Real-time, smartphone-based processing of lateral flow assays for early failure detection and rapid testing workflows
Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both test...
Saved in:
| Published in | Sensors & diagnostics Vol. 2; no. 1; pp. 1 - 11 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
19.01.2023
|
| Online Access | Get full text |
| ISSN | 2635-0998 2635-0998 |
| DOI | 10.1039/d2sd00197g |
Cover
| Abstract | Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.
Herein we show that real-time analysis of lateral flow assays can be leveraged to detect test failures, decrease time-to-result, and improve testing throughput. |
|---|---|
| AbstractList | Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations. Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations. Herein we show that real-time analysis of lateral flow assays can be leveraged to detect test failures, decrease time-to-result, and improve testing throughput. Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations. |
| Author | Bezinge, Léonard Shih, Chih-Jen de Mello, Andrew J Richards, Daniel A Colombo, Monika Rocha Tapia, Andres |
| AuthorAffiliation | ETH Zurich Institute for Chemical and Bioengineering |
| AuthorAffiliation_xml | – sequence: 0 name: Institute for Chemical and Bioengineering – sequence: 0 name: ETH Zurich |
| Author_xml | – sequence: 1 givenname: Monika surname: Colombo fullname: Colombo, Monika – sequence: 2 givenname: Léonard surname: Bezinge fullname: Bezinge, Léonard – sequence: 3 givenname: Andres surname: Rocha Tapia fullname: Rocha Tapia, Andres – sequence: 4 givenname: Chih-Jen surname: Shih fullname: Shih, Chih-Jen – sequence: 5 givenname: Andrew J surname: de Mello fullname: de Mello, Andrew J – sequence: 6 givenname: Daniel A surname: Richards fullname: Richards, Daniel A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36741250$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkEtv1DAURi1URB90wx7kJQICfo7jJWpLQaqExGMd3dg3JeCJU9vRaP49HqaUClj5Ls73Xd9zTA6mOCEhTzh7zZm0b7zInjFuzfUDciRWUjfM2vbg3nxITnP-zhgTxnAu7SNyKFdGcaHZEVk-IYSmjGt8RfMaUpm_1f6mh4yezik6zHmcrmkcaICCCQIdQtxQyBm2mQ4xUYQUtnSAMSwJqceCroxxojB5mmAePS2Yy65kE9OPXTo_Jg8HCBlPb98T8vXdxZez983Vx8sPZ2-vGieVLo3vtbJMDMIoJfUApvdWKTR-ZbTqXc9a0ba6b5FbDiDUytlWWi29RCG1AXlCXu57l2mG7QZC6OY01jO3HWfdzl_3x1-ln-_pevfNUv_crcfsMASYMC65q_6k4VYLU9Fnt-jSr9Hftf4WW4EXe8ClmHPC4Z_F5-Lz-a_FlxVmf8FuLLCTWFLV-v_I030kZXdXfe-Wn0fMo8o |
| CitedBy_id | crossref_primary_10_1016_j_jelechem_2024_118399 crossref_primary_10_1002_adma_202302893 crossref_primary_10_3390_bios13090837 crossref_primary_10_1039_D4LC00966E crossref_primary_10_1039_D4LC00390J crossref_primary_10_1016_j_aca_2024_343597 crossref_primary_10_1002_smll_202401148 crossref_primary_10_1016_j_bios_2024_116849 crossref_primary_10_1021_acs_analchem_3c03213 |
| Cites_doi | 10.1038/s41591-021-01384-9 10.1002/chem.201802394 10.3390/bios9030089 10.3390/bios11070211 10.3389/fbioe.2022.866368 10.1136/bmj-2021-066871 10.1016/j.trac.2016.06.006 10.1128/JCM.03077-20 10.1039/D2LC00609J 10.1021/acssensors.0c01488 10.1016/j.jcv.2020.104500 10.1093/clinchem/hvab194 10.1515/cclm-2020-0628 10.1002/ccr3.4122 10.1016/j.jinf.2020.09.008 10.1016/S2666-5247(21)00056-2 10.1038/s43856-021-00067-3 10.1016/j.jcv.2020.104480 10.1080/17476348.2021.1917389 10.1038/s41598-017-11887-6 10.1038/s41586-019-0956-2 10.3390/vaccines9080840 10.1016/j.mimet.2019.105800 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. |
| DBID | AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1039/d2sd00197g |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2635-0998 |
| EndPage | 11 |
| ExternalDocumentID | 10.1039/d2sd00197g 36741250 10_1039_D2SD00197G d2sd00197g |
| Genre | Journal Article |
| GroupedDBID | 0R~ AAFWJ AARTK AFPKN AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI C6K EBS GROUPED_DOAJ H13 M~E RRC AAYXX ABIQK CITATION NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c345t-db54902f274435fa7bd944e7d6754bcb082885b8e191aa246c983953d3e2357a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2635-0998 |
| IngestDate | Sun Oct 26 04:03:54 EDT 2025 Fri Jul 11 09:34:33 EDT 2025 Thu Jan 02 22:35:09 EST 2025 Tue Jul 01 04:26:33 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Dec 17 20:59:06 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-db54902f274435fa7bd944e7d6754bcb082885b8e191aa246c983953d3e2357a3 |
| Notes | https://doi.org/10.1039/d2sd00197g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9733-9697 0000-0002-5258-3485 0000-0002-6658-4438 0000-0001-8827-9170 0000-0001-7236-6042 0000-0003-1943-1356 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/sd/d2sd00197g |
| PMID | 36741250 |
| PQID | 2773719527 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_36741250 crossref_primary_10_1039_D2SD00197G rsc_primary_d2sd00197g unpaywall_primary_10_1039_d2sd00197g crossref_citationtrail_10_1039_D2SD00197G proquest_miscellaneous_2773719527 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-19 |
| PublicationDateYYYYMMDD | 2023-01-19 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Sensors & diagnostics |
| PublicationTitleAlternate | Sens Diagn |
| PublicationYear | 2023 |
| References | (D2SD00197G/cit25/1) 2022 Pollock (D2SD00197G/cit24/1) 2021; 59 Dinnes (D2SD00197G/cit27/1) 2020 Turbé (D2SD00197G/cit20/1) 2017; 7 Boehringer (D2SD00197G/cit4/1) 2022; 68 Jung (D2SD00197G/cit19/1) 2020; 168 Suea-Ngam (D2SD00197G/cit6/1) 2020; 5 Bheemavarapu (D2SD00197G/cit14/1) 2021; 11 Wong (D2SD00197G/cit21/1) 2022; 2 Ladhani (D2SD00197G/cit31/1) 2021; 82 Rosen (D2SD00197G/cit3/1) 2009 (D2SD00197G/cit22/1) 2022 Kohmer (D2SD00197G/cit29/1) 2020; 129 Corman (D2SD00197G/cit30/1) 2021; 2 (D2SD00197G/cit17/1) 2022 (D2SD00197G/cit7/1) 2022 Turbé (D2SD00197G/cit18/1) 2021; 27 Deeks (D2SD00197G/cit10/1) 2022; 376 (D2SD00197G/cit16/1) 2022 Mak (D2SD00197G/cit28/1) 2020; 129 Mouliou (D2SD00197G/cit11/1) 2021; 15 Zhang (D2SD00197G/cit5/1) 2022; 10 (D2SD00197G/cit12/1) 2021 Urusov (D2SD00197G/cit15/1) 2019; 9 Wood (D2SD00197G/cit13/1) 2019; 566 Bahadır (D2SD00197G/cit2/1) 2016; 82 Lukaszuk (D2SD00197G/cit8/1) 2021; 9 Shimazu (D2SD00197G/cit32/1) 2021; 9 Tollånes (D2SD00197G/cit26/1) 2020; 58 Miller (D2SD00197G/cit23/1) 2018; 24 Khosla (D2SD00197G/cit9/1) 2022; 22 38249541 - Sens Diagn. 2023 Nov 7;3(1):153 |
| References_xml | – issn: 2009 end-page: p 1-15 publication-title: Lateral Flow Immunoassay doi: Rosen – issn: 2002 doi: Charlton Church Dwight Co Inc – issn: 2021 – issn: 2022 – year: 2022 ident: D2SD00197G/cit17/1 – year: 2022 ident: D2SD00197G/cit7/1 – volume: 27 start-page: 1165 year: 2021 ident: D2SD00197G/cit18/1 publication-title: Nat. Med. doi: 10.1038/s41591-021-01384-9 – volume: 24 start-page: 9783 year: 2018 ident: D2SD00197G/cit23/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201802394 – volume: 9 start-page: 89 year: 2019 ident: D2SD00197G/cit15/1 publication-title: Biosensors doi: 10.3390/bios9030089 – year: 2022 ident: D2SD00197G/cit25/1 – volume: 11 start-page: 211 year: 2021 ident: D2SD00197G/cit14/1 publication-title: Biosensors doi: 10.3390/bios11070211 – volume: 10 year: 2022 ident: D2SD00197G/cit5/1 publication-title: Front. bioeng. biotechnol. doi: 10.3389/fbioe.2022.866368 – year: 2022 ident: D2SD00197G/cit22/1 – volume: 376 start-page: e066871 year: 2022 ident: D2SD00197G/cit10/1 publication-title: BMJ doi: 10.1136/bmj-2021-066871 – volume: 82 start-page: 286 year: 2016 ident: D2SD00197G/cit2/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2016.06.006 – volume: 59 start-page: e03077-20 year: 2021 ident: D2SD00197G/cit24/1 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.03077-20 – volume: 22 start-page: 3340 year: 2022 ident: D2SD00197G/cit9/1 publication-title: Lab Chip doi: 10.1039/D2LC00609J – volume: 5 start-page: 2701 year: 2020 ident: D2SD00197G/cit6/1 publication-title: ACS Sens. doi: 10.1021/acssensors.0c01488 – volume: 129 start-page: 104500 year: 2020 ident: D2SD00197G/cit28/1 publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2020.104500 – volume: 68 start-page: 52 year: 2022 ident: D2SD00197G/cit4/1 publication-title: Clin. Chem. doi: 10.1093/clinchem/hvab194 – volume: 58 start-page: 1595 year: 2020 ident: D2SD00197G/cit26/1 publication-title: Clin. Chem. Lab. Med. doi: 10.1515/cclm-2020-0628 – volume: 9 start-page: e04122 year: 2021 ident: D2SD00197G/cit32/1 publication-title: Clin. Case Rep. doi: 10.1002/ccr3.4122 – start-page: 1 volume-title: Lateral Flow Immunoassay year: 2009 ident: D2SD00197G/cit3/1 – volume: 82 start-page: 282 year: 2021 ident: D2SD00197G/cit31/1 publication-title: J. Infect. doi: 10.1016/j.jinf.2020.09.008 – volume: 2 start-page: e311 year: 2021 ident: D2SD00197G/cit30/1 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00056-2 – volume: 2 start-page: 1 year: 2022 ident: D2SD00197G/cit21/1 publication-title: Community Med. doi: 10.1038/s43856-021-00067-3 – year: 2020 ident: D2SD00197G/cit27/1 publication-title: The Cochrane Database of Systematic Reviews – year: 2021 ident: D2SD00197G/cit12/1 – volume: 129 start-page: 104480 year: 2020 ident: D2SD00197G/cit29/1 publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2020.104480 – volume: 15 start-page: 993 year: 2021 ident: D2SD00197G/cit11/1 publication-title: Expert Rev. Respir. Med. doi: 10.1080/17476348.2021.1917389 – year: 2022 ident: D2SD00197G/cit16/1 – volume: 7 start-page: 11971 year: 2017 ident: D2SD00197G/cit20/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-11887-6 – volume: 566 start-page: 467 year: 2019 ident: D2SD00197G/cit13/1 publication-title: Nature doi: 10.1038/s41586-019-0956-2 – volume: 9 start-page: 840 year: 2021 ident: D2SD00197G/cit8/1 publication-title: Vaccines doi: 10.3390/vaccines9080840 – volume: 168 start-page: 105800 year: 2020 ident: D2SD00197G/cit19/1 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2019.105800 – reference: 38249541 - Sens Diagn. 2023 Nov 7;3(1):153 |
| SSID | ssj0002771139 |
| Score | 2.3242383 |
| Snippet | Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However,... |
| SourceID | unpaywall proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| Title | Real-time, smartphone-based processing of lateral flow assays for early failure detection and rapid testing workflows |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36741250 https://www.proquest.com/docview/2773719527 https://pubs.rsc.org/en/content/articlepdf/2023/sd/d2sd00197g |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2635-0998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002771139 issn: 2635-0998 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2635-0998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002771139 issn: 2635-0998 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAUL databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2023 issn: 2635-0998 databaseCode: AKBGW dateStart: 20220101 customDbUrl: https://pubs.rsc.org isFulltext: true eissn: 2635-0998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002771139 providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98G4Jj8qIXpDIbjeO4_hY0ZYKqRUCViqnyI5tVJFmo02iqhz47cwk2e1COSAuOURjx_FrvrFnvgHYzSMvEoUjME1SFcbCyFA5XO4R7gupp3s4TrHDJ6fJ8Sz-cCbOBt8cioXBRtTjRd1TBDs034mjqWwmQz9W1pO5zie1ndiotoRQ5LfbsJEIhOIj2Jidftz_SgnlUJGGiH7SJSUpV2sFfldCN5Al6hlswibcactKX13qoljTOUf3-8SqXWs7V5Pv47Yx4_zHH0SO__07D-DegEbZfi_3EG658hFsrnEUPob2E0LJkFLQv2X1BdZIzuwuJO1nWdWHGaAgm3tWaApnLpgv5pcMQbm-qhliYuaIRJl5fU4u8My6pnP_KpkuLVvo6tyyhrg-sBLyEqPS9ROYHR1-eXccDrkawpzHogmtQUNzL_JEOMiF19JYFcdOWjRIYpMbYspLhUkd2odaR3GSK4RmglvuiHBH8y0Yldj8p8B8jCBFigj3P9xRXKKMnbq9XCrvTZpqFcCb5eBl-UBkTvk0iqy7UOcqO4g-H3Rd-T6A1yvZqqfv-KvUq-UcyHB10ZWJLt28rbNISi6nSkQygO1-cqzq4QmiMUSQAWzhCK9eX49jALurCXTj69diz_5N7DncpalCxz9T9QJGzaJ1LxEQNWanO0jA58nPw51hCfwChhgNAA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3B9gA9UL5aAgUZ0QsS2e3GcRwfq5ZSIVEhYKVyiuzYRhVpNtokqsqvZybJbreUA-IajR3HHnvexDNvAPbyyItE4QpMk1SFsTAyVA63e4TnQurpHo5T7vCn0-RkFn88E2dDbA7lwuAg6vGi7imCHbrvxNFUNpNhHivryV3nk9pObFRbQijyx13YSARC8RFszE4_H3yngnJoSENEP-mSkpSrtQY3jdAtZIl2BoewCffastJXl7oo1mzO8VZfWLUbbRdq8nPcNmac__qDyPG_P-chPBjQKDvo5R7BHVc-hs01jsIn0H5BKBlSCfp3rL7AHimY3YVk_Syr-jQDFGRzzwpN6cwF88X8kiEo11c1Q0zMHJEoM6_PKQSeWdd04V8l06VlC12dW9YQ1wd2QlFi1Lp-CrPj998OT8KhVkOY81g0oTXoaO5HnggHufBaGqvi2EmLDklsckNMeakwqUP_UOsoTnKF0Exwyx0R7mi-DaMSh_8MmI8RpEgR4fmHJ4pLlLFTt59L5b1JU60CeLtcvCwfiMypnkaRdRfqXGVH0dejbio_BPBmJVv19B1_lXq91IEMdxddmejSzds6i6TkcqpEJAPY6ZVj1Q9PEI0hggxgG1d49fh6HQPYWynQrbdfiz3_N7EXcJ9UhX7_TNUujJpF614iIGrMq0HtfwP70Ara |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time%2C+smartphone-based+processing+of+lateral+flow+assays+for+early+failure+detection+and+rapid+testing+workflows&rft.jtitle=Sensors+%26+diagnostics&rft.au=Colombo%2C+Monika&rft.au=Bezinge%2C+L%C3%A9onard&rft.au=Rocha+Tapia%2C+Andres&rft.au=Shih%2C+Chih-Jen&rft.date=2023-01-19&rft.eissn=2635-0998&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1039%2Fd2sd00197g&rft.externalDocID=d2sd00197g |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0998&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0998&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0998&client=summon |