Experimental and AI-driven enhancements in gas-phase photocatalytic CO2 conversion over synthesized highly ordered anodic TiO2 nanotubes
[Display omitted] •Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross validation method tuned the hyperparameters.•The ANN model outperformed other models with R2 values of 0.983 and 0.984 for training and testing datas...
Saved in:
| Published in | Energy conversion and management Vol. 327; p. 119544 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 |
| DOI | 10.1016/j.enconman.2025.119544 |
Cover
| Abstract | [Display omitted]
•Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross validation method tuned the hyperparameters.•The ANN model outperformed other models with R2 values of 0.983 and 0.984 for training and testing datasets.•The maximum CO2 photoconversion was achieved at 71.32 % under optimal experimental conditions.•The exposed surface area of catalyst was found to be the most influential photocatalytic input parameter.
The photocatalytic hydrogenation of CO2 to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering CO2 levels in the atmosphere. This study focuses on the prediction and optimization of CO2 conversion efficiency using machine learning (ML) approach over synthesized highly ordered TiO2 nanotube arrays (TNTAs) photocatalysts. Six popular ML algorithms of regression, kernel and neural network-based models were applied to predict the gas-phase CO2 photoconversion rate. The percentage of CO2 conversion was taken as the targeted feature while catalyst exposed surface area, crystallite size, CO2 concentration, light intensity, feed pressure, and irradiation time were chosen input parameters. The K-fold cross-validation method was employed to fine-tune the hyperparameters of the ML models. Compared to other ML models, the artificial neural networks (ANN) model showed an outstanding rating of performance evaluation metrics, including R2, MSE, RMSE, and MRE. Consistency of performance indicator values were also revealed during the testing of models. These results demonstrated the robust and effective predictive capabilities of the ANN model for CO2 conversion efficiency. The optimization of the input parameters for CO2 photoconversion was comprehensively validated using the predicted and experimental data. The highest prediction achieved for the photoconversion of CO2 was 71.32 %, while experimental validation confirmed an effectiveness of 70.60 % under optimized conditions. The SHapley Additive exPlanations (SHAP) method and normalized importance showed that the parameters related to photocatalysts were the most influential features in enhancing the gas-phase CO2 photoconversion compared to parameters related to photocatalytic settings. The integration of ML approach and gas-phase photocatalytic CO2 conversion has immense future potential for better design of other photocatalytic solar-based energy production applications. Future investigations should concentrate on the integration of ML predictions with real-time monitoring systems to facilitate process automation, adaptive adjustments, and improved scalability for practical applications. |
|---|---|
| AbstractList | [Display omitted]
•Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross validation method tuned the hyperparameters.•The ANN model outperformed other models with R2 values of 0.983 and 0.984 for training and testing datasets.•The maximum CO2 photoconversion was achieved at 71.32 % under optimal experimental conditions.•The exposed surface area of catalyst was found to be the most influential photocatalytic input parameter.
The photocatalytic hydrogenation of CO2 to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering CO2 levels in the atmosphere. This study focuses on the prediction and optimization of CO2 conversion efficiency using machine learning (ML) approach over synthesized highly ordered TiO2 nanotube arrays (TNTAs) photocatalysts. Six popular ML algorithms of regression, kernel and neural network-based models were applied to predict the gas-phase CO2 photoconversion rate. The percentage of CO2 conversion was taken as the targeted feature while catalyst exposed surface area, crystallite size, CO2 concentration, light intensity, feed pressure, and irradiation time were chosen input parameters. The K-fold cross-validation method was employed to fine-tune the hyperparameters of the ML models. Compared to other ML models, the artificial neural networks (ANN) model showed an outstanding rating of performance evaluation metrics, including R2, MSE, RMSE, and MRE. Consistency of performance indicator values were also revealed during the testing of models. These results demonstrated the robust and effective predictive capabilities of the ANN model for CO2 conversion efficiency. The optimization of the input parameters for CO2 photoconversion was comprehensively validated using the predicted and experimental data. The highest prediction achieved for the photoconversion of CO2 was 71.32 %, while experimental validation confirmed an effectiveness of 70.60 % under optimized conditions. The SHapley Additive exPlanations (SHAP) method and normalized importance showed that the parameters related to photocatalysts were the most influential features in enhancing the gas-phase CO2 photoconversion compared to parameters related to photocatalytic settings. The integration of ML approach and gas-phase photocatalytic CO2 conversion has immense future potential for better design of other photocatalytic solar-based energy production applications. Future investigations should concentrate on the integration of ML predictions with real-time monitoring systems to facilitate process automation, adaptive adjustments, and improved scalability for practical applications. The photocatalytic hydrogenation of CO₂ to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering CO₂ levels in the atmosphere. This study focuses on the prediction and optimization of CO₂ conversion efficiency using machine learning (ML) approach over synthesized highly ordered TiO₂ nanotube arrays (TNTAs) photocatalysts. Six popular ML algorithms of regression, kernel and neural network-based models were applied to predict the gas-phase CO₂ photoconversion rate. The percentage of CO₂ conversion was taken as the targeted feature while catalyst exposed surface area, crystallite size, CO₂ concentration, light intensity, feed pressure, and irradiation time were chosen input parameters. The K-fold cross-validation method was employed to fine-tune the hyperparameters of the ML models. Compared to other ML models, the artificial neural networks (ANN) model showed an outstanding rating of performance evaluation metrics, including R², MSE, RMSE, and MRE. Consistency of performance indicator values were also revealed during the testing of models. These results demonstrated the robust and effective predictive capabilities of the ANN model for CO₂ conversion efficiency. The optimization of the input parameters for CO₂ photoconversion was comprehensively validated using the predicted and experimental data. The highest prediction achieved for the photoconversion of CO₂ was 71.32 %, while experimental validation confirmed an effectiveness of 70.60 % under optimized conditions. The SHapley Additive exPlanations (SHAP) method and normalized importance showed that the parameters related to photocatalysts were the most influential features in enhancing the gas-phase CO₂ photoconversion compared to parameters related to photocatalytic settings. The integration of ML approach and gas-phase photocatalytic CO₂ conversion has immense future potential for better design of other photocatalytic solar-based energy production applications. Future investigations should concentrate on the integration of ML predictions with real-time monitoring systems to facilitate process automation, adaptive adjustments, and improved scalability for practical applications. |
| ArticleNumber | 119544 |
| Author | Hossen, Md. Arif Leong, Kah Hon Hasan, Md. Munirul Yaacof, Nurashikin Aziz, Azrina Abd Ahmed, Yunus |
| Author_xml | – sequence: 1 givenname: Md. Arif surname: Hossen fullname: Hossen, Md. Arif email: arifhossen0101@cuet.ac.bd organization: Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia – sequence: 2 givenname: Md. Munirul surname: Hasan fullname: Hasan, Md. Munirul organization: Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia – sequence: 3 givenname: Yunus surname: Ahmed fullname: Ahmed, Yunus organization: Department of Chemistry, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh – sequence: 4 givenname: Azrina Abd surname: Aziz fullname: Aziz, Azrina Abd email: azrinaaziz@umpsa.edu.my organization: Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia – sequence: 5 givenname: Nurashikin surname: Yaacof fullname: Yaacof, Nurashikin organization: Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia – sequence: 6 givenname: Kah Hon surname: Leong fullname: Leong, Kah Hon organization: Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia |
| BookMark | eNqFkMFuEzEQhn0oEm3hFZCPXDaM7fVmV-JAFRWoVKmXcram9mzX0cZebCciPEEfG0eBC5eeZkb-v9_Sd8UuQgzE2AcBKwGi-7RdUbAx7DCsJEi9EmLQbXvBLkEMXdMP0L5lVzlvAUBp6C7Zy-2vhZLfUSg4cwyO39w1LvkDBU5hwmDp9Ja5D_wZc7NMmIkvUyzRYkWOxVu-eZC8_nqglH0MPNaF52MoE2X_mxyf_PM0H3lMjlI9MURXqUdfsVCPsn-i_I69GXHO9P7vvGY_vt4-br439w_f7jY3941VrS4NtThaQYOigZQCFADS6b5fSzmMYDshwWndKaFH1B3QeuzR9rBuVftk-3FU1-zjuXdJ8eeecjE7ny3NMwaK-2yUrI297FVXo905alPMOdFolmoK09EIMCfdZmv-6TYn3easu4Kf_wOtL1iqm5LQz6_jX844VQ8HT8lk62uSnE9ki3HRv1bxB6LVpuo |
| CitedBy_id | crossref_primary_10_1016_j_nxmate_2025_100522 |
| Cites_doi | 10.1016/j.jwpe.2024.105724 10.1021/jacs.6b08824 10.1007/s10854-020-04914-2 10.1016/j.aej.2024.07.120 10.1016/j.fuel.2023.130561 10.1021/acs.jpcb.3c06510 10.1016/j.cej.2022.140654 10.1002/anie.200800172 10.1016/j.chemosphere.2024.142792 10.1016/j.physb.2022.414026 10.1016/j.renene.2023.119145 10.1016/j.cattod.2024.114986 10.1016/j.mssp.2024.108943 10.1016/j.matpr.2022.10.103 10.1039/D3TA07001H 10.3390/en15228751 10.1016/j.polymdegradstab.2018.02.008 10.1016/j.fluid.2024.114132 10.31716/frt.201801005 10.1016/j.rineng.2024.103538 10.1016/j.pce.2021.103026 10.3390/catal14100674 10.1016/j.jcou.2022.101993 10.1021/acssuschemeng.9b06170 10.1016/j.jcou.2020.101270 10.1016/j.jssc.2023.123939 10.1016/j.ccr.2023.215495 10.1016/j.chemosphere.2022.136116 10.1016/j.seppur.2022.120775 10.1021/jacs.4c01305 10.1021/acsomega.2c04211 10.1002/er.3965 10.1016/j.chaos.2024.115114 10.1021/ic502675a 10.1016/j.jhazmat.2023.132995 10.3390/en16145404 10.1016/j.jiec.2021.04.017 10.1016/j.neucom.2020.07.061 10.1016/j.jallcom.2021.162334 10.1007/s10904-023-02717-6 10.1016/j.jwpe.2022.103126 10.1016/j.jenvman.2024.122614 10.1016/j.cherd.2021.02.011 10.1016/j.jallcom.2024.173730 10.1016/j.seppur.2023.125056 10.1002/adma.202200180 10.1039/D3GC04566H 10.1016/j.ceramint.2020.05.246 10.1016/j.rineng.2022.100795 10.3389/fchem.2021.755836 10.1016/j.inoche.2022.109700 10.1016/j.fuel.2012.01.065 10.1039/D3EY00246B 10.1016/j.apenergy.2018.12.042 10.1016/j.cej.2023.145255 10.1007/s11664-019-06951-y 10.1016/j.jenvman.2019.110059 10.1016/j.apcatb.2019.02.054 10.1016/j.ijhydene.2022.02.030 10.1016/j.jece.2024.114428 10.1016/j.chemosphere.2023.141010 10.7717/peerj-cs.623 10.1016/j.solmat.2014.09.005 10.1016/j.jclepro.2023.138851 10.1021/acs.est.8b02213 10.1016/j.jhazmat.2008.06.033 10.1016/j.apcatb.2022.122253 10.1016/j.jhazmat.2023.132773 10.1016/j.physb.2021.412869 10.1039/C9CE01828J 10.1016/j.jece.2024.114088 10.1016/j.jksus.2024.103210 10.1016/j.jenvman.2023.119968 10.1016/j.jcis.2015.11.050 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2025.119544 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enconman_2025_119544 S0196890425000676 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 LY6 M41 R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-e4afc1e93e9e330a1002d5887229f0c6120d556315fa560e7f8ac807434bc8ff3 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 |
| IngestDate | Fri Oct 03 00:09:55 EDT 2025 Thu Apr 24 23:16:00 EDT 2025 Wed Oct 01 06:52:41 EDT 2025 Sat Mar 01 15:46:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CO2 photoconversion Machine learning (ML) Titania nanotube arrays (TNTAs) Artificial neural networks (ANN) Photocatalysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-e4afc1e93e9e330a1002d5887229f0c6120d556315fa560e7f8ac807434bc8ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3200282836 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3200282836 crossref_primary_10_1016_j_enconman_2025_119544 crossref_citationtrail_10_1016_j_enconman_2025_119544 elsevier_sciencedirect_doi_10_1016_j_enconman_2025_119544 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hossen, Solayman, Leong, Sim, Yaacof, Abd Aziz (b0055) 2022; 15 Duflot, Marchal, Caps, Artero, Christoforidis, Keller (b0020) 2023; 413–415 Luo, Shen, Fu, Feng, Huang (b0325) 2024; 12 Huang, Wang, Wang, Wang, Shen, Li (b0270) 2019; 248 Sun, Zhang, Yao, Zhang (b0195) 2024; 185 Hossen, Solayman, Leong, Sim, Yaacof, Abd Aziz (b0010) 2022; 16 O/H Chahrour, Yam, Eid (b0225) 2020; 46 Nishanthi, Subramanian, Sundarakannan, Padiyan (b0235) 2015; 132 Zhu, Jiang, Feng (b0110) 2022; 308 Mohtasham Moein, Saradar, Rahmati, Ghasemzadeh Mousavinejad, Bristow, Aramali (b0180) 2023; 63 Bonke, Trezza, Bergamasco, Song, Rodríguez-Jiménez, Hammarström (b0315) 2024; 146 Ahmed, Rahman, Alam, Miah, Choudhury, Alharbi (b0115) 2024; 65 Liu, Huang, Liao, Zhang, Ren, Zhuang (b0035) 2008; 47 Guo, Luo, Xu, Deng, Wang, He (b0385) 2023; 324 Variar AG, Ramyashree MS, Ail VU, S. SP, Sudhakar K, Tahir M. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: A review. J Ind Eng Chem 2021;99:19–47. Doi: 10.1016/j.jiec.2021.04.017. Pérez-Hernández, Martínez, Galicia, Fernández García, Nuñez, Hernández (b0165) 2023; 217 Farooq N, Kallem P, ur Rehman Z, Imran Khan M, Kumar Gupta R, Tahseen T, et al. Recent trends of titania (TiO Javed, Shahab, Asif, Najeh, Aslam, Ali (b0125) 2024; 14 Liang H chao, Li X zhong. Effects of structure of anodic TiO Tahir B, Tahir M, Mohd Nawawi MG. Highly stable 3D/2D WO Jalal, Xu, Iqbal, Javed, Jamhiri (b0280) 2021; 289 Chicco, Warrens, Jurman (b0310) 2021; 7 Oviedo, Druzian, Nora, da Silva (b0145) 2025; 443 Tabatabai-Yazdi, Ebrahimian Pirbazari, Esmaeili Khalil Saraei, Gilani (b0120) 2021; 608 Hosseinzadeh, Zhou, Zyaie, AlZainati, Ibrar, Altaee (b0175) 2022; 289 Haghshenas, Wong, Gunawan, Khataee, Keyikoğlu, Razmjou (b0095) 2023; 2 Util 2020;41:101270. Doi: 10.1016/j.jcou.2020.101270. Kartal, Uzunbayir, Doluel, Yurddaskal, Erol (b0205) 2023; 33 Dwojak, Vera, Traid, Maydana, Litter, Schvezov (b0220) 2021; 16 Nakajima, Tamaki, Ueno, Kato, Nishikawa, Ohkubo (b0375) 2016; 138 Alkanad, Hezam, Al-Zaqri, Bajiri, Alnaggar, Drmosh (b0060) 2022; 7 Mao, Wang, Liu, Wang, Wang, Meng (b0285) 2021; 123 Al-Sabawi, De Lasa (b0265) 2012; 96 Anwar, Fayyaz, Sohail, Khokhar, Baqar, Yasar (b0005) 2020; 260 Zhang, Wang, Cui, Lu, Abanades (b0405) 2021; 119 Zhao, Wang, Li, Wang, Zhao, Qiu (b0015) 2024; 128 Liu, Pan, Lu, Wei, Wang, Du (b0130) 2022; 49 Hossen, Abd Aziz, Ikreedeegh, Din Muhammad, Yaacof, Leong (b0160) 2024; 2 Kumari, Chowdhry, Chandra (b0090) 2024; 351 Limpachanangkul, Liu, Nimmmanterdwong, Pruksathorn, Piumsomboon, Chalermsinsuwan (b0295) 2024; 108 Voleti, Kamesh, Rani (b0305) 2023; 72 Bamola, Rawat, Dwivedi, Sharma, Singh, Sharma (b0215) 2021; 32 Arora, Chawla, Chandra, Sagadevan, Garg (b0255) 2022; 143 Dashti, Navidpour, Amirkhani, Zhou, Altaee (b0140) 2024; 362 Özsoysal, Oral, Yıldırım (b0320) 2024; 12 Liu, Bao, Ma, Wang, Zheng, Wang (b0370) 2022; 429 Saadetnejad, Oral, Can, Yıldırım (b0155) 2022; 47 Shan, Wu, Yuan, Liu (b0170) 2024; 584 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J Hazard Mater 2009;162:1415–22. Doi: 10.1016/j.jhazmat.2008.06.033. Liu, Ge, Wang, Li, Deng, You (b0100) 2023; 473 Madi, Tahir (b0390) 2024; 983 F Gouveia A, Assis M, S Cavalcante L, Longo E, Andrés J. Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO Goktas, Modanlı, Tumbul, Kilic (b0335) 2022; 893 N under visible light. J CO Front Res Today 2018;1:1005. Doi: 10.31716/frt.201801005. reduction by H Jaffari, Abbas, Kim, Shin, Kwak, Son (b0275) 2024; 462 Feng C, Wu ZP, Huang KW, Ye J, Zhang H. Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Adv Mater 2022;34. Doi: 10.1002/adma.202200180. Fraoucene, Hatem, Vacandio, Pasquinelli (b0210) 2019; 48 Li, Wang, Wang, Wang, Li, Wang (b0250) 2020; 22 Cai, Pipattanasomporn, Rahman (b0300) 2019; 236 Hossen, Khatun, Ikreedeegh, Muhammad, Abd Aziz, Leong (b0025) 2023; 16 Allen, Mahdjoub, Vishnyakov, Kelly, Kriek (b0330) 2018; 150 to CO and CH g-C Ikreedeegh, Hossen, Tahir, Aziz (b0070) 2024; 499 Ahmed, Dutta, Nepu, Prima, AlMohamadi, Akhtar (b0150) 2025; 25 Zhao, Zhang, Zhu, Zhao, Zhai, Qiu (b0085) 2024; 26 Ikreedeegh, Tasleem, Hossen (b0395) 2024; 360 Zakir, Ait-Karra, Idouhli, Khadiri, Dikici, Aityoub (b0075) 2023; 322 Z-scheme heterojunction for stimulating photocatalytic CO Wu, Luo, Rincon, Christofides (b0200) 2021; 168 Thompson, Sanchez Fernandez, Maroto-Valer (b0400) 2020; 8 Kim, Jaffari, Abbas, Chowdhury, Cho (b0105) 2024; 465 Yang, Shami (b0190) 2020; 415 Chu, Rashid, Pan, Wang, Zhang, Xiao (b0380) 2022; 60 Salahshoori, Namayandeh Jorabchi, Baghban, Khonakdar (b0135) 2024; 350 Kumar, Thorbole, Gupta (b0045) 2025; 185 Hossen, Ikreedeegh, Aziz, Zerga, Tahir (b0065) 2024; 12 Ishaq, Ehsan, Qayyum, Abbas, Irfan, Al-Hussain (b0260) 2024; 14 Hait, Mehta, Basu (b0350) 2023; 424 Lais, Gondal, Dastageer, Al-Adel (b0290) 2018; 42 Liu, Zheng, Ou, Liu, Song, Tian (b0040) 2018; 52 Zhang, Jiang, Lei, Liu, Tang, Yi (b0360) 2024; 328 Ma, Wang, Duan (b0355) 2023; 455 based materials: A review on synthetic approaches and potential applications. J King Saud Univ - Sci 2024;36:103210. Doi: 10.1016/j.jksus.2024.103210. Talla, Suliali, Goosen, Urgessa, Motloung, Botha (b0230) 2022; 640 Choudhury, Bayan, Choudhury, Chakraborty (b0245) 2016; 465 Shan, Yang, Shi, Zhu, Tan, Luan (b0080) 2021; 9 Ahmed, Siddiqua Maya, Akhtar, Alam, AlMohamadi, Islam (b0185) 2024; 370 Sahara, Ishitani (b0365) 2015; 54 Dashti (10.1016/j.enconman.2025.119544_b0140) 2024; 362 Hossen (10.1016/j.enconman.2025.119544_b0025) 2023; 16 Fraoucene (10.1016/j.enconman.2025.119544_b0210) 2019; 48 Lais (10.1016/j.enconman.2025.119544_b0290) 2018; 42 10.1016/j.enconman.2025.119544_b0030 Zhang (10.1016/j.enconman.2025.119544_b0405) 2021; 119 Chahrour (10.1016/j.enconman.2025.119544_b0225) 2020; 46 Ahmed (10.1016/j.enconman.2025.119544_b0115) 2024; 65 Liu (10.1016/j.enconman.2025.119544_b0035) 2008; 47 Madi (10.1016/j.enconman.2025.119544_b0390) 2024; 983 Wu (10.1016/j.enconman.2025.119544_b0200) 2021; 168 Nakajima (10.1016/j.enconman.2025.119544_b0375) 2016; 138 Hossen (10.1016/j.enconman.2025.119544_b0055) 2022; 15 Voleti (10.1016/j.enconman.2025.119544_b0305) 2023; 72 Huang (10.1016/j.enconman.2025.119544_b0270) 2019; 248 Saadetnejad (10.1016/j.enconman.2025.119544_b0155) 2022; 47 10.1016/j.enconman.2025.119544_b0345 Ikreedeegh (10.1016/j.enconman.2025.119544_b0070) 2024; 499 Shan (10.1016/j.enconman.2025.119544_b0170) 2024; 584 Kartal (10.1016/j.enconman.2025.119544_b0205) 2023; 33 Hossen (10.1016/j.enconman.2025.119544_b0010) 2022; 16 Mohtasham Moein (10.1016/j.enconman.2025.119544_b0180) 2023; 63 Salahshoori (10.1016/j.enconman.2025.119544_b0135) 2024; 350 Li (10.1016/j.enconman.2025.119544_b0250) 2020; 22 10.1016/j.enconman.2025.119544_b0340 Choudhury (10.1016/j.enconman.2025.119544_b0245) 2016; 465 Ikreedeegh (10.1016/j.enconman.2025.119544_b0395) 2024; 360 Zhao (10.1016/j.enconman.2025.119544_b0085) 2024; 26 Chicco (10.1016/j.enconman.2025.119544_b0310) 2021; 7 Ahmed (10.1016/j.enconman.2025.119544_b0150) 2025; 25 Nishanthi (10.1016/j.enconman.2025.119544_b0235) 2015; 132 Kim (10.1016/j.enconman.2025.119544_b0105) 2024; 465 Arora (10.1016/j.enconman.2025.119544_b0255) 2022; 143 Mao (10.1016/j.enconman.2025.119544_b0285) 2021; 123 Cai (10.1016/j.enconman.2025.119544_b0300) 2019; 236 Liu (10.1016/j.enconman.2025.119544_b0100) 2023; 473 Javed (10.1016/j.enconman.2025.119544_b0125) 2024; 14 10.1016/j.enconman.2025.119544_b0410 Hait (10.1016/j.enconman.2025.119544_b0350) 2023; 424 Ishaq (10.1016/j.enconman.2025.119544_b0260) 2024; 14 10.1016/j.enconman.2025.119544_b0050 Sahara (10.1016/j.enconman.2025.119544_b0365) 2015; 54 Thompson (10.1016/j.enconman.2025.119544_b0400) 2020; 8 Al-Sabawi (10.1016/j.enconman.2025.119544_b0265) 2012; 96 Shan (10.1016/j.enconman.2025.119544_b0080) 2021; 9 Zhang (10.1016/j.enconman.2025.119544_b0360) 2024; 328 Oviedo (10.1016/j.enconman.2025.119544_b0145) 2025; 443 Liu (10.1016/j.enconman.2025.119544_b0130) 2022; 49 Bonke (10.1016/j.enconman.2025.119544_b0315) 2024; 146 Bamola (10.1016/j.enconman.2025.119544_b0215) 2021; 32 Liu (10.1016/j.enconman.2025.119544_b0370) 2022; 429 Duflot (10.1016/j.enconman.2025.119544_b0020) 2023; 413–415 Jalal (10.1016/j.enconman.2025.119544_b0280) 2021; 289 Ma (10.1016/j.enconman.2025.119544_b0355) 2023; 455 Zakir (10.1016/j.enconman.2025.119544_b0075) 2023; 322 Liu (10.1016/j.enconman.2025.119544_b0040) 2018; 52 Zhao (10.1016/j.enconman.2025.119544_b0015) 2024; 128 Haghshenas (10.1016/j.enconman.2025.119544_b0095) 2023; 2 Goktas (10.1016/j.enconman.2025.119544_b0335) 2022; 893 Hossen (10.1016/j.enconman.2025.119544_b0065) 2024; 12 10.1016/j.enconman.2025.119544_b0240 Zhu (10.1016/j.enconman.2025.119544_b0110) 2022; 308 Guo (10.1016/j.enconman.2025.119544_b0385) 2023; 324 Kumari (10.1016/j.enconman.2025.119544_b0090) 2024; 351 Tabatabai-Yazdi (10.1016/j.enconman.2025.119544_b0120) 2021; 608 Ahmed (10.1016/j.enconman.2025.119544_b0185) 2024; 370 Allen (10.1016/j.enconman.2025.119544_b0330) 2018; 150 Pérez-Hernández (10.1016/j.enconman.2025.119544_b0165) 2023; 217 Dwojak (10.1016/j.enconman.2025.119544_b0220) 2021; 16 Anwar (10.1016/j.enconman.2025.119544_b0005) 2020; 260 Limpachanangkul (10.1016/j.enconman.2025.119544_b0295) 2024; 108 Talla (10.1016/j.enconman.2025.119544_b0230) 2022; 640 Alkanad (10.1016/j.enconman.2025.119544_b0060) 2022; 7 Sun (10.1016/j.enconman.2025.119544_b0195) 2024; 185 Jaffari (10.1016/j.enconman.2025.119544_b0275) 2024; 462 Özsoysal (10.1016/j.enconman.2025.119544_b0320) 2024; 12 Hossen (10.1016/j.enconman.2025.119544_b0160) 2024; 2 Hosseinzadeh (10.1016/j.enconman.2025.119544_b0175) 2022; 289 Yang (10.1016/j.enconman.2025.119544_b0190) 2020; 415 Luo (10.1016/j.enconman.2025.119544_b0325) 2024; 12 Chu (10.1016/j.enconman.2025.119544_b0380) 2022; 60 Kumar (10.1016/j.enconman.2025.119544_b0045) 2025; 185 |
| References_xml | – volume: 983 year: 2024 ident: b0390 article-title: Well-designed 2D vanadium carbide (V publication-title: J Alloys Compd – volume: 362 year: 2024 ident: b0140 article-title: Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts publication-title: Chemosphere – volume: 123 year: 2021 ident: b0285 article-title: Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation publication-title: Phys Chem Earth – reference: Util 2020;41:101270. Doi: 10.1016/j.jcou.2020.101270. – volume: 322 year: 2023 ident: b0075 article-title: Effect of anodization time on the morphological, structural, electrochemical, and photocatalytic properties of anodic TiO publication-title: J Solid State Chem – volume: 138 start-page: 13818 year: 2016 end-page: 13821 ident: b0375 article-title: Photocatalytic Reduction of Low Concentration of CO publication-title: J Am Chem Soc – volume: 168 start-page: 275 year: 2021 end-page: 287 ident: b0200 article-title: Machine learning-based predictive control using noisy data: evaluating performance and robustness via a large-scale process simulator publication-title: Chem Eng Res Des – volume: 328 year: 2024 ident: b0360 article-title: Photocatalytic CO publication-title: Sep Purif Technol – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: b0190 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – volume: 33 start-page: 2848 year: 2023 end-page: 2860 ident: b0205 article-title: The Effect of Geometrical Characteristics of TiO publication-title: J Inorg Organomet Polym Mater – volume: 465 start-page: 1 year: 2016 end-page: 10 ident: b0245 article-title: Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO publication-title: J Colloid Interface Sci – volume: 65 year: 2024 ident: b0115 article-title: Harnessing neural network model with optimization for enhanced ciprofloxacin antibiotic adsorption from contaminated water: A transparent and objective framework publication-title: J Water Process Eng – volume: 14 start-page: 1 year: 2024 end-page: 25 ident: b0125 article-title: Evaluation of machine learning models for predicting TiO publication-title: Sci Rep – volume: 96 start-page: 511 year: 2012 end-page: 523 ident: b0265 article-title: Influence of zeolite crystallite size on methyl-cyclohexane catalytic conversion products publication-title: Fuel – volume: 308 year: 2022 ident: b0110 article-title: Improved neural network with least square support vector machine for wastewater treatment process publication-title: Chemosphere – volume: 584 year: 2024 ident: b0170 article-title: Develop machine learning-based model and automated process for predicting liquid heat capacity of organics at different temperatures publication-title: Fluid Phase Equilib – volume: 608 year: 2021 ident: b0120 article-title: Construction of graphene based photocatalysts for photocatalytic degradation of organic pollutant and modeling using artificial intelligence techniques publication-title: Phys B Condens Matter – volume: 217 start-page: 2 year: 2023 end-page: 11 ident: b0165 article-title: Carbon cycle using the CO publication-title: Renew Energy – reference: N – volume: 429 year: 2022 ident: b0370 article-title: Enhanced stability and activity towards photocatalytic CO publication-title: Chem Eng J – volume: 9 start-page: 1 year: 2021 end-page: 8 ident: b0080 article-title: Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity publication-title: Front Chem – volume: 48 start-page: 2046 year: 2019 end-page: 2054 ident: b0210 article-title: TiO publication-title: J Electron Mater – volume: 16 year: 2021 ident: b0220 article-title: Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO publication-title: Environ Nanotechnology, Monit Manag – reference: . Front Res Today 2018;1:1005. Doi: 10.31716/frt.201801005. – volume: 16 year: 2022 ident: b0010 article-title: Recent progress in TiO publication-title: Results Eng – volume: 42 start-page: 2031 year: 2018 end-page: 2049 ident: b0290 article-title: Experimental parameters affecting the photocatalytic reduction performance of CO publication-title: Int J Energy Res – reference: to CO and CH – volume: 185 year: 2025 ident: b0045 article-title: Sustaining the future: Semiconductor materials and their recovery publication-title: Mater Sci Semicond Process – volume: 12 year: 2024 ident: b0065 article-title: Carbon-based nanomaterials (CNMs) modified TiO2 nanotubes (TNTs) photo-driven catalysts for sustainable energy and environmental applications: A comprehensive review publication-title: J Environ Chem Eng – reference: Z-scheme heterojunction for stimulating photocatalytic CO – reference: Farooq N, Kallem P, ur Rehman Z, Imran Khan M, Kumar Gupta R, Tahseen T, et al. Recent trends of titania (TiO – volume: 8 start-page: 4677 year: 2020 end-page: 4692 ident: b0400 article-title: Review and Analysis of CO publication-title: ACS Sustain Chem Eng – volume: 47 start-page: 19655 year: 2022 end-page: 19668 ident: b0155 article-title: Machine learning analysis of gas phase photocatalytic CO publication-title: Int J Hydrogen Energy – volume: 150 start-page: 31 year: 2018 end-page: 36 ident: b0330 article-title: The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO publication-title: Polym Degrad Stab – reference: under visible light. J CO – volume: 185 year: 2024 ident: b0195 article-title: Neural network models and shapley additive explanations for a beam-ring structure publication-title: Chaos Solitons Fractals – volume: 289 year: 2021 ident: b0280 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN publication-title: ANFIS and GEP J Environ Manage – volume: 146 start-page: 15648 year: 2024 end-page: 15658 ident: b0315 article-title: Multi-Variable Multi-Metric Optimization of Self-Assembled Photocatalytic CO publication-title: J Am Chem Soc – volume: 248 start-page: 430 year: 2019 end-page: 440 ident: b0270 article-title: The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts publication-title: Appl Catal B Environ – volume: 893 year: 2022 ident: b0335 article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance publication-title: J Alloys Compd – volume: 351 year: 2024 ident: b0090 article-title: AI-enhanced adsorption modeling: Challenges, applications, and bibliographic analysis publication-title: J Environ Manage – volume: 350 year: 2024 ident: b0135 article-title: Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment publication-title: Chemosphere – reference: O/H – volume: 15 year: 2022 ident: b0055 article-title: A Comprehensive Review on Advances in TiO publication-title: Energies – volume: 413–415 start-page: 1 year: 2023 end-page: 8 ident: b0020 article-title: Optimization of NH publication-title: Catal Today – reference: Variar AG, Ramyashree MS, Ail VU, S. SP, Sudhakar K, Tahir M. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: A review. J Ind Eng Chem 2021;99:19–47. Doi: 10.1016/j.jiec.2021.04.017. – volume: 22 start-page: 1929 year: 2020 end-page: 1938 ident: b0250 article-title: Bandgap engineering of TiO publication-title: CrstEngComm – reference: nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J Hazard Mater 2009;162:1415–22. Doi: 10.1016/j.jhazmat.2008.06.033. – volume: 108 start-page: 354 year: 2024 end-page: 363 ident: b0295 article-title: Statistical information review of CO publication-title: Alexandria Eng J – volume: 324 start-page: 1 year: 2023 end-page: 8 ident: b0385 article-title: Low-concentration CO publication-title: Appl Catal B Environ – volume: 16 year: 2023 ident: b0025 article-title: Enhanced Photocatalytic CO publication-title: Energies – volume: 640 year: 2022 ident: b0230 article-title: Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO publication-title: Phys B Condens Matter – volume: 2 year: 2024 ident: b0160 article-title: Optimization of anodizing parameters for the morphological properties of TiO publication-title: Next Mater – volume: 236 start-page: 1078 year: 2019 end-page: 1088 ident: b0300 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl Energy – volume: 462 year: 2024 ident: b0275 article-title: Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents publication-title: J Hazard Mater – volume: 12 start-page: 5748 year: 2024 end-page: 5759 ident: b0320 article-title: Analysis of photocatalytic CO publication-title: J Mater Chem A – volume: 32 start-page: 1427 year: 2021 end-page: 1444 ident: b0215 article-title: Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticles publication-title: J Mater Sci Mater Electron – volume: 473 year: 2023 ident: b0100 article-title: Investigating the impact of pretreatment strategies on photocatalyst for accurate CO publication-title: Chem Eng J – reference: ) based materials: A review on synthetic approaches and potential applications. J King Saud Univ - Sci 2024;36:103210. Doi: 10.1016/j.jksus.2024.103210. – reference: Liang H chao, Li X zhong. Effects of structure of anodic TiO – volume: 46 start-page: 21471 year: 2020 end-page: 21481 ident: b0225 article-title: Water-splitting properties of bi-phased TiO publication-title: Ceram Int – volume: 54 start-page: 5096 year: 2015 end-page: 5104 ident: b0365 article-title: Efficient photocatalysts for CO publication-title: Inorg Chem – reference: F Gouveia A, Assis M, S Cavalcante L, Longo E, Andrés J. Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO – volume: 49 year: 2022 ident: b0130 article-title: Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO publication-title: J Water Process Eng – volume: 14 year: 2024 ident: b0260 article-title: Recent Strategies to Improve the Photocatalytic Efficiency of TiO publication-title: Catalysts – volume: 260 year: 2020 ident: b0005 article-title: CO publication-title: J Environ Manage – volume: 47 start-page: 5619 year: 2008 end-page: 5622 ident: b0035 article-title: Treatment of CrVI-containing Mg(OH) publication-title: Angew Chemie - Int Ed – volume: 26 start-page: 2645 year: 2024 end-page: 2652 ident: b0085 article-title: Missing-linker defects in a covalent organic framework photocatalyst for highly efficient synthesis of tetrahydroquinoline publication-title: Green Chem – volume: 63 year: 2023 ident: b0180 article-title: Predictive models for concrete properties using machine learning and deep learning approaches: A review publication-title: J Build Eng – volume: 132 start-page: 204 year: 2015 end-page: 209 ident: b0235 article-title: An insight into the influence of morphology on the photoelectrochemical activity of TiO publication-title: Sol Energy Mater Sol Cells – volume: 128 start-page: 1079 year: 2024 end-page: 1090 ident: b0015 article-title: Understanding the Positive Role of Ionic Liquids in CO publication-title: J Phys Chem B – volume: 2 start-page: 612 year: 2023 end-page: 623 ident: b0095 article-title: Predicting the rates of photocatalytic hydrogen evolution over cocatalyst-deposited TiO publication-title: EES Catal – reference: Feng C, Wu ZP, Huang KW, Ye J, Zhang H. Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Adv Mater 2022;34. Doi: 10.1002/adma.202200180. – reference: reduction by H – reference: Tahir B, Tahir M, Mohd Nawawi MG. Highly stable 3D/2D WO – volume: 370 year: 2024 ident: b0185 article-title: A novel interpretable machine learning and metaheuristic-based protocol to predict and optimize ciprofloxacin antibiotic adsorption with nano-adsorbent publication-title: J Environ Manage – volume: 12 year: 2024 ident: b0325 article-title: Exploring the CO publication-title: J Environ Chem Eng – volume: 143 year: 2022 ident: b0255 article-title: Advances in the strategies for enhancing the photocatalytic activity of TiO publication-title: Inorg Chem Commun – volume: 72 start-page: 494 year: 2023 end-page: 499 ident: b0305 article-title: ML based catalyst modelling for photo-catalytic reduction of CO publication-title: Mater Today Proc – volume: 25 year: 2025 ident: b0150 article-title: Optimizing photocatalytic dye degradation: A machine learning and metaheuristic approach for predicting methylene blue in contaminated water publication-title: Results Eng – volume: 119 year: 2021 ident: b0405 article-title: Remarkable CO publication-title: Appl Phys Lett – volume: 443 year: 2025 ident: b0145 article-title: Study of machine learning on the photocatalytic activity of a novel nanozeolite for the application in the Rhodamine B dye degradation publication-title: Catal Today – volume: 499 year: 2024 ident: b0070 article-title: A comprehensive review on anodic TiO publication-title: Coord Chem Rev – volume: 424 year: 2023 ident: b0350 article-title: Advancing sustainable solutions: Harnessing polyaniline/BiOCl/GO ternary nanocomposites for solar-powered degradation of organic pollutant and photocatalytic hydrogen generation publication-title: J Clean Prod – volume: 360 year: 2024 ident: b0395 article-title: Facile fabrication of binary g-C publication-title: Fuel – volume: 52 start-page: 13336 year: 2018 end-page: 13342 ident: b0040 article-title: Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species publication-title: Environ Sci Technol – volume: 7 start-page: 38686 year: 2022 end-page: 38699 ident: b0060 article-title: One-Step Hydrothermal Synthesis of Anatase TiO publication-title: ACS Omega – volume: 60 year: 2022 ident: b0380 article-title: The impact of flue gas impurities and concentrations on the photoelectrochemical CO publication-title: J CO – volume: 455 year: 2023 ident: b0355 article-title: Recent advances in direct gas–solid-phase photocatalytic conversion of CO publication-title: Chem Eng J – reference: /g-C – volume: 465 year: 2024 ident: b0105 article-title: Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal publication-title: J Hazard Mater – volume: 289 year: 2022 ident: b0175 article-title: Machine learning-based modeling and analysis of PFOS removal from contaminated water by nanofiltration process publication-title: Sep Purif Technol – volume: 7 start-page: 1 year: 2021 end-page: 24 ident: b0310 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput Sci – volume: 413–415 start-page: 1 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0020 article-title: Optimization of NH2-UiO-66/TiO2/Au composites for enhanced gas-phase CO2 photocatalytic reduction into CH4 publication-title: Catal Today – volume: 65 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0115 article-title: Harnessing neural network model with optimization for enhanced ciprofloxacin antibiotic adsorption from contaminated water: A transparent and objective framework publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2024.105724 – volume: 138 start-page: 13818 year: 2016 ident: 10.1016/j.enconman.2025.119544_b0375 article-title: Photocatalytic Reduction of Low Concentration of CO2 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b08824 – volume: 32 start-page: 1427 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0215 article-title: Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticlesgrafted 1D-TiO2 nanotubes publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-020-04914-2 – volume: 108 start-page: 354 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0295 article-title: Statistical information review of CO2 photocatalytic reduction via bismuth-based photocatalysts using artificial neural network publication-title: Alexandria Eng J doi: 10.1016/j.aej.2024.07.120 – volume: 429 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0370 article-title: Enhanced stability and activity towards photocatalytic CO2 reduction via supercycle ALD of Cu and TiO2 publication-title: Chem Eng J – volume: 360 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0395 article-title: Facile fabrication of binary g-C3N4/NH2-MIL-125(Ti) MOF nanocomposite with Z-scheme heterojunction for efficient photocatalytic H2 production and CO2 reduction under visible light publication-title: Fuel doi: 10.1016/j.fuel.2023.130561 – volume: 128 start-page: 1079 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0015 article-title: Understanding the Positive Role of Ionic Liquids in CO2 Capture by Poly(ethylenimine) publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.3c06510 – volume: 455 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0355 article-title: Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140654 – volume: 47 start-page: 5619 year: 2008 ident: 10.1016/j.enconman.2025.119544_b0035 article-title: Treatment of CrVI-containing Mg(OH)2 nanowaste publication-title: Angew Chemie - Int Ed doi: 10.1002/anie.200800172 – volume: 362 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0140 article-title: Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.142792 – volume: 640 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0230 article-title: Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO2 nanotubes publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2022.414026 – volume: 217 start-page: 2 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0165 article-title: Carbon cycle using the CO2 conversion to methane as environmental feasibility on Ni/TiO2-Na nanotubes catalysts publication-title: Renew Energy doi: 10.1016/j.renene.2023.119145 – volume: 443 year: 2025 ident: 10.1016/j.enconman.2025.119544_b0145 article-title: Study of machine learning on the photocatalytic activity of a novel nanozeolite for the application in the Rhodamine B dye degradation publication-title: Catal Today doi: 10.1016/j.cattod.2024.114986 – volume: 185 year: 2025 ident: 10.1016/j.enconman.2025.119544_b0045 article-title: Sustaining the future: Semiconductor materials and their recovery publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2024.108943 – volume: 72 start-page: 494 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0305 article-title: ML based catalyst modelling for photo-catalytic reduction of CO2 to methanol publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.10.103 – volume: 12 start-page: 5748 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0320 article-title: Analysis of photocatalytic CO2 reduction over MOFs using machine learning publication-title: J Mater Chem A doi: 10.1039/D3TA07001H – volume: 63 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0180 article-title: Predictive models for concrete properties using machine learning and deep learning approaches: A review publication-title: J Build Eng – volume: 15 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0055 article-title: A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products publication-title: Energies doi: 10.3390/en15228751 – volume: 150 start-page: 31 year: 2018 ident: 10.1016/j.enconman.2025.119544_b0330 article-title: The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2) publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2018.02.008 – volume: 119 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0405 article-title: Remarkable CO2 photoreduction activity using TiO2 nanotube arrays under favorable photothermal conditions driven by concentrated solar light publication-title: Appl Phys Lett – volume: 584 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0170 article-title: Develop machine learning-based model and automated process for predicting liquid heat capacity of organics at different temperatures publication-title: Fluid Phase Equilib doi: 10.1016/j.fluid.2024.114132 – ident: 10.1016/j.enconman.2025.119544_b0340 doi: 10.31716/frt.201801005 – volume: 25 year: 2025 ident: 10.1016/j.enconman.2025.119544_b0150 article-title: Optimizing photocatalytic dye degradation: A machine learning and metaheuristic approach for predicting methylene blue in contaminated water publication-title: Results Eng doi: 10.1016/j.rineng.2024.103538 – volume: 123 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0285 article-title: Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation publication-title: Phys Chem Earth doi: 10.1016/j.pce.2021.103026 – volume: 14 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0260 article-title: Recent Strategies to Improve the Photocatalytic Efficiency of TiO2 for Enhanced Water Splitting to Produce Hydrogen publication-title: Catalysts doi: 10.3390/catal14100674 – volume: 60 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0380 article-title: The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction publication-title: J CO2 Util doi: 10.1016/j.jcou.2022.101993 – volume: 8 start-page: 4677 year: 2020 ident: 10.1016/j.enconman.2025.119544_b0400 article-title: Review and Analysis of CO2 Photoreduction Kinetics publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b06170 – ident: 10.1016/j.enconman.2025.119544_b0410 doi: 10.1016/j.jcou.2020.101270 – volume: 322 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0075 article-title: Effect of anodization time on the morphological, structural, electrochemical, and photocatalytic properties of anodic TiO2 NTs publication-title: J Solid State Chem doi: 10.1016/j.jssc.2023.123939 – volume: 499 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0070 article-title: A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2023.215495 – volume: 308 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0110 article-title: Improved neural network with least square support vector machine for wastewater treatment process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136116 – volume: 289 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0175 article-title: Machine learning-based modeling and analysis of PFOS removal from contaminated water by nanofiltration process publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.120775 – volume: 146 start-page: 15648 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0315 article-title: Multi-Variable Multi-Metric Optimization of Self-Assembled Photocatalytic CO2 Reduction Performance Using Machine Learning Algorithms publication-title: J Am Chem Soc doi: 10.1021/jacs.4c01305 – volume: 7 start-page: 38686 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0060 article-title: One-Step Hydrothermal Synthesis of Anatase TiO2 Nanotubes for Efficient Photocatalytic CO2 Reduction publication-title: ACS Omega doi: 10.1021/acsomega.2c04211 – volume: 42 start-page: 2031 year: 2018 ident: 10.1016/j.enconman.2025.119544_b0290 article-title: Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: A review publication-title: Int J Energy Res doi: 10.1002/er.3965 – volume: 185 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0195 article-title: Neural network models and shapley additive explanations for a beam-ring structure publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.115114 – volume: 54 start-page: 5096 year: 2015 ident: 10.1016/j.enconman.2025.119544_b0365 article-title: Efficient photocatalysts for CO2 reduction publication-title: Inorg Chem doi: 10.1021/ic502675a – volume: 465 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0105 article-title: Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.132995 – volume: 16 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0025 article-title: Enhanced Photocatalytic CO2 Reduction to CH4 Using Novel Ternary Photocatalyst RGO/Au-TNTAs publication-title: Energies doi: 10.3390/en16145404 – ident: 10.1016/j.enconman.2025.119544_b0030 doi: 10.1016/j.jiec.2021.04.017 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.enconman.2025.119544_b0190 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 2 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0160 article-title: Optimization of anodizing parameters for the morphological properties of TiO2 nanotubes based on response surface methodology publication-title: Next Mater – volume: 893 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0335 article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162334 – volume: 33 start-page: 2848 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0205 article-title: The Effect of Geometrical Characteristics of TiO2 Nanotube Arrays on the Photocatalytic Degradation of Organic Pollutants publication-title: J Inorg Organomet Polym Mater doi: 10.1007/s10904-023-02717-6 – volume: 49 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0130 article-title: Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2022.103126 – volume: 370 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0185 article-title: A novel interpretable machine learning and metaheuristic-based protocol to predict and optimize ciprofloxacin antibiotic adsorption with nano-adsorbent publication-title: J Environ Manage doi: 10.1016/j.jenvman.2024.122614 – volume: 168 start-page: 275 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0200 article-title: Machine learning-based predictive control using noisy data: evaluating performance and robustness via a large-scale process simulator publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2021.02.011 – volume: 983 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0390 article-title: Well-designed 2D vanadium carbide (V2C) MXenes supported LaCoO3/g-C3N4 heterojunction for highly efficient and stable photocatalytic CO2 reduction to CO and CH4 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2024.173730 – volume: 328 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0360 article-title: Photocatalytic CO2 reduction reaction: Influencing factors, reaction pathways and dominant catalysts publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2023.125056 – ident: 10.1016/j.enconman.2025.119544_b0345 doi: 10.1002/adma.202200180 – volume: 26 start-page: 2645 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0085 article-title: Missing-linker defects in a covalent organic framework photocatalyst for highly efficient synthesis of tetrahydroquinoline publication-title: Green Chem doi: 10.1039/D3GC04566H – volume: 46 start-page: 21471 year: 2020 ident: 10.1016/j.enconman.2025.119544_b0225 article-title: Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.05.246 – volume: 16 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0010 article-title: Recent progress in TiO2-Based photocatalysts for conversion of CO2 to hydrocarbon fuels: A systematic review publication-title: Results Eng doi: 10.1016/j.rineng.2022.100795 – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0080 article-title: Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity publication-title: Front Chem doi: 10.3389/fchem.2021.755836 – volume: 143 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0255 article-title: Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst publication-title: Inorg Chem Commun doi: 10.1016/j.inoche.2022.109700 – volume: 96 start-page: 511 year: 2012 ident: 10.1016/j.enconman.2025.119544_b0265 article-title: Influence of zeolite crystallite size on methyl-cyclohexane catalytic conversion products publication-title: Fuel doi: 10.1016/j.fuel.2012.01.065 – volume: 2 start-page: 612 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0095 article-title: Predicting the rates of photocatalytic hydrogen evolution over cocatalyst-deposited TiO2 using machine learning with active photon flux as a unifying feature publication-title: EES Catal doi: 10.1039/D3EY00246B – volume: 236 start-page: 1078 year: 2019 ident: 10.1016/j.enconman.2025.119544_b0300 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.042 – volume: 473 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0100 article-title: Investigating the impact of pretreatment strategies on photocatalyst for accurate CO2RR productivity quantification: A machine learning approach publication-title: Chem Eng J doi: 10.1016/j.cej.2023.145255 – volume: 48 start-page: 2046 year: 2019 ident: 10.1016/j.enconman.2025.119544_b0210 article-title: TiO2 Nanotubes with Nanograss Structure: The Effect of the Anodizing Voltage on the Formation Mechanism and Structure Properties publication-title: J Electron Mater doi: 10.1007/s11664-019-06951-y – volume: 289 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0280 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN publication-title: ANFIS and GEP J Environ Manage – volume: 260 year: 2020 ident: 10.1016/j.enconman.2025.119544_b0005 article-title: CO2 utilization: Turning greenhouse gas into fuels and valuable products publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.110059 – volume: 248 start-page: 430 year: 2019 ident: 10.1016/j.enconman.2025.119544_b0270 article-title: The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.02.054 – volume: 16 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0220 article-title: Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO2 nanotubes obtained by anodic oxidation publication-title: Environ Nanotechnology, Monit Manag – volume: 14 start-page: 1 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0125 article-title: Evaluation of machine learning models for predicting TiO2 photocatalytic degradation of air contaminants publication-title: Sci Rep – volume: 47 start-page: 19655 year: 2022 ident: 10.1016/j.enconman.2025.119544_b0155 article-title: Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.030 – volume: 12 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0325 article-title: Exploring the CO2 conversion activated by the dielectric barrier discharge plasma assisted with photocatalyst via machine learning publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2024.114428 – volume: 350 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0135 article-title: Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.141010 – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0310 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.623 – volume: 132 start-page: 204 year: 2015 ident: 10.1016/j.enconman.2025.119544_b0235 article-title: An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2014.09.005 – volume: 424 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0350 article-title: Advancing sustainable solutions: Harnessing polyaniline/BiOCl/GO ternary nanocomposites for solar-powered degradation of organic pollutant and photocatalytic hydrogen generation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.138851 – volume: 52 start-page: 13336 year: 2018 ident: 10.1016/j.enconman.2025.119544_b0040 article-title: Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b02213 – ident: 10.1016/j.enconman.2025.119544_b0240 doi: 10.1016/j.jhazmat.2008.06.033 – volume: 324 start-page: 1 year: 2023 ident: 10.1016/j.enconman.2025.119544_b0385 article-title: Low-concentration CO2 conversion on AgxNa1−xTaO3-AgCl heterojunction photocatalyst publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2022.122253 – volume: 462 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0275 article-title: Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.132773 – volume: 608 year: 2021 ident: 10.1016/j.enconman.2025.119544_b0120 article-title: Construction of graphene based photocatalysts for photocatalytic degradation of organic pollutant and modeling using artificial intelligence techniques publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2021.412869 – volume: 22 start-page: 1929 year: 2020 ident: 10.1016/j.enconman.2025.119544_b0250 article-title: Bandgap engineering of TiO2 nanotube photonic crystals for enhancement of photocatalytic capability publication-title: CrstEngComm doi: 10.1039/C9CE01828J – volume: 12 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0065 article-title: Carbon-based nanomaterials (CNMs) modified TiO2 nanotubes (TNTs) photo-driven catalysts for sustainable energy and environmental applications: A comprehensive review publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2024.114088 – ident: 10.1016/j.enconman.2025.119544_b0050 doi: 10.1016/j.jksus.2024.103210 – volume: 351 year: 2024 ident: 10.1016/j.enconman.2025.119544_b0090 article-title: AI-enhanced adsorption modeling: Challenges, applications, and bibliographic analysis publication-title: J Environ Manage doi: 10.1016/j.jenvman.2023.119968 – volume: 465 start-page: 1 year: 2016 ident: 10.1016/j.enconman.2025.119544_b0245 article-title: Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.11.050 |
| SSID | ssj0003506 |
| Score | 2.4883132 |
| Snippet | [Display omitted]
•Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross... The photocatalytic hydrogenation of CO₂ to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119544 |
| SubjectTerms | administrative management Artificial neural networks (ANN) automation carbon dioxide CO2 photoconversion crystallites energy conversion fuels hydrogenation irradiation light intensity Machine learning (ML) nanotubes neural networks Photocatalysis photocatalysts prediction surface area Titania nanotube arrays (TNTAs) titanium dioxide value added |
| Title | Experimental and AI-driven enhancements in gas-phase photocatalytic CO2 conversion over synthesized highly ordered anodic TiO2 nanotubes |
| URI | https://dx.doi.org/10.1016/j.enconman.2025.119544 https://www.proquest.com/docview/3200282836 |
| Volume | 327 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003506 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2xTuQwELUQNFCg4wDBHSCfROvdJLaTuFytQAungwKQ6CwndtggzlmRbLEU1Hw2Hie5W5AQBaUjjxV5xm8mzswbhI5NHmYsCinRQaIJy_KYpIKnJNFUZGFCE86hOPnPRTy5Yee3_HYFjftaGEir7LC_xXSP1t2TYbebw1lZDq-A2SUVYHQec4F2m7EEuhgMnv-neVDu-2vCZAKzl6qE7wfAFWn_KuBBjfjAs5-xjxzUO6j2_uf0G9rsAkc8at9tC60Y-x1tLNEJbqOXkyW6fqysxqMzoh8Bz7CxU9CvL2jDpcV3qiazqXNheDatmsrf4izc0nh8GWGfiu7v0TBkeOJ6YV2cWJdPRmPgN35YYE_Z6YbKVtpJXZdOzLpBM89MvYNuTk-uxxPSdVogOWW8IYapIg-NoEYYSgMFvKyaO_yJIlEEuYuCAg1MYiEvlAuRTFKkKgcaHeq0mxYF3UWrtrJmD-EkUkxlWqjYFMwERih35tOYFdpFCjTU-4j32yvzjoYcumE8yD7f7F72apGgFtmqZR8N_8nNWiKOTyVErz35xqSk8xafyv7q1S3deYOfKMqaal5LGrWfqTT-8YX1f6J1GLXJbAdotXmcm0MX3TTZkTffI7Q2Ovs9uXgFfmz8Ig |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELWAHgqHilIqaCl1pV69m8R2Eh_RCrS0QA8sEjfLiZ1uVuCsSPawPXDms_E4SdkiIQ49OvFYkWf8ZuzMPCP03eRhxqKQEh0kmrAsj0kqeEoSTUUWJjThHIqTzy_i8RX7cc2v19Cor4WBtMoO-1tM92jdPRl2szmcl-XwEphdUgFG5zE3XkdvGI8S2IEN7p_yPCj3F2xCbwLdV8qEZwMgi7S3CohQIz7w9GfsJQ_1DKu9AzrZRu-6yBEftR_3Hq0Zu4O2VvgEP6CH4xW-fqysxkenRN8BoGFjp6BgX9GGS4t_q5rMp86H4fm0aip_jLN0Q-PRrwj7XHR_kIYhxRPXS-sCxbr8YzQGguObJfacna6pbKWd1KR0YtY1mkVm6l10dXI8GY1Jd9UCySnjDTFMFXloBDXCUBooIGbV3AFQFIkiyF0YFGigEgt5oVyMZJIiVTnw6FCn3rQo6Ee0YStr9hBOIsVUpoWKTcFMYIRyiz6NWaFdqEBDvY94P70y73jI4TqMG9knnM1krxYJapGtWvbR8K_cvGXieFVC9NqT_9iUdO7iVdlvvbqlW3DwF0VZUy1qSaN2n0rjT_8x_lf0djw5P5Nnpxc_P6NNeNNmth2gjeZuYb64UKfJDr0pPwJJKf23 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+AI-driven+enhancements+in+gas-phase+photocatalytic+CO2+conversion+over+synthesized+highly+ordered+anodic+TiO2+nanotubes&rft.jtitle=Energy+conversion+and+management&rft.au=Hossen%2C+Md.+Arif&rft.au=Hasan%2C+Md.+Munirul&rft.au=Ahmed%2C+Yunus&rft.au=Aziz%2C+Azrina+Abd&rft.date=2025-03-01&rft.issn=0196-8904&rft.volume=327&rft.spage=119544&rft_id=info:doi/10.1016%2Fj.enconman.2025.119544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2025_119544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |