Real-time, smartphone-based processing of lateral flow assays for early failure detection and rapid testing workflows

Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both test...

Full description

Saved in:
Bibliographic Details
Published inSensors & diagnostics Vol. 2; no. 1; pp. 1 - 11
Main Authors Colombo, Monika, Bezinge, Léonard, Rocha Tapia, Andres, Shih, Chih-Jen, de Mello, Andrew J, Richards, Daniel A
Format Journal Article
LanguageEnglish
Published England 19.01.2023
Online AccessGet full text
ISSN2635-0998
2635-0998
DOI10.1039/d2sd00197g

Cover

Abstract Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations. Herein we show that real-time analysis of lateral flow assays can be leveraged to detect test failures, decrease time-to-result, and improve testing throughput.
AbstractList Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.
Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations. Herein we show that real-time analysis of lateral flow assays can be leveraged to detect test failures, decrease time-to-result, and improve testing throughput.
Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.
Author Bezinge, Léonard
Shih, Chih-Jen
de Mello, Andrew J
Richards, Daniel A
Colombo, Monika
Rocha Tapia, Andres
AuthorAffiliation ETH Zurich
Institute for Chemical and Bioengineering
AuthorAffiliation_xml – sequence: 0
  name: Institute for Chemical and Bioengineering
– sequence: 0
  name: ETH Zurich
Author_xml – sequence: 1
  givenname: Monika
  surname: Colombo
  fullname: Colombo, Monika
– sequence: 2
  givenname: Léonard
  surname: Bezinge
  fullname: Bezinge, Léonard
– sequence: 3
  givenname: Andres
  surname: Rocha Tapia
  fullname: Rocha Tapia, Andres
– sequence: 4
  givenname: Chih-Jen
  surname: Shih
  fullname: Shih, Chih-Jen
– sequence: 5
  givenname: Andrew J
  surname: de Mello
  fullname: de Mello, Andrew J
– sequence: 6
  givenname: Daniel A
  surname: Richards
  fullname: Richards, Daniel A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36741250$$D View this record in MEDLINE/PubMed
BookMark eNptkEtv1DAURi1URB90wx7kJQICfo7jJWpLQaqExGMd3dg3JeCJU9vRaP49HqaUClj5Ls73Xd9zTA6mOCEhTzh7zZm0b7zInjFuzfUDciRWUjfM2vbg3nxITnP-zhgTxnAu7SNyKFdGcaHZEVk-IYSmjGt8RfMaUpm_1f6mh4yezik6zHmcrmkcaICCCQIdQtxQyBm2mQ4xUYQUtnSAMSwJqceCroxxojB5mmAePS2Yy65kE9OPXTo_Jg8HCBlPb98T8vXdxZez983Vx8sPZ2-vGieVLo3vtbJMDMIoJfUApvdWKTR-ZbTqXc9a0ba6b5FbDiDUytlWWi29RCG1AXlCXu57l2mG7QZC6OY01jO3HWfdzl_3x1-ln-_pevfNUv_crcfsMASYMC65q_6k4VYLU9Fnt-jSr9Hftf4WW4EXe8ClmHPC4Z_F5-Lz-a_FlxVmf8FuLLCTWFLV-v_I030kZXdXfe-Wn0fMo8o
CitedBy_id crossref_primary_10_1016_j_jelechem_2024_118399
crossref_primary_10_1002_adma_202302893
crossref_primary_10_3390_bios13090837
crossref_primary_10_1039_D4LC00966E
crossref_primary_10_1039_D4LC00390J
crossref_primary_10_1016_j_aca_2024_343597
crossref_primary_10_1002_smll_202401148
crossref_primary_10_1016_j_bios_2024_116849
crossref_primary_10_1021_acs_analchem_3c03213
Cites_doi 10.1038/s41591-021-01384-9
10.1002/chem.201802394
10.3390/bios9030089
10.3390/bios11070211
10.3389/fbioe.2022.866368
10.1136/bmj-2021-066871
10.1016/j.trac.2016.06.006
10.1128/JCM.03077-20
10.1039/D2LC00609J
10.1021/acssensors.0c01488
10.1016/j.jcv.2020.104500
10.1093/clinchem/hvab194
10.1515/cclm-2020-0628
10.1002/ccr3.4122
10.1016/j.jinf.2020.09.008
10.1016/S2666-5247(21)00056-2
10.1038/s43856-021-00067-3
10.1016/j.jcv.2020.104480
10.1080/17476348.2021.1917389
10.1038/s41598-017-11887-6
10.1038/s41586-019-0956-2
10.3390/vaccines9080840
10.1016/j.mimet.2019.105800
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1039/d2sd00197g
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2635-0998
EndPage 11
ExternalDocumentID 10.1039/d2sd00197g
36741250
10_1039_D2SD00197G
d2sd00197g
Genre Journal Article
GroupedDBID 0R~
AAFWJ
AARTK
AFPKN
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
C6K
EBS
GROUPED_DOAJ
H13
M~E
RRC
AAYXX
ABIQK
CITATION
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c345t-db54902f274435fa7bd944e7d6754bcb082885b8e191aa246c983953d3e2357a3
IEDL.DBID UNPAY
ISSN 2635-0998
IngestDate Sun Oct 26 04:03:54 EDT 2025
Fri Jul 11 09:34:33 EDT 2025
Thu Jan 02 22:35:09 EST 2025
Tue Jul 01 04:26:33 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Dec 17 20:59:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-db54902f274435fa7bd944e7d6754bcb082885b8e191aa246c983953d3e2357a3
Notes https://doi.org/10.1039/d2sd00197g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9733-9697
0000-0002-5258-3485
0000-0002-6658-4438
0000-0001-8827-9170
0000-0001-7236-6042
0000-0003-1943-1356
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/sd/d2sd00197g
PMID 36741250
PQID 2773719527
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_36741250
crossref_primary_10_1039_D2SD00197G
rsc_primary_d2sd00197g
unpaywall_primary_10_1039_d2sd00197g
crossref_citationtrail_10_1039_D2SD00197G
proquest_miscellaneous_2773719527
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Sensors & diagnostics
PublicationTitleAlternate Sens Diagn
PublicationYear 2023
References (D2SD00197G/cit25/1) 2022
Pollock (D2SD00197G/cit24/1) 2021; 59
Dinnes (D2SD00197G/cit27/1) 2020
Turbé (D2SD00197G/cit20/1) 2017; 7
Boehringer (D2SD00197G/cit4/1) 2022; 68
Jung (D2SD00197G/cit19/1) 2020; 168
Suea-Ngam (D2SD00197G/cit6/1) 2020; 5
Bheemavarapu (D2SD00197G/cit14/1) 2021; 11
Wong (D2SD00197G/cit21/1) 2022; 2
Ladhani (D2SD00197G/cit31/1) 2021; 82
Rosen (D2SD00197G/cit3/1) 2009
(D2SD00197G/cit22/1) 2022
Kohmer (D2SD00197G/cit29/1) 2020; 129
Corman (D2SD00197G/cit30/1) 2021; 2
(D2SD00197G/cit17/1) 2022
(D2SD00197G/cit7/1) 2022
Turbé (D2SD00197G/cit18/1) 2021; 27
Deeks (D2SD00197G/cit10/1) 2022; 376
(D2SD00197G/cit16/1) 2022
Mak (D2SD00197G/cit28/1) 2020; 129
Mouliou (D2SD00197G/cit11/1) 2021; 15
Zhang (D2SD00197G/cit5/1) 2022; 10
(D2SD00197G/cit12/1) 2021
Urusov (D2SD00197G/cit15/1) 2019; 9
Wood (D2SD00197G/cit13/1) 2019; 566
Bahadır (D2SD00197G/cit2/1) 2016; 82
Lukaszuk (D2SD00197G/cit8/1) 2021; 9
Shimazu (D2SD00197G/cit32/1) 2021; 9
Tollånes (D2SD00197G/cit26/1) 2020; 58
Miller (D2SD00197G/cit23/1) 2018; 24
Khosla (D2SD00197G/cit9/1) 2022; 22
38249541 - Sens Diagn. 2023 Nov 7;3(1):153
References_xml – issn: 2009
  end-page: p 1-15
  publication-title: Lateral Flow Immunoassay
  doi: Rosen
– issn: 2002
  doi: Charlton Church Dwight Co Inc
– issn: 2021
– issn: 2022
– year: 2022
  ident: D2SD00197G/cit17/1
– year: 2022
  ident: D2SD00197G/cit7/1
– volume: 27
  start-page: 1165
  year: 2021
  ident: D2SD00197G/cit18/1
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01384-9
– volume: 24
  start-page: 9783
  year: 2018
  ident: D2SD00197G/cit23/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201802394
– volume: 9
  start-page: 89
  year: 2019
  ident: D2SD00197G/cit15/1
  publication-title: Biosensors
  doi: 10.3390/bios9030089
– year: 2022
  ident: D2SD00197G/cit25/1
– volume: 11
  start-page: 211
  year: 2021
  ident: D2SD00197G/cit14/1
  publication-title: Biosensors
  doi: 10.3390/bios11070211
– volume: 10
  year: 2022
  ident: D2SD00197G/cit5/1
  publication-title: Front. bioeng. biotechnol.
  doi: 10.3389/fbioe.2022.866368
– year: 2022
  ident: D2SD00197G/cit22/1
– volume: 376
  start-page: e066871
  year: 2022
  ident: D2SD00197G/cit10/1
  publication-title: BMJ
  doi: 10.1136/bmj-2021-066871
– volume: 82
  start-page: 286
  year: 2016
  ident: D2SD00197G/cit2/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2016.06.006
– volume: 59
  start-page: e03077-20
  year: 2021
  ident: D2SD00197G/cit24/1
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.03077-20
– volume: 22
  start-page: 3340
  year: 2022
  ident: D2SD00197G/cit9/1
  publication-title: Lab Chip
  doi: 10.1039/D2LC00609J
– volume: 5
  start-page: 2701
  year: 2020
  ident: D2SD00197G/cit6/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c01488
– volume: 129
  start-page: 104500
  year: 2020
  ident: D2SD00197G/cit28/1
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2020.104500
– volume: 68
  start-page: 52
  year: 2022
  ident: D2SD00197G/cit4/1
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvab194
– volume: 58
  start-page: 1595
  year: 2020
  ident: D2SD00197G/cit26/1
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/cclm-2020-0628
– volume: 9
  start-page: e04122
  year: 2021
  ident: D2SD00197G/cit32/1
  publication-title: Clin. Case Rep.
  doi: 10.1002/ccr3.4122
– start-page: 1
  volume-title: Lateral Flow Immunoassay
  year: 2009
  ident: D2SD00197G/cit3/1
– volume: 82
  start-page: 282
  year: 2021
  ident: D2SD00197G/cit31/1
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.09.008
– volume: 2
  start-page: e311
  year: 2021
  ident: D2SD00197G/cit30/1
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00056-2
– volume: 2
  start-page: 1
  year: 2022
  ident: D2SD00197G/cit21/1
  publication-title: Community Med.
  doi: 10.1038/s43856-021-00067-3
– year: 2020
  ident: D2SD00197G/cit27/1
  publication-title: The Cochrane Database of Systematic Reviews
– year: 2021
  ident: D2SD00197G/cit12/1
– volume: 129
  start-page: 104480
  year: 2020
  ident: D2SD00197G/cit29/1
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2020.104480
– volume: 15
  start-page: 993
  year: 2021
  ident: D2SD00197G/cit11/1
  publication-title: Expert Rev. Respir. Med.
  doi: 10.1080/17476348.2021.1917389
– year: 2022
  ident: D2SD00197G/cit16/1
– volume: 7
  start-page: 11971
  year: 2017
  ident: D2SD00197G/cit20/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11887-6
– volume: 566
  start-page: 467
  year: 2019
  ident: D2SD00197G/cit13/1
  publication-title: Nature
  doi: 10.1038/s41586-019-0956-2
– volume: 9
  start-page: 840
  year: 2021
  ident: D2SD00197G/cit8/1
  publication-title: Vaccines
  doi: 10.3390/vaccines9080840
– volume: 168
  start-page: 105800
  year: 2020
  ident: D2SD00197G/cit19/1
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2019.105800
– reference: 38249541 - Sens Diagn. 2023 Nov 7;3(1):153
SSID ssj0002771139
Score 2.3242383
Snippet Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However,...
SourceID unpaywall
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
Title Real-time, smartphone-based processing of lateral flow assays for early failure detection and rapid testing workflows
URI https://www.ncbi.nlm.nih.gov/pubmed/36741250
https://www.proquest.com/docview/2773719527
https://pubs.rsc.org/en/content/articlepdf/2023/sd/d2sd00197g
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2635-0998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771139
  issn: 2635-0998
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2635-0998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771139
  issn: 2635-0998
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2023
  issn: 2635-0998
  databaseCode: AKBGW
  dateStart: 20220101
  customDbUrl: https://pubs.rsc.org
  isFulltext: true
  eissn: 2635-0998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771139
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98G4Jj8qIXpDIbjeO4_hY0ZYKqRUCViqnyI5tVJFmo02iqhz47cwk2e1COSAuOURjx_FrvrFnvgHYzSMvEoUjME1SFcbCyFA5XO4R7gupp3s4TrHDJ6fJ8Sz-cCbOBt8cioXBRtTjRd1TBDs034mjqWwmQz9W1pO5zie1ndiotoRQ5LfbsJEIhOIj2Jidftz_SgnlUJGGiH7SJSUpV2sFfldCN5Al6hlswibcactKX13qoljTOUf3-8SqXWs7V5Pv47Yx4_zHH0SO__07D-DegEbZfi_3EG658hFsrnEUPob2E0LJkFLQv2X1BdZIzuwuJO1nWdWHGaAgm3tWaApnLpgv5pcMQbm-qhliYuaIRJl5fU4u8My6pnP_KpkuLVvo6tyyhrg-sBLyEqPS9ROYHR1-eXccDrkawpzHogmtQUNzL_JEOMiF19JYFcdOWjRIYpMbYspLhUkd2odaR3GSK4RmglvuiHBH8y0Yldj8p8B8jCBFigj3P9xRXKKMnbq9XCrvTZpqFcCb5eBl-UBkTvk0iqy7UOcqO4g-H3Rd-T6A1yvZqqfv-KvUq-UcyHB10ZWJLt28rbNISi6nSkQygO1-cqzq4QmiMUSQAWzhCK9eX49jALurCXTj69diz_5N7DncpalCxz9T9QJGzaJ1LxEQNWanO0jA58nPw51hCfwChhgNAA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3B9gA9UL5aAgUZ0QsS2e3GcRwfq5ZSIVEhYKVyiuzYRhVpNtokqsqvZybJbreUA-IajR3HHnvexDNvAPbyyItE4QpMk1SFsTAyVA63e4TnQurpHo5T7vCn0-RkFn88E2dDbA7lwuAg6vGi7imCHbrvxNFUNpNhHivryV3nk9pObFRbQijyx13YSARC8RFszE4_H3yngnJoSENEP-mSkpSrtQY3jdAtZIl2BoewCffastJXl7oo1mzO8VZfWLUbbRdq8nPcNmac__qDyPG_P-chPBjQKDvo5R7BHVc-hs01jsIn0H5BKBlSCfp3rL7AHimY3YVk_Syr-jQDFGRzzwpN6cwF88X8kiEo11c1Q0zMHJEoM6_PKQSeWdd04V8l06VlC12dW9YQ1wd2QlFi1Lp-CrPj998OT8KhVkOY81g0oTXoaO5HnggHufBaGqvi2EmLDklsckNMeakwqUP_UOsoTnKF0Exwyx0R7mi-DaMSh_8MmI8RpEgR4fmHJ4pLlLFTt59L5b1JU60CeLtcvCwfiMypnkaRdRfqXGVH0dejbio_BPBmJVv19B1_lXq91IEMdxddmejSzds6i6TkcqpEJAPY6ZVj1Q9PEI0hggxgG1d49fh6HQPYWynQrbdfiz3_N7EXcJ9UhX7_TNUujJpF614iIGrMq0HtfwP70Ara
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time%2C+smartphone-based+processing+of+lateral+flow+assays+for+early+failure+detection+and+rapid+testing+workflows&rft.jtitle=Sensors+%26+diagnostics&rft.au=Colombo%2C+Monika&rft.au=Bezinge%2C+L%C3%A9onard&rft.au=Rocha+Tapia%2C+Andres&rft.au=Shih%2C+Chih-Jen&rft.date=2023-01-19&rft.eissn=2635-0998&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1039%2Fd2sd00197g&rft.externalDocID=d2sd00197g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0998&client=summon