Experimental and AI-driven enhancements in gas-phase photocatalytic CO2 conversion over synthesized highly ordered anodic TiO2 nanotubes

[Display omitted] •Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross validation method tuned the hyperparameters.•The ANN model outperformed other models with R2 values of 0.983 and 0.984 for training and testing datas...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 327; p. 119544
Main Authors Hossen, Md. Arif, Hasan, Md. Munirul, Ahmed, Yunus, Aziz, Azrina Abd, Yaacof, Nurashikin, Leong, Kah Hon
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0196-8904
DOI10.1016/j.enconman.2025.119544

Cover

Abstract [Display omitted] •Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross validation method tuned the hyperparameters.•The ANN model outperformed other models with R2 values of 0.983 and 0.984 for training and testing datasets.•The maximum CO2 photoconversion was achieved at 71.32 % under optimal experimental conditions.•The exposed surface area of catalyst was found to be the most influential photocatalytic input parameter. The photocatalytic hydrogenation of CO2 to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering CO2 levels in the atmosphere. This study focuses on the prediction and optimization of CO2 conversion efficiency using machine learning (ML) approach over synthesized highly ordered TiO2 nanotube arrays (TNTAs) photocatalysts. Six popular ML algorithms of regression, kernel and neural network-based models were applied to predict the gas-phase CO2 photoconversion rate. The percentage of CO2 conversion was taken as the targeted feature while catalyst exposed surface area, crystallite size, CO2 concentration, light intensity, feed pressure, and irradiation time were chosen input parameters. The K-fold cross-validation method was employed to fine-tune the hyperparameters of the ML models. Compared to other ML models, the artificial neural networks (ANN) model showed an outstanding rating of performance evaluation metrics, including R2, MSE, RMSE, and MRE. Consistency of performance indicator values were also revealed during the testing of models. These results demonstrated the robust and effective predictive capabilities of the ANN model for CO2 conversion efficiency. The optimization of the input parameters for CO2 photoconversion was comprehensively validated using the predicted and experimental data. The highest prediction achieved for the photoconversion of CO2 was 71.32 %, while experimental validation confirmed an effectiveness of 70.60 % under optimized conditions. The SHapley Additive exPlanations (SHAP) method and normalized importance showed that the parameters related to photocatalysts were the most influential features in enhancing the gas-phase CO2 photoconversion compared to parameters related to photocatalytic settings. The integration of ML approach and gas-phase photocatalytic CO2 conversion has immense future potential for better design of other photocatalytic solar-based energy production applications. Future investigations should concentrate on the integration of ML predictions with real-time monitoring systems to facilitate process automation, adaptive adjustments, and improved scalability for practical applications.
AbstractList [Display omitted] •Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross validation method tuned the hyperparameters.•The ANN model outperformed other models with R2 values of 0.983 and 0.984 for training and testing datasets.•The maximum CO2 photoconversion was achieved at 71.32 % under optimal experimental conditions.•The exposed surface area of catalyst was found to be the most influential photocatalytic input parameter. The photocatalytic hydrogenation of CO2 to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering CO2 levels in the atmosphere. This study focuses on the prediction and optimization of CO2 conversion efficiency using machine learning (ML) approach over synthesized highly ordered TiO2 nanotube arrays (TNTAs) photocatalysts. Six popular ML algorithms of regression, kernel and neural network-based models were applied to predict the gas-phase CO2 photoconversion rate. The percentage of CO2 conversion was taken as the targeted feature while catalyst exposed surface area, crystallite size, CO2 concentration, light intensity, feed pressure, and irradiation time were chosen input parameters. The K-fold cross-validation method was employed to fine-tune the hyperparameters of the ML models. Compared to other ML models, the artificial neural networks (ANN) model showed an outstanding rating of performance evaluation metrics, including R2, MSE, RMSE, and MRE. Consistency of performance indicator values were also revealed during the testing of models. These results demonstrated the robust and effective predictive capabilities of the ANN model for CO2 conversion efficiency. The optimization of the input parameters for CO2 photoconversion was comprehensively validated using the predicted and experimental data. The highest prediction achieved for the photoconversion of CO2 was 71.32 %, while experimental validation confirmed an effectiveness of 70.60 % under optimized conditions. The SHapley Additive exPlanations (SHAP) method and normalized importance showed that the parameters related to photocatalysts were the most influential features in enhancing the gas-phase CO2 photoconversion compared to parameters related to photocatalytic settings. The integration of ML approach and gas-phase photocatalytic CO2 conversion has immense future potential for better design of other photocatalytic solar-based energy production applications. Future investigations should concentrate on the integration of ML predictions with real-time monitoring systems to facilitate process automation, adaptive adjustments, and improved scalability for practical applications.
The photocatalytic hydrogenation of CO₂ to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering CO₂ levels in the atmosphere. This study focuses on the prediction and optimization of CO₂ conversion efficiency using machine learning (ML) approach over synthesized highly ordered TiO₂ nanotube arrays (TNTAs) photocatalysts. Six popular ML algorithms of regression, kernel and neural network-based models were applied to predict the gas-phase CO₂ photoconversion rate. The percentage of CO₂ conversion was taken as the targeted feature while catalyst exposed surface area, crystallite size, CO₂ concentration, light intensity, feed pressure, and irradiation time were chosen input parameters. The K-fold cross-validation method was employed to fine-tune the hyperparameters of the ML models. Compared to other ML models, the artificial neural networks (ANN) model showed an outstanding rating of performance evaluation metrics, including R², MSE, RMSE, and MRE. Consistency of performance indicator values were also revealed during the testing of models. These results demonstrated the robust and effective predictive capabilities of the ANN model for CO₂ conversion efficiency. The optimization of the input parameters for CO₂ photoconversion was comprehensively validated using the predicted and experimental data. The highest prediction achieved for the photoconversion of CO₂ was 71.32 %, while experimental validation confirmed an effectiveness of 70.60 % under optimized conditions. The SHapley Additive exPlanations (SHAP) method and normalized importance showed that the parameters related to photocatalysts were the most influential features in enhancing the gas-phase CO₂ photoconversion compared to parameters related to photocatalytic settings. The integration of ML approach and gas-phase photocatalytic CO₂ conversion has immense future potential for better design of other photocatalytic solar-based energy production applications. Future investigations should concentrate on the integration of ML predictions with real-time monitoring systems to facilitate process automation, adaptive adjustments, and improved scalability for practical applications.
ArticleNumber 119544
Author Hossen, Md. Arif
Leong, Kah Hon
Hasan, Md. Munirul
Yaacof, Nurashikin
Aziz, Azrina Abd
Ahmed, Yunus
Author_xml – sequence: 1
  givenname: Md. Arif
  surname: Hossen
  fullname: Hossen, Md. Arif
  email: arifhossen0101@cuet.ac.bd
  organization: Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
– sequence: 2
  givenname: Md. Munirul
  surname: Hasan
  fullname: Hasan, Md. Munirul
  organization: Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
– sequence: 3
  givenname: Yunus
  surname: Ahmed
  fullname: Ahmed, Yunus
  organization: Department of Chemistry, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh
– sequence: 4
  givenname: Azrina Abd
  surname: Aziz
  fullname: Aziz, Azrina Abd
  email: azrinaaziz@umpsa.edu.my
  organization: Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
– sequence: 5
  givenname: Nurashikin
  surname: Yaacof
  fullname: Yaacof, Nurashikin
  organization: Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
– sequence: 6
  givenname: Kah Hon
  surname: Leong
  fullname: Leong, Kah Hon
  organization: Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
BookMark eNqFkMFuEzEQhn0oEm3hFZCPXDaM7fVmV-JAFRWoVKmXcram9mzX0cZebCciPEEfG0eBC5eeZkb-v9_Sd8UuQgzE2AcBKwGi-7RdUbAx7DCsJEi9EmLQbXvBLkEMXdMP0L5lVzlvAUBp6C7Zy-2vhZLfUSg4cwyO39w1LvkDBU5hwmDp9Ja5D_wZc7NMmIkvUyzRYkWOxVu-eZC8_nqglH0MPNaF52MoE2X_mxyf_PM0H3lMjlI9MURXqUdfsVCPsn-i_I69GXHO9P7vvGY_vt4-br439w_f7jY3941VrS4NtThaQYOigZQCFADS6b5fSzmMYDshwWndKaFH1B3QeuzR9rBuVftk-3FU1-zjuXdJ8eeecjE7ny3NMwaK-2yUrI297FVXo905alPMOdFolmoK09EIMCfdZmv-6TYn3easu4Kf_wOtL1iqm5LQz6_jX844VQ8HT8lk62uSnE9ki3HRv1bxB6LVpuo
CitedBy_id crossref_primary_10_1016_j_nxmate_2025_100522
Cites_doi 10.1016/j.jwpe.2024.105724
10.1021/jacs.6b08824
10.1007/s10854-020-04914-2
10.1016/j.aej.2024.07.120
10.1016/j.fuel.2023.130561
10.1021/acs.jpcb.3c06510
10.1016/j.cej.2022.140654
10.1002/anie.200800172
10.1016/j.chemosphere.2024.142792
10.1016/j.physb.2022.414026
10.1016/j.renene.2023.119145
10.1016/j.cattod.2024.114986
10.1016/j.mssp.2024.108943
10.1016/j.matpr.2022.10.103
10.1039/D3TA07001H
10.3390/en15228751
10.1016/j.polymdegradstab.2018.02.008
10.1016/j.fluid.2024.114132
10.31716/frt.201801005
10.1016/j.rineng.2024.103538
10.1016/j.pce.2021.103026
10.3390/catal14100674
10.1016/j.jcou.2022.101993
10.1021/acssuschemeng.9b06170
10.1016/j.jcou.2020.101270
10.1016/j.jssc.2023.123939
10.1016/j.ccr.2023.215495
10.1016/j.chemosphere.2022.136116
10.1016/j.seppur.2022.120775
10.1021/jacs.4c01305
10.1021/acsomega.2c04211
10.1002/er.3965
10.1016/j.chaos.2024.115114
10.1021/ic502675a
10.1016/j.jhazmat.2023.132995
10.3390/en16145404
10.1016/j.jiec.2021.04.017
10.1016/j.neucom.2020.07.061
10.1016/j.jallcom.2021.162334
10.1007/s10904-023-02717-6
10.1016/j.jwpe.2022.103126
10.1016/j.jenvman.2024.122614
10.1016/j.cherd.2021.02.011
10.1016/j.jallcom.2024.173730
10.1016/j.seppur.2023.125056
10.1002/adma.202200180
10.1039/D3GC04566H
10.1016/j.ceramint.2020.05.246
10.1016/j.rineng.2022.100795
10.3389/fchem.2021.755836
10.1016/j.inoche.2022.109700
10.1016/j.fuel.2012.01.065
10.1039/D3EY00246B
10.1016/j.apenergy.2018.12.042
10.1016/j.cej.2023.145255
10.1007/s11664-019-06951-y
10.1016/j.jenvman.2019.110059
10.1016/j.apcatb.2019.02.054
10.1016/j.ijhydene.2022.02.030
10.1016/j.jece.2024.114428
10.1016/j.chemosphere.2023.141010
10.7717/peerj-cs.623
10.1016/j.solmat.2014.09.005
10.1016/j.jclepro.2023.138851
10.1021/acs.est.8b02213
10.1016/j.jhazmat.2008.06.033
10.1016/j.apcatb.2022.122253
10.1016/j.jhazmat.2023.132773
10.1016/j.physb.2021.412869
10.1039/C9CE01828J
10.1016/j.jece.2024.114088
10.1016/j.jksus.2024.103210
10.1016/j.jenvman.2023.119968
10.1016/j.jcis.2015.11.050
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2025.119544
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enconman_2025_119544
S0196890425000676
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
LY6
M41
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-e4afc1e93e9e330a1002d5887229f0c6120d556315fa560e7f8ac807434bc8ff3
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Fri Oct 03 00:09:55 EDT 2025
Thu Apr 24 23:16:00 EDT 2025
Wed Oct 01 06:52:41 EDT 2025
Sat Mar 01 15:46:34 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords CO2 photoconversion
Machine learning (ML)
Titania nanotube arrays (TNTAs)
Artificial neural networks (ANN)
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-e4afc1e93e9e330a1002d5887229f0c6120d556315fa560e7f8ac807434bc8ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3200282836
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200282836
crossref_primary_10_1016_j_enconman_2025_119544
crossref_citationtrail_10_1016_j_enconman_2025_119544
elsevier_sciencedirect_doi_10_1016_j_enconman_2025_119544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hossen, Solayman, Leong, Sim, Yaacof, Abd Aziz (b0055) 2022; 15
Duflot, Marchal, Caps, Artero, Christoforidis, Keller (b0020) 2023; 413–415
Luo, Shen, Fu, Feng, Huang (b0325) 2024; 12
Huang, Wang, Wang, Wang, Shen, Li (b0270) 2019; 248
Sun, Zhang, Yao, Zhang (b0195) 2024; 185
Hossen, Solayman, Leong, Sim, Yaacof, Abd Aziz (b0010) 2022; 16
O/H
Chahrour, Yam, Eid (b0225) 2020; 46
Nishanthi, Subramanian, Sundarakannan, Padiyan (b0235) 2015; 132
Zhu, Jiang, Feng (b0110) 2022; 308
Mohtasham Moein, Saradar, Rahmati, Ghasemzadeh Mousavinejad, Bristow, Aramali (b0180) 2023; 63
Bonke, Trezza, Bergamasco, Song, Rodríguez-Jiménez, Hammarström (b0315) 2024; 146
Ahmed, Rahman, Alam, Miah, Choudhury, Alharbi (b0115) 2024; 65
Liu, Huang, Liao, Zhang, Ren, Zhuang (b0035) 2008; 47
Guo, Luo, Xu, Deng, Wang, He (b0385) 2023; 324
Variar AG, Ramyashree MS, Ail VU, S. SP, Sudhakar K, Tahir M. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: A review. J Ind Eng Chem 2021;99:19–47. Doi: 10.1016/j.jiec.2021.04.017.
Pérez-Hernández, Martínez, Galicia, Fernández García, Nuñez, Hernández (b0165) 2023; 217
Farooq N, Kallem P, ur Rehman Z, Imran Khan M, Kumar Gupta R, Tahseen T, et al. Recent trends of titania (TiO
Javed, Shahab, Asif, Najeh, Aslam, Ali (b0125) 2024; 14
Liang H chao, Li X zhong. Effects of structure of anodic TiO
Tahir B, Tahir M, Mohd Nawawi MG. Highly stable 3D/2D WO
Jalal, Xu, Iqbal, Javed, Jamhiri (b0280) 2021; 289
Chicco, Warrens, Jurman (b0310) 2021; 7
Oviedo, Druzian, Nora, da Silva (b0145) 2025; 443
Tabatabai-Yazdi, Ebrahimian Pirbazari, Esmaeili Khalil Saraei, Gilani (b0120) 2021; 608
Hosseinzadeh, Zhou, Zyaie, AlZainati, Ibrar, Altaee (b0175) 2022; 289
Haghshenas, Wong, Gunawan, Khataee, Keyikoğlu, Razmjou (b0095) 2023; 2
Util 2020;41:101270. Doi: 10.1016/j.jcou.2020.101270.
Kartal, Uzunbayir, Doluel, Yurddaskal, Erol (b0205) 2023; 33
Dwojak, Vera, Traid, Maydana, Litter, Schvezov (b0220) 2021; 16
Nakajima, Tamaki, Ueno, Kato, Nishikawa, Ohkubo (b0375) 2016; 138
Alkanad, Hezam, Al-Zaqri, Bajiri, Alnaggar, Drmosh (b0060) 2022; 7
Mao, Wang, Liu, Wang, Wang, Meng (b0285) 2021; 123
Al-Sabawi, De Lasa (b0265) 2012; 96
Anwar, Fayyaz, Sohail, Khokhar, Baqar, Yasar (b0005) 2020; 260
Zhang, Wang, Cui, Lu, Abanades (b0405) 2021; 119
Zhao, Wang, Li, Wang, Zhao, Qiu (b0015) 2024; 128
Liu, Pan, Lu, Wei, Wang, Du (b0130) 2022; 49
Hossen, Abd Aziz, Ikreedeegh, Din Muhammad, Yaacof, Leong (b0160) 2024; 2
Kumari, Chowdhry, Chandra (b0090) 2024; 351
Limpachanangkul, Liu, Nimmmanterdwong, Pruksathorn, Piumsomboon, Chalermsinsuwan (b0295) 2024; 108
Voleti, Kamesh, Rani (b0305) 2023; 72
Bamola, Rawat, Dwivedi, Sharma, Singh, Sharma (b0215) 2021; 32
Arora, Chawla, Chandra, Sagadevan, Garg (b0255) 2022; 143
Dashti, Navidpour, Amirkhani, Zhou, Altaee (b0140) 2024; 362
Özsoysal, Oral, Yıldırım (b0320) 2024; 12
Liu, Bao, Ma, Wang, Zheng, Wang (b0370) 2022; 429
Saadetnejad, Oral, Can, Yıldırım (b0155) 2022; 47
Shan, Wu, Yuan, Liu (b0170) 2024; 584
nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J Hazard Mater 2009;162:1415–22. Doi: 10.1016/j.jhazmat.2008.06.033.
Liu, Ge, Wang, Li, Deng, You (b0100) 2023; 473
Madi, Tahir (b0390) 2024; 983
F Gouveia A, Assis M, S Cavalcante L, Longo E, Andrés J. Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO
Goktas, Modanlı, Tumbul, Kilic (b0335) 2022; 893
N
under visible light. J CO
Front Res Today 2018;1:1005. Doi: 10.31716/frt.201801005.
reduction by H
Jaffari, Abbas, Kim, Shin, Kwak, Son (b0275) 2024; 462
Feng C, Wu ZP, Huang KW, Ye J, Zhang H. Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Adv Mater 2022;34. Doi: 10.1002/adma.202200180.
Fraoucene, Hatem, Vacandio, Pasquinelli (b0210) 2019; 48
Li, Wang, Wang, Wang, Li, Wang (b0250) 2020; 22
Cai, Pipattanasomporn, Rahman (b0300) 2019; 236
Hossen, Khatun, Ikreedeegh, Muhammad, Abd Aziz, Leong (b0025) 2023; 16
Allen, Mahdjoub, Vishnyakov, Kelly, Kriek (b0330) 2018; 150
to CO and CH
g-C
Ikreedeegh, Hossen, Tahir, Aziz (b0070) 2024; 499
Ahmed, Dutta, Nepu, Prima, AlMohamadi, Akhtar (b0150) 2025; 25
Zhao, Zhang, Zhu, Zhao, Zhai, Qiu (b0085) 2024; 26
Ikreedeegh, Tasleem, Hossen (b0395) 2024; 360
Zakir, Ait-Karra, Idouhli, Khadiri, Dikici, Aityoub (b0075) 2023; 322
Z-scheme heterojunction for stimulating photocatalytic CO
Wu, Luo, Rincon, Christofides (b0200) 2021; 168
Thompson, Sanchez Fernandez, Maroto-Valer (b0400) 2020; 8
Kim, Jaffari, Abbas, Chowdhury, Cho (b0105) 2024; 465
Yang, Shami (b0190) 2020; 415
Chu, Rashid, Pan, Wang, Zhang, Xiao (b0380) 2022; 60
Salahshoori, Namayandeh Jorabchi, Baghban, Khonakdar (b0135) 2024; 350
Kumar, Thorbole, Gupta (b0045) 2025; 185
Hossen, Ikreedeegh, Aziz, Zerga, Tahir (b0065) 2024; 12
Ishaq, Ehsan, Qayyum, Abbas, Irfan, Al-Hussain (b0260) 2024; 14
Hait, Mehta, Basu (b0350) 2023; 424
Lais, Gondal, Dastageer, Al-Adel (b0290) 2018; 42
Liu, Zheng, Ou, Liu, Song, Tian (b0040) 2018; 52
Zhang, Jiang, Lei, Liu, Tang, Yi (b0360) 2024; 328
Ma, Wang, Duan (b0355) 2023; 455
based materials: A review on synthetic approaches and potential applications. J King Saud Univ - Sci 2024;36:103210. Doi: 10.1016/j.jksus.2024.103210.
Talla, Suliali, Goosen, Urgessa, Motloung, Botha (b0230) 2022; 640
Choudhury, Bayan, Choudhury, Chakraborty (b0245) 2016; 465
Shan, Yang, Shi, Zhu, Tan, Luan (b0080) 2021; 9
Ahmed, Siddiqua Maya, Akhtar, Alam, AlMohamadi, Islam (b0185) 2024; 370
Sahara, Ishitani (b0365) 2015; 54
Dashti (10.1016/j.enconman.2025.119544_b0140) 2024; 362
Hossen (10.1016/j.enconman.2025.119544_b0025) 2023; 16
Fraoucene (10.1016/j.enconman.2025.119544_b0210) 2019; 48
Lais (10.1016/j.enconman.2025.119544_b0290) 2018; 42
10.1016/j.enconman.2025.119544_b0030
Zhang (10.1016/j.enconman.2025.119544_b0405) 2021; 119
Chahrour (10.1016/j.enconman.2025.119544_b0225) 2020; 46
Ahmed (10.1016/j.enconman.2025.119544_b0115) 2024; 65
Liu (10.1016/j.enconman.2025.119544_b0035) 2008; 47
Madi (10.1016/j.enconman.2025.119544_b0390) 2024; 983
Wu (10.1016/j.enconman.2025.119544_b0200) 2021; 168
Nakajima (10.1016/j.enconman.2025.119544_b0375) 2016; 138
Hossen (10.1016/j.enconman.2025.119544_b0055) 2022; 15
Voleti (10.1016/j.enconman.2025.119544_b0305) 2023; 72
Huang (10.1016/j.enconman.2025.119544_b0270) 2019; 248
Saadetnejad (10.1016/j.enconman.2025.119544_b0155) 2022; 47
10.1016/j.enconman.2025.119544_b0345
Ikreedeegh (10.1016/j.enconman.2025.119544_b0070) 2024; 499
Shan (10.1016/j.enconman.2025.119544_b0170) 2024; 584
Kartal (10.1016/j.enconman.2025.119544_b0205) 2023; 33
Hossen (10.1016/j.enconman.2025.119544_b0010) 2022; 16
Mohtasham Moein (10.1016/j.enconman.2025.119544_b0180) 2023; 63
Salahshoori (10.1016/j.enconman.2025.119544_b0135) 2024; 350
Li (10.1016/j.enconman.2025.119544_b0250) 2020; 22
10.1016/j.enconman.2025.119544_b0340
Choudhury (10.1016/j.enconman.2025.119544_b0245) 2016; 465
Ikreedeegh (10.1016/j.enconman.2025.119544_b0395) 2024; 360
Zhao (10.1016/j.enconman.2025.119544_b0085) 2024; 26
Chicco (10.1016/j.enconman.2025.119544_b0310) 2021; 7
Ahmed (10.1016/j.enconman.2025.119544_b0150) 2025; 25
Nishanthi (10.1016/j.enconman.2025.119544_b0235) 2015; 132
Kim (10.1016/j.enconman.2025.119544_b0105) 2024; 465
Arora (10.1016/j.enconman.2025.119544_b0255) 2022; 143
Mao (10.1016/j.enconman.2025.119544_b0285) 2021; 123
Cai (10.1016/j.enconman.2025.119544_b0300) 2019; 236
Liu (10.1016/j.enconman.2025.119544_b0100) 2023; 473
Javed (10.1016/j.enconman.2025.119544_b0125) 2024; 14
10.1016/j.enconman.2025.119544_b0410
Hait (10.1016/j.enconman.2025.119544_b0350) 2023; 424
Ishaq (10.1016/j.enconman.2025.119544_b0260) 2024; 14
10.1016/j.enconman.2025.119544_b0050
Sahara (10.1016/j.enconman.2025.119544_b0365) 2015; 54
Thompson (10.1016/j.enconman.2025.119544_b0400) 2020; 8
Al-Sabawi (10.1016/j.enconman.2025.119544_b0265) 2012; 96
Shan (10.1016/j.enconman.2025.119544_b0080) 2021; 9
Zhang (10.1016/j.enconman.2025.119544_b0360) 2024; 328
Oviedo (10.1016/j.enconman.2025.119544_b0145) 2025; 443
Liu (10.1016/j.enconman.2025.119544_b0130) 2022; 49
Bonke (10.1016/j.enconman.2025.119544_b0315) 2024; 146
Bamola (10.1016/j.enconman.2025.119544_b0215) 2021; 32
Liu (10.1016/j.enconman.2025.119544_b0370) 2022; 429
Duflot (10.1016/j.enconman.2025.119544_b0020) 2023; 413–415
Jalal (10.1016/j.enconman.2025.119544_b0280) 2021; 289
Ma (10.1016/j.enconman.2025.119544_b0355) 2023; 455
Zakir (10.1016/j.enconman.2025.119544_b0075) 2023; 322
Liu (10.1016/j.enconman.2025.119544_b0040) 2018; 52
Zhao (10.1016/j.enconman.2025.119544_b0015) 2024; 128
Haghshenas (10.1016/j.enconman.2025.119544_b0095) 2023; 2
Goktas (10.1016/j.enconman.2025.119544_b0335) 2022; 893
Hossen (10.1016/j.enconman.2025.119544_b0065) 2024; 12
10.1016/j.enconman.2025.119544_b0240
Zhu (10.1016/j.enconman.2025.119544_b0110) 2022; 308
Guo (10.1016/j.enconman.2025.119544_b0385) 2023; 324
Kumari (10.1016/j.enconman.2025.119544_b0090) 2024; 351
Tabatabai-Yazdi (10.1016/j.enconman.2025.119544_b0120) 2021; 608
Ahmed (10.1016/j.enconman.2025.119544_b0185) 2024; 370
Allen (10.1016/j.enconman.2025.119544_b0330) 2018; 150
Pérez-Hernández (10.1016/j.enconman.2025.119544_b0165) 2023; 217
Dwojak (10.1016/j.enconman.2025.119544_b0220) 2021; 16
Anwar (10.1016/j.enconman.2025.119544_b0005) 2020; 260
Limpachanangkul (10.1016/j.enconman.2025.119544_b0295) 2024; 108
Talla (10.1016/j.enconman.2025.119544_b0230) 2022; 640
Alkanad (10.1016/j.enconman.2025.119544_b0060) 2022; 7
Sun (10.1016/j.enconman.2025.119544_b0195) 2024; 185
Jaffari (10.1016/j.enconman.2025.119544_b0275) 2024; 462
Özsoysal (10.1016/j.enconman.2025.119544_b0320) 2024; 12
Hossen (10.1016/j.enconman.2025.119544_b0160) 2024; 2
Hosseinzadeh (10.1016/j.enconman.2025.119544_b0175) 2022; 289
Yang (10.1016/j.enconman.2025.119544_b0190) 2020; 415
Luo (10.1016/j.enconman.2025.119544_b0325) 2024; 12
Chu (10.1016/j.enconman.2025.119544_b0380) 2022; 60
Kumar (10.1016/j.enconman.2025.119544_b0045) 2025; 185
References_xml – volume: 983
  year: 2024
  ident: b0390
  article-title: Well-designed 2D vanadium carbide (V
  publication-title: J Alloys Compd
– volume: 362
  year: 2024
  ident: b0140
  article-title: Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts
  publication-title: Chemosphere
– volume: 123
  year: 2021
  ident: b0285
  article-title: Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation
  publication-title: Phys Chem Earth
– reference: Util 2020;41:101270. Doi: 10.1016/j.jcou.2020.101270.
– volume: 322
  year: 2023
  ident: b0075
  article-title: Effect of anodization time on the morphological, structural, electrochemical, and photocatalytic properties of anodic TiO
  publication-title: J Solid State Chem
– volume: 138
  start-page: 13818
  year: 2016
  end-page: 13821
  ident: b0375
  article-title: Photocatalytic Reduction of Low Concentration of CO
  publication-title: J Am Chem Soc
– volume: 168
  start-page: 275
  year: 2021
  end-page: 287
  ident: b0200
  article-title: Machine learning-based predictive control using noisy data: evaluating performance and robustness via a large-scale process simulator
  publication-title: Chem Eng Res Des
– volume: 328
  year: 2024
  ident: b0360
  article-title: Photocatalytic CO
  publication-title: Sep Purif Technol
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b0190
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 33
  start-page: 2848
  year: 2023
  end-page: 2860
  ident: b0205
  article-title: The Effect of Geometrical Characteristics of TiO
  publication-title: J Inorg Organomet Polym Mater
– volume: 465
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0245
  article-title: Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO
  publication-title: J Colloid Interface Sci
– volume: 65
  year: 2024
  ident: b0115
  article-title: Harnessing neural network model with optimization for enhanced ciprofloxacin antibiotic adsorption from contaminated water: A transparent and objective framework
  publication-title: J Water Process Eng
– volume: 14
  start-page: 1
  year: 2024
  end-page: 25
  ident: b0125
  article-title: Evaluation of machine learning models for predicting TiO
  publication-title: Sci Rep
– volume: 96
  start-page: 511
  year: 2012
  end-page: 523
  ident: b0265
  article-title: Influence of zeolite crystallite size on methyl-cyclohexane catalytic conversion products
  publication-title: Fuel
– volume: 308
  year: 2022
  ident: b0110
  article-title: Improved neural network with least square support vector machine for wastewater treatment process
  publication-title: Chemosphere
– volume: 584
  year: 2024
  ident: b0170
  article-title: Develop machine learning-based model and automated process for predicting liquid heat capacity of organics at different temperatures
  publication-title: Fluid Phase Equilib
– volume: 608
  year: 2021
  ident: b0120
  article-title: Construction of graphene based photocatalysts for photocatalytic degradation of organic pollutant and modeling using artificial intelligence techniques
  publication-title: Phys B Condens Matter
– volume: 217
  start-page: 2
  year: 2023
  end-page: 11
  ident: b0165
  article-title: Carbon cycle using the CO
  publication-title: Renew Energy
– reference: N
– volume: 429
  year: 2022
  ident: b0370
  article-title: Enhanced stability and activity towards photocatalytic CO
  publication-title: Chem Eng J
– volume: 9
  start-page: 1
  year: 2021
  end-page: 8
  ident: b0080
  article-title: Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity
  publication-title: Front Chem
– volume: 48
  start-page: 2046
  year: 2019
  end-page: 2054
  ident: b0210
  article-title: TiO
  publication-title: J Electron Mater
– volume: 16
  year: 2021
  ident: b0220
  article-title: Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO
  publication-title: Environ Nanotechnology, Monit Manag
– reference: . Front Res Today 2018;1:1005. Doi: 10.31716/frt.201801005.
– volume: 16
  year: 2022
  ident: b0010
  article-title: Recent progress in TiO
  publication-title: Results Eng
– volume: 42
  start-page: 2031
  year: 2018
  end-page: 2049
  ident: b0290
  article-title: Experimental parameters affecting the photocatalytic reduction performance of CO
  publication-title: Int J Energy Res
– reference: to CO and CH
– volume: 185
  year: 2025
  ident: b0045
  article-title: Sustaining the future: Semiconductor materials and their recovery
  publication-title: Mater Sci Semicond Process
– volume: 12
  year: 2024
  ident: b0065
  article-title: Carbon-based nanomaterials (CNMs) modified TiO2 nanotubes (TNTs) photo-driven catalysts for sustainable energy and environmental applications: A comprehensive review
  publication-title: J Environ Chem Eng
– reference: Z-scheme heterojunction for stimulating photocatalytic CO
– reference: Farooq N, Kallem P, ur Rehman Z, Imran Khan M, Kumar Gupta R, Tahseen T, et al. Recent trends of titania (TiO
– volume: 8
  start-page: 4677
  year: 2020
  end-page: 4692
  ident: b0400
  article-title: Review and Analysis of CO
  publication-title: ACS Sustain Chem Eng
– volume: 47
  start-page: 19655
  year: 2022
  end-page: 19668
  ident: b0155
  article-title: Machine learning analysis of gas phase photocatalytic CO
  publication-title: Int J Hydrogen Energy
– volume: 150
  start-page: 31
  year: 2018
  end-page: 36
  ident: b0330
  article-title: The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO
  publication-title: Polym Degrad Stab
– reference: under visible light. J CO
– volume: 185
  year: 2024
  ident: b0195
  article-title: Neural network models and shapley additive explanations for a beam-ring structure
  publication-title: Chaos Solitons Fractals
– volume: 289
  year: 2021
  ident: b0280
  article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN
  publication-title: ANFIS and GEP J Environ Manage
– volume: 146
  start-page: 15648
  year: 2024
  end-page: 15658
  ident: b0315
  article-title: Multi-Variable Multi-Metric Optimization of Self-Assembled Photocatalytic CO
  publication-title: J Am Chem Soc
– volume: 248
  start-page: 430
  year: 2019
  end-page: 440
  ident: b0270
  article-title: The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts
  publication-title: Appl Catal B Environ
– volume: 893
  year: 2022
  ident: b0335
  article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance
  publication-title: J Alloys Compd
– volume: 351
  year: 2024
  ident: b0090
  article-title: AI-enhanced adsorption modeling: Challenges, applications, and bibliographic analysis
  publication-title: J Environ Manage
– volume: 350
  year: 2024
  ident: b0135
  article-title: Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment
  publication-title: Chemosphere
– reference: O/H
– volume: 15
  year: 2022
  ident: b0055
  article-title: A Comprehensive Review on Advances in TiO
  publication-title: Energies
– volume: 413–415
  start-page: 1
  year: 2023
  end-page: 8
  ident: b0020
  article-title: Optimization of NH
  publication-title: Catal Today
– reference: Variar AG, Ramyashree MS, Ail VU, S. SP, Sudhakar K, Tahir M. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: A review. J Ind Eng Chem 2021;99:19–47. Doi: 10.1016/j.jiec.2021.04.017.
– volume: 22
  start-page: 1929
  year: 2020
  end-page: 1938
  ident: b0250
  article-title: Bandgap engineering of TiO
  publication-title: CrstEngComm
– reference: nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J Hazard Mater 2009;162:1415–22. Doi: 10.1016/j.jhazmat.2008.06.033.
– volume: 108
  start-page: 354
  year: 2024
  end-page: 363
  ident: b0295
  article-title: Statistical information review of CO
  publication-title: Alexandria Eng J
– volume: 324
  start-page: 1
  year: 2023
  end-page: 8
  ident: b0385
  article-title: Low-concentration CO
  publication-title: Appl Catal B Environ
– volume: 16
  year: 2023
  ident: b0025
  article-title: Enhanced Photocatalytic CO
  publication-title: Energies
– volume: 640
  year: 2022
  ident: b0230
  article-title: Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO
  publication-title: Phys B Condens Matter
– volume: 2
  year: 2024
  ident: b0160
  article-title: Optimization of anodizing parameters for the morphological properties of TiO
  publication-title: Next Mater
– volume: 236
  start-page: 1078
  year: 2019
  end-page: 1088
  ident: b0300
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl Energy
– volume: 462
  year: 2024
  ident: b0275
  article-title: Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents
  publication-title: J Hazard Mater
– volume: 12
  start-page: 5748
  year: 2024
  end-page: 5759
  ident: b0320
  article-title: Analysis of photocatalytic CO
  publication-title: J Mater Chem A
– volume: 32
  start-page: 1427
  year: 2021
  end-page: 1444
  ident: b0215
  article-title: Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticles
  publication-title: J Mater Sci Mater Electron
– volume: 473
  year: 2023
  ident: b0100
  article-title: Investigating the impact of pretreatment strategies on photocatalyst for accurate CO
  publication-title: Chem Eng J
– reference: ) based materials: A review on synthetic approaches and potential applications. J King Saud Univ - Sci 2024;36:103210. Doi: 10.1016/j.jksus.2024.103210.
– reference: Liang H chao, Li X zhong. Effects of structure of anodic TiO
– volume: 46
  start-page: 21471
  year: 2020
  end-page: 21481
  ident: b0225
  article-title: Water-splitting properties of bi-phased TiO
  publication-title: Ceram Int
– volume: 54
  start-page: 5096
  year: 2015
  end-page: 5104
  ident: b0365
  article-title: Efficient photocatalysts for CO
  publication-title: Inorg Chem
– reference: F Gouveia A, Assis M, S Cavalcante L, Longo E, Andrés J. Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO
– volume: 49
  year: 2022
  ident: b0130
  article-title: Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO
  publication-title: J Water Process Eng
– volume: 14
  year: 2024
  ident: b0260
  article-title: Recent Strategies to Improve the Photocatalytic Efficiency of TiO
  publication-title: Catalysts
– volume: 260
  year: 2020
  ident: b0005
  article-title: CO
  publication-title: J Environ Manage
– volume: 47
  start-page: 5619
  year: 2008
  end-page: 5622
  ident: b0035
  article-title: Treatment of CrVI-containing Mg(OH)
  publication-title: Angew Chemie - Int Ed
– volume: 26
  start-page: 2645
  year: 2024
  end-page: 2652
  ident: b0085
  article-title: Missing-linker defects in a covalent organic framework photocatalyst for highly efficient synthesis of tetrahydroquinoline
  publication-title: Green Chem
– volume: 63
  year: 2023
  ident: b0180
  article-title: Predictive models for concrete properties using machine learning and deep learning approaches: A review
  publication-title: J Build Eng
– volume: 132
  start-page: 204
  year: 2015
  end-page: 209
  ident: b0235
  article-title: An insight into the influence of morphology on the photoelectrochemical activity of TiO
  publication-title: Sol Energy Mater Sol Cells
– volume: 128
  start-page: 1079
  year: 2024
  end-page: 1090
  ident: b0015
  article-title: Understanding the Positive Role of Ionic Liquids in CO
  publication-title: J Phys Chem B
– volume: 2
  start-page: 612
  year: 2023
  end-page: 623
  ident: b0095
  article-title: Predicting the rates of photocatalytic hydrogen evolution over cocatalyst-deposited TiO
  publication-title: EES Catal
– reference: Feng C, Wu ZP, Huang KW, Ye J, Zhang H. Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Adv Mater 2022;34. Doi: 10.1002/adma.202200180.
– reference: reduction by H
– reference: Tahir B, Tahir M, Mohd Nawawi MG. Highly stable 3D/2D WO
– volume: 370
  year: 2024
  ident: b0185
  article-title: A novel interpretable machine learning and metaheuristic-based protocol to predict and optimize ciprofloxacin antibiotic adsorption with nano-adsorbent
  publication-title: J Environ Manage
– volume: 12
  year: 2024
  ident: b0325
  article-title: Exploring the CO
  publication-title: J Environ Chem Eng
– volume: 143
  year: 2022
  ident: b0255
  article-title: Advances in the strategies for enhancing the photocatalytic activity of TiO
  publication-title: Inorg Chem Commun
– volume: 72
  start-page: 494
  year: 2023
  end-page: 499
  ident: b0305
  article-title: ML based catalyst modelling for photo-catalytic reduction of CO
  publication-title: Mater Today Proc
– volume: 25
  year: 2025
  ident: b0150
  article-title: Optimizing photocatalytic dye degradation: A machine learning and metaheuristic approach for predicting methylene blue in contaminated water
  publication-title: Results Eng
– volume: 119
  year: 2021
  ident: b0405
  article-title: Remarkable CO
  publication-title: Appl Phys Lett
– volume: 443
  year: 2025
  ident: b0145
  article-title: Study of machine learning on the photocatalytic activity of a novel nanozeolite for the application in the Rhodamine B dye degradation
  publication-title: Catal Today
– volume: 499
  year: 2024
  ident: b0070
  article-title: A comprehensive review on anodic TiO
  publication-title: Coord Chem Rev
– volume: 424
  year: 2023
  ident: b0350
  article-title: Advancing sustainable solutions: Harnessing polyaniline/BiOCl/GO ternary nanocomposites for solar-powered degradation of organic pollutant and photocatalytic hydrogen generation
  publication-title: J Clean Prod
– volume: 360
  year: 2024
  ident: b0395
  article-title: Facile fabrication of binary g-C
  publication-title: Fuel
– volume: 52
  start-page: 13336
  year: 2018
  end-page: 13342
  ident: b0040
  article-title: Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species
  publication-title: Environ Sci Technol
– volume: 7
  start-page: 38686
  year: 2022
  end-page: 38699
  ident: b0060
  article-title: One-Step Hydrothermal Synthesis of Anatase TiO
  publication-title: ACS Omega
– volume: 60
  year: 2022
  ident: b0380
  article-title: The impact of flue gas impurities and concentrations on the photoelectrochemical CO
  publication-title: J CO
– volume: 455
  year: 2023
  ident: b0355
  article-title: Recent advances in direct gas–solid-phase photocatalytic conversion of CO
  publication-title: Chem Eng J
– reference: /g-C
– volume: 465
  year: 2024
  ident: b0105
  article-title: Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal
  publication-title: J Hazard Mater
– volume: 289
  year: 2022
  ident: b0175
  article-title: Machine learning-based modeling and analysis of PFOS removal from contaminated water by nanofiltration process
  publication-title: Sep Purif Technol
– volume: 7
  start-page: 1
  year: 2021
  end-page: 24
  ident: b0310
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput Sci
– volume: 413–415
  start-page: 1
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0020
  article-title: Optimization of NH2-UiO-66/TiO2/Au composites for enhanced gas-phase CO2 photocatalytic reduction into CH4
  publication-title: Catal Today
– volume: 65
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0115
  article-title: Harnessing neural network model with optimization for enhanced ciprofloxacin antibiotic adsorption from contaminated water: A transparent and objective framework
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2024.105724
– volume: 138
  start-page: 13818
  year: 2016
  ident: 10.1016/j.enconman.2025.119544_b0375
  article-title: Photocatalytic Reduction of Low Concentration of CO2
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b08824
– volume: 32
  start-page: 1427
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0215
  article-title: Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticlesgrafted 1D-TiO2 nanotubes
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-020-04914-2
– volume: 108
  start-page: 354
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0295
  article-title: Statistical information review of CO2 photocatalytic reduction via bismuth-based photocatalysts using artificial neural network
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2024.07.120
– volume: 429
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0370
  article-title: Enhanced stability and activity towards photocatalytic CO2 reduction via supercycle ALD of Cu and TiO2
  publication-title: Chem Eng J
– volume: 360
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0395
  article-title: Facile fabrication of binary g-C3N4/NH2-MIL-125(Ti) MOF nanocomposite with Z-scheme heterojunction for efficient photocatalytic H2 production and CO2 reduction under visible light
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.130561
– volume: 128
  start-page: 1079
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0015
  article-title: Understanding the Positive Role of Ionic Liquids in CO2 Capture by Poly(ethylenimine)
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.3c06510
– volume: 455
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0355
  article-title: Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.140654
– volume: 47
  start-page: 5619
  year: 2008
  ident: 10.1016/j.enconman.2025.119544_b0035
  article-title: Treatment of CrVI-containing Mg(OH)2 nanowaste
  publication-title: Angew Chemie - Int Ed
  doi: 10.1002/anie.200800172
– volume: 362
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0140
  article-title: Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2024.142792
– volume: 640
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0230
  article-title: Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO2 nanotubes
  publication-title: Phys B Condens Matter
  doi: 10.1016/j.physb.2022.414026
– volume: 217
  start-page: 2
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0165
  article-title: Carbon cycle using the CO2 conversion to methane as environmental feasibility on Ni/TiO2-Na nanotubes catalysts
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2023.119145
– volume: 443
  year: 2025
  ident: 10.1016/j.enconman.2025.119544_b0145
  article-title: Study of machine learning on the photocatalytic activity of a novel nanozeolite for the application in the Rhodamine B dye degradation
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2024.114986
– volume: 185
  year: 2025
  ident: 10.1016/j.enconman.2025.119544_b0045
  article-title: Sustaining the future: Semiconductor materials and their recovery
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/j.mssp.2024.108943
– volume: 72
  start-page: 494
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0305
  article-title: ML based catalyst modelling for photo-catalytic reduction of CO2 to methanol
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2022.10.103
– volume: 12
  start-page: 5748
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0320
  article-title: Analysis of photocatalytic CO2 reduction over MOFs using machine learning
  publication-title: J Mater Chem A
  doi: 10.1039/D3TA07001H
– volume: 63
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0180
  article-title: Predictive models for concrete properties using machine learning and deep learning approaches: A review
  publication-title: J Build Eng
– volume: 15
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0055
  article-title: A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products
  publication-title: Energies
  doi: 10.3390/en15228751
– volume: 150
  start-page: 31
  year: 2018
  ident: 10.1016/j.enconman.2025.119544_b0330
  article-title: The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2)
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2018.02.008
– volume: 119
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0405
  article-title: Remarkable CO2 photoreduction activity using TiO2 nanotube arrays under favorable photothermal conditions driven by concentrated solar light
  publication-title: Appl Phys Lett
– volume: 584
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0170
  article-title: Develop machine learning-based model and automated process for predicting liquid heat capacity of organics at different temperatures
  publication-title: Fluid Phase Equilib
  doi: 10.1016/j.fluid.2024.114132
– ident: 10.1016/j.enconman.2025.119544_b0340
  doi: 10.31716/frt.201801005
– volume: 25
  year: 2025
  ident: 10.1016/j.enconman.2025.119544_b0150
  article-title: Optimizing photocatalytic dye degradation: A machine learning and metaheuristic approach for predicting methylene blue in contaminated water
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.103538
– volume: 123
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0285
  article-title: Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation
  publication-title: Phys Chem Earth
  doi: 10.1016/j.pce.2021.103026
– volume: 14
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0260
  article-title: Recent Strategies to Improve the Photocatalytic Efficiency of TiO2 for Enhanced Water Splitting to Produce Hydrogen
  publication-title: Catalysts
  doi: 10.3390/catal14100674
– volume: 60
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0380
  article-title: The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2022.101993
– volume: 8
  start-page: 4677
  year: 2020
  ident: 10.1016/j.enconman.2025.119544_b0400
  article-title: Review and Analysis of CO2 Photoreduction Kinetics
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b06170
– ident: 10.1016/j.enconman.2025.119544_b0410
  doi: 10.1016/j.jcou.2020.101270
– volume: 322
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0075
  article-title: Effect of anodization time on the morphological, structural, electrochemical, and photocatalytic properties of anodic TiO2 NTs
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2023.123939
– volume: 499
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0070
  article-title: A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2023.215495
– volume: 308
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0110
  article-title: Improved neural network with least square support vector machine for wastewater treatment process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136116
– volume: 289
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0175
  article-title: Machine learning-based modeling and analysis of PFOS removal from contaminated water by nanofiltration process
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.120775
– volume: 146
  start-page: 15648
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0315
  article-title: Multi-Variable Multi-Metric Optimization of Self-Assembled Photocatalytic CO2 Reduction Performance Using Machine Learning Algorithms
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.4c01305
– volume: 7
  start-page: 38686
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0060
  article-title: One-Step Hydrothermal Synthesis of Anatase TiO2 Nanotubes for Efficient Photocatalytic CO2 Reduction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c04211
– volume: 42
  start-page: 2031
  year: 2018
  ident: 10.1016/j.enconman.2025.119544_b0290
  article-title: Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: A review
  publication-title: Int J Energy Res
  doi: 10.1002/er.3965
– volume: 185
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0195
  article-title: Neural network models and shapley additive explanations for a beam-ring structure
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.115114
– volume: 54
  start-page: 5096
  year: 2015
  ident: 10.1016/j.enconman.2025.119544_b0365
  article-title: Efficient photocatalysts for CO2 reduction
  publication-title: Inorg Chem
  doi: 10.1021/ic502675a
– volume: 465
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0105
  article-title: Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.132995
– volume: 16
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0025
  article-title: Enhanced Photocatalytic CO2 Reduction to CH4 Using Novel Ternary Photocatalyst RGO/Au-TNTAs
  publication-title: Energies
  doi: 10.3390/en16145404
– ident: 10.1016/j.enconman.2025.119544_b0030
  doi: 10.1016/j.jiec.2021.04.017
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.enconman.2025.119544_b0190
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 2
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0160
  article-title: Optimization of anodizing parameters for the morphological properties of TiO2 nanotubes based on response surface methodology
  publication-title: Next Mater
– volume: 893
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0335
  article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.162334
– volume: 33
  start-page: 2848
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0205
  article-title: The Effect of Geometrical Characteristics of TiO2 Nanotube Arrays on the Photocatalytic Degradation of Organic Pollutants
  publication-title: J Inorg Organomet Polym Mater
  doi: 10.1007/s10904-023-02717-6
– volume: 49
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0130
  article-title: Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2022.103126
– volume: 370
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0185
  article-title: A novel interpretable machine learning and metaheuristic-based protocol to predict and optimize ciprofloxacin antibiotic adsorption with nano-adsorbent
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2024.122614
– volume: 168
  start-page: 275
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0200
  article-title: Machine learning-based predictive control using noisy data: evaluating performance and robustness via a large-scale process simulator
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2021.02.011
– volume: 983
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0390
  article-title: Well-designed 2D vanadium carbide (V2C) MXenes supported LaCoO3/g-C3N4 heterojunction for highly efficient and stable photocatalytic CO2 reduction to CO and CH4
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2024.173730
– volume: 328
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0360
  article-title: Photocatalytic CO2 reduction reaction: Influencing factors, reaction pathways and dominant catalysts
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2023.125056
– ident: 10.1016/j.enconman.2025.119544_b0345
  doi: 10.1002/adma.202200180
– volume: 26
  start-page: 2645
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0085
  article-title: Missing-linker defects in a covalent organic framework photocatalyst for highly efficient synthesis of tetrahydroquinoline
  publication-title: Green Chem
  doi: 10.1039/D3GC04566H
– volume: 46
  start-page: 21471
  year: 2020
  ident: 10.1016/j.enconman.2025.119544_b0225
  article-title: Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.05.246
– volume: 16
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0010
  article-title: Recent progress in TiO2-Based photocatalysts for conversion of CO2 to hydrocarbon fuels: A systematic review
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2022.100795
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0080
  article-title: Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity
  publication-title: Front Chem
  doi: 10.3389/fchem.2021.755836
– volume: 143
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0255
  article-title: Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst
  publication-title: Inorg Chem Commun
  doi: 10.1016/j.inoche.2022.109700
– volume: 96
  start-page: 511
  year: 2012
  ident: 10.1016/j.enconman.2025.119544_b0265
  article-title: Influence of zeolite crystallite size on methyl-cyclohexane catalytic conversion products
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.01.065
– volume: 2
  start-page: 612
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0095
  article-title: Predicting the rates of photocatalytic hydrogen evolution over cocatalyst-deposited TiO2 using machine learning with active photon flux as a unifying feature
  publication-title: EES Catal
  doi: 10.1039/D3EY00246B
– volume: 236
  start-page: 1078
  year: 2019
  ident: 10.1016/j.enconman.2025.119544_b0300
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.042
– volume: 473
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0100
  article-title: Investigating the impact of pretreatment strategies on photocatalyst for accurate CO2RR productivity quantification: A machine learning approach
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.145255
– volume: 48
  start-page: 2046
  year: 2019
  ident: 10.1016/j.enconman.2025.119544_b0210
  article-title: TiO2 Nanotubes with Nanograss Structure: The Effect of the Anodizing Voltage on the Formation Mechanism and Structure Properties
  publication-title: J Electron Mater
  doi: 10.1007/s11664-019-06951-y
– volume: 289
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0280
  article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN
  publication-title: ANFIS and GEP J Environ Manage
– volume: 260
  year: 2020
  ident: 10.1016/j.enconman.2025.119544_b0005
  article-title: CO2 utilization: Turning greenhouse gas into fuels and valuable products
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2019.110059
– volume: 248
  start-page: 430
  year: 2019
  ident: 10.1016/j.enconman.2025.119544_b0270
  article-title: The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.02.054
– volume: 16
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0220
  article-title: Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO2 nanotubes obtained by anodic oxidation
  publication-title: Environ Nanotechnology, Monit Manag
– volume: 14
  start-page: 1
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0125
  article-title: Evaluation of machine learning models for predicting TiO2 photocatalytic degradation of air contaminants
  publication-title: Sci Rep
– volume: 47
  start-page: 19655
  year: 2022
  ident: 10.1016/j.enconman.2025.119544_b0155
  article-title: Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.02.030
– volume: 12
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0325
  article-title: Exploring the CO2 conversion activated by the dielectric barrier discharge plasma assisted with photocatalyst via machine learning
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2024.114428
– volume: 350
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0135
  article-title: Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.141010
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0310
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.623
– volume: 132
  start-page: 204
  year: 2015
  ident: 10.1016/j.enconman.2025.119544_b0235
  article-title: An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2014.09.005
– volume: 424
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0350
  article-title: Advancing sustainable solutions: Harnessing polyaniline/BiOCl/GO ternary nanocomposites for solar-powered degradation of organic pollutant and photocatalytic hydrogen generation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.138851
– volume: 52
  start-page: 13336
  year: 2018
  ident: 10.1016/j.enconman.2025.119544_b0040
  article-title: Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b02213
– ident: 10.1016/j.enconman.2025.119544_b0240
  doi: 10.1016/j.jhazmat.2008.06.033
– volume: 324
  start-page: 1
  year: 2023
  ident: 10.1016/j.enconman.2025.119544_b0385
  article-title: Low-concentration CO2 conversion on AgxNa1−xTaO3-AgCl heterojunction photocatalyst
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2022.122253
– volume: 462
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0275
  article-title: Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.132773
– volume: 608
  year: 2021
  ident: 10.1016/j.enconman.2025.119544_b0120
  article-title: Construction of graphene based photocatalysts for photocatalytic degradation of organic pollutant and modeling using artificial intelligence techniques
  publication-title: Phys B Condens Matter
  doi: 10.1016/j.physb.2021.412869
– volume: 22
  start-page: 1929
  year: 2020
  ident: 10.1016/j.enconman.2025.119544_b0250
  article-title: Bandgap engineering of TiO2 nanotube photonic crystals for enhancement of photocatalytic capability
  publication-title: CrstEngComm
  doi: 10.1039/C9CE01828J
– volume: 12
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0065
  article-title: Carbon-based nanomaterials (CNMs) modified TiO2 nanotubes (TNTs) photo-driven catalysts for sustainable energy and environmental applications: A comprehensive review
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2024.114088
– ident: 10.1016/j.enconman.2025.119544_b0050
  doi: 10.1016/j.jksus.2024.103210
– volume: 351
  year: 2024
  ident: 10.1016/j.enconman.2025.119544_b0090
  article-title: AI-enhanced adsorption modeling: Challenges, applications, and bibliographic analysis
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2023.119968
– volume: 465
  start-page: 1
  year: 2016
  ident: 10.1016/j.enconman.2025.119544_b0245
  article-title: Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2015.11.050
SSID ssj0003506
Score 2.4883132
Snippet [Display omitted] •Six machine learning models were applied to predict gas-phase CO2 conversion efficiency over TNTAs photocatalysts.•The K-fold cross...
The photocatalytic hydrogenation of CO₂ to value-added products is one of the most appealing sustainable strategies to meet growing fuel demand and lowering...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119544
SubjectTerms administrative management
Artificial neural networks (ANN)
automation
carbon dioxide
CO2 photoconversion
crystallites
energy conversion
fuels
hydrogenation
irradiation
light intensity
Machine learning (ML)
nanotubes
neural networks
Photocatalysis
photocatalysts
prediction
surface area
Titania nanotube arrays (TNTAs)
titanium dioxide
value added
Title Experimental and AI-driven enhancements in gas-phase photocatalytic CO2 conversion over synthesized highly ordered anodic TiO2 nanotubes
URI https://dx.doi.org/10.1016/j.enconman.2025.119544
https://www.proquest.com/docview/3200282836
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2xTuQwELUQNFCg4wDBHSCfROvdJLaTuFytQAungwKQ6CwndtggzlmRbLEU1Hw2Hie5W5AQBaUjjxV5xm8mzswbhI5NHmYsCinRQaIJy_KYpIKnJNFUZGFCE86hOPnPRTy5Yee3_HYFjftaGEir7LC_xXSP1t2TYbebw1lZDq-A2SUVYHQec4F2m7EEuhgMnv-neVDu-2vCZAKzl6qE7wfAFWn_KuBBjfjAs5-xjxzUO6j2_uf0G9rsAkc8at9tC60Y-x1tLNEJbqOXkyW6fqysxqMzoh8Bz7CxU9CvL2jDpcV3qiazqXNheDatmsrf4izc0nh8GWGfiu7v0TBkeOJ6YV2cWJdPRmPgN35YYE_Z6YbKVtpJXZdOzLpBM89MvYNuTk-uxxPSdVogOWW8IYapIg-NoEYYSgMFvKyaO_yJIlEEuYuCAg1MYiEvlAuRTFKkKgcaHeq0mxYF3UWrtrJmD-EkUkxlWqjYFMwERih35tOYFdpFCjTU-4j32yvzjoYcumE8yD7f7F72apGgFtmqZR8N_8nNWiKOTyVErz35xqSk8xafyv7q1S3deYOfKMqaal5LGrWfqTT-8YX1f6J1GLXJbAdotXmcm0MX3TTZkTffI7Q2Ovs9uXgFfmz8Ig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELWAHgqHilIqaCl1pV69m8R2Eh_RCrS0QA8sEjfLiZ1uVuCsSPawPXDms_E4SdkiIQ49OvFYkWf8ZuzMPCP03eRhxqKQEh0kmrAsj0kqeEoSTUUWJjThHIqTzy_i8RX7cc2v19Cor4WBtMoO-1tM92jdPRl2szmcl-XwEphdUgFG5zE3XkdvGI8S2IEN7p_yPCj3F2xCbwLdV8qEZwMgi7S3CohQIz7w9GfsJQ_1DKu9AzrZRu-6yBEftR_3Hq0Zu4O2VvgEP6CH4xW-fqysxkenRN8BoGFjp6BgX9GGS4t_q5rMp86H4fm0aip_jLN0Q-PRrwj7XHR_kIYhxRPXS-sCxbr8YzQGguObJfacna6pbKWd1KR0YtY1mkVm6l10dXI8GY1Jd9UCySnjDTFMFXloBDXCUBooIGbV3AFQFIkiyF0YFGigEgt5oVyMZJIiVTnw6FCn3rQo6Ee0YStr9hBOIsVUpoWKTcFMYIRyiz6NWaFdqEBDvY94P70y73jI4TqMG9knnM1krxYJapGtWvbR8K_cvGXieFVC9NqT_9iUdO7iVdlvvbqlW3DwF0VZUy1qSaN2n0rjT_8x_lf0djw5P5Nnpxc_P6NNeNNmth2gjeZuYb64UKfJDr0pPwJJKf23
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+AI-driven+enhancements+in+gas-phase+photocatalytic+CO2+conversion+over+synthesized+highly+ordered+anodic+TiO2+nanotubes&rft.jtitle=Energy+conversion+and+management&rft.au=Hossen%2C+Md.+Arif&rft.au=Hasan%2C+Md.+Munirul&rft.au=Ahmed%2C+Yunus&rft.au=Aziz%2C+Azrina+Abd&rft.date=2025-03-01&rft.issn=0196-8904&rft.volume=327&rft.spage=119544&rft_id=info:doi/10.1016%2Fj.enconman.2025.119544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2025_119544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon