-irreversible power plants
  publication-title: Int J Heat Mass Transf
– volume: 13
  start-page: 5864
  year: 2021
  ident: b0060
  article-title: A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle
  publication-title: Sustainability
– volume: 6
  start-page: 506
  year: 2018
  end-page: 522
  ident: b0075
  article-title: Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle
  publication-title: Energy Sci Eng
– volume: 11
  start-page: e420
  year: 2022
  ident: b0050
  article-title: Thermodynamic cycles for solar thermal power plants: A review
  publication-title: WIREs Energy Environ
– volume: 101
  start-page: 216
  year: 2015
  end-page: 228
  ident: b0105
  article-title: Energy, exergy analysis and working fluid selection of a Rankine cycle for subsea power system
  publication-title: Energ Conver Manage
– volume: 151
  start-page: 286
  year: 2017
  end-page: 295
  ident: b0110
  article-title: Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines
  publication-title: Energ Conver Manage
– year: 1998
  ident: b0200
  article-title: Compact heat exchangers
  publication-title: Third edition Krieger Pub Co
– volume: 116
  start-page: 797
  year: 1994
  end-page: 798
  ident: b0220
  article-title: Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy
  publication-title: J Heat Transfer
– year: 1985
  ident: b0045
  article-title: Powerplant Technology
– year: 2010
  ident: 10.1016/j.enconman.2023.117148_b0205
  article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data
  publication-title: Program
– volume: 127
  start-page: 366
  year: 2016
  ident: 10.1016/j.enconman.2023.117148_b0185
  article-title: Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2016.09.022
– year: 1995
  ident: 10.1016/j.enconman.2023.117148_b0010
– year: 1985
  ident: 10.1016/j.enconman.2023.117148_b0045
– volume: 43
  start-page: 191
  issue: 2
  year: 2000
  ident: 10.1016/j.enconman.2023.117148_b0165
  article-title: Power extraction from a hot stream in the presence of phase change
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(99)00146-5
– volume: 26
  issue: 7
  year: 2002
  ident: 10.1016/j.enconman.2023.117148_b0140
  article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
  publication-title: Int J Energy Res
  doi: 10.1002/er.804
– year: 1993
  ident: 10.1016/j.enconman.2023.117148_b0195
– volume: 238
  year: 2022
  ident: 10.1016/j.enconman.2023.117148_b0040
  article-title: Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121688
– volume: 101
  start-page: 216
  year: 2015
  ident: 10.1016/j.enconman.2023.117148_b0105
  article-title: Energy, exergy analysis and working fluid selection of a Rankine cycle for subsea power system
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2015.05.043
– volume: 188
  start-page: 333
  year: 2019
  ident: 10.1016/j.enconman.2023.117148_b0065
  article-title: Optimization of an organic Rankine cycle constrained by the application of compact heat exchangers
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2019.03.039
– volume: 125
  start-page: 681
  year: 2017
  ident: 10.1016/j.enconman.2023.117148_b0080
  article-title: Review: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.174
– year: 2020
  ident: 10.1016/j.enconman.2023.117148_b0005
– volume: 151
  start-page: 286
  year: 2017
  ident: 10.1016/j.enconman.2023.117148_b0110
  article-title: Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2017.09.004
– volume: 205
  year: 2020
  ident: 10.1016/j.enconman.2023.117148_b0180
  article-title: A comprehensive approach for designing, modeling and optimizing of waste heat recovery cycle and power generation system in a cement plant: A thermo-economic and environmental assessment
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2019.112353
– volume: 11
  start-page: e420
  issue: 2
  year: 2022
  ident: 10.1016/j.enconman.2023.117148_b0050
  article-title: Thermodynamic cycles for solar thermal power plants: A review
  publication-title: WIREs Energy Environ
  doi: 10.1002/wene.420
– volume: 64
  start-page: 1054
  issue: 8
  year: 1996
  ident: 10.1016/j.enconman.2023.117148_b0135
  article-title: Models of power plants that generate minimum entropy while operating at maximum power
  publication-title: Am J Phys
  doi: 10.1119/1.18306
– year: 2008
  ident: 10.1016/j.enconman.2023.117148_b0150
– year: 1982
  ident: 10.1016/j.enconman.2023.117148_b0125
– volume: 98
  start-page: 439
  year: 2018
  ident: 10.1016/j.enconman.2023.117148_b0230
  article-title: New directions in the implementation of Pinch Methodology (PM)
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.09.030
– volume: 5
  start-page: 679
  issue: 8
  year: 1980
  ident: 10.1016/j.enconman.2023.117148_b0215
  article-title: Availability: The concept and associated terminology
  publication-title: Energy
  doi: 10.1016/0360-5442(80)90088-2
– start-page: 65
  year: 2020
  ident: 10.1016/j.enconman.2023.117148_b0120
  article-title: Optimization Of A New Configuration Of Power Tri-Generation Cycle By The Use Of A Multi-Purpose Genetic Algorithm. Journal of
  publication-title: Therm Eng
  doi: 10.18186/thermal.726076
– ident: 10.1016/j.enconman.2023.117148_b0015
– volume: 68
  start-page: 82
  year: 2013
  ident: 10.1016/j.enconman.2023.117148_b0095
  article-title: Entropy and entransy analyses and optimizations of the Rankine cycle
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2012.12.020
– year: 2000
  ident: 10.1016/j.enconman.2023.117148_b0145
– ident: 10.1016/j.enconman.2023.117148_b0225
  doi: 10.1016/B978-0-08-101940-5.00003-8
– volume: 52
  start-page: 371
  issue: 2
  year: 2013
  ident: 10.1016/j.enconman.2023.117148_b0090
  article-title: Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.12.004
– volume: 6
  start-page: 506
  issue: 5
  year: 2018
  ident: 10.1016/j.enconman.2023.117148_b0075
  article-title: Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.227
– volume: 13
  start-page: 5864
  issue: 11
  year: 2021
  ident: 10.1016/j.enconman.2023.117148_b0060
  article-title: A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle
  publication-title: Sustainability
  doi: 10.3390/su13115864
– year: 1999
  ident: 10.1016/j.enconman.2023.117148_b0130
– volume: 19
  start-page: 505
  issue: 5
  year: 2018
  ident: 10.1016/j.enconman.2023.117148_b0115
  article-title: Exergy analysis and optimization of the Rankine cycle in steam power plants using the firefly algorithm
  publication-title: Mech Ind
  doi: 10.1051/meca/2017065
– year: 2012
  ident: 10.1016/j.enconman.2023.117148_b0020
– volume: 30
  start-page: 412
  year: 2005
  ident: 10.1016/j.enconman.2023.117148_b0025
  article-title: Future Global Energy Prosperity: The Terawatt Challenge
  publication-title: MRS Bull
  doi: 10.1557/mrs2005.124
– year: 2016
  ident: 10.1016/j.enconman.2023.117148_b0210
– volume: 48
  start-page: 568
  year: 2007
  ident: 10.1016/j.enconman.2023.117148_b0190
  article-title: Area allocation in multi-zone feedwater heaters
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2006.06.003
– volume: 49
  start-page: 71
  year: 2013
  ident: 10.1016/j.enconman.2023.117148_b0100
  article-title: Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.001
– volume: 175
  year: 2021
  ident: 10.1016/j.enconman.2023.117148_b0055
  article-title: Heat potential, generation, recovery and utilization from composting: A review
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2021.105850
– start-page: 8
  year: 2011
  ident: 10.1016/j.enconman.2023.117148_b0085
  article-title: An Exergy-Based Multi-Objective Optimization Of A Heat Recovery Steam Generator (HRSG) In A Combined Cycle Power Plant (CCPP) Using Evolutionary Algorithm
  publication-title: Int J Green Energy
– volume: 414
  start-page: 332
  issue: 6861
  year: 2001
  ident: 10.1016/j.enconman.2023.117148_b0035
  article-title: Alternative energy technologies
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 38
  start-page: 433
  issue: 3
  year: 1995
  ident: 10.1016/j.enconman.2023.117148_b0160
  article-title: Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(94)00184-W
– volume: 31
  start-page: 1211
  issue: 6
  year: 1988
  ident: 10.1016/j.enconman.2023.117148_b0155
  article-title: Theory of heat transfer-irreversible power plants
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(88)90064-6
– year: 1998
  ident: 10.1016/j.enconman.2023.117148_b0200
  article-title: Compact heat exchangers
  publication-title: Third edition Krieger Pub Co
– volume: 239
  year: 2022
  ident: 10.1016/j.enconman.2023.117148_b0070
  article-title: Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122620
– volume: 116
  start-page: 797
  year: 1994
  ident: 10.1016/j.enconman.2023.117148_b0220
  article-title: Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy
  publication-title: J Heat Transfer
  doi: 10.1115/1.2911449
– volume: 162
  start-page: 189
  year: 2018
  ident: 10.1016/j.enconman.2023.117148_b0175
  article-title: Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2018.02.032
– volume: 3
  start-page: 261
  issue: 1
  year: 2018
  ident: 10.1016/j.enconman.2023.117148_b0030
  article-title: Energy Research Outlook. What to Look for in 2018
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b01187
– volume: 25
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.enconman.2023.117148_b0170
  article-title: Thermodynamic optimization of the match between two streams with phase change
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00052-3
SSID ssj0003506
Score 2.4817262
Snippet •Dimensionless model for optimizing steam Rankine cycle plants was proposed.•The model was experimentally validated for a heat recovery driven power plant.•Net...
This paper introduces a mathematical model for the design and fundamental optimization of steam Rankine cycle (SRC) power plants. The model assumes that the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117148
SubjectTerms administrative management
entropy
Entropy generation
exergy
generators (equipment)
geometry
heat recovery
Ideal gas model
Internal structure
mass flow
Mass flow rates ratio
mathematical models
NTU-effectiveness method
power plants
steam
Steam actual properties
streams
system optimization
Title Fundamental optimization of steam Rankine cycle power plants
URI https://dx.doi.org/10.1016/j.enconman.2023.117148
https://www.proquest.com/docview/2834263177
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgPvFZInhN291N9gFeSrFUxR7UQm8hm2Shpd1dtD148bc7sw-tIvTgYRd2SUKYZB4h33xDyLUbKxEGiceE8RIGmmhYKLhmMVhCHRphtMUb3ceRPxzz-4mYNEi_zoVBWGVl-0ubXljr6k-nkmYnn047z8jsEkaI6yhITpB2G9m_YE-3P75hHp4o6mtiY4at17KEZ23kikwXCnlQXQ_vLx2sA_S3g_plqgv_M9gju1XgSHvl3PZJw6YHZGeNTvCQ3AwwraNk66cZ2IJFlWRJs4Tiai7ok8JSCZbqdxiE5lgijeZzxMIckfHg9qU_ZFV1BKY9LpbMBp7pgpiVUuB-3BDx_PCOHVRUBacUwY0Pp9-Eo5PiOgHldH3t6CRwtQ9RwTFppllqTwhFThjrGM-xEee6GyoImmyc-LGJHHiCUyJqkUhdUYdjBYu5rDFiM1mLUqIoZSnKU9L56peX5Bkbe0S1xOWPbSDBwm_se1UvkQQdwYsPldps9SYhhEJeeicIzv4x_jnZxq8S_XdBmsvXlb2EiGQZt4ot1yJbvbuH4egTh43fVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPrfQa6pJdpMIvYhUtD4OrYK3ZbPZgKJRWj3033fGJGJLwUMPySHJLGF255tZduYbgEcnVCLwY9cSkRtbaImRFQiurRCRUAeRiLShE91e32sN-etIjArQyGthKK0yw_4U09donT2pZNqsLMbjyjsxuwQ1yutYk5x4e1DiAjG5CKV6u9PqbwDZFesWm_S9RQJbhcKTJ6KLTGaKqFAdl44wbWoF9LeP-oXWaxfUPIajLHZk9fT3TqBgklM43GIUPIPnJlV2pIT9bI5wMMvqLNk8ZjShM_amqFuCYfoLB2EL6pLGFlNKhzmHYfNl0GhZWYMES7tcLC3ju1EVNa2UQg_kBJTSj_fQJltVuFERPPJwAxxz8lNcx2ifjqdtHfuO9jAwuIBiMk_MJTCihTF25NqmxrmuBgrjJhPGXhjVbLz8MohcJVJn7OHUxGIq8zSxicxVKUmVMlVlGSobuUXKn7FTopZrXP5YCRJBfqfsQz5FEs2Ezj5UYuarT4lRFFHT275_9Y_x72G_Neh1Zbfd71zDAb1JkwFvoLj8WJlbDFCW4V22AL8BLDfiAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+optimization+of+steam+Rankine+cycle+power+plants&rft.jtitle=Energy+conversion+and+management&rft.au=Porto-Hernandez%2C+L.A.&rft.au=Vargas%2C+J.V.C.&rft.au=Munoz%2C+M.N.&rft.au=Galeano-Cabral%2C+J.&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.volume=289&rft_id=info:doi/10.1016%2Fj.enconman.2023.117148&rft.externalDocID=S0196890423004946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon