Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench
•A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner should have modulated power supply for higher efficiency.•Hardware and metering generates additional deviations from forecast schedules.•A bat...
Saved in:
| Published in | Applied energy Vol. 242; pp. 121 - 137 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-2619 1872-9118 |
| DOI | 10.1016/j.apenergy.2019.03.006 |
Cover
| Abstract | •A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner should have modulated power supply for higher efficiency.•Hardware and metering generates additional deviations from forecast schedules.•A battery needs a faster control added to the MPC for higher accuracy.
In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A business case based on feed-in tariffs does not exist in every countries and self-consumption is limited due to the unsteady nature of solar radiation on earth. A combination with other systems such as batteries, heat-pumps or even combined heat and power plants can enhance the use of generated power by photovoltaic systems, particularly in private households and small businesses. Rule-based controllers and optimization algorithms (model predictive control) can both realise the efficient operation of a photovoltaic system in combination with storage systems and a combined heat and power plant. However, different controllers and energy management systems have hitherto only been compared theoretically. A comparison of such controllers in a real, controllable hardware environment has not yet been carried out. In this study, a test-bench is introduced to test different control algorithms for photovoltaic systems in combination with storage systems and a micro- combined heat and power plant. The operation has been tested for a one day period. Key performance parameters have been derived and compared for a rule-based control, an optimized control and simulation results including a forecast. The results show that the operational costs can be reduced by 7.3% for the chosen test-period using the optimized algorithm in the laboratory compared to the same system with a rule-based control. The results also indicate that even under perfect forecast conditions the hardware, metering and energy management cause latencies and inaccuracies leading to deviations, which are not accounted for in simulations. Hence, the accuracy of the forecast methods need not be higher than the deviations introduced by the hardware. These deviations often lead to unwanted charging and discharging events of the battery. A faster way of processing data and a second order or low level control is needed for short term reaction and higher efficiency. |
|---|---|
| AbstractList | •A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner should have modulated power supply for higher efficiency.•Hardware and metering generates additional deviations from forecast schedules.•A battery needs a faster control added to the MPC for higher accuracy.
In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A business case based on feed-in tariffs does not exist in every countries and self-consumption is limited due to the unsteady nature of solar radiation on earth. A combination with other systems such as batteries, heat-pumps or even combined heat and power plants can enhance the use of generated power by photovoltaic systems, particularly in private households and small businesses. Rule-based controllers and optimization algorithms (model predictive control) can both realise the efficient operation of a photovoltaic system in combination with storage systems and a combined heat and power plant. However, different controllers and energy management systems have hitherto only been compared theoretically. A comparison of such controllers in a real, controllable hardware environment has not yet been carried out. In this study, a test-bench is introduced to test different control algorithms for photovoltaic systems in combination with storage systems and a micro- combined heat and power plant. The operation has been tested for a one day period. Key performance parameters have been derived and compared for a rule-based control, an optimized control and simulation results including a forecast. The results show that the operational costs can be reduced by 7.3% for the chosen test-period using the optimized algorithm in the laboratory compared to the same system with a rule-based control. The results also indicate that even under perfect forecast conditions the hardware, metering and energy management cause latencies and inaccuracies leading to deviations, which are not accounted for in simulations. Hence, the accuracy of the forecast methods need not be higher than the deviations introduced by the hardware. These deviations often lead to unwanted charging and discharging events of the battery. A faster way of processing data and a second order or low level control is needed for short term reaction and higher efficiency. In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A business case based on feed-in tariffs does not exist in every countries and self-consumption is limited due to the unsteady nature of solar radiation on earth. A combination with other systems such as batteries, heat-pumps or even combined heat and power plants can enhance the use of generated power by photovoltaic systems, particularly in private households and small businesses. Rule-based controllers and optimization algorithms (model predictive control) can both realise the efficient operation of a photovoltaic system in combination with storage systems and a combined heat and power plant. However, different controllers and energy management systems have hitherto only been compared theoretically. A comparison of such controllers in a real, controllable hardware environment has not yet been carried out. In this study, a test-bench is introduced to test different control algorithms for photovoltaic systems in combination with storage systems and a micro- combined heat and power plant. The operation has been tested for a one day period. Key performance parameters have been derived and compared for a rule-based control, an optimized control and simulation results including a forecast. The results show that the operational costs can be reduced by 7.3% for the chosen test-period using the optimized algorithm in the laboratory compared to the same system with a rule-based control. The results also indicate that even under perfect forecast conditions the hardware, metering and energy management cause latencies and inaccuracies leading to deviations, which are not accounted for in simulations. Hence, the accuracy of the forecast methods need not be higher than the deviations introduced by the hardware. These deviations often lead to unwanted charging and discharging events of the battery. A faster way of processing data and a second order or low level control is needed for short term reaction and higher efficiency. |
| Author | Kneiske, T.M. Niedermeyer, F. Boelling, C. |
| Author_xml | – sequence: 1 givenname: T.M. surname: Kneiske fullname: Kneiske, T.M. email: tanja.kneiske@iee.fraunhofer.de – sequence: 2 givenname: F. surname: Niedermeyer fullname: Niedermeyer, F. – sequence: 3 givenname: C. surname: Boelling fullname: Boelling, C. |
| BookMark | eNqF0M1u1DAUBWALFYlp4RWQl2wSru04k0gsQCNKkSrRRWFr-ed6xqMkHmy3Ut4ejwY2bLry4p5zLH3X5GqJCxLynkHLgPUfj60-4YJpv7Yc2NiCaAH6V2TDhi1vRsaGK7IBAX3Deza-Idc5HwGAMw4bYh4xl7DsqaZzdDjRU0IXbAnPSG1cSooT1dM-plAOM_Ux1eDDr2Z390APq0nB0bzmgjONS71M2sSkS0wrLXW3MbjYw1vy2usp47u_7w35efv1cXfX3P_49n335b6xopOlsR69YdIIj_04DBo6vfWu86iZMFI6I5EPRjp0YKUYBzOAkwCCCy-t3RpxQz5cdk8p_n6q36s5ZIvTpBeMT1lxzhl0Xd-LGu0vUZtizgm9OqUw67QqBuqMqo7qH6o6oyoQqqLW4qf_ijYUXcJZSofp5frnSx2rw3PApLIN1aiSJ7RFuRhemvgDkYGbrQ |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_114740 crossref_primary_10_3390_en13164052 crossref_primary_10_1002_ceat_202000025 crossref_primary_10_3390_en16176176 crossref_primary_10_2139_ssrn_3990733 crossref_primary_10_1016_j_energy_2022_124336 crossref_primary_10_1109_ACCESS_2020_3042173 crossref_primary_10_1016_j_applthermaleng_2022_119270 crossref_primary_10_1016_j_applthermaleng_2024_123751 crossref_primary_10_1016_j_energy_2021_120065 crossref_primary_10_1016_j_enconman_2021_114131 crossref_primary_10_1016_j_energy_2023_129006 crossref_primary_10_3390_electronics13132545 crossref_primary_10_3390_en17225563 crossref_primary_10_1016_j_enbuild_2023_113074 |
| Cites_doi | 10.1016/j.rser.2015.11.067 10.1016/j.apenergy.2015.06.017 10.1007/s12532-011-0026-8 10.1016/j.enbuild.2008.02.006 10.1016/j.egypro.2016.10.100 10.1016/j.apenergy.2018.04.023 10.1016/j.jprocont.2014.04.015 10.1016/j.rser.2016.05.040 10.1016/j.apenergy.2017.06.110 10.1016/j.egypro.2017.09.498 10.1016/j.rser.2015.01.046 10.1016/j.egypro.2016.10.124 10.1016/j.enbuild.2015.09.049 10.1016/j.applthermaleng.2018.03.052 10.1016/j.jpowsour.2016.06.076 10.1016/j.enbuild.2017.04.027 10.1016/j.apenergy.2018.04.130 10.1016/j.egypro.2018.11.028 10.1016/j.apenergy.2018.03.085 10.1016/j.cor.2017.12.003 10.1016/j.buildenv.2016.05.034 10.1016/j.ifacol.2018.11.182 10.1016/j.apenergy.2017.06.047 10.1016/j.segan.2018.05.001 10.1016/j.apenergy.2017.08.188 10.1016/j.applthermaleng.2018.11.063 10.1016/j.apenergy.2018.03.131 10.1016/j.enbuild.2017.01.045 10.1016/j.apenergy.2018.12.003 10.1016/j.enbuild.2015.11.014 10.1016/j.apenergy.2014.11.034 10.1016/j.apenergy.2017.08.159 10.1016/j.apenergy.2018.03.154 10.1016/j.solener.2018.08.087 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2019.03.006 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 137 |
| ExternalDocumentID | 10_1016_j_apenergy_2019_03_006 S0306261919303988 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-cfefb15b3fe6988a04a7fd4fea13b55db5e28b5ded0c5398b80d500323f5cc7b3 |
| IEDL.DBID | .~1 |
| ISSN | 0306-2619 |
| IngestDate | Thu Sep 25 08:51:15 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Thu Oct 09 00:26:52 EDT 2025 Fri Feb 23 02:50:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Model predictive control Data analysis PV Battery CHP Laboratory Energy management |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-cfefb15b3fe6988a04a7fd4fea13b55db5e28b5ded0c5398b80d500323f5cc7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2221044663 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2221044663 crossref_primary_10_1016_j_apenergy_2019_03_006 crossref_citationtrail_10_1016_j_apenergy_2019_03_006 elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_03_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-15 |
| PublicationDateYYYYMMDD | 2019-05-15 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Klingler (b0095) 2017; 205 Touretzky, Baldea (b0020) 2016; 110 Godina, Rodrigues, Pouresmaeil, Catalo (b0100) 2018; 96 Feron, Monti (b0130) 2018 Coninck, Helsen (b0160) 2016; 111 Ondeck, Edgar, Baldea (b0155) 2018; 222 Toradmal, Kemmler, Thomas (b0120) 2018; 137 D’Ettorre, Conti, Schito, Testi (b0035) 2019; 148 Lee, Cheng (b0015) 2016; 56 Pan, Salom, Costa-Castell (b0040) 2018 Solano, Olivieri, Caamao-Martn (b0105) 2017; 206 Balcombe, Rigby, Azapagic (b0145) 2015; 139 Litjens, Worrell, van Sark (b0080) 2018; 221 Dongol, Feldmann, Schmidt, Bollin (b0075) 2018; 16 J. Von Appen, J. Haack, M. Braun, Erzeugung zeitlich hochaufgeloester stromlastprofile fuer verschiedene haushaltstypen; 2014. Angenendt, Zurmhlen, Mir-Montazeri, Magnor, Sauer (b0065) 2016; 99 Fischer, Bernhardt, Madani, Wittwer (b0125) 2017; 204 Kneiske, Braun (b0150) 2017; 135 Sun, Sun, Moura (b0060) 2016; 325 Olatomiwa, Mekhilef, Ismail, Moghavvemi (b0045) 2016; 62 Gelleschus, Bttiger, Stange, Bocklisch (b0110) 2018; 155 Hart, Watson, Woodruff (b0195) 2011; 3 Cai, Zhang, Jin (b0070) 2019; 236 Thr, Calabrese, Streicher (b0115) 2018; 174 Hart, Laird, Watson, Woodruff (b0190) 2012; vol. 67 Beaudin, Zareipour (b0010) 2015; 45 Suda, Namerikawa (b0030) 2018; 51 Richardson, Thomson, Infield (b0185) 2008; 40 Hu, Xu, Cheng, Guerrero (b0050) 2018; 221 Liu, Lu, Yao, Gao (b0055) 2015 Kneiske, Braun, Hidalgo-Rodriguez (b0090) 2018; 210 Yu, Salakij, Chavez, Paolucci, Sen, Antsaklis (b0165) 2017; 146 Killian, Kozek (b0005) 2016; 105 Touretzky, Baldea (b0025) 2014; 24 Correa-Florez, Gerossier, Michiorri, Kariniotakis (b0135) 2018; 225 Balcombe, Rigby, Azapagic (b0140) 2015; 155 Schram, Lampropoulos, van Sark (b0170) 2018; 223 Bttiger, Paulitschke, Bocklisch (b0085) 2016; 99 Khakimova, Kusatayeva, Shamshimova, Sharipova, Bemporad, Familiant (b0175) 2017; 140 Ondeck (10.1016/j.apenergy.2019.03.006_b0155) 2018; 222 Lee (10.1016/j.apenergy.2019.03.006_b0015) 2016; 56 Sun (10.1016/j.apenergy.2019.03.006_b0060) 2016; 325 Correa-Florez (10.1016/j.apenergy.2019.03.006_b0135) 2018; 225 Richardson (10.1016/j.apenergy.2019.03.006_b0185) 2008; 40 Hart (10.1016/j.apenergy.2019.03.006_b0190) 2012; vol. 67 Coninck (10.1016/j.apenergy.2019.03.006_b0160) 2016; 111 Hu (10.1016/j.apenergy.2019.03.006_b0050) 2018; 221 Liu (10.1016/j.apenergy.2019.03.006_b0055) 2015 Godina (10.1016/j.apenergy.2019.03.006_b0100) 2018; 96 Fischer (10.1016/j.apenergy.2019.03.006_b0125) 2017; 204 Hart (10.1016/j.apenergy.2019.03.006_b0195) 2011; 3 D’Ettorre (10.1016/j.apenergy.2019.03.006_b0035) 2019; 148 Thr (10.1016/j.apenergy.2019.03.006_b0115) 2018; 174 Feron (10.1016/j.apenergy.2019.03.006_b0130) 2018 Kneiske (10.1016/j.apenergy.2019.03.006_b0150) 2017; 135 Khakimova (10.1016/j.apenergy.2019.03.006_b0175) 2017; 140 Dongol (10.1016/j.apenergy.2019.03.006_b0075) 2018; 16 Touretzky (10.1016/j.apenergy.2019.03.006_b0025) 2014; 24 Klingler (10.1016/j.apenergy.2019.03.006_b0095) 2017; 205 Yu (10.1016/j.apenergy.2019.03.006_b0165) 2017; 146 Cai (10.1016/j.apenergy.2019.03.006_b0070) 2019; 236 Balcombe (10.1016/j.apenergy.2019.03.006_b0145) 2015; 139 Touretzky (10.1016/j.apenergy.2019.03.006_b0020) 2016; 110 Gelleschus (10.1016/j.apenergy.2019.03.006_b0110) 2018; 155 Solano (10.1016/j.apenergy.2019.03.006_b0105) 2017; 206 Litjens (10.1016/j.apenergy.2019.03.006_b0080) 2018; 221 Toradmal (10.1016/j.apenergy.2019.03.006_b0120) 2018; 137 Olatomiwa (10.1016/j.apenergy.2019.03.006_b0045) 2016; 62 Bttiger (10.1016/j.apenergy.2019.03.006_b0085) 2016; 99 Suda (10.1016/j.apenergy.2019.03.006_b0030) 2018; 51 Angenendt (10.1016/j.apenergy.2019.03.006_b0065) 2016; 99 Kneiske (10.1016/j.apenergy.2019.03.006_b0090) 2018; 210 Schram (10.1016/j.apenergy.2019.03.006_b0170) 2018; 223 10.1016/j.apenergy.2019.03.006_b0180 Balcombe (10.1016/j.apenergy.2019.03.006_b0140) 2015; 155 Pan (10.1016/j.apenergy.2019.03.006_b0040) 2018 Beaudin (10.1016/j.apenergy.2019.03.006_b0010) 2015; 45 Killian (10.1016/j.apenergy.2019.03.006_b0005) 2016; 105 |
| References_xml | – year: 2018 ident: b0040 article-title: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings publication-title: J Process Control – reference: J. Von Appen, J. Haack, M. Braun, Erzeugung zeitlich hochaufgeloester stromlastprofile fuer verschiedene haushaltstypen; 2014. – volume: 96 start-page: 143 year: 2018 end-page: 156 ident: b0100 article-title: Optimal residential model predictive control energy management performance with pv microgeneration publication-title: Comput Operat Res – volume: 137 start-page: 248 year: 2018 end-page: 258 ident: b0120 article-title: Boosting the share of onsite pv-electricity utilization by optimized scheduling of a heat pump using buildings thermal inertia publication-title: Appl Therm Eng – volume: 135 start-page: 482 year: 2017 end-page: 495 ident: b0150 article-title: Flexibility potentials of a combined use of heat storages and batteries in pv-chp hybrid systems publication-title: Energy Procedia – volume: 223 start-page: 69 year: 2018 end-page: 81 ident: b0170 article-title: Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential publication-title: Appl Energy – volume: 105 start-page: 403 year: 2016 end-page: 412 ident: b0005 article-title: Ten questions concerning model predictive control for energy efficient buildings publication-title: Build Environ – volume: 221 start-page: 195 year: 2018 end-page: 203 ident: b0050 article-title: A model predictive control strategy of pv-battery microgrid under variable power generations and load conditions publication-title: Appl Energy – volume: 62 start-page: 821 year: 2016 end-page: 835 ident: b0045 article-title: Energy management strategies in hybrid renewable energy systems: A review publication-title: Renew Sustain Energy Rev – volume: 139 start-page: 245 year: 2015 end-page: 259 ident: b0145 article-title: Environmental impacts of microgeneration: Integrating solar pv, stirling engine {CHP} and battery storage publication-title: Appl Energy – volume: 225 start-page: 1205 year: 2018 end-page: 1218 ident: b0135 article-title: Stochastic operation of home energy management systems including battery cycling publication-title: Appl Energy – volume: 99 start-page: 80 year: 2016 end-page: 88 ident: b0065 article-title: Enhancing battery lifetime in pv battery home storage system using forecast based operating strategies publication-title: Energy Procedia – volume: 148 start-page: 524 year: 2019 end-page: 535 ident: b0035 article-title: Model predictive control of a hybrid heat pump system and impact of the prediction horizon on cost-saving potential and optimal storage capacity publication-title: Appl Therm Eng – volume: 51 start-page: 472 year: 2018 end-page: 477 ident: b0030 article-title: Robust prediction and mpc-based optimal energy management for hvac system publication-title: IFAC-PapersOnLine – volume: 146 start-page: 19 year: 2017 end-page: 26 ident: b0165 article-title: Model-based predictive control for building energy management: Part ii - experimental validations publication-title: Energy Build – volume: 56 start-page: 760 year: 2016 end-page: 777 ident: b0015 article-title: Energy savings by energy management systems: A review publication-title: Renew Sustain Energy Rev – volume: 140 start-page: 1 year: 2017 end-page: 8 ident: b0175 article-title: Optimal energy management of a small-size building via hybrid model predictive control publication-title: Energy Build – volume: 110 start-page: 94 year: 2016 end-page: 107 ident: b0020 article-title: A hierarchical scheduling and control strategy for thermal energy storage systems publication-title: Energy Build – volume: 325 start-page: 723 year: 2016 end-page: 731 ident: b0060 article-title: Nonlinear predictive energy management of residential buildings with photovoltaics & batteries publication-title: J Power Sources – volume: 45 start-page: 318 year: 2015 end-page: 335 ident: b0010 article-title: Home energy management systems: A review of modelling and complexity publication-title: Renew Sustain Energy Rev – volume: 99 start-page: 341 year: 2016 end-page: 349 ident: b0085 article-title: Innovative reactive energy management for a photovoltaic battery system publication-title: Energy Procedia – volume: 24 start-page: 1292 year: 2014 end-page: 1300 ident: b0025 article-title: Integrating scheduling and control for economic mpc of buildings with energy storage publication-title: J Process Control – volume: 155 start-page: 393 year: 2015 end-page: 408 ident: b0140 article-title: Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar pv, stirling engine {CHP} and battery storage publication-title: Appl Energy – volume: 236 start-page: 478 year: 2019 end-page: 488 ident: b0070 article-title: Aging-aware predictive control of pv-battery assets in buildings publication-title: Appl Energy – volume: 205 start-page: 1560 year: 2017 end-page: 1570 ident: b0095 article-title: Self-consumption with pv+battery systems: A market diffusion model considering individual consumer behaviour and preferences publication-title: Appl Energy – volume: 222 start-page: 280 year: 2018 end-page: 299 ident: b0155 article-title: Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential chp system publication-title: Appl Energy – volume: 174 start-page: 273 year: 2018 end-page: 285 ident: b0115 article-title: Smart grid and pv driven ground heat pump as thermal battery in small buildings for optimized electricity consumption publication-title: Sol Energy – volume: 204 start-page: 93 year: 2017 end-page: 105 ident: b0125 article-title: Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and pv publication-title: Appl Energy – volume: 16 start-page: 1 year: 2018 end-page: 13 ident: b0075 article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid publication-title: Sustain Energy, Grids Networks – volume: vol. 67 year: 2012 ident: b0190 publication-title: Pyomo-optimization modeling in python – volume: 40 start-page: 1560 year: 2008 end-page: 1566 ident: b0185 article-title: A high-resolution domestic building occupancy model for energy demand simulations publication-title: Energy Build – year: 2018 ident: b0130 article-title: Domestic Battery and Power-to-Heat Storage for Self-Consumption and Provision of Primary Control Reserve publication-title: [2018 IEEE power systems computation conference, PSCC18, Dublin, Ireland], 2018 IEEE power systems computation conference, Dublin (Ireland) – volume: 221 start-page: 358 year: 2018 end-page: 373 ident: b0080 article-title: Assessment of forecasting methods on performance of photovoltaic-battery systems publication-title: Appl Energy – year: 2015 ident: b0055 article-title: A mpc operation method for a photovoltaic system with batteries publication-title: IFAC-PapersOnLine9th IFAC symposium on advanced control of chemical processes ADCHEM – volume: 206 start-page: 249 year: 2017 end-page: 266 ident: b0105 article-title: Assessing the potential of pv hybrid systems to cover hvac loads in a grid-connected residential building through intelligent control publication-title: Appl Energy – volume: 111 start-page: 290 year: 2016 end-page: 298 ident: b0160 article-title: Practical implementation and evaluation of model predictive control for an office building in brussels publication-title: Energy Build – volume: 210 start-page: 964 year: 2018 end-page: 973 ident: b0090 article-title: A new combined control algorithm for pv-chp hybrid systems publication-title: Appl Energy – volume: 155 start-page: 524 year: 2018 end-page: 535 ident: b0110 article-title: Comparison of optimization solvers in the model predictive control of a pv-battery-heat pump system publication-title: Energy Procedia – volume: 3 start-page: 219 year: 2011 end-page: 260 ident: b0195 article-title: Pyomo: modeling and solving mathematical programs in python publication-title: Mathe Program Comput – volume: 56 start-page: 760 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0015 article-title: Energy savings by energy management systems: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.11.067 – volume: 155 start-page: 393 year: 2015 ident: 10.1016/j.apenergy.2019.03.006_b0140 article-title: Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar pv, stirling engine {CHP} and battery storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.06.017 – year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0130 article-title: Domestic Battery and Power-to-Heat Storage for Self-Consumption and Provision of Primary Control Reserve – volume: 3 start-page: 219 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2019.03.006_b0195 article-title: Pyomo: modeling and solving mathematical programs in python publication-title: Mathe Program Comput doi: 10.1007/s12532-011-0026-8 – volume: 40 start-page: 1560 issue: 8 year: 2008 ident: 10.1016/j.apenergy.2019.03.006_b0185 article-title: A high-resolution domestic building occupancy model for energy demand simulations publication-title: Energy Build doi: 10.1016/j.enbuild.2008.02.006 – volume: 99 start-page: 80 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0065 article-title: Enhancing battery lifetime in pv battery home storage system using forecast based operating strategies publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.10.100 – volume: 223 start-page: 69 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0170 article-title: Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.04.023 – volume: 24 start-page: 1292 issue: 8 year: 2014 ident: 10.1016/j.apenergy.2019.03.006_b0025 article-title: Integrating scheduling and control for economic mpc of buildings with energy storage publication-title: J Process Control doi: 10.1016/j.jprocont.2014.04.015 – year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0040 article-title: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings publication-title: J Process Control – volume: 62 start-page: 821 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0045 article-title: Energy management strategies in hybrid renewable energy systems: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.05.040 – volume: 204 start-page: 93 year: 2017 ident: 10.1016/j.apenergy.2019.03.006_b0125 article-title: Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and pv publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.110 – volume: 135 start-page: 482 year: 2017 ident: 10.1016/j.apenergy.2019.03.006_b0150 article-title: Flexibility potentials of a combined use of heat storages and batteries in pv-chp hybrid systems publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.498 – volume: 45 start-page: 318 year: 2015 ident: 10.1016/j.apenergy.2019.03.006_b0010 article-title: Home energy management systems: A review of modelling and complexity publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.01.046 – volume: 99 start-page: 341 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0085 article-title: Innovative reactive energy management for a photovoltaic battery system publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.10.124 – volume: 110 start-page: 94 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0020 article-title: A hierarchical scheduling and control strategy for thermal energy storage systems publication-title: Energy Build doi: 10.1016/j.enbuild.2015.09.049 – volume: 137 start-page: 248 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0120 article-title: Boosting the share of onsite pv-electricity utilization by optimized scheduling of a heat pump using buildings thermal inertia publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.03.052 – volume: 325 start-page: 723 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0060 article-title: Nonlinear predictive energy management of residential buildings with photovoltaics & batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.06.076 – year: 2015 ident: 10.1016/j.apenergy.2019.03.006_b0055 article-title: A mpc operation method for a photovoltaic system with batteries – volume: 146 start-page: 19 year: 2017 ident: 10.1016/j.apenergy.2019.03.006_b0165 article-title: Model-based predictive control for building energy management: Part ii - experimental validations publication-title: Energy Build doi: 10.1016/j.enbuild.2017.04.027 – volume: 225 start-page: 1205 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0135 article-title: Stochastic operation of home energy management systems including battery cycling publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.04.130 – volume: 155 start-page: 524 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0110 article-title: Comparison of optimization solvers in the model predictive control of a pv-battery-heat pump system publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.11.028 – volume: 221 start-page: 195 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0050 article-title: A model predictive control strategy of pv-battery microgrid under variable power generations and load conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.085 – volume: 96 start-page: 143 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0100 article-title: Optimal residential model predictive control energy management performance with pv microgeneration publication-title: Comput Operat Res doi: 10.1016/j.cor.2017.12.003 – volume: 105 start-page: 403 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0005 article-title: Ten questions concerning model predictive control for energy efficient buildings publication-title: Build Environ doi: 10.1016/j.buildenv.2016.05.034 – volume: 51 start-page: 472 issue: 25 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0030 article-title: Robust prediction and mpc-based optimal energy management for hvac system publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.11.182 – volume: 210 start-page: 964 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0090 article-title: A new combined control algorithm for pv-chp hybrid systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.047 – volume: 16 start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0075 article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid publication-title: Sustain Energy, Grids Networks doi: 10.1016/j.segan.2018.05.001 – volume: 206 start-page: 249 year: 2017 ident: 10.1016/j.apenergy.2019.03.006_b0105 article-title: Assessing the potential of pv hybrid systems to cover hvac loads in a grid-connected residential building through intelligent control publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.188 – volume: 148 start-page: 524 year: 2019 ident: 10.1016/j.apenergy.2019.03.006_b0035 article-title: Model predictive control of a hybrid heat pump system and impact of the prediction horizon on cost-saving potential and optimal storage capacity publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.11.063 – volume: 222 start-page: 280 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0155 article-title: Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential chp system publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.131 – volume: 140 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2019.03.006_b0175 article-title: Optimal energy management of a small-size building via hybrid model predictive control publication-title: Energy Build doi: 10.1016/j.enbuild.2017.01.045 – volume: vol. 67 year: 2012 ident: 10.1016/j.apenergy.2019.03.006_b0190 – volume: 236 start-page: 478 year: 2019 ident: 10.1016/j.apenergy.2019.03.006_b0070 article-title: Aging-aware predictive control of pv-battery assets in buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.003 – volume: 111 start-page: 290 year: 2016 ident: 10.1016/j.apenergy.2019.03.006_b0160 article-title: Practical implementation and evaluation of model predictive control for an office building in brussels publication-title: Energy Build doi: 10.1016/j.enbuild.2015.11.014 – ident: 10.1016/j.apenergy.2019.03.006_b0180 – volume: 139 start-page: 245 year: 2015 ident: 10.1016/j.apenergy.2019.03.006_b0145 article-title: Environmental impacts of microgeneration: Integrating solar pv, stirling engine {CHP} and battery storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.11.034 – volume: 205 start-page: 1560 year: 2017 ident: 10.1016/j.apenergy.2019.03.006_b0095 article-title: Self-consumption with pv+battery systems: A market diffusion model considering individual consumer behaviour and preferences publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.159 – volume: 221 start-page: 358 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0080 article-title: Assessment of forecasting methods on performance of photovoltaic-battery systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.154 – volume: 174 start-page: 273 year: 2018 ident: 10.1016/j.apenergy.2019.03.006_b0115 article-title: Smart grid and pv driven ground heat pump as thermal battery in small buildings for optimized electricity consumption publication-title: Sol Energy doi: 10.1016/j.solener.2018.08.087 |
| SSID | ssj0002120 |
| Score | 2.3631084 |
| Snippet | •A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner... In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | algorithms batteries Battery CHP controllers Data analysis energy Energy management global warming heat heat pumps households Laboratory management systems Model predictive control operating costs power plants renewable energy sources small businesses solar collectors solar radiation tariffs |
| Title | Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench |
| URI | https://dx.doi.org/10.1016/j.apenergy.2019.03.006 https://www.proquest.com/docview/2221044663 |
| Volume | 242 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RRvBYlrWNckXXtEE9MACSExELcoSRM2BO00yoELvx27SxkgIQ4c2zptZSf2F8X-TMix7pokhbDANGBhJuLYMCNixzIs2pSJB7vX2RZXyeBWXNzL-xbpNbUwmFYZfP_Mp9feOtxpB222J-Nx-wbRLuJ_gCARz1Is-BWii10MTt7naR5xoGYEYYbSX6qEH0_0xNUVdpjiFchOk98C1A9XXcef_ipZCcCRns7-bY20XLFOlr_QCa6TrbN51RqIhmX7skHMELk0igeqad35hk6meD6Dno6GXHWqnx7K6bgaPVOAsSB4fcd6g2s6esOSLjojfKZlAU_CvCmnbxRwasUMfGW0SW77Z8PegIXmCsxyIStmvfOmIw33LgHl6Ujors-Fd7rDjZS5kS5OjcxdHlkJ6jVplEtwATH30tqu4VtkoSgLt01oJqx2uYCtkPOCWwuQMIpsGvkcxJ3OdohsNKpsYB7HBhhPqkkxe1SNJRRaQkVcgSV2SPtz3GTGvfHniKwxmPo2ixQEiD_HHjUWVrDE8NxEF658fVEAoTr1uTff_cf798gSXmHmQUfuk4Vq-uoOANBU5rCesYdk8fT8cnD1AQnv93k |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4V9sD2gBgM0bExI-3VNI3tNHmcKlDZGEKiTLxZtmPTopJUbfrAC7-dc-qsgIR44DU-J9GdffdZ990Z4Kfq6STFsEAVYmHK41hTzWNLM1-0KRKHdq_ZFufJ4Ir_vhbXLeg3tTCeVhl8_9Kn1946POkEbXam43Hn0qNdj_8RgkQsS9M1-MBF3PMnsKOHFc8jDr0ZUZp68SdlwrdHamrrEjvP8QrdTpPXItQLX10HoJMt2AzIkfxa_txnaNliGz496Se4DbvHq7I1FA37dr4DeuibaRQ3RJH66hsynfkEjXd1JJDViZrclLNxNbojiGNR8OIf7Q8uyOje13SRZcdnUhY4EhZOObsnCFQrqvEroy9wdXI87A9ouF2BGsZFRY2zTneFZs4mqD0VcdVzOXdWdZkWItfCxqkWuc0jI1C_Oo1ygT4gZk4Y09NsF9aLsrB7QDJulM05noWs48wYxIRRZNLI5ShuVdYG0WhUmtB63N-AMZENx-xWNpaQ3hIyYhIt0YbO_3nTZfONN2dkjcHks2UkMUK8OfewsbDEPeYTJ6qw5WIuEUN168Q3-_qO9_-AjcHw75k8Oz3_sw8f_YinIXTFN1ivZgv7HdFNpQ_q1fsIvf_5Dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+a+model+predictive+control+algorithm+for+a+PV-CHP+hybrid+system+on+a+laboratory+test-bench&rft.jtitle=Applied+energy&rft.au=Kneiske%2C+T+M&rft.au=Niedermeyer%2C+F&rft.au=Boelling%2C+C&rft.date=2019-05-15&rft.issn=0306-2619&rft.volume=242+p.121-137&rft.spage=121&rft.epage=137&rft_id=info:doi/10.1016%2Fj.apenergy.2019.03.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |