Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench

•A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner should have modulated power supply for higher efficiency.•Hardware and metering generates additional deviations from forecast schedules.•A bat...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 242; pp. 121 - 137
Main Authors Kneiske, T.M., Niedermeyer, F., Boelling, C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2019
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2019.03.006

Cover

Abstract •A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner should have modulated power supply for higher efficiency.•Hardware and metering generates additional deviations from forecast schedules.•A battery needs a faster control added to the MPC for higher accuracy. In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A business case based on feed-in tariffs does not exist in every countries and self-consumption is limited due to the unsteady nature of solar radiation on earth. A combination with other systems such as batteries, heat-pumps or even combined heat and power plants can enhance the use of generated power by photovoltaic systems, particularly in private households and small businesses. Rule-based controllers and optimization algorithms (model predictive control) can both realise the efficient operation of a photovoltaic system in combination with storage systems and a combined heat and power plant. However, different controllers and energy management systems have hitherto only been compared theoretically. A comparison of such controllers in a real, controllable hardware environment has not yet been carried out. In this study, a test-bench is introduced to test different control algorithms for photovoltaic systems in combination with storage systems and a micro- combined heat and power plant. The operation has been tested for a one day period. Key performance parameters have been derived and compared for a rule-based control, an optimized control and simulation results including a forecast. The results show that the operational costs can be reduced by 7.3% for the chosen test-period using the optimized algorithm in the laboratory compared to the same system with a rule-based control. The results also indicate that even under perfect forecast conditions the hardware, metering and energy management cause latencies and inaccuracies leading to deviations, which are not accounted for in simulations. Hence, the accuracy of the forecast methods need not be higher than the deviations introduced by the hardware. These deviations often lead to unwanted charging and discharging events of the battery. A faster way of processing data and a second order or low level control is needed for short term reaction and higher efficiency.
AbstractList •A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner should have modulated power supply for higher efficiency.•Hardware and metering generates additional deviations from forecast schedules.•A battery needs a faster control added to the MPC for higher accuracy. In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A business case based on feed-in tariffs does not exist in every countries and self-consumption is limited due to the unsteady nature of solar radiation on earth. A combination with other systems such as batteries, heat-pumps or even combined heat and power plants can enhance the use of generated power by photovoltaic systems, particularly in private households and small businesses. Rule-based controllers and optimization algorithms (model predictive control) can both realise the efficient operation of a photovoltaic system in combination with storage systems and a combined heat and power plant. However, different controllers and energy management systems have hitherto only been compared theoretically. A comparison of such controllers in a real, controllable hardware environment has not yet been carried out. In this study, a test-bench is introduced to test different control algorithms for photovoltaic systems in combination with storage systems and a micro- combined heat and power plant. The operation has been tested for a one day period. Key performance parameters have been derived and compared for a rule-based control, an optimized control and simulation results including a forecast. The results show that the operational costs can be reduced by 7.3% for the chosen test-period using the optimized algorithm in the laboratory compared to the same system with a rule-based control. The results also indicate that even under perfect forecast conditions the hardware, metering and energy management cause latencies and inaccuracies leading to deviations, which are not accounted for in simulations. Hence, the accuracy of the forecast methods need not be higher than the deviations introduced by the hardware. These deviations often lead to unwanted charging and discharging events of the battery. A faster way of processing data and a second order or low level control is needed for short term reaction and higher efficiency.
In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A business case based on feed-in tariffs does not exist in every countries and self-consumption is limited due to the unsteady nature of solar radiation on earth. A combination with other systems such as batteries, heat-pumps or even combined heat and power plants can enhance the use of generated power by photovoltaic systems, particularly in private households and small businesses. Rule-based controllers and optimization algorithms (model predictive control) can both realise the efficient operation of a photovoltaic system in combination with storage systems and a combined heat and power plant. However, different controllers and energy management systems have hitherto only been compared theoretically. A comparison of such controllers in a real, controllable hardware environment has not yet been carried out. In this study, a test-bench is introduced to test different control algorithms for photovoltaic systems in combination with storage systems and a micro- combined heat and power plant. The operation has been tested for a one day period. Key performance parameters have been derived and compared for a rule-based control, an optimized control and simulation results including a forecast. The results show that the operational costs can be reduced by 7.3% for the chosen test-period using the optimized algorithm in the laboratory compared to the same system with a rule-based control. The results also indicate that even under perfect forecast conditions the hardware, metering and energy management cause latencies and inaccuracies leading to deviations, which are not accounted for in simulations. Hence, the accuracy of the forecast methods need not be higher than the deviations introduced by the hardware. These deviations often lead to unwanted charging and discharging events of the battery. A faster way of processing data and a second order or low level control is needed for short term reaction and higher efficiency.
Author Kneiske, T.M.
Niedermeyer, F.
Boelling, C.
Author_xml – sequence: 1
  givenname: T.M.
  surname: Kneiske
  fullname: Kneiske, T.M.
  email: tanja.kneiske@iee.fraunhofer.de
– sequence: 2
  givenname: F.
  surname: Niedermeyer
  fullname: Niedermeyer, F.
– sequence: 3
  givenname: C.
  surname: Boelling
  fullname: Boelling, C.
BookMark eNqF0M1u1DAUBWALFYlp4RWQl2wSru04k0gsQCNKkSrRRWFr-ed6xqMkHmy3Ut4ejwY2bLry4p5zLH3X5GqJCxLynkHLgPUfj60-4YJpv7Yc2NiCaAH6V2TDhi1vRsaGK7IBAX3Deza-Idc5HwGAMw4bYh4xl7DsqaZzdDjRU0IXbAnPSG1cSooT1dM-plAOM_Ux1eDDr2Z390APq0nB0bzmgjONS71M2sSkS0wrLXW3MbjYw1vy2usp47u_7w35efv1cXfX3P_49n335b6xopOlsR69YdIIj_04DBo6vfWu86iZMFI6I5EPRjp0YKUYBzOAkwCCCy-t3RpxQz5cdk8p_n6q36s5ZIvTpBeMT1lxzhl0Xd-LGu0vUZtizgm9OqUw67QqBuqMqo7qH6o6oyoQqqLW4qf_ijYUXcJZSofp5frnSx2rw3PApLIN1aiSJ7RFuRhemvgDkYGbrQ
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_114740
crossref_primary_10_3390_en13164052
crossref_primary_10_1002_ceat_202000025
crossref_primary_10_3390_en16176176
crossref_primary_10_2139_ssrn_3990733
crossref_primary_10_1016_j_energy_2022_124336
crossref_primary_10_1109_ACCESS_2020_3042173
crossref_primary_10_1016_j_applthermaleng_2022_119270
crossref_primary_10_1016_j_applthermaleng_2024_123751
crossref_primary_10_1016_j_energy_2021_120065
crossref_primary_10_1016_j_enconman_2021_114131
crossref_primary_10_1016_j_energy_2023_129006
crossref_primary_10_3390_electronics13132545
crossref_primary_10_3390_en17225563
crossref_primary_10_1016_j_enbuild_2023_113074
Cites_doi 10.1016/j.rser.2015.11.067
10.1016/j.apenergy.2015.06.017
10.1007/s12532-011-0026-8
10.1016/j.enbuild.2008.02.006
10.1016/j.egypro.2016.10.100
10.1016/j.apenergy.2018.04.023
10.1016/j.jprocont.2014.04.015
10.1016/j.rser.2016.05.040
10.1016/j.apenergy.2017.06.110
10.1016/j.egypro.2017.09.498
10.1016/j.rser.2015.01.046
10.1016/j.egypro.2016.10.124
10.1016/j.enbuild.2015.09.049
10.1016/j.applthermaleng.2018.03.052
10.1016/j.jpowsour.2016.06.076
10.1016/j.enbuild.2017.04.027
10.1016/j.apenergy.2018.04.130
10.1016/j.egypro.2018.11.028
10.1016/j.apenergy.2018.03.085
10.1016/j.cor.2017.12.003
10.1016/j.buildenv.2016.05.034
10.1016/j.ifacol.2018.11.182
10.1016/j.apenergy.2017.06.047
10.1016/j.segan.2018.05.001
10.1016/j.apenergy.2017.08.188
10.1016/j.applthermaleng.2018.11.063
10.1016/j.apenergy.2018.03.131
10.1016/j.enbuild.2017.01.045
10.1016/j.apenergy.2018.12.003
10.1016/j.enbuild.2015.11.014
10.1016/j.apenergy.2014.11.034
10.1016/j.apenergy.2017.08.159
10.1016/j.apenergy.2018.03.154
10.1016/j.solener.2018.08.087
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.03.006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 137
ExternalDocumentID 10_1016_j_apenergy_2019_03_006
S0306261919303988
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-cfefb15b3fe6988a04a7fd4fea13b55db5e28b5ded0c5398b80d500323f5cc7b3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu Sep 25 08:51:15 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Thu Oct 09 00:26:52 EDT 2025
Fri Feb 23 02:50:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Model predictive control
Data analysis
PV
Battery
CHP
Laboratory
Energy management
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-cfefb15b3fe6988a04a7fd4fea13b55db5e28b5ded0c5398b80d500323f5cc7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2221044663
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2221044663
crossref_primary_10_1016_j_apenergy_2019_03_006
crossref_citationtrail_10_1016_j_apenergy_2019_03_006
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_03_006
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Klingler (b0095) 2017; 205
Touretzky, Baldea (b0020) 2016; 110
Godina, Rodrigues, Pouresmaeil, Catalo (b0100) 2018; 96
Feron, Monti (b0130) 2018
Coninck, Helsen (b0160) 2016; 111
Ondeck, Edgar, Baldea (b0155) 2018; 222
Toradmal, Kemmler, Thomas (b0120) 2018; 137
D’Ettorre, Conti, Schito, Testi (b0035) 2019; 148
Lee, Cheng (b0015) 2016; 56
Pan, Salom, Costa-Castell (b0040) 2018
Solano, Olivieri, Caamao-Martn (b0105) 2017; 206
Balcombe, Rigby, Azapagic (b0145) 2015; 139
Litjens, Worrell, van Sark (b0080) 2018; 221
Dongol, Feldmann, Schmidt, Bollin (b0075) 2018; 16
J. Von Appen, J. Haack, M. Braun, Erzeugung zeitlich hochaufgeloester stromlastprofile fuer verschiedene haushaltstypen; 2014.
Angenendt, Zurmhlen, Mir-Montazeri, Magnor, Sauer (b0065) 2016; 99
Fischer, Bernhardt, Madani, Wittwer (b0125) 2017; 204
Kneiske, Braun (b0150) 2017; 135
Sun, Sun, Moura (b0060) 2016; 325
Olatomiwa, Mekhilef, Ismail, Moghavvemi (b0045) 2016; 62
Gelleschus, Bttiger, Stange, Bocklisch (b0110) 2018; 155
Hart, Watson, Woodruff (b0195) 2011; 3
Cai, Zhang, Jin (b0070) 2019; 236
Thr, Calabrese, Streicher (b0115) 2018; 174
Hart, Laird, Watson, Woodruff (b0190) 2012; vol. 67
Beaudin, Zareipour (b0010) 2015; 45
Suda, Namerikawa (b0030) 2018; 51
Richardson, Thomson, Infield (b0185) 2008; 40
Hu, Xu, Cheng, Guerrero (b0050) 2018; 221
Liu, Lu, Yao, Gao (b0055) 2015
Kneiske, Braun, Hidalgo-Rodriguez (b0090) 2018; 210
Yu, Salakij, Chavez, Paolucci, Sen, Antsaklis (b0165) 2017; 146
Killian, Kozek (b0005) 2016; 105
Touretzky, Baldea (b0025) 2014; 24
Correa-Florez, Gerossier, Michiorri, Kariniotakis (b0135) 2018; 225
Balcombe, Rigby, Azapagic (b0140) 2015; 155
Schram, Lampropoulos, van Sark (b0170) 2018; 223
Bttiger, Paulitschke, Bocklisch (b0085) 2016; 99
Khakimova, Kusatayeva, Shamshimova, Sharipova, Bemporad, Familiant (b0175) 2017; 140
Ondeck (10.1016/j.apenergy.2019.03.006_b0155) 2018; 222
Lee (10.1016/j.apenergy.2019.03.006_b0015) 2016; 56
Sun (10.1016/j.apenergy.2019.03.006_b0060) 2016; 325
Correa-Florez (10.1016/j.apenergy.2019.03.006_b0135) 2018; 225
Richardson (10.1016/j.apenergy.2019.03.006_b0185) 2008; 40
Hart (10.1016/j.apenergy.2019.03.006_b0190) 2012; vol. 67
Coninck (10.1016/j.apenergy.2019.03.006_b0160) 2016; 111
Hu (10.1016/j.apenergy.2019.03.006_b0050) 2018; 221
Liu (10.1016/j.apenergy.2019.03.006_b0055) 2015
Godina (10.1016/j.apenergy.2019.03.006_b0100) 2018; 96
Fischer (10.1016/j.apenergy.2019.03.006_b0125) 2017; 204
Hart (10.1016/j.apenergy.2019.03.006_b0195) 2011; 3
D’Ettorre (10.1016/j.apenergy.2019.03.006_b0035) 2019; 148
Thr (10.1016/j.apenergy.2019.03.006_b0115) 2018; 174
Feron (10.1016/j.apenergy.2019.03.006_b0130) 2018
Kneiske (10.1016/j.apenergy.2019.03.006_b0150) 2017; 135
Khakimova (10.1016/j.apenergy.2019.03.006_b0175) 2017; 140
Dongol (10.1016/j.apenergy.2019.03.006_b0075) 2018; 16
Touretzky (10.1016/j.apenergy.2019.03.006_b0025) 2014; 24
Klingler (10.1016/j.apenergy.2019.03.006_b0095) 2017; 205
Yu (10.1016/j.apenergy.2019.03.006_b0165) 2017; 146
Cai (10.1016/j.apenergy.2019.03.006_b0070) 2019; 236
Balcombe (10.1016/j.apenergy.2019.03.006_b0145) 2015; 139
Touretzky (10.1016/j.apenergy.2019.03.006_b0020) 2016; 110
Gelleschus (10.1016/j.apenergy.2019.03.006_b0110) 2018; 155
Solano (10.1016/j.apenergy.2019.03.006_b0105) 2017; 206
Litjens (10.1016/j.apenergy.2019.03.006_b0080) 2018; 221
Toradmal (10.1016/j.apenergy.2019.03.006_b0120) 2018; 137
Olatomiwa (10.1016/j.apenergy.2019.03.006_b0045) 2016; 62
Bttiger (10.1016/j.apenergy.2019.03.006_b0085) 2016; 99
Suda (10.1016/j.apenergy.2019.03.006_b0030) 2018; 51
Angenendt (10.1016/j.apenergy.2019.03.006_b0065) 2016; 99
Kneiske (10.1016/j.apenergy.2019.03.006_b0090) 2018; 210
Schram (10.1016/j.apenergy.2019.03.006_b0170) 2018; 223
10.1016/j.apenergy.2019.03.006_b0180
Balcombe (10.1016/j.apenergy.2019.03.006_b0140) 2015; 155
Pan (10.1016/j.apenergy.2019.03.006_b0040) 2018
Beaudin (10.1016/j.apenergy.2019.03.006_b0010) 2015; 45
Killian (10.1016/j.apenergy.2019.03.006_b0005) 2016; 105
References_xml – year: 2018
  ident: b0040
  article-title: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings
  publication-title: J Process Control
– reference: J. Von Appen, J. Haack, M. Braun, Erzeugung zeitlich hochaufgeloester stromlastprofile fuer verschiedene haushaltstypen; 2014.
– volume: 96
  start-page: 143
  year: 2018
  end-page: 156
  ident: b0100
  article-title: Optimal residential model predictive control energy management performance with pv microgeneration
  publication-title: Comput Operat Res
– volume: 137
  start-page: 248
  year: 2018
  end-page: 258
  ident: b0120
  article-title: Boosting the share of onsite pv-electricity utilization by optimized scheduling of a heat pump using buildings thermal inertia
  publication-title: Appl Therm Eng
– volume: 135
  start-page: 482
  year: 2017
  end-page: 495
  ident: b0150
  article-title: Flexibility potentials of a combined use of heat storages and batteries in pv-chp hybrid systems
  publication-title: Energy Procedia
– volume: 223
  start-page: 69
  year: 2018
  end-page: 81
  ident: b0170
  article-title: Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential
  publication-title: Appl Energy
– volume: 105
  start-page: 403
  year: 2016
  end-page: 412
  ident: b0005
  article-title: Ten questions concerning model predictive control for energy efficient buildings
  publication-title: Build Environ
– volume: 221
  start-page: 195
  year: 2018
  end-page: 203
  ident: b0050
  article-title: A model predictive control strategy of pv-battery microgrid under variable power generations and load conditions
  publication-title: Appl Energy
– volume: 62
  start-page: 821
  year: 2016
  end-page: 835
  ident: b0045
  article-title: Energy management strategies in hybrid renewable energy systems: A review
  publication-title: Renew Sustain Energy Rev
– volume: 139
  start-page: 245
  year: 2015
  end-page: 259
  ident: b0145
  article-title: Environmental impacts of microgeneration: Integrating solar pv, stirling engine {CHP} and battery storage
  publication-title: Appl Energy
– volume: 225
  start-page: 1205
  year: 2018
  end-page: 1218
  ident: b0135
  article-title: Stochastic operation of home energy management systems including battery cycling
  publication-title: Appl Energy
– volume: 99
  start-page: 80
  year: 2016
  end-page: 88
  ident: b0065
  article-title: Enhancing battery lifetime in pv battery home storage system using forecast based operating strategies
  publication-title: Energy Procedia
– volume: 148
  start-page: 524
  year: 2019
  end-page: 535
  ident: b0035
  article-title: Model predictive control of a hybrid heat pump system and impact of the prediction horizon on cost-saving potential and optimal storage capacity
  publication-title: Appl Therm Eng
– volume: 51
  start-page: 472
  year: 2018
  end-page: 477
  ident: b0030
  article-title: Robust prediction and mpc-based optimal energy management for hvac system
  publication-title: IFAC-PapersOnLine
– volume: 146
  start-page: 19
  year: 2017
  end-page: 26
  ident: b0165
  article-title: Model-based predictive control for building energy management: Part ii - experimental validations
  publication-title: Energy Build
– volume: 56
  start-page: 760
  year: 2016
  end-page: 777
  ident: b0015
  article-title: Energy savings by energy management systems: A review
  publication-title: Renew Sustain Energy Rev
– volume: 140
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0175
  article-title: Optimal energy management of a small-size building via hybrid model predictive control
  publication-title: Energy Build
– volume: 110
  start-page: 94
  year: 2016
  end-page: 107
  ident: b0020
  article-title: A hierarchical scheduling and control strategy for thermal energy storage systems
  publication-title: Energy Build
– volume: 325
  start-page: 723
  year: 2016
  end-page: 731
  ident: b0060
  article-title: Nonlinear predictive energy management of residential buildings with photovoltaics & batteries
  publication-title: J Power Sources
– volume: 45
  start-page: 318
  year: 2015
  end-page: 335
  ident: b0010
  article-title: Home energy management systems: A review of modelling and complexity
  publication-title: Renew Sustain Energy Rev
– volume: 99
  start-page: 341
  year: 2016
  end-page: 349
  ident: b0085
  article-title: Innovative reactive energy management for a photovoltaic battery system
  publication-title: Energy Procedia
– volume: 24
  start-page: 1292
  year: 2014
  end-page: 1300
  ident: b0025
  article-title: Integrating scheduling and control for economic mpc of buildings with energy storage
  publication-title: J Process Control
– volume: 155
  start-page: 393
  year: 2015
  end-page: 408
  ident: b0140
  article-title: Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar pv, stirling engine {CHP} and battery storage
  publication-title: Appl Energy
– volume: 236
  start-page: 478
  year: 2019
  end-page: 488
  ident: b0070
  article-title: Aging-aware predictive control of pv-battery assets in buildings
  publication-title: Appl Energy
– volume: 205
  start-page: 1560
  year: 2017
  end-page: 1570
  ident: b0095
  article-title: Self-consumption with pv+battery systems: A market diffusion model considering individual consumer behaviour and preferences
  publication-title: Appl Energy
– volume: 222
  start-page: 280
  year: 2018
  end-page: 299
  ident: b0155
  article-title: Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential chp system
  publication-title: Appl Energy
– volume: 174
  start-page: 273
  year: 2018
  end-page: 285
  ident: b0115
  article-title: Smart grid and pv driven ground heat pump as thermal battery in small buildings for optimized electricity consumption
  publication-title: Sol Energy
– volume: 204
  start-page: 93
  year: 2017
  end-page: 105
  ident: b0125
  article-title: Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and pv
  publication-title: Appl Energy
– volume: 16
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0075
  article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid
  publication-title: Sustain Energy, Grids Networks
– volume: vol. 67
  year: 2012
  ident: b0190
  publication-title: Pyomo-optimization modeling in python
– volume: 40
  start-page: 1560
  year: 2008
  end-page: 1566
  ident: b0185
  article-title: A high-resolution domestic building occupancy model for energy demand simulations
  publication-title: Energy Build
– year: 2018
  ident: b0130
  article-title: Domestic Battery and Power-to-Heat Storage for Self-Consumption and Provision of Primary Control Reserve
  publication-title: [2018 IEEE power systems computation conference, PSCC18, Dublin, Ireland], 2018 IEEE power systems computation conference, Dublin (Ireland)
– volume: 221
  start-page: 358
  year: 2018
  end-page: 373
  ident: b0080
  article-title: Assessment of forecasting methods on performance of photovoltaic-battery systems
  publication-title: Appl Energy
– year: 2015
  ident: b0055
  article-title: A mpc operation method for a photovoltaic system with batteries
  publication-title: IFAC-PapersOnLine9th IFAC symposium on advanced control of chemical processes ADCHEM
– volume: 206
  start-page: 249
  year: 2017
  end-page: 266
  ident: b0105
  article-title: Assessing the potential of pv hybrid systems to cover hvac loads in a grid-connected residential building through intelligent control
  publication-title: Appl Energy
– volume: 111
  start-page: 290
  year: 2016
  end-page: 298
  ident: b0160
  article-title: Practical implementation and evaluation of model predictive control for an office building in brussels
  publication-title: Energy Build
– volume: 210
  start-page: 964
  year: 2018
  end-page: 973
  ident: b0090
  article-title: A new combined control algorithm for pv-chp hybrid systems
  publication-title: Appl Energy
– volume: 155
  start-page: 524
  year: 2018
  end-page: 535
  ident: b0110
  article-title: Comparison of optimization solvers in the model predictive control of a pv-battery-heat pump system
  publication-title: Energy Procedia
– volume: 3
  start-page: 219
  year: 2011
  end-page: 260
  ident: b0195
  article-title: Pyomo: modeling and solving mathematical programs in python
  publication-title: Mathe Program Comput
– volume: 56
  start-page: 760
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0015
  article-title: Energy savings by energy management systems: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.11.067
– volume: 155
  start-page: 393
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.006_b0140
  article-title: Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar pv, stirling engine {CHP} and battery storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.06.017
– year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0130
  article-title: Domestic Battery and Power-to-Heat Storage for Self-Consumption and Provision of Primary Control Reserve
– volume: 3
  start-page: 219
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2019.03.006_b0195
  article-title: Pyomo: modeling and solving mathematical programs in python
  publication-title: Mathe Program Comput
  doi: 10.1007/s12532-011-0026-8
– volume: 40
  start-page: 1560
  issue: 8
  year: 2008
  ident: 10.1016/j.apenergy.2019.03.006_b0185
  article-title: A high-resolution domestic building occupancy model for energy demand simulations
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2008.02.006
– volume: 99
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0065
  article-title: Enhancing battery lifetime in pv battery home storage system using forecast based operating strategies
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.10.100
– volume: 223
  start-page: 69
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0170
  article-title: Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.023
– volume: 24
  start-page: 1292
  issue: 8
  year: 2014
  ident: 10.1016/j.apenergy.2019.03.006_b0025
  article-title: Integrating scheduling and control for economic mpc of buildings with energy storage
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2014.04.015
– year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0040
  article-title: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings
  publication-title: J Process Control
– volume: 62
  start-page: 821
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0045
  article-title: Energy management strategies in hybrid renewable energy systems: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.05.040
– volume: 204
  start-page: 93
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.006_b0125
  article-title: Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and pv
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.110
– volume: 135
  start-page: 482
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.006_b0150
  article-title: Flexibility potentials of a combined use of heat storages and batteries in pv-chp hybrid systems
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.498
– volume: 45
  start-page: 318
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.006_b0010
  article-title: Home energy management systems: A review of modelling and complexity
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.01.046
– volume: 99
  start-page: 341
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0085
  article-title: Innovative reactive energy management for a photovoltaic battery system
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.10.124
– volume: 110
  start-page: 94
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0020
  article-title: A hierarchical scheduling and control strategy for thermal energy storage systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.09.049
– volume: 137
  start-page: 248
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0120
  article-title: Boosting the share of onsite pv-electricity utilization by optimized scheduling of a heat pump using buildings thermal inertia
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.03.052
– volume: 325
  start-page: 723
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0060
  article-title: Nonlinear predictive energy management of residential buildings with photovoltaics & batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.06.076
– year: 2015
  ident: 10.1016/j.apenergy.2019.03.006_b0055
  article-title: A mpc operation method for a photovoltaic system with batteries
– volume: 146
  start-page: 19
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.006_b0165
  article-title: Model-based predictive control for building energy management: Part ii - experimental validations
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.04.027
– volume: 225
  start-page: 1205
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0135
  article-title: Stochastic operation of home energy management systems including battery cycling
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.130
– volume: 155
  start-page: 524
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0110
  article-title: Comparison of optimization solvers in the model predictive control of a pv-battery-heat pump system
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.11.028
– volume: 221
  start-page: 195
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0050
  article-title: A model predictive control strategy of pv-battery microgrid under variable power generations and load conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.085
– volume: 96
  start-page: 143
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0100
  article-title: Optimal residential model predictive control energy management performance with pv microgeneration
  publication-title: Comput Operat Res
  doi: 10.1016/j.cor.2017.12.003
– volume: 105
  start-page: 403
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0005
  article-title: Ten questions concerning model predictive control for energy efficient buildings
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2016.05.034
– volume: 51
  start-page: 472
  issue: 25
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0030
  article-title: Robust prediction and mpc-based optimal energy management for hvac system
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.182
– volume: 210
  start-page: 964
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0090
  article-title: A new combined control algorithm for pv-chp hybrid systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.047
– volume: 16
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0075
  article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid
  publication-title: Sustain Energy, Grids Networks
  doi: 10.1016/j.segan.2018.05.001
– volume: 206
  start-page: 249
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.006_b0105
  article-title: Assessing the potential of pv hybrid systems to cover hvac loads in a grid-connected residential building through intelligent control
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.188
– volume: 148
  start-page: 524
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.006_b0035
  article-title: Model predictive control of a hybrid heat pump system and impact of the prediction horizon on cost-saving potential and optimal storage capacity
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.11.063
– volume: 222
  start-page: 280
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0155
  article-title: Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential chp system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.131
– volume: 140
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.006_b0175
  article-title: Optimal energy management of a small-size building via hybrid model predictive control
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.01.045
– volume: vol. 67
  year: 2012
  ident: 10.1016/j.apenergy.2019.03.006_b0190
– volume: 236
  start-page: 478
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.006_b0070
  article-title: Aging-aware predictive control of pv-battery assets in buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.003
– volume: 111
  start-page: 290
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.006_b0160
  article-title: Practical implementation and evaluation of model predictive control for an office building in brussels
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.014
– ident: 10.1016/j.apenergy.2019.03.006_b0180
– volume: 139
  start-page: 245
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.006_b0145
  article-title: Environmental impacts of microgeneration: Integrating solar pv, stirling engine {CHP} and battery storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.11.034
– volume: 205
  start-page: 1560
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.006_b0095
  article-title: Self-consumption with pv+battery systems: A market diffusion model considering individual consumer behaviour and preferences
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.159
– volume: 221
  start-page: 358
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0080
  article-title: Assessment of forecasting methods on performance of photovoltaic-battery systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.154
– volume: 174
  start-page: 273
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.006_b0115
  article-title: Smart grid and pv driven ground heat pump as thermal battery in small buildings for optimized electricity consumption
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.08.087
SSID ssj0002120
Score 2.3631084
Snippet •A test-bench for PV-CHP hybrid system has been build.•Input profiles (PV and load) are emulated with accuracies between 0.1% and 14%.•The CHP and gas burner...
In order to reduce the global warming to less than two degrees, a large increase in renewable energy resources like photovoltaic systems is necessary. A...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms algorithms
batteries
Battery
CHP
controllers
Data analysis
energy
Energy management
global warming
heat
heat pumps
households
Laboratory
management systems
Model predictive control
operating costs
power plants
renewable energy sources
small businesses
solar collectors
solar radiation
tariffs
Title Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench
URI https://dx.doi.org/10.1016/j.apenergy.2019.03.006
https://www.proquest.com/docview/2221044663
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RRvBYlrWNckXXtEE9MACSExELcoSRM2BO00yoELvx27SxkgIQ4c2zptZSf2F8X-TMix7pokhbDANGBhJuLYMCNixzIs2pSJB7vX2RZXyeBWXNzL-xbpNbUwmFYZfP_Mp9feOtxpB222J-Nx-wbRLuJ_gCARz1Is-BWii10MTt7naR5xoGYEYYbSX6qEH0_0xNUVdpjiFchOk98C1A9XXcef_ipZCcCRns7-bY20XLFOlr_QCa6TrbN51RqIhmX7skHMELk0igeqad35hk6meD6Dno6GXHWqnx7K6bgaPVOAsSB4fcd6g2s6esOSLjojfKZlAU_CvCmnbxRwasUMfGW0SW77Z8PegIXmCsxyIStmvfOmIw33LgHl6Ujors-Fd7rDjZS5kS5OjcxdHlkJ6jVplEtwATH30tqu4VtkoSgLt01oJqx2uYCtkPOCWwuQMIpsGvkcxJ3OdohsNKpsYB7HBhhPqkkxe1SNJRRaQkVcgSV2SPtz3GTGvfHniKwxmPo2ixQEiD_HHjUWVrDE8NxEF658fVEAoTr1uTff_cf798gSXmHmQUfuk4Vq-uoOANBU5rCesYdk8fT8cnD1AQnv93k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4V9sD2gBgM0bExI-3VNI3tNHmcKlDZGEKiTLxZtmPTopJUbfrAC7-dc-qsgIR44DU-J9GdffdZ990Z4Kfq6STFsEAVYmHK41hTzWNLM1-0KRKHdq_ZFufJ4Ir_vhbXLeg3tTCeVhl8_9Kn1946POkEbXam43Hn0qNdj_8RgkQsS9M1-MBF3PMnsKOHFc8jDr0ZUZp68SdlwrdHamrrEjvP8QrdTpPXItQLX10HoJMt2AzIkfxa_txnaNliGz496Se4DbvHq7I1FA37dr4DeuibaRQ3RJH66hsynfkEjXd1JJDViZrclLNxNbojiGNR8OIf7Q8uyOje13SRZcdnUhY4EhZOObsnCFQrqvEroy9wdXI87A9ouF2BGsZFRY2zTneFZs4mqD0VcdVzOXdWdZkWItfCxqkWuc0jI1C_Oo1ygT4gZk4Y09NsF9aLsrB7QDJulM05noWs48wYxIRRZNLI5ShuVdYG0WhUmtB63N-AMZENx-xWNpaQ3hIyYhIt0YbO_3nTZfONN2dkjcHks2UkMUK8OfewsbDEPeYTJ6qw5WIuEUN168Q3-_qO9_-AjcHw75k8Oz3_sw8f_YinIXTFN1ivZgv7HdFNpQ_q1fsIvf_5Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+a+model+predictive+control+algorithm+for+a+PV-CHP+hybrid+system+on+a+laboratory+test-bench&rft.jtitle=Applied+energy&rft.au=Kneiske%2C+T+M&rft.au=Niedermeyer%2C+F&rft.au=Boelling%2C+C&rft.date=2019-05-15&rft.issn=0306-2619&rft.volume=242+p.121-137&rft.spage=121&rft.epage=137&rft_id=info:doi/10.1016%2Fj.apenergy.2019.03.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon