Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal

•Typical intrinsic characteristics analysis of large power electrical loads.•Distorted m-sequence dynamic test signal model to reflect the characteristics.•Non-overlapping moving compressive measurement algorithm to estimate electric energy. The complex random characteristics in smart grid lead to i...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 251; p. 113234
Main Authors Wang, Xuewei, Wang, Jing, Wang, Lin, Yuan, Ruiming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2019.05.037

Cover

Abstract •Typical intrinsic characteristics analysis of large power electrical loads.•Distorted m-sequence dynamic test signal model to reflect the characteristics.•Non-overlapping moving compressive measurement algorithm to estimate electric energy. The complex random characteristics in smart grid lead to inaccuracy of smart electricity metering. This is caused by the power filter and energy accumulation algorithm under dynamic signal conditions. By analyzing the typical intrinsic characteristics of large power electrical loads, this paper proposes a distorted m-sequence dynamic test (DmDT) signal model to reflect the characteristics and summarizes the parameter set that relates to the characteristics. In addition, based on the compressive measurement (CM) theory, a novel non-overlapping moving compressive measurement (NOLM-CM) algorithm is proposed to accurately estimate electrical energy. The performance of the non-overlapping moving compressive measurement (NOLM-CM) algorithm is tested under representative distorted dynamic random conditions. Simulation and experimental results indicate that the non-overlapping moving compressive measurement (NOLM-CM) algorithm achieves accurate estimation of electrical energy. Furthermore, the comparisons with five popular window-based estimation algorithms by simulations verify the higher performance of the non-overlapping moving compressive measurement (NOLM-CM) algorithm.
AbstractList •Typical intrinsic characteristics analysis of large power electrical loads.•Distorted m-sequence dynamic test signal model to reflect the characteristics.•Non-overlapping moving compressive measurement algorithm to estimate electric energy. The complex random characteristics in smart grid lead to inaccuracy of smart electricity metering. This is caused by the power filter and energy accumulation algorithm under dynamic signal conditions. By analyzing the typical intrinsic characteristics of large power electrical loads, this paper proposes a distorted m-sequence dynamic test (DmDT) signal model to reflect the characteristics and summarizes the parameter set that relates to the characteristics. In addition, based on the compressive measurement (CM) theory, a novel non-overlapping moving compressive measurement (NOLM-CM) algorithm is proposed to accurately estimate electrical energy. The performance of the non-overlapping moving compressive measurement (NOLM-CM) algorithm is tested under representative distorted dynamic random conditions. Simulation and experimental results indicate that the non-overlapping moving compressive measurement (NOLM-CM) algorithm achieves accurate estimation of electrical energy. Furthermore, the comparisons with five popular window-based estimation algorithms by simulations verify the higher performance of the non-overlapping moving compressive measurement (NOLM-CM) algorithm.
The complex random characteristics in smart grid lead to inaccuracy of smart electricity metering. This is caused by the power filter and energy accumulation algorithm under dynamic signal conditions. By analyzing the typical intrinsic characteristics of large power electrical loads, this paper proposes a distorted m-sequence dynamic test (DmDT) signal model to reflect the characteristics and summarizes the parameter set that relates to the characteristics. In addition, based on the compressive measurement (CM) theory, a novel non-overlapping moving compressive measurement (NOLM-CM) algorithm is proposed to accurately estimate electrical energy. The performance of the non-overlapping moving compressive measurement (NOLM-CM) algorithm is tested under representative distorted dynamic random conditions. Simulation and experimental results indicate that the non-overlapping moving compressive measurement (NOLM-CM) algorithm achieves accurate estimation of electrical energy. Furthermore, the comparisons with five popular window-based estimation algorithms by simulations verify the higher performance of the non-overlapping moving compressive measurement (NOLM-CM) algorithm.
ArticleNumber 113234
Author Wang, Lin
Yuan, Ruiming
Wang, Jing
Wang, Xuewei
Author_xml – sequence: 1
  givenname: Xuewei
  orcidid: 0000-0002-7099-8641
  surname: Wang
  fullname: Wang, Xuewei
  email: wangxw@mail.buct.edu.cn
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
– sequence: 3
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
– sequence: 4
  givenname: Ruiming
  surname: Yuan
  fullname: Yuan, Ruiming
  organization: Institute of Power Research, State Grid Jibei Electric Power Company Limited, 100045 Beijing, China
BookMark eNqFkL1OHDEUha0IpCyEV4hc0szE9mDPWKIIQiRBQkkTasvYdzZe-Wdie1faB8h7x8tCQ0N1m_MdnfudoZOYIiD0mZKeEiq-bHq9QIS83veMUNkT3pNh_IBWdBpZJymdTtCKDER0TFD5EZ2VsiGEMMrICv37mWKXdpC9XhYX1zik3eGYFJYMpbgd4AC6bDMEiBVrv07Z1T8Bzylj8GBqdkZ7fFyAoVQXdHUp4jRj60pNuYLFoSvwdwvRALb7qIMzuLYsLm4dtf-ETmftC1y83HP0-O3u9-2P7uHX9_vbm4fODFe8dnamGviTBWO1BMGZkXq23I6MTZLr0YphkHac-NUkDAcjJONS06fBmNlOUgzn6PLYu-TU1pSqgisGvNcR0rao1iMkmaiYWlQcoyanUjLMasnts7xXlKiDd7VRr97VwbsiXDXvDbx-AxpXn43UrJ1_H_96xKF52DnIqhh38GZdbrKVTe69iv-i3qsp
CitedBy_id crossref_primary_10_1016_j_segan_2022_100690
Cites_doi 10.1016/j.measurement.2014.01.015
10.1016/j.apenergy.2016.11.004
10.1109/CPEM.2016.7540737
10.1109/TSG.2013.2296534
10.1016/j.apenergy.2018.04.001
10.1109/TPWRS.2014.2367509
10.1109/TIM.2010.2046594
10.1109/TIM.2007.890596
10.1109/CPEM.2012.6250690
10.1109/TIT.1977.1055666
10.1016/j.apenergy.2014.07.052
10.1016/j.measurement.2006.11.011
10.1109/TIM.2017.2779538
10.1109/TIM.2012.2193700
10.1016/j.apenergy.2017.11.035
10.1109/TSP.2013.2283473
10.1109/I2MTC.2015.7151334
10.1109/61.193863
10.1109/19.843073
10.1016/j.energy.2014.12.040
10.1016/j.apenergy.2014.12.039
10.1016/j.ymssp.2015.05.025
10.1016/j.apenergy.2016.10.079
10.1016/j.apenergy.2015.12.058
10.1109/TII.2017.2749682
10.1016/j.apenergy.2018.03.155
10.1016/j.apenergy.2018.03.185
10.1109/JSTSP.2009.2039178
10.1016/j.measurement.2013.06.025
10.1109/19.893255
10.1109/TIM.2008.2005079
10.1109/61.484002
10.1016/j.apenergy.2016.08.183
10.1088/1361-6501/aa5067
10.1109/61.568258
10.1109/TIM.2007.903607
10.1016/j.apenergy.2018.02.084
10.1016/j.apenergy.2015.11.072
10.1109/TPWRD.2015.2472961
10.1016/j.apenergy.2016.02.062
10.1016/j.rser.2016.05.043
10.1016/j.energy.2017.06.029
10.1016/j.sigpro.2017.05.021
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.05.037
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2019_05_037
S0306261919308918
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-df1ae5bdecda9e652c9afd5d722895a7d6339d785486c5ec69259a1b3ccfd8963
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Wed Oct 01 14:19:50 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Thu Oct 09 00:36:36 EDT 2025
Fri Feb 23 02:16:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Test signal
Compressive measurement
Electrical energy
Smart electricity meter
Dynamic load
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-df1ae5bdecda9e652c9afd5d722895a7d6339d785486c5ec69259a1b3ccfd8963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7099-8641
PQID 2286908168
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2286908168
crossref_primary_10_1016_j_apenergy_2019_05_037
crossref_citationtrail_10_1016_j_apenergy_2019_05_037
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_05_037
PublicationCentury 2000
PublicationDate 2019-10-01
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barros, Diego (b0205) 2016; 62
Sun, Yu, Qin (b0010) 2017; 185
Zepernick, Finger (b0230) 2005
Arseneau, Heydt, Kempker (b0170) 1997; 12
Domijan, Embriz-Santander, Gilani, Lamer, Stiles, Williams (b0040) 1996; 11
Femine, Gallo, Landi, Luiso (b0140) 2009; 58
Lebotsa, Sigauke, Bere, Fildes, Boylan (b0195) 2018; 222
Cohn, Lempel (b0225) 1977; 23
Hu, He, Wang, Ma, Gao (b0035) 2016; 31
Wang, Chen, Yuan, Jia, Zhu, Jiang (b0045) 2017; 28
Electricity metering equipment (a.c.) particular requirements-part 21: Static meters for active energy (Class 1 and 2) IEC EN 62053-21; Mar. 2003.
Duda (b0060) 2011; 60
Belega, Petri (b0070) 2017; 140
Wu, Xu, Mu, Feng, Bao, Ouyang (b0095) 2018; 67
Berrada, Looudiyi, Garde (b0015) 2017; 134
Novotny, Sedlacek (b0080) 2008; 41
Zhang, Ovaska (b0090) 2000; 49
Electricity metering equipment (a.c.) general requirements, tests and test conditions-part 11: Metering equipment IEC EN 62052-11; Mar. 2003.
Spagnuolo, Petraglia, Vetromile, Formosi, Lubritto (b0200) 2015; 81
Wen, Zhang, Yao, Tang (b0075) 2018; 14
Georgakopoulos, Wright (b0130) 2007; 56
McLoughlin, Duffy, Conlon (b0005) 2015; 141
Belega, Petri, Dallet (b0065) 2016; 66–67
Arseneau, Filipski (b0165) 1988; 3
Yang, Li, Li, Qu (b0215) 2018; 213
Nardin, Meneghetti, Magro, Benedetti (b0020) 2014; 136
Lu Z, Li M, Zhu Z, Zheng J, Wang L, Eddy S. Evaluation of the dynamic performance characteristic of electrical energy meters. In: Conf. on Precision Electromagnetic Measurements(CPEM). IEEE; 2012. p. 120–21.
Alam, Natarajan, Pahwa (b0125) 2014; 5
Bhattacharjee, Khan (b0175) 2018; 222
Cai, Huang, Ling, Wang, Dai (b0100) 2014; 50
Du Z, Chen X, Zhang H. Feature identification with compressive measurements for machine fault diagnosis. In: Instrumentation and measurement technology conference. IEEE; 2015. p. 588–93.
Chuan, Ukil (b0180) 2015; 30
He, Liu, Li, Wang, Lu (b0210) 2017; 185
Yang, Pen, Wang, Wang (b0105) 2016; 165
Remero, Leus (b0115) 2013; 61
Davenport, Boufounos, Wakin, Baraniuk (b0110) 2010; 4
Lin, Wang, Pan, Ho, Hou, Chiang (b0025) 2016; 183
Schopfer, Tiefenbeck, Staake (b0220) 2018; 223
Huang HT, Lu ZL, Wang L, Liu LJ, Jia ZS, Huang QL, et al. Dynamical waveforms and the dynamical source for electricity meter dynamical experiment. In: Conf. on Precision Electromagnetic Measurements (CPEM). IEEE; 2016. p. 1–2.
Poly phase multifunction energy metering IC with per phase information ADE7758 data manual. Analog device Inc; 2004.
Zheng, Shang, Shao, Jian (b0030) 2018; 217
Yang, Xing, Wang, Tsui (b0190) 2016; 164
Ferrero, Prioli, Salicone (b0145) 2012; 61
Blaifi, Moulahoum, Colak, Merrouche (b0185) 2016; 169
Crabone, Petri (b0085) 2000; 49
Gallo, Landi, Pasquino, Polese (b0135) 2007; 56
Bernieri, Betta, Ferrigno, Laracca, Moriello (b0150) 2013; 46
Duda (10.1016/j.apenergy.2019.05.037_b0060) 2011; 60
Zhang (10.1016/j.apenergy.2019.05.037_b0090) 2000; 49
10.1016/j.apenergy.2019.05.037_b0120
Yang (10.1016/j.apenergy.2019.05.037_b0215) 2018; 213
Alam (10.1016/j.apenergy.2019.05.037_b0125) 2014; 5
10.1016/j.apenergy.2019.05.037_b0160
Nardin (10.1016/j.apenergy.2019.05.037_b0020) 2014; 136
Berrada (10.1016/j.apenergy.2019.05.037_b0015) 2017; 134
Georgakopoulos (10.1016/j.apenergy.2019.05.037_b0130) 2007; 56
Gallo (10.1016/j.apenergy.2019.05.037_b0135) 2007; 56
Cai (10.1016/j.apenergy.2019.05.037_b0100) 2014; 50
He (10.1016/j.apenergy.2019.05.037_b0210) 2017; 185
Chuan (10.1016/j.apenergy.2019.05.037_b0180) 2015; 30
Belega (10.1016/j.apenergy.2019.05.037_b0070) 2017; 140
Arseneau (10.1016/j.apenergy.2019.05.037_b0170) 1997; 12
Remero (10.1016/j.apenergy.2019.05.037_b0115) 2013; 61
Hu (10.1016/j.apenergy.2019.05.037_b0035) 2016; 31
Schopfer (10.1016/j.apenergy.2019.05.037_b0220) 2018; 223
Arseneau (10.1016/j.apenergy.2019.05.037_b0165) 1988; 3
10.1016/j.apenergy.2019.05.037_b0235
10.1016/j.apenergy.2019.05.037_b0155
Barros (10.1016/j.apenergy.2019.05.037_b0205) 2016; 62
Bhattacharjee (10.1016/j.apenergy.2019.05.037_b0175) 2018; 222
10.1016/j.apenergy.2019.05.037_b0055
Femine (10.1016/j.apenergy.2019.05.037_b0140) 2009; 58
10.1016/j.apenergy.2019.05.037_b0050
Blaifi (10.1016/j.apenergy.2019.05.037_b0185) 2016; 169
Zepernick (10.1016/j.apenergy.2019.05.037_b0230) 2005
Cohn (10.1016/j.apenergy.2019.05.037_b0225) 1977; 23
Wang (10.1016/j.apenergy.2019.05.037_b0045) 2017; 28
Davenport (10.1016/j.apenergy.2019.05.037_b0110) 2010; 4
Bernieri (10.1016/j.apenergy.2019.05.037_b0150) 2013; 46
Yang (10.1016/j.apenergy.2019.05.037_b0190) 2016; 164
Sun (10.1016/j.apenergy.2019.05.037_b0010) 2017; 185
Lin (10.1016/j.apenergy.2019.05.037_b0025) 2016; 183
Domijan (10.1016/j.apenergy.2019.05.037_b0040) 1996; 11
Belega (10.1016/j.apenergy.2019.05.037_b0065) 2016; 66–67
Wu (10.1016/j.apenergy.2019.05.037_b0095) 2018; 67
Spagnuolo (10.1016/j.apenergy.2019.05.037_b0200) 2015; 81
Crabone (10.1016/j.apenergy.2019.05.037_b0085) 2000; 49
Zheng (10.1016/j.apenergy.2019.05.037_b0030) 2018; 217
Wen (10.1016/j.apenergy.2019.05.037_b0075) 2018; 14
Yang (10.1016/j.apenergy.2019.05.037_b0105) 2016; 165
Ferrero (10.1016/j.apenergy.2019.05.037_b0145) 2012; 61
Lebotsa (10.1016/j.apenergy.2019.05.037_b0195) 2018; 222
McLoughlin (10.1016/j.apenergy.2019.05.037_b0005) 2015; 141
Novotny (10.1016/j.apenergy.2019.05.037_b0080) 2008; 41
References_xml – volume: 164
  start-page: 387
  year: 2016
  end-page: 399
  ident: b0190
  article-title: A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile
  publication-title: Appl Energy
– volume: 223
  start-page: 229
  year: 2018
  end-page: 248
  ident: b0220
  article-title: Economic assessment of photovoltaic battery systems based on household load profiles
  publication-title: Appl Energy
– volume: 141
  start-page: 190
  year: 2015
  end-page: 199
  ident: b0005
  article-title: A clustering approach to domestic electricity load profile characterization using smart metering data
  publication-title: Appl Energy
– reference: Poly phase multifunction energy metering IC with per phase information ADE7758 data manual. Analog device Inc; 2004.
– volume: 213
  start-page: 499
  year: 2018
  end-page: 509
  ident: b0215
  article-title: Power load probability density forecasting using Gaussian process quantile regression
  publication-title: Appl Energy
– reference: Electricity metering equipment (a.c.) general requirements, tests and test conditions-part 11: Metering equipment IEC EN 62052-11; Mar. 2003.
– volume: 28
  start-page: 025015
  year: 2017
  ident: b0045
  article-title: OOK power model based dynamic error testing for smart electricity meter
  publication-title: Meas Sci Technol
– volume: 217
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0030
  article-title: A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid
  publication-title: Appl Energy
– volume: 4
  start-page: 445
  year: 2010
  end-page: 460
  ident: b0110
  article-title: Signal processing with compressive measurements
  publication-title: IEEE J Sel Topics Signal Process
– volume: 31
  start-page: 1482
  year: 2016
  end-page: 1492
  ident: b0035
  article-title: Power-quality impact assessment for high-speed railway associated with high-speed trains using train timetable-Part II: verifications, estimations and applications
  publication-title: IEEE Trans Power Del
– volume: 41
  start-page: 236
  year: 2008
  end-page: 250
  ident: b0080
  article-title: RMS value measurement based on classical and modified digital signal processing algorithms
  publication-title: Measurement
– reference: Du Z, Chen X, Zhang H. Feature identification with compressive measurements for machine fault diagnosis. In: Instrumentation and measurement technology conference. IEEE; 2015. p. 588–93.
– reference: Lu Z, Li M, Zhu Z, Zheng J, Wang L, Eddy S. Evaluation of the dynamic performance characteristic of electrical energy meters. In: Conf. on Precision Electromagnetic Measurements(CPEM). IEEE; 2012. p. 120–21.
– volume: 58
  start-page: 618
  year: 2009
  end-page: 625
  ident: b0140
  article-title: Advanced instrument for field calibration of electrical energy meters
  publication-title: IEEE Trans Instrum Meas
– volume: 30
  start-page: 2800
  year: 2015
  end-page: 2809
  ident: b0180
  article-title: Modeling and validation of electrical load profiling in residential buildings in Singapore
  publication-title: IEEE Trans power syst
– volume: 169
  start-page: 888
  year: 2016
  end-page: 898
  ident: b0185
  article-title: An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications
  publication-title: Appl Energy
– reference: Electricity metering equipment (a.c.) particular requirements-part 21: Static meters for active energy (Class 1 and 2) IEC EN 62053-21; Mar. 2003.
– volume: 56
  start-page: 369
  year: 2007
  end-page: 372
  ident: b0130
  article-title: Exercising the dynamic range of active power meters under nonsinusoidal conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 185
  start-page: 254
  year: 2017
  end-page: 266
  ident: b0210
  article-title: Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory
  publication-title: Appl Energy
– volume: 183
  start-page: 369
  year: 2016
  end-page: 379
  ident: b0025
  article-title: Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry
  publication-title: Appl Energy
– volume: 56
  start-page: 1694
  year: 2007
  end-page: 1702
  ident: b0135
  article-title: A new methodological approach to quality assurance of energy meters under nonsinusoidal conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 222
  start-page: 637
  year: 2018
  end-page: 648
  ident: b0175
  article-title: A non-linear convex cost model for economic dispatch in microgrids
  publication-title: Appl Energy
– volume: 62
  start-page: 665
  year: 2016
  end-page: 672
  ident: b0205
  article-title: A review of measurement and analysis of electric power quality on shipboard power system networks
  publication-title: Renew Sustain Energy Rev
– volume: 23
  start-page: 135
  year: 1977
  end-page: 137
  ident: b0225
  article-title: On fast m-sequence transforms
  publication-title: IEEE Trans Inf Theory
– volume: 81
  start-page: 286
  year: 2015
  end-page: 293
  ident: b0200
  article-title: Monitoring and optimization of energy consumption of base transceiver stations
  publication-title: Energy
– volume: 60
  start-page: 784
  year: 2011
  end-page: 790
  ident: b0060
  article-title: DFT interpolation algorithm for Kaiser-Bessel and Dolph-Chebyshev windows
  publication-title: IEEE Trans Instrum Meas
– volume: 11
  start-page: 64
  year: 1996
  end-page: 70
  ident: b0040
  article-title: Watthour meter accuracy under controlled unbalanced harmonic voltage and current conditions
  publication-title: IEEE Trans Power Del
– volume: 50
  start-page: 339
  year: 2014
  end-page: 345
  ident: b0100
  article-title: Power harmonics analysis of programmable AC power source via variation semi-sinusoidal window
  publication-title: Measurement
– volume: 165
  start-page: 583
  year: 2016
  end-page: 591
  ident: b0105
  article-title: Harmonic analysis in integrated energy based on compressed sensing
  publication-title: Appl Energy
– volume: 61
  start-page: 2972
  year: 2012
  end-page: 2981
  ident: b0145
  article-title: A metrological comparison between different methods for harmonic pollution metering
  publication-title: IEEE Trans Instrum Meas
– volume: 12
  start-page: 346
  year: 1997
  end-page: 353
  ident: b0170
  article-title: Application of IEEE standard 519–1992 harmonic limits for revenue billing meters
  publication-title: IEEE Trans Power Del
– volume: 185
  start-page: 421
  year: 2017
  end-page: 439
  ident: b0010
  article-title: Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study
  publication-title: Appl Energy
– volume: 66–67
  start-page: 349
  year: 2016
  end-page: 360
  ident: b0065
  article-title: Impact of harmonics on the interpolated DFT frequency estimator
  publication-title: Mech Syst Sig Process
– volume: 222
  start-page: 104
  year: 2018
  end-page: 118
  ident: b0195
  article-title: Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem
  publication-title: Appl Energy
– year: 2005
  ident: b0230
  article-title: Pseudo random signal processing theory and application
– volume: 136
  start-page: 947
  year: 2014
  end-page: 955
  ident: b0020
  article-title: PCM-based energy recovery from electric arc furnaces
  publication-title: Appl Energy
– reference: Huang HT, Lu ZL, Wang L, Liu LJ, Jia ZS, Huang QL, et al. Dynamical waveforms and the dynamical source for electricity meter dynamical experiment. In: Conf. on Precision Electromagnetic Measurements (CPEM). IEEE; 2016. p. 1–2.
– volume: 140
  start-page: 207
  year: 2017
  end-page: 218
  ident: b0070
  article-title: Effect of noise and harmonics on sine-wave frequency estimation by interpolated DFT algorithms based on few observed cycles
  publication-title: Signal Process
– volume: 14
  start-page: 1447
  year: 2018
  end-page: 1455
  ident: b0075
  article-title: FFT-based amplitude estimation of power distribution systems signal distorted by harmonics and noise
  publication-title: IEEE Trans Ind Inform
– volume: 46
  start-page: 3347
  year: 2013
  end-page: 3354
  ident: b0150
  article-title: Electrical energy metering: some challenges of the European Directive on Measuring Instruments (MID)
  publication-title: Measurement
– volume: 61
  start-page: 6232
  year: 2013
  end-page: 6246
  ident: b0115
  article-title: Wide band spectrum sensing from compressed measurements using spectral prior information
  publication-title: IEEE Trans Signal Process
– volume: 134
  start-page: 323
  year: 2017
  end-page: 335
  ident: b0015
  article-title: Dynamic modeling of gravity energy storage coupled with a PV energy plant
  publication-title: Energy
– volume: 67
  start-page: 559
  year: 2018
  end-page: 568
  ident: b0095
  article-title: Effect of frequency offset on power measurement error in digital input electricity meters
  publication-title: IEEE Trans Instrum Meas
– volume: 49
  start-page: 1194
  year: 2000
  end-page: 1200
  ident: b0090
  article-title: An adaptive window function method for power measurement
  publication-title: IEEE Trans Instrum Meas
– volume: 5
  start-page: 1631
  year: 2014
  end-page: 1642
  ident: b0125
  article-title: Distribution grid state estimation from compressed measurement
  publication-title: IEEE Trans Smart Grid
– volume: 49
  start-page: 333
  year: 2000
  end-page: 336
  ident: b0085
  article-title: Average power estimation under nonsinusoidal conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 3
  start-page: 874
  year: 1988
  end-page: 879
  ident: b0165
  article-title: Application of a three phase nonsinusoidal calibration system for testing energy and demand meters under simulated field conditions
  publication-title: IEEE Trans Power Del
– volume: 50
  start-page: 339
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2019.05.037_b0100
  article-title: Power harmonics analysis of programmable AC power source via variation semi-sinusoidal window
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.01.015
– volume: 185
  start-page: 421
  year: 2017
  ident: 10.1016/j.apenergy.2019.05.037_b0010
  article-title: Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.004
– ident: 10.1016/j.apenergy.2019.05.037_b0055
  doi: 10.1109/CPEM.2016.7540737
– volume: 5
  start-page: 1631
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2019.05.037_b0125
  article-title: Distribution grid state estimation from compressed measurement
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2296534
– volume: 222
  start-page: 637
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0175
  article-title: A non-linear convex cost model for economic dispatch in microgrids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.001
– volume: 30
  start-page: 2800
  issue: 5
  year: 2015
  ident: 10.1016/j.apenergy.2019.05.037_b0180
  article-title: Modeling and validation of electrical load profiling in residential buildings in Singapore
  publication-title: IEEE Trans power syst
  doi: 10.1109/TPWRS.2014.2367509
– volume: 60
  start-page: 784
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2019.05.037_b0060
  article-title: DFT interpolation algorithm for Kaiser-Bessel and Dolph-Chebyshev windows
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2010.2046594
– volume: 56
  start-page: 369
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2019.05.037_b0130
  article-title: Exercising the dynamic range of active power meters under nonsinusoidal conditions
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2007.890596
– ident: 10.1016/j.apenergy.2019.05.037_b0050
  doi: 10.1109/CPEM.2012.6250690
– volume: 23
  start-page: 135
  year: 1977
  ident: 10.1016/j.apenergy.2019.05.037_b0225
  article-title: On fast m-sequence transforms
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1977.1055666
– volume: 136
  start-page: 947
  year: 2014
  ident: 10.1016/j.apenergy.2019.05.037_b0020
  article-title: PCM-based energy recovery from electric arc furnaces
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.052
– volume: 41
  start-page: 236
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2019.05.037_b0080
  article-title: RMS value measurement based on classical and modified digital signal processing algorithms
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.11.011
– year: 2005
  ident: 10.1016/j.apenergy.2019.05.037_b0230
– volume: 67
  start-page: 559
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0095
  article-title: Effect of frequency offset on power measurement error in digital input electricity meters
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2017.2779538
– volume: 61
  start-page: 2972
  issue: 11
  year: 2012
  ident: 10.1016/j.apenergy.2019.05.037_b0145
  article-title: A metrological comparison between different methods for harmonic pollution metering
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2193700
– volume: 213
  start-page: 499
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0215
  article-title: Power load probability density forecasting using Gaussian process quantile regression
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.035
– volume: 61
  start-page: 6232
  issue: 24
  year: 2013
  ident: 10.1016/j.apenergy.2019.05.037_b0115
  article-title: Wide band spectrum sensing from compressed measurements using spectral prior information
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2283473
– ident: 10.1016/j.apenergy.2019.05.037_b0120
  doi: 10.1109/I2MTC.2015.7151334
– volume: 3
  start-page: 874
  issue: 3
  year: 1988
  ident: 10.1016/j.apenergy.2019.05.037_b0165
  article-title: Application of a three phase nonsinusoidal calibration system for testing energy and demand meters under simulated field conditions
  publication-title: IEEE Trans Power Del
  doi: 10.1109/61.193863
– volume: 49
  start-page: 333
  issue: 2
  year: 2000
  ident: 10.1016/j.apenergy.2019.05.037_b0085
  article-title: Average power estimation under nonsinusoidal conditions
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/19.843073
– volume: 81
  start-page: 286
  year: 2015
  ident: 10.1016/j.apenergy.2019.05.037_b0200
  article-title: Monitoring and optimization of energy consumption of base transceiver stations
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.040
– volume: 141
  start-page: 190
  year: 2015
  ident: 10.1016/j.apenergy.2019.05.037_b0005
  article-title: A clustering approach to domestic electricity load profile characterization using smart metering data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.039
– volume: 66–67
  start-page: 349
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0065
  article-title: Impact of harmonics on the interpolated DFT frequency estimator
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2015.05.025
– volume: 185
  start-page: 254
  year: 2017
  ident: 10.1016/j.apenergy.2019.05.037_b0210
  article-title: Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.079
– volume: 165
  start-page: 583
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0105
  article-title: Harmonic analysis in integrated energy based on compressed sensing
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.058
– volume: 14
  start-page: 1447
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0075
  article-title: FFT-based amplitude estimation of power distribution systems signal distorted by harmonics and noise
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2749682
– volume: 222
  start-page: 104
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0195
  article-title: Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.155
– volume: 223
  start-page: 229
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0220
  article-title: Economic assessment of photovoltaic battery systems based on household load profiles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.185
– volume: 4
  start-page: 445
  issue: 2
  year: 2010
  ident: 10.1016/j.apenergy.2019.05.037_b0110
  article-title: Signal processing with compressive measurements
  publication-title: IEEE J Sel Topics Signal Process
  doi: 10.1109/JSTSP.2009.2039178
– volume: 46
  start-page: 3347
  year: 2013
  ident: 10.1016/j.apenergy.2019.05.037_b0150
  article-title: Electrical energy metering: some challenges of the European Directive on Measuring Instruments (MID)
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.06.025
– volume: 49
  start-page: 1194
  issue: 6
  year: 2000
  ident: 10.1016/j.apenergy.2019.05.037_b0090
  article-title: An adaptive window function method for power measurement
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/19.893255
– volume: 58
  start-page: 618
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2019.05.037_b0140
  article-title: Advanced instrument for field calibration of electrical energy meters
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2008.2005079
– volume: 11
  start-page: 64
  issue: 1
  year: 1996
  ident: 10.1016/j.apenergy.2019.05.037_b0040
  article-title: Watthour meter accuracy under controlled unbalanced harmonic voltage and current conditions
  publication-title: IEEE Trans Power Del
  doi: 10.1109/61.484002
– volume: 183
  start-page: 369
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0025
  article-title: Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.183
– volume: 28
  start-page: 025015
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2019.05.037_b0045
  article-title: OOK power model based dynamic error testing for smart electricity meter
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aa5067
– volume: 12
  start-page: 346
  issue: 1
  year: 1997
  ident: 10.1016/j.apenergy.2019.05.037_b0170
  article-title: Application of IEEE standard 519–1992 harmonic limits for revenue billing meters
  publication-title: IEEE Trans Power Del
  doi: 10.1109/61.568258
– volume: 56
  start-page: 1694
  issue: 5
  year: 2007
  ident: 10.1016/j.apenergy.2019.05.037_b0135
  article-title: A new methodological approach to quality assurance of energy meters under nonsinusoidal conditions
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2007.903607
– volume: 217
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2019.05.037_b0030
  article-title: A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.084
– volume: 164
  start-page: 387
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0190
  article-title: A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.11.072
– volume: 31
  start-page: 1482
  issue: 4
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0035
  article-title: Power-quality impact assessment for high-speed railway associated with high-speed trains using train timetable-Part II: verifications, estimations and applications
  publication-title: IEEE Trans Power Del
  doi: 10.1109/TPWRD.2015.2472961
– volume: 169
  start-page: 888
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0185
  article-title: An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.062
– volume: 62
  start-page: 665
  year: 2016
  ident: 10.1016/j.apenergy.2019.05.037_b0205
  article-title: A review of measurement and analysis of electric power quality on shipboard power system networks
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.05.043
– ident: 10.1016/j.apenergy.2019.05.037_b0155
– volume: 134
  start-page: 323
  year: 2017
  ident: 10.1016/j.apenergy.2019.05.037_b0015
  article-title: Dynamic modeling of gravity energy storage coupled with a PV energy plant
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.029
– ident: 10.1016/j.apenergy.2019.05.037_b0160
– ident: 10.1016/j.apenergy.2019.05.037_b0235
– volume: 140
  start-page: 207
  year: 2017
  ident: 10.1016/j.apenergy.2019.05.037_b0070
  article-title: Effect of noise and harmonics on sine-wave frequency estimation by interpolated DFT algorithms based on few observed cycles
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2017.05.021
SSID ssj0002120
Score 2.3151238
Snippet •Typical intrinsic characteristics analysis of large power electrical loads.•Distorted m-sequence dynamic test signal model to reflect the...
The complex random characteristics in smart grid lead to inaccuracy of smart electricity metering. This is caused by the power filter and energy accumulation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113234
SubjectTerms algorithms
Compressive measurement
Dynamic load
electric power
Electrical energy
electrical equipment
electricity
energy
Smart electricity meter
Test signal
Title Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal
URI https://dx.doi.org/10.1016/j.apenergy.2019.05.037
https://www.proquest.com/docview/2286908168
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAvCqelZFY0zZNnNRjVRUVEF0AqZvl-FFatUlVAiMb_5s7J6GAkBgYY9lR4vPZZ_u77yPkUuvI4n0TWMDCBkVy63HFwPGkj_Tl1lgn2nc3ioaP4c2YjTdIv8qFQVhlOfcXc7qbrcuSVtmbreV02rrHaBfjfwhB2l3uY8JvGMaoYtB8W8M8OiU1I1T2sPaXLOFZUy6Ny7BDiBd3DJ6oh_77AvVjqnbrz9Uu2SkDR9orvm2PbJh0n2x_oRPcJ_XBOmsNqpZu-3xA3kdZ6iFWcy6RjmFCF-4cgSKe3OFgXw1drA8LqZxPstU0f1pQCGlpoZSDxqTFf1Bk5ihSHmlmqXZMIxC50oVXIbOpLpTuKUSyOUWQiJwfkserwUN_6JX6C54KQpZ72vrSsEQbpSU3EesoLq1mOu7ALo3JWEdBwHXchU1PpJhREYe9lPSTQCmru-DZdVJLs9QcEapUBxbj0PiayRA1yFTsJ7YdcRtAUWiPCas6XaiSnBw1MuaiQqHNRGUsgcYSbSbAWMek9dluWdBz_NmCVzYV3waagDXkz7YX1SAQ4IV4tSJTk708C-iRiDsNk5N_vP-UbOFTgRU8I7V89WLOIebJk4Yb1A2y2bu-HY4-AIYLCJ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RegAOFQ1FUB5dJK4m8WPt7LFCoJSSXACJ22qzD0gU2xFxeuyt_5uZtU2gqsSh1_WuZe_szM7sfvMNwKkxqaP7JpSAwwBFCRcIzVHxVEj05c46X7RvOEoHd8nVPb9fg_M2F4ZglY3tr226t9ZNS7eZze58MunekLdL_j-6IL2-CPsf4GPCo4wisLPfK5xH1HAzYu-Aur9KE56eqbn1KXaE8RKewpMKov97h_rLVvsN6HIbPjWeI_tef9xnWLNFB7Ze8Ql2YPdilbaGXRu9XezAn1FZBATWnCniY3hguT9IYAQo90DYX5blq9NCpmYP5dOkeswZ-rSsLpVD0mT1fzCi5qhzHlnpmPFUI-i6sjxoodnM1KXuGbqyFSOUiJp9gbvLi9vzQdAUYAh0nPAqMC5Ulo-N1UYJm_JIC-UMN1mEYRpXmUnjWJisj1FPqrnVqcBgSoXjWGtn-qjau7BelIXdA6Z1hLtxYkPDVUJFyHQWjl0vFS7GpsTtA28nXeqGnZyKZMxkC0ObylZYkoQle1yisPah-zJuXvNzvDtCtDKVb1aaxE3k3bEn7SKQqIZ0t6IKWy4XEmckFb6Iydf_eP832BjcDq_l9Y_RzwPYpCc1cPAQ1qunpT1CB6gaH_sF_gyHlwoz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-overlapping+moving+compressive+measurement+algorithm+for+electrical+energy+estimation+of+distorted+m-sequence+dynamic+test+signal&rft.jtitle=Applied+energy&rft.au=Wang%2C+Xuewei&rft.au=Wang%2C+Jing&rft.au=Wang%2C+Lin&rft.au=Yuan%2C+Ruiming&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=251&rft_id=info:doi/10.1016%2Fj.apenergy.2019.05.037&rft.externalDocID=S0306261919308918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon