Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction

Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 230; p. 117479
Main Authors Adams, Matthew D., Massey, Felix, Chastko, Karl, Cupini, Calvin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text
ISSN1352-2310
1873-2844
DOI10.1016/j.atmosenv.2020.117479

Cover

Abstract Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 μg/m3 and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 μg/m3 to 3.8 μg/m3, and the mean bias was reduced to −0.5 μg/m3. Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R2 of 0.15 and a cross-validation R2 of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 μg/m3, a root mean squared error of 1.95 μg/m3, and a mean absolute error of 0.95 μg/m3. Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 μg/m3) and a spatial blocking cross-validation method (RMSE = 2.8 μg/m3). [Display omitted] •Air pollution maps were developed using low-cost sensors.•Spatially varying data were obtained by community scientists while cycling.•Sensor measurement errors demonstrate a strong correlation with humidity.•Spatial blocking cross-validation is compared with a random sample approach.•Automated machine learning is applied for model development.
AbstractList Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM₂.₅) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 μg/m³ and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 μg/m³ to 3.8 μg/m³, and the mean bias was reduced to −0.5 μg/m³. Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R² of 0.15 and a cross-validation R² of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 μg/m³, a root mean squared error of 1.95 μg/m³, and a mean absolute error of 0.95 μg/m³. Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 μg/m³) and a spatial blocking cross-validation method (RMSE = 2.8 μg/m³).
Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 μg/m3 and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 μg/m3 to 3.8 μg/m3, and the mean bias was reduced to −0.5 μg/m3. Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R2 of 0.15 and a cross-validation R2 of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 μg/m3, a root mean squared error of 1.95 μg/m3, and a mean absolute error of 0.95 μg/m3. Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 μg/m3) and a spatial blocking cross-validation method (RMSE = 2.8 μg/m3). [Display omitted] •Air pollution maps were developed using low-cost sensors.•Spatially varying data were obtained by community scientists while cycling.•Sensor measurement errors demonstrate a strong correlation with humidity.•Spatial blocking cross-validation is compared with a random sample approach.•Automated machine learning is applied for model development.
ArticleNumber 117479
Author Adams, Matthew D.
Cupini, Calvin
Massey, Felix
Chastko, Karl
Author_xml – sequence: 1
  givenname: Matthew D.
  surname: Adams
  fullname: Adams, Matthew D.
  email: md.adams@utoronto.ca
  organization: Department of Geography, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
– sequence: 2
  givenname: Felix
  surname: Massey
  fullname: Massey, Felix
  organization: Department of Geography, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
– sequence: 3
  givenname: Karl
  surname: Chastko
  fullname: Chastko, Karl
  organization: Department of Geography, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
– sequence: 4
  givenname: Calvin
  surname: Cupini
  fullname: Cupini, Calvin
  organization: Clean Air Carolina, PO Box 5311, Charlotte, NC, 28299, USA
BookMark eNqFUctu3DAMNIoEaB79hULHHuKtLMmWDfTQIkgfQIAempwFWqazWsiSK8kb7A_3OyrvppdechJFzpBDzmVx5rzDonhf0U1Fq-bjbgNp8hHdfsMoy8lKCtm9KS6qVvKStUKc5ZjXrGS8om-Lyxh3lFIuO3lR_Pk1QzJgyeQHtNa4J-JHMkNIRi8WEpIJUsJAwAQye2uXZLwjeVr0gUwIcQk4oUuR6FxFnXAg_SF_pmlxJh1I1CaXTcyI562xSPRBr3NuiAU3kCUiCfgUMMa18bNJWxJfNOngYyz3YM0A69gbsjJgnq3Rx0RcxU6gt8YhsQjBrQuMWVkmQBYRQlaUgdfF-Qg24ruX96p4_Hr3cPu9vP_57cftl_tSc1Gnsm862fOmGTteaw79QHum6VCzptWt5rIdakplzXvRV0K0TI5dJ2rZg6hqBlLzq-LDqe8c_O8FY1KTiTofFhz6JSomeNW2gjOWoZ9O0OOWAUelTTpulQIYqyqqVnvVTv2zV632qpO9md78R5-DmSAcXid-PhEx32FvMKijQxoHsx5LDd681uIv7FzOAA
CitedBy_id crossref_primary_10_3390_s22072767
crossref_primary_10_1016_j_envint_2024_108430
crossref_primary_10_1007_s10661_021_09351_0
crossref_primary_10_1016_j_envres_2021_111163
crossref_primary_10_1016_j_atmosenv_2024_120587
crossref_primary_10_3390_s20123582
crossref_primary_10_1016_j_envpol_2021_118597
crossref_primary_10_1109_JSTARS_2025_3535762
crossref_primary_10_3390_ijerph18137115
crossref_primary_10_5194_amt_14_5333_2021
crossref_primary_10_1016_j_buildenv_2022_109249
crossref_primary_10_1057_s41599_022_01049_z
crossref_primary_10_1007_s10661_022_10453_6
crossref_primary_10_3390_su122310124
crossref_primary_10_3389_fenvs_2022_901754
crossref_primary_10_3390_su16030976
crossref_primary_10_1016_j_joclim_2021_100035
crossref_primary_10_1016_j_uclim_2024_102136
crossref_primary_10_1016_j_apr_2025_102498
crossref_primary_10_1016_j_heliyon_2024_e24724
crossref_primary_10_1007_s11869_021_01093_9
crossref_primary_10_1021_acsestair_3c00116
crossref_primary_10_1016_j_matpr_2024_03_020
crossref_primary_10_1007_s11356_021_16150_0
crossref_primary_10_1038_s41598_024_67844_7
crossref_primary_10_1016_j_isci_2025_111919
crossref_primary_10_1016_j_scs_2024_105896
crossref_primary_10_1029_2022MS003099
crossref_primary_10_1016_j_buildenv_2023_111032
crossref_primary_10_1017_dap_2023_45
crossref_primary_10_1016_j_jastp_2024_106385
crossref_primary_10_3390_en14238028
Cites_doi 10.1016/j.jenvman.2015.12.012
10.1016/j.jenvman.2019.03.108
10.1016/j.envint.2017.05.005
10.1038/jes.2015.68
10.1515/REVEH.2000.15.1-2.13
10.1038/jes.2013.15
10.1021/acs.est.7b00891
10.3390/s17081805
10.1021/acs.est.8b03395
10.1503/cmaj.121568
10.1016/j.atmosenv.2018.04.010
10.1186/1476-069X-12-43
10.1021/es803068e
10.1183/09031936.01.17407330
10.1016/j.mex.2019.06.005
10.1038/jes.2013.62
10.1016/j.envpol.2007.06.012
10.1021/es301948k
10.1016/0004-6981(77)90205-0
10.1021/es401489h
10.3390/s130100221
10.1016/j.envres.2017.04.023
10.2202/1544-6115.1309
10.1016/j.atmosenv.2006.04.052
10.3109/08958378.2011.593587
10.1039/b818477a
10.1016/j.atmosenv.2011.05.028
10.1016/0004-6981(77)90206-2
10.1016/j.atmosenv.2013.07.014
10.1016/j.atmosenv.2005.02.034
10.1016/S0140-6736(17)30505-6
10.1021/es400156t
10.5194/amt-9-5281-2016
10.1016/S1352-2310(02)00694-5
10.1021/acs.est.5b01209
10.1016/j.toxlet.2003.12.035
10.1016/j.scitotenv.2016.09.177
10.1038/s41598-019-43716-3
10.1016/j.envint.2014.11.019
10.1080/02786826.2019.1623863
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.atmosenv.2020.117479
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
ExternalDocumentID 10_1016_j_atmosenv_2020_117479
S1352231020302168
GeographicLocations North Carolina
GeographicLocations_xml – name: North Carolina
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
~02
~G-
.HR
186
3O-
53G
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
R2-
SEP
SEW
T9H
VH1
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-b697b366f935c3abd0b2c0d5268c8c378d500753b4b144827f99457ba4152a7c3
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Wed Oct 01 13:26:33 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Wed Oct 29 21:11:24 EDT 2025
Fri Feb 23 02:47:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Community science
Land use regression
Cycling
Citizen science
Particulate matter
Cross-validation
Machine learning
Air pollution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-b697b366f935c3abd0b2c0d5268c8c378d500753b4b144827f99457ba4152a7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2431884322
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2431884322
crossref_citationtrail_10_1016_j_atmosenv_2020_117479
crossref_primary_10_1016_j_atmosenv_2020_117479
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2020_117479
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Atmospheric environment (1994)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kumar, Morawska, Martani, Biskos, Neophytou, Di Sabatino, Bell, Norford, Britter (bib27) 2015; 75
van der Laan, Polley, Hubbard (bib46) 2007; 6
Wallace, Corr, Deluca, Kanaroglou, McCarry (bib47) 2009; 11
(bib43) 2018
Eeftens, Beelen, De Hoogh, Bellander, Cesaroni, Cirach, Declercq, Dedele, Dons, De Nazelle, Dimakopoulou, Eriksen, Falq, Fischer, Galassi, Gražulevičiene, Heinrich, Hoffmann, Jerrett, Keidel, Korek, Lanki, Lindley, Madsen, Mölter, Nádor, Nieuwenhuijsen, Nonnemacher, Pedeli, Raaschou-Nielsen, Patelarou, Quass, Ranzi, Schindler, Stempfelet, Stephanou, Sugiri, Tsai, Yli-Tuomi, Varró, Vienneau, Von Klot, Wolf, Brunekreef, Hoek (bib14) 2012; 46
Jerrett, Donaire-Gonzalez, Popoola, Jones, Cohen, Almanza, de Nazelle, Mead, Carrasco-Turigas, Cole-Hunter, Triguero-Mas, Seto, Nieuwenhuijsen (bib23) 2017
Apte, Messier, Gani, Brauer, Kirchstetter, Lunden, Marshall, Portier, Vermeulen, Hamburg (bib5) 2017; 51
De Hoogh, Wang, Adam, Badaloni, Beelen, Birk, Cesaroni, Cirach, Declercq, Dědelě, Dons, De Nazelle, Eeftens, Eriksen, Eriksson, Fischer, Gražulevičieně, Gryparis, Hoffmann, Jerrett, Katsouyanni, Iakovides, Lanki, Lindley, Madsen, Mölter, Mosler, Nádor, Nieuwenhuijsen, Pershagen, Peters, Phuleria, Probst-Hensch, Raaschou-Nielsen, Quass, Ranzi, Stephanou, Sugiri, Schwarze, Tsai, Yli-Tuomi, Varró, Vienneau, Weinmayr, Brunekreef, Hoek (bib13) 2013; 47
Jiao, Hagler, Williams, Sharpe, Brown, Garver, Judge, Caudill, Rickard, Davis, Weinstock, Zimmer-Dauphinee, Buckley (bib24) 2016; 9
Ozkaynak, Baxter, Dionisio, Burke (bib35) 2013; 23
Shairsingh, Jeong, Wang, Evans (bib42) 2018; 183
Cohen, Brauer, Burnett, Anderson, Frostad, Estep, Balakrishnan, Brunekreef, Dandona, Dandona, Feigin, Freedman, Hubbell, Jobling, Kan, Knibbs, Liu, Martin, Morawska, Pope, Shin, Straif, Shaddick, Thomas, van Dingenen, van Donkelaar, Vos, Murray, Forouzanfar (bib12) 2017; 389
Goldstein, Landovitz (bib18) 1977; 11
Good, Mölter, Ackerson, Bachand, Carpenter, Clark, Fedak, Kayne, Koehler, Moore, L'Orange, Quinn, Ugave, Stuart, Peel, Volckens (bib19) 2016; 26
Elen, Peters, van Poppel, Bleux, Theunis, Reggente, Standaert (bib15) 2013; 13
Hoek, Krishnan, Beelen, Peters, Ostro, Brunekreef, Kaufman (bib22) 2013; 12
Requia, Adams, Arain, Papatheodorou, Koutrakis, Mahmoud (bib37) 2017
Adams, Kanaroglou (bib1) 2016; 168
LeDell, Gill, Aiello, Fu, Candel, Click, Kraljevic, Nykodym, Aboyoun, Kurka, Malohlava (bib29) 2008
Messier, Chambliss, Gani, Alvarez, Brauer, Choi, Hamburg, Kerckhoffs, Lafranchi, Lunden, Marshall, Portier, Roy, Szpiro, Vermeulen, Apte (bib32) 2018; 52
Green, Fuller (bib20) 2006; 40
Bukowiecki, Dommen, Prevot, Richter, Weingartner, Baltensperger (bib8) 2002; 36
Saraswat, Apte, Kandlikar, Brauer, Henderson, Marshall, Vt (bib39) 2013; 47
Malings, Tanzer, Hauryliuk, Saha, Robinson, Presto, Subramanian (bib31) 2020; 54
Westerdahl, Fruin, Sax, Fine, Sioutas (bib48) 2005; 39
Englert (bib16) 2004; 149
United States Environmental Protection Agency (bib45) 2016
Miskell, Salmond, Williams (bib33) 2017; 575
Brauer, Reynolds, Hystad (bib7) 2013; 185
Rückerl, Schneider, Breitner, Cyrys, Peters (bib38) 2011; 23
Larson, Henderson, Brauer (bib28) 2009; 43
Kampa, Castanas (bib25) 2008; 151
Chastko, Adams (bib10) 2019; 240
Schwela (bib41) 2000; 15
Apte, Messier, Gani, Brauer, Kirchstetter, Lunden, Marshall, Portier, Vermeulen, Hamburg (bib4) 2017; 51
(bib36) 2018
Sydbom, Blomberg, Parnia, Stenfors, Sandström, Dahlén (bib44) 2001; 17
Goldstein, Landovitz (bib17) 1977; 11
Apte, Kirchstetter, Reich, Deshpande, Kaushik, Chel, Marshall, Nazaroff (bib3) 2011; 45
Bulot, Johnston, Basford, Easton, Apetroaie-Cristea, Foster, Morris, Cox, Loxham (bib9) 2019; 9
Chastko, Adams (bib11) 2019; 6
Mukherjee, Stanton, Graham, Roberts (bib34) 2017; 17
Lin, Masey, Wu, Jackson, Carruthers, Reis, Doherty, Beverland, Heal (bib30) 2017
Baxter, Dionisio, Burke, Ebelt Sarnat, Sarnat, Hodas, Rich, Turpin, Jones, Mannshardt, Kumar, Beevers, Ozkaynak (bib6) 2013; 23
Adams, Kanaroglou (bib2) 2015
Hankey, Marshall (bib21) 2015; 49
Kanaroglou, Adams, De Luca, Corr, Sohel (bib26) 2013; 79
Schneider, Castell, Vogt, Dauge, Lahoz, Bartonova (bib40) 2017; 106
Malings (10.1016/j.atmosenv.2020.117479_bib31) 2020; 54
Bukowiecki (10.1016/j.atmosenv.2020.117479_bib8) 2002; 36
Goldstein (10.1016/j.atmosenv.2020.117479_bib18) 1977; 11
Kampa (10.1016/j.atmosenv.2020.117479_bib25) 2008; 151
Requia (10.1016/j.atmosenv.2020.117479_bib37) 2017
Apte (10.1016/j.atmosenv.2020.117479_bib4) 2017; 51
Adams (10.1016/j.atmosenv.2020.117479_bib1) 2016; 168
Englert (10.1016/j.atmosenv.2020.117479_bib16) 2004; 149
Jiao (10.1016/j.atmosenv.2020.117479_bib24) 2016; 9
Shairsingh (10.1016/j.atmosenv.2020.117479_bib42) 2018; 183
Sydbom (10.1016/j.atmosenv.2020.117479_bib44) 2001; 17
Brauer (10.1016/j.atmosenv.2020.117479_bib7) 2013; 185
Good (10.1016/j.atmosenv.2020.117479_bib19) 2016; 26
Hoek (10.1016/j.atmosenv.2020.117479_bib22) 2013; 12
Messier (10.1016/j.atmosenv.2020.117479_bib32) 2018; 52
Goldstein (10.1016/j.atmosenv.2020.117479_bib17) 1977; 11
Larson (10.1016/j.atmosenv.2020.117479_bib28) 2009; 43
Saraswat (10.1016/j.atmosenv.2020.117479_bib39) 2013; 47
(10.1016/j.atmosenv.2020.117479_bib36) 2018
Lin (10.1016/j.atmosenv.2020.117479_bib30) 2017
Schwela (10.1016/j.atmosenv.2020.117479_bib41) 2000; 15
United States Environmental Protection Agency (10.1016/j.atmosenv.2020.117479_bib45) 2016
Wallace (10.1016/j.atmosenv.2020.117479_bib47) 2009; 11
Adams (10.1016/j.atmosenv.2020.117479_bib2) 2015
Miskell (10.1016/j.atmosenv.2020.117479_bib33) 2017; 575
Rückerl (10.1016/j.atmosenv.2020.117479_bib38) 2011; 23
De Hoogh (10.1016/j.atmosenv.2020.117479_bib13) 2013; 47
(10.1016/j.atmosenv.2020.117479_bib43) 2018
Mukherjee (10.1016/j.atmosenv.2020.117479_bib34) 2017; 17
Chastko (10.1016/j.atmosenv.2020.117479_bib10) 2019; 240
Hankey (10.1016/j.atmosenv.2020.117479_bib21) 2015; 49
Kanaroglou (10.1016/j.atmosenv.2020.117479_bib26) 2013; 79
Apte (10.1016/j.atmosenv.2020.117479_bib3) 2011; 45
Apte (10.1016/j.atmosenv.2020.117479_bib5) 2017; 51
Bulot (10.1016/j.atmosenv.2020.117479_bib9) 2019; 9
Cohen (10.1016/j.atmosenv.2020.117479_bib12) 2017; 389
Baxter (10.1016/j.atmosenv.2020.117479_bib6) 2013; 23
Green (10.1016/j.atmosenv.2020.117479_bib20) 2006; 40
Jerrett (10.1016/j.atmosenv.2020.117479_bib23) 2017
Ozkaynak (10.1016/j.atmosenv.2020.117479_bib35) 2013; 23
Eeftens (10.1016/j.atmosenv.2020.117479_bib14) 2012; 46
Chastko (10.1016/j.atmosenv.2020.117479_bib11) 2019; 6
Westerdahl (10.1016/j.atmosenv.2020.117479_bib48) 2005; 39
Schneider (10.1016/j.atmosenv.2020.117479_bib40) 2017; 106
Elen (10.1016/j.atmosenv.2020.117479_bib15) 2013; 13
LeDell (10.1016/j.atmosenv.2020.117479_bib29) 2008
Kumar (10.1016/j.atmosenv.2020.117479_bib27) 2015; 75
van der Laan (10.1016/j.atmosenv.2020.117479_bib46) 2007; 6
References_xml – year: 2017
  ident: bib30
  article-title: Practical field calibration of portable monitors for mobile measurements of multiple air pollutants
  publication-title: Atmosphere (Basel)
– year: 2016
  ident: bib45
  article-title: List of designated reference and equivalent methods
  publication-title: Natl. Expo. Res. Lab. Expo. Methods Meas. Div.
– volume: 11
  start-page: 47
  year: 1977
  end-page: 52
  ident: bib17
  article-title: Analysis of air pollution patterns in New York City—I. Can one station represent the large metropolitan area?
  publication-title: Atmos. Environ.
– start-page: 183
  year: 2015
  end-page: 196
  ident: bib2
  article-title: A method for reducing classical error in long-term average air pollution concentrations from incomplete time-series data
  publication-title: Volume: Spatial Analysis in Health Geography
– volume: 51
  start-page: 6999
  year: 2017
  end-page: 7008
  ident: bib4
  article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data
  publication-title: Environ. Sci. Technol.
– volume: 106
  start-page: 234
  year: 2017
  end-page: 247
  ident: bib40
  article-title: Mapping urban air quality in near real-time using observations from low-cost sensors and model information
  publication-title: Environ. Int.
– volume: 240
  start-page: 249
  year: 2019
  end-page: 258
  ident: bib10
  article-title: Assessing the accuracy of long-term air pollution estimates produced with temporally adjusted short-term observations from unstructured sampling
  publication-title: J. Environ. Manag.
– volume: 6
  start-page: 1489
  year: 2019
  end-page: 1495
  ident: bib11
  article-title: Improving long-term air pollution estimates with incomplete data: a method-fusion approach
  publication-title: MethodsX
– volume: 23
  start-page: 566
  year: 2013
  end-page: 572
  ident: bib35
  article-title: Air pollution exposure prediction approaches used in air pollution epidemiology studies
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 47
  start-page: 5778
  year: 2013
  end-page: 5786
  ident: bib13
  article-title: Development of land use regression models for particle composition in twenty study areas in Europe
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 654
  year: 2013
  end-page: 659
  ident: bib6
  article-title: Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 52
  start-page: 12563
  year: 2018
  end-page: 12572
  ident: bib32
  article-title: Mapping air pollution with google Street View cars: efficient approaches with mobile monitoring and land use regression
  publication-title: Environ. Sci. Technol.
– volume: 575
  start-page: 1119
  year: 2017
  end-page: 1129
  ident: bib33
  article-title: Low-cost sensors and crowd-sourced data: observations of siting impacts on a network of air-quality instruments
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 4672
  year: 2009
  end-page: 4678
  ident: bib28
  article-title: Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 3597
  year: 2005
  end-page: 3610
  ident: bib48
  article-title: Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles
  publication-title: Atmos. Environ.
– volume: 23
  start-page: 555
  year: 2011
  end-page: 592
  ident: bib38
  article-title: Health effects of particulate air pollution: a review of epidemiological evidence
  publication-title: Inhal. Toxicol.
– volume: 185
  start-page: 1557
  year: 2013
  end-page: 1558
  ident: bib7
  article-title: Traffic-related air pollution and health in Canada
  publication-title: Can. Med. Assoc. J.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib9
  article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment
  publication-title: Sci. Rep.
– volume: 13
  start-page: 221
  year: 2013
  end-page: 240
  ident: bib15
  article-title: The Aeroflex: a bicycle for mobile air quality measurements
  publication-title: Sensors (Switzerland)
– volume: 151
  start-page: 362
  year: 2008
  end-page: 367
  ident: bib25
  article-title: Human health effects of air pollution
  publication-title: Environ. Pollut.
– year: 2008
  ident: bib29
  article-title: h2o: R Interface for “H2O
– year: 2018
  ident: bib43
  article-title: Field Evaluation Purple Air PM Sensor
– volume: 9
  start-page: 5281
  year: 2016
  end-page: 5292
  ident: bib24
  article-title: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States
  publication-title: Atmos. Meas. Tech.
– volume: 149
  start-page: 235
  year: 2004
  end-page: 242
  ident: bib16
  article-title: Fine particles and human health--a review of epidemiological studies. [Review] [19 refs]
  publication-title: Toxicol. Lett.
– volume: 17
  year: 2017
  ident: bib34
  article-title: Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California
  publication-title: Sensors (Switzerland)
– volume: 45
  start-page: 4470
  year: 2011
  end-page: 4480
  ident: bib3
  article-title: Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India
  publication-title: Atmos. Environ.
– volume: 36
  start-page: 5569
  year: 2002
  end-page: 5579
  ident: bib8
  article-title: A mobile pollutant measurement laboratory — measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution
  publication-title: Atmos. Environ.
– volume: 168
  start-page: 133
  year: 2016
  end-page: 141
  ident: bib1
  article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models
  publication-title: J. Environ. Manag.
– volume: 6
  year: 2007
  ident: bib46
  article-title: Super learner
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 26
  start-page: 397
  year: 2016
  end-page: 404
  ident: bib19
  article-title: The Fort Collins Commuter Study: impact of route type and transport mode on personal exposure to multiple air pollutants
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 51
  start-page: 6999
  year: 2017
  end-page: 7008
  ident: bib5
  article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 998
  year: 2009
  end-page: 1003
  ident: bib47
  article-title: Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada
  publication-title: J. Environ. Monit.
– volume: 11
  start-page: 53
  year: 1977
  end-page: 57
  ident: bib18
  article-title: Analysis of air pollution patterns in New York City—II. Can one aerometric station represent the area surrounding it?
  publication-title: Atmos. Environ.
– volume: 54
  start-page: 160
  year: 2020
  end-page: 174
  ident: bib31
  article-title: Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation
  publication-title: Aerosol Sci. Technol.
– volume: 389
  start-page: 1907
  year: 2017
  end-page: 1918
  ident: bib12
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015
  publication-title: Lancet
– volume: 40
  start-page: 5608
  year: 2006
  end-page: 5616
  ident: bib20
  article-title: The implications of tapered element oscillating microbalance (TEOM) software configuration on particulate matter measurements in the UK and Europe
  publication-title: Atmos. Environ.
– volume: 47
  start-page: 12903
  year: 2013
  end-page: 12911
  ident: bib39
  article-title: Spatiotemporal land use regression models of fine, ultrafine and black carbon particulate matter in New Delhi, India
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 733
  year: 2001
  end-page: 746
  ident: bib44
  article-title: Health effects of diesel exhaust emissions
  publication-title: Eur. Respir. J.
– year: 2018
  ident: bib36
  article-title: R: A Language and Environment for Statistical Computing
– volume: 49
  start-page: 9194
  year: 2015
  end-page: 9202
  ident: bib21
  article-title: Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring
  publication-title: Environ. Sci. Technol.
– volume: 12
  start-page: 43
  year: 2013
  ident: bib22
  article-title: Long-term air pollution exposure and cardio- respiratory mortality: a review
  publication-title: Environ. Health
– volume: 79
  start-page: 421
  year: 2013
  end-page: 427
  ident: bib26
  article-title: Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model
  publication-title: Atmos. Environ.
– start-page: e1
  year: 2017
  end-page: e8
  ident: bib37
  article-title: Global association of air pollution and cardiorespiratory diseases: a systematic review, meta-analysis, and investigation of modifier variables
  publication-title: Am. J. Public Health
– volume: 46
  start-page: 11195
  year: 2012
  end-page: 11205
  ident: bib14
  article-title: Development of land use regression models for PM2.5, PM 2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project
  publication-title: Environ. Sci. Technol.
– volume: 183
  start-page: 57
  year: 2018
  end-page: 68
  ident: bib42
  article-title: Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale
  publication-title: Atmos. Environ.
– year: 2017
  ident: bib23
  article-title: Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science
  publication-title: Environ. Res.
– volume: 75
  start-page: 199
  year: 2015
  end-page: 205
  ident: bib27
  article-title: The rise of low-cost sensing for managing air pollution in cities
  publication-title: Environ. Int.
– volume: 15
  start-page: 13
  year: 2000
  end-page: 42
  ident: bib41
  article-title: Air pollution and health in urban areas
  publication-title: Rev. Environ. Health
– year: 2016
  ident: 10.1016/j.atmosenv.2020.117479_bib45
  article-title: List of designated reference and equivalent methods
  publication-title: Natl. Expo. Res. Lab. Expo. Methods Meas. Div.
– volume: 168
  start-page: 133
  year: 2016
  ident: 10.1016/j.atmosenv.2020.117479_bib1
  article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.12.012
– volume: 240
  start-page: 249
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117479_bib10
  article-title: Assessing the accuracy of long-term air pollution estimates produced with temporally adjusted short-term observations from unstructured sampling
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.03.108
– volume: 106
  start-page: 234
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib40
  article-title: Mapping urban air quality in near real-time using observations from low-cost sensors and model information
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.05.005
– volume: 26
  start-page: 397
  year: 2016
  ident: 10.1016/j.atmosenv.2020.117479_bib19
  article-title: The Fort Collins Commuter Study: impact of route type and transport mode on personal exposure to multiple air pollutants
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2015.68
– volume: 15
  start-page: 13
  year: 2000
  ident: 10.1016/j.atmosenv.2020.117479_bib41
  article-title: Air pollution and health in urban areas
  publication-title: Rev. Environ. Health
  doi: 10.1515/REVEH.2000.15.1-2.13
– year: 2018
  ident: 10.1016/j.atmosenv.2020.117479_bib43
– volume: 23
  start-page: 566
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib35
  article-title: Air pollution exposure prediction approaches used in air pollution epidemiology studies
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2013.15
– start-page: 183
  year: 2015
  ident: 10.1016/j.atmosenv.2020.117479_bib2
  article-title: A method for reducing classical error in long-term average air pollution concentrations from incomplete time-series data
– volume: 51
  start-page: 6999
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib4
  article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00891
– volume: 17
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib34
  article-title: Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s17081805
– volume: 52
  start-page: 12563
  year: 2018
  ident: 10.1016/j.atmosenv.2020.117479_bib32
  article-title: Mapping air pollution with google Street View cars: efficient approaches with mobile monitoring and land use regression
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03395
– volume: 185
  start-page: 1557
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib7
  article-title: Traffic-related air pollution and health in Canada
  publication-title: Can. Med. Assoc. J.
  doi: 10.1503/cmaj.121568
– volume: 183
  start-page: 57
  year: 2018
  ident: 10.1016/j.atmosenv.2020.117479_bib42
  article-title: Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.04.010
– volume: 12
  start-page: 43
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib22
  article-title: Long-term air pollution exposure and cardio- respiratory mortality: a review
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-12-43
– volume: 43
  start-page: 4672
  year: 2009
  ident: 10.1016/j.atmosenv.2020.117479_bib28
  article-title: Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803068e
– volume: 17
  start-page: 733
  year: 2001
  ident: 10.1016/j.atmosenv.2020.117479_bib44
  article-title: Health effects of diesel exhaust emissions
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.01.17407330
– volume: 6
  start-page: 1489
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117479_bib11
  article-title: Improving long-term air pollution estimates with incomplete data: a method-fusion approach
  publication-title: MethodsX
  doi: 10.1016/j.mex.2019.06.005
– volume: 23
  start-page: 654
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib6
  article-title: Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2013.62
– volume: 151
  start-page: 362
  year: 2008
  ident: 10.1016/j.atmosenv.2020.117479_bib25
  article-title: Human health effects of air pollution
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.06.012
– volume: 46
  start-page: 11195
  year: 2012
  ident: 10.1016/j.atmosenv.2020.117479_bib14
  article-title: Development of land use regression models for PM2.5, PM 2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301948k
– year: 2018
  ident: 10.1016/j.atmosenv.2020.117479_bib36
– volume: 11
  start-page: 47
  year: 1977
  ident: 10.1016/j.atmosenv.2020.117479_bib17
  article-title: Analysis of air pollution patterns in New York City—I. Can one station represent the large metropolitan area?
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(77)90205-0
– year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib30
  article-title: Practical field calibration of portable monitors for mobile measurements of multiple air pollutants
– volume: 47
  start-page: 12903
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib39
  article-title: Spatiotemporal land use regression models of fine, ultrafine and black carbon particulate matter in New Delhi, India
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401489h
– volume: 13
  start-page: 221
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib15
  article-title: The Aeroflex: a bicycle for mobile air quality measurements
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s130100221
– year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib23
  article-title: Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.04.023
– volume: 6
  year: 2007
  ident: 10.1016/j.atmosenv.2020.117479_bib46
  article-title: Super learner
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1309
– volume: 40
  start-page: 5608
  year: 2006
  ident: 10.1016/j.atmosenv.2020.117479_bib20
  article-title: The implications of tapered element oscillating microbalance (TEOM) software configuration on particulate matter measurements in the UK and Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.04.052
– volume: 23
  start-page: 555
  year: 2011
  ident: 10.1016/j.atmosenv.2020.117479_bib38
  article-title: Health effects of particulate air pollution: a review of epidemiological evidence
  publication-title: Inhal. Toxicol.
  doi: 10.3109/08958378.2011.593587
– volume: 11
  start-page: 998
  year: 2009
  ident: 10.1016/j.atmosenv.2020.117479_bib47
  article-title: Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada
  publication-title: J. Environ. Monit.
  doi: 10.1039/b818477a
– volume: 45
  start-page: 4470
  year: 2011
  ident: 10.1016/j.atmosenv.2020.117479_bib3
  article-title: Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.05.028
– volume: 11
  start-page: 53
  year: 1977
  ident: 10.1016/j.atmosenv.2020.117479_bib18
  article-title: Analysis of air pollution patterns in New York City—II. Can one aerometric station represent the area surrounding it?
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(77)90206-2
– volume: 79
  start-page: 421
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib26
  article-title: Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.07.014
– volume: 39
  start-page: 3597
  year: 2005
  ident: 10.1016/j.atmosenv.2020.117479_bib48
  article-title: Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.02.034
– volume: 389
  start-page: 1907
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib12
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30505-6
– volume: 47
  start-page: 5778
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117479_bib13
  article-title: Development of land use regression models for particle composition in twenty study areas in Europe
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400156t
– volume: 9
  start-page: 5281
  year: 2016
  ident: 10.1016/j.atmosenv.2020.117479_bib24
  article-title: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-9-5281-2016
– volume: 36
  start-page: 5569
  year: 2002
  ident: 10.1016/j.atmosenv.2020.117479_bib8
  article-title: A mobile pollutant measurement laboratory — measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(02)00694-5
– year: 2008
  ident: 10.1016/j.atmosenv.2020.117479_bib29
– volume: 49
  start-page: 9194
  year: 2015
  ident: 10.1016/j.atmosenv.2020.117479_bib21
  article-title: Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01209
– volume: 149
  start-page: 235
  year: 2004
  ident: 10.1016/j.atmosenv.2020.117479_bib16
  article-title: Fine particles and human health--a review of epidemiological studies. [Review] [19 refs]
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2003.12.035
– volume: 575
  start-page: 1119
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib33
  article-title: Low-cost sensors and crowd-sourced data: observations of siting impacts on a network of air-quality instruments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.09.177
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117479_bib9
  article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43716-3
– volume: 75
  start-page: 199
  year: 2015
  ident: 10.1016/j.atmosenv.2020.117479_bib27
  article-title: The rise of low-cost sensing for managing air pollution in cities
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.11.019
– volume: 54
  start-page: 160
  year: 2020
  ident: 10.1016/j.atmosenv.2020.117479_bib31
  article-title: Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2019.1623863
– volume: 51
  start-page: 6999
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib5
  article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00891
– start-page: e1
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117479_bib37
  article-title: Global association of air pollution and cardiorespiratory diseases: a systematic review, meta-analysis, and investigation of modifier variables
  publication-title: Am. J. Public Health
SSID ssj0003797
Score 2.4952765
Snippet Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution...
Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM₂.₅) air pollution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117479
SubjectTerms Air pollution
algorithms
artificial intelligence
atmospheric chemistry
Citizen science
Community science
Cross-validation
Cycling
humidity
land use
Land use regression
Machine learning
North Carolina
Particulate matter
particulates
regression analysis
United States Environmental Protection Agency
Title Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction
URI https://dx.doi.org/10.1016/j.atmosenv.2020.117479
https://www.proquest.com/docview/2431884322
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamcYEDgsHE-DE9JI4zbWIncY7TtKmA2AUm7WbZjls60aRKWqZe9ufyd_Ce49CCkHbgmMqOXu3Pz5_j997H2LuqyCUST8ORKwtOFbi4EWPHU2HytJRZMg36KZ8v88mV_HidXe-xsyEXhsIqo-_vfXrw1vGXURzN0XI-H31JiDsgO0kRp2mSU8KvlAWpGLy_24Z5iKIXWMHGnFrvZAnf4Iwsms7XP_CcmIb7S0khXf_eoP5y1WH_uXjCHkfiCKe9bU_Znq8P2KOdcoIH7PB8m7WGTeOy7Z6xnyQ8jECDoHtDCejQTGEZ_ifJd3lYhDKbYOYtLEn8mKYL0OauaWGx_YzYAeEGx8tXYDf4ELJLVhvo8yoRMh3cfkNHA25DOZezE6DISVh3Hlo_62Nua6CPv9BFm8IwcAT8vJd3OgHqsXuxTsYuQtCnh6hyMQMk20DhrWhEG7x2Uz9nVxfnX88mPAo8cCdktuI2Lwsr8nxaiswJY6uxTd24ogo0TjlRqCojSiOstHjuU2kxLRE-hTXEOkzhxCHbr5vav2CAJyNZpcqXCpsWxqhxpRJnvEgSYb3Ij1g2zKp2sfo5iXB810OY240e0KAJDbpHwxEb_e637Ot_3NujHECj_0Cyxk3q3r5vB5RpXOZ0d2Nq36w7nSLRU0qi-335H-9_xR7SUx_q9prtr9q1f4OkamWPw6o5Zg9OP3yaXP4Cw0gpDw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVKOQAHVAoVpXwMEscuydr74T2iqlWAthdaqTfL9jppKrIb7SagXPpz-R3M2LtNQEg9cExiR7P28_h5PTOPsQ9lniVIPHWEXFlEVIEr0mJoIy50xoskjcdeP-XsPBtdJl-u0qstdtTnwlBYZef7g0_33rr7ZtCN5mA-nQ6-xcQdkJ1wxCmPM_mAPUxSntMJ7OPtOs5D5EFhBVtH1HwjTfgGp2RWt676gQdF7i8wE4rp-vcO9Zev9hvQyQ572jFH-BSMe8a2XLXLnmzUE9xle8frtDVs2q3b9jn7RcrDiDTwwjeUgQ71GOb-QUm_y8HM19kEPW1gTurHNF-ANrd1A7P1e8QWCDg4YK4Es8IPPr1ksYKQWImYaeHnNXoasCtKupwcAoVOwrJ10LhJCLqtgN7-QtvZ5IchQsRPg77TIVCPzZt1Mnbmoz4ddDIXE0C2DRTfikY03m3X1Qt2eXJ8cTSKOoWHyIokXUQmK3IjsmxciNQKbcqh4XZYUgkaK63IZZkSpxEmMXjwkzwfF4if3GiiHTq3Yo9tV3XlXjLAo1FScukKiU1zreWwlLHVTsSxME5k-yztZ1XZrvw5qXB8V32c243q0aAIDSqgYZ8N7vrNQwGQe3sUPWjUH1BWuEvd2_d9jzKF65wub3Tl6mWrODI9KRP0v6_-4__fsUeji7NTdfr5_OsBe0y_hLi312x70SzdG2RYC_PWr6DfWzYqpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+modelling+of+particulate+matter+air+pollution+sensor+measurements+collected+by+community+scientists+while+cycling%2C+land+use+regression+with+spatial+cross-validation%2C+and+applications+of+machine+learning+for+data+correction&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Adams%2C+Matthew+D.&rft.au=Massey%2C+Felix&rft.au=Chastko%2C+Karl&rft.au=Cupini%2C+Calvin&rft.date=2020-06-01&rft.issn=1352-2310&rft.volume=230&rft.spage=117479&rft_id=info:doi/10.1016%2Fj.atmosenv.2020.117479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2020_117479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon