Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction
Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using...
Saved in:
| Published in | Atmospheric environment (1994) Vol. 230; p. 117479 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1352-2310 1873-2844 |
| DOI | 10.1016/j.atmosenv.2020.117479 |
Cover
| Abstract | Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 μg/m3 and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 μg/m3 to 3.8 μg/m3, and the mean bias was reduced to −0.5 μg/m3. Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R2 of 0.15 and a cross-validation R2 of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 μg/m3, a root mean squared error of 1.95 μg/m3, and a mean absolute error of 0.95 μg/m3. Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 μg/m3) and a spatial blocking cross-validation method (RMSE = 2.8 μg/m3).
[Display omitted]
•Air pollution maps were developed using low-cost sensors.•Spatially varying data were obtained by community scientists while cycling.•Sensor measurement errors demonstrate a strong correlation with humidity.•Spatial blocking cross-validation is compared with a random sample approach.•Automated machine learning is applied for model development. |
|---|---|
| AbstractList | Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM₂.₅) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 μg/m³ and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 μg/m³ to 3.8 μg/m³, and the mean bias was reduced to −0.5 μg/m³. Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R² of 0.15 and a cross-validation R² of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 μg/m³, a root mean squared error of 1.95 μg/m³, and a mean absolute error of 0.95 μg/m³. Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 μg/m³) and a spatial blocking cross-validation method (RMSE = 2.8 μg/m³). Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 μg/m3 and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 μg/m3 to 3.8 μg/m3, and the mean bias was reduced to −0.5 μg/m3. Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R2 of 0.15 and a cross-validation R2 of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 μg/m3, a root mean squared error of 1.95 μg/m3, and a mean absolute error of 0.95 μg/m3. Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 μg/m3) and a spatial blocking cross-validation method (RMSE = 2.8 μg/m3). [Display omitted] •Air pollution maps were developed using low-cost sensors.•Spatially varying data were obtained by community scientists while cycling.•Sensor measurement errors demonstrate a strong correlation with humidity.•Spatial blocking cross-validation is compared with a random sample approach.•Automated machine learning is applied for model development. |
| ArticleNumber | 117479 |
| Author | Adams, Matthew D. Cupini, Calvin Massey, Felix Chastko, Karl |
| Author_xml | – sequence: 1 givenname: Matthew D. surname: Adams fullname: Adams, Matthew D. email: md.adams@utoronto.ca organization: Department of Geography, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada – sequence: 2 givenname: Felix surname: Massey fullname: Massey, Felix organization: Department of Geography, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada – sequence: 3 givenname: Karl surname: Chastko fullname: Chastko, Karl organization: Department of Geography, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada – sequence: 4 givenname: Calvin surname: Cupini fullname: Cupini, Calvin organization: Clean Air Carolina, PO Box 5311, Charlotte, NC, 28299, USA |
| BookMark | eNqFUctu3DAMNIoEaB79hULHHuKtLMmWDfTQIkgfQIAempwFWqazWsiSK8kb7A_3OyrvppdechJFzpBDzmVx5rzDonhf0U1Fq-bjbgNp8hHdfsMoy8lKCtm9KS6qVvKStUKc5ZjXrGS8om-Lyxh3lFIuO3lR_Pk1QzJgyeQHtNa4J-JHMkNIRi8WEpIJUsJAwAQye2uXZLwjeVr0gUwIcQk4oUuR6FxFnXAg_SF_pmlxJh1I1CaXTcyI562xSPRBr3NuiAU3kCUiCfgUMMa18bNJWxJfNOngYyz3YM0A69gbsjJgnq3Rx0RcxU6gt8YhsQjBrQuMWVkmQBYRQlaUgdfF-Qg24ruX96p4_Hr3cPu9vP_57cftl_tSc1Gnsm862fOmGTteaw79QHum6VCzptWt5rIdakplzXvRV0K0TI5dJ2rZg6hqBlLzq-LDqe8c_O8FY1KTiTofFhz6JSomeNW2gjOWoZ9O0OOWAUelTTpulQIYqyqqVnvVTv2zV632qpO9md78R5-DmSAcXid-PhEx32FvMKijQxoHsx5LDd681uIv7FzOAA |
| CitedBy_id | crossref_primary_10_3390_s22072767 crossref_primary_10_1016_j_envint_2024_108430 crossref_primary_10_1007_s10661_021_09351_0 crossref_primary_10_1016_j_envres_2021_111163 crossref_primary_10_1016_j_atmosenv_2024_120587 crossref_primary_10_3390_s20123582 crossref_primary_10_1016_j_envpol_2021_118597 crossref_primary_10_1109_JSTARS_2025_3535762 crossref_primary_10_3390_ijerph18137115 crossref_primary_10_5194_amt_14_5333_2021 crossref_primary_10_1016_j_buildenv_2022_109249 crossref_primary_10_1057_s41599_022_01049_z crossref_primary_10_1007_s10661_022_10453_6 crossref_primary_10_3390_su122310124 crossref_primary_10_3389_fenvs_2022_901754 crossref_primary_10_3390_su16030976 crossref_primary_10_1016_j_joclim_2021_100035 crossref_primary_10_1016_j_uclim_2024_102136 crossref_primary_10_1016_j_apr_2025_102498 crossref_primary_10_1016_j_heliyon_2024_e24724 crossref_primary_10_1007_s11869_021_01093_9 crossref_primary_10_1021_acsestair_3c00116 crossref_primary_10_1016_j_matpr_2024_03_020 crossref_primary_10_1007_s11356_021_16150_0 crossref_primary_10_1038_s41598_024_67844_7 crossref_primary_10_1016_j_isci_2025_111919 crossref_primary_10_1016_j_scs_2024_105896 crossref_primary_10_1029_2022MS003099 crossref_primary_10_1016_j_buildenv_2023_111032 crossref_primary_10_1017_dap_2023_45 crossref_primary_10_1016_j_jastp_2024_106385 crossref_primary_10_3390_en14238028 |
| Cites_doi | 10.1016/j.jenvman.2015.12.012 10.1016/j.jenvman.2019.03.108 10.1016/j.envint.2017.05.005 10.1038/jes.2015.68 10.1515/REVEH.2000.15.1-2.13 10.1038/jes.2013.15 10.1021/acs.est.7b00891 10.3390/s17081805 10.1021/acs.est.8b03395 10.1503/cmaj.121568 10.1016/j.atmosenv.2018.04.010 10.1186/1476-069X-12-43 10.1021/es803068e 10.1183/09031936.01.17407330 10.1016/j.mex.2019.06.005 10.1038/jes.2013.62 10.1016/j.envpol.2007.06.012 10.1021/es301948k 10.1016/0004-6981(77)90205-0 10.1021/es401489h 10.3390/s130100221 10.1016/j.envres.2017.04.023 10.2202/1544-6115.1309 10.1016/j.atmosenv.2006.04.052 10.3109/08958378.2011.593587 10.1039/b818477a 10.1016/j.atmosenv.2011.05.028 10.1016/0004-6981(77)90206-2 10.1016/j.atmosenv.2013.07.014 10.1016/j.atmosenv.2005.02.034 10.1016/S0140-6736(17)30505-6 10.1021/es400156t 10.5194/amt-9-5281-2016 10.1016/S1352-2310(02)00694-5 10.1021/acs.est.5b01209 10.1016/j.toxlet.2003.12.035 10.1016/j.scitotenv.2016.09.177 10.1038/s41598-019-43716-3 10.1016/j.envint.2014.11.019 10.1080/02786826.2019.1623863 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.atmosenv.2020.117479 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1873-2844 |
| ExternalDocumentID | 10_1016_j_atmosenv_2020_117479 S1352231020302168 |
| GeographicLocations | North Carolina |
| GeographicLocations_xml | – name: North Carolina |
| GroupedDBID | --- --K --M -DZ -~X ..I .DC .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SEN SES SPC SPCBC SSE SSJ SSZ T5K TAE ~02 ~G- .HR 186 3O- 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ R2- SEP SEW T9H VH1 WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-b697b366f935c3abd0b2c0d5268c8c378d500753b4b144827f99457ba4152a7c3 |
| IEDL.DBID | .~1 |
| ISSN | 1352-2310 |
| IngestDate | Wed Oct 01 13:26:33 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Wed Oct 29 21:11:24 EDT 2025 Fri Feb 23 02:47:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Community science Land use regression Cycling Citizen science Particulate matter Cross-validation Machine learning Air pollution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-b697b366f935c3abd0b2c0d5268c8c378d500753b4b144827f99457ba4152a7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2431884322 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2431884322 crossref_citationtrail_10_1016_j_atmosenv_2020_117479 crossref_primary_10_1016_j_atmosenv_2020_117479 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2020_117479 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Atmospheric environment (1994) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kumar, Morawska, Martani, Biskos, Neophytou, Di Sabatino, Bell, Norford, Britter (bib27) 2015; 75 van der Laan, Polley, Hubbard (bib46) 2007; 6 Wallace, Corr, Deluca, Kanaroglou, McCarry (bib47) 2009; 11 (bib43) 2018 Eeftens, Beelen, De Hoogh, Bellander, Cesaroni, Cirach, Declercq, Dedele, Dons, De Nazelle, Dimakopoulou, Eriksen, Falq, Fischer, Galassi, Gražulevičiene, Heinrich, Hoffmann, Jerrett, Keidel, Korek, Lanki, Lindley, Madsen, Mölter, Nádor, Nieuwenhuijsen, Nonnemacher, Pedeli, Raaschou-Nielsen, Patelarou, Quass, Ranzi, Schindler, Stempfelet, Stephanou, Sugiri, Tsai, Yli-Tuomi, Varró, Vienneau, Von Klot, Wolf, Brunekreef, Hoek (bib14) 2012; 46 Jerrett, Donaire-Gonzalez, Popoola, Jones, Cohen, Almanza, de Nazelle, Mead, Carrasco-Turigas, Cole-Hunter, Triguero-Mas, Seto, Nieuwenhuijsen (bib23) 2017 Apte, Messier, Gani, Brauer, Kirchstetter, Lunden, Marshall, Portier, Vermeulen, Hamburg (bib5) 2017; 51 De Hoogh, Wang, Adam, Badaloni, Beelen, Birk, Cesaroni, Cirach, Declercq, Dědelě, Dons, De Nazelle, Eeftens, Eriksen, Eriksson, Fischer, Gražulevičieně, Gryparis, Hoffmann, Jerrett, Katsouyanni, Iakovides, Lanki, Lindley, Madsen, Mölter, Mosler, Nádor, Nieuwenhuijsen, Pershagen, Peters, Phuleria, Probst-Hensch, Raaschou-Nielsen, Quass, Ranzi, Stephanou, Sugiri, Schwarze, Tsai, Yli-Tuomi, Varró, Vienneau, Weinmayr, Brunekreef, Hoek (bib13) 2013; 47 Jiao, Hagler, Williams, Sharpe, Brown, Garver, Judge, Caudill, Rickard, Davis, Weinstock, Zimmer-Dauphinee, Buckley (bib24) 2016; 9 Ozkaynak, Baxter, Dionisio, Burke (bib35) 2013; 23 Shairsingh, Jeong, Wang, Evans (bib42) 2018; 183 Cohen, Brauer, Burnett, Anderson, Frostad, Estep, Balakrishnan, Brunekreef, Dandona, Dandona, Feigin, Freedman, Hubbell, Jobling, Kan, Knibbs, Liu, Martin, Morawska, Pope, Shin, Straif, Shaddick, Thomas, van Dingenen, van Donkelaar, Vos, Murray, Forouzanfar (bib12) 2017; 389 Goldstein, Landovitz (bib18) 1977; 11 Good, Mölter, Ackerson, Bachand, Carpenter, Clark, Fedak, Kayne, Koehler, Moore, L'Orange, Quinn, Ugave, Stuart, Peel, Volckens (bib19) 2016; 26 Elen, Peters, van Poppel, Bleux, Theunis, Reggente, Standaert (bib15) 2013; 13 Hoek, Krishnan, Beelen, Peters, Ostro, Brunekreef, Kaufman (bib22) 2013; 12 Requia, Adams, Arain, Papatheodorou, Koutrakis, Mahmoud (bib37) 2017 Adams, Kanaroglou (bib1) 2016; 168 LeDell, Gill, Aiello, Fu, Candel, Click, Kraljevic, Nykodym, Aboyoun, Kurka, Malohlava (bib29) 2008 Messier, Chambliss, Gani, Alvarez, Brauer, Choi, Hamburg, Kerckhoffs, Lafranchi, Lunden, Marshall, Portier, Roy, Szpiro, Vermeulen, Apte (bib32) 2018; 52 Green, Fuller (bib20) 2006; 40 Bukowiecki, Dommen, Prevot, Richter, Weingartner, Baltensperger (bib8) 2002; 36 Saraswat, Apte, Kandlikar, Brauer, Henderson, Marshall, Vt (bib39) 2013; 47 Malings, Tanzer, Hauryliuk, Saha, Robinson, Presto, Subramanian (bib31) 2020; 54 Westerdahl, Fruin, Sax, Fine, Sioutas (bib48) 2005; 39 Englert (bib16) 2004; 149 United States Environmental Protection Agency (bib45) 2016 Miskell, Salmond, Williams (bib33) 2017; 575 Brauer, Reynolds, Hystad (bib7) 2013; 185 Rückerl, Schneider, Breitner, Cyrys, Peters (bib38) 2011; 23 Larson, Henderson, Brauer (bib28) 2009; 43 Kampa, Castanas (bib25) 2008; 151 Chastko, Adams (bib10) 2019; 240 Schwela (bib41) 2000; 15 Apte, Messier, Gani, Brauer, Kirchstetter, Lunden, Marshall, Portier, Vermeulen, Hamburg (bib4) 2017; 51 (bib36) 2018 Sydbom, Blomberg, Parnia, Stenfors, Sandström, Dahlén (bib44) 2001; 17 Goldstein, Landovitz (bib17) 1977; 11 Apte, Kirchstetter, Reich, Deshpande, Kaushik, Chel, Marshall, Nazaroff (bib3) 2011; 45 Bulot, Johnston, Basford, Easton, Apetroaie-Cristea, Foster, Morris, Cox, Loxham (bib9) 2019; 9 Chastko, Adams (bib11) 2019; 6 Mukherjee, Stanton, Graham, Roberts (bib34) 2017; 17 Lin, Masey, Wu, Jackson, Carruthers, Reis, Doherty, Beverland, Heal (bib30) 2017 Baxter, Dionisio, Burke, Ebelt Sarnat, Sarnat, Hodas, Rich, Turpin, Jones, Mannshardt, Kumar, Beevers, Ozkaynak (bib6) 2013; 23 Adams, Kanaroglou (bib2) 2015 Hankey, Marshall (bib21) 2015; 49 Kanaroglou, Adams, De Luca, Corr, Sohel (bib26) 2013; 79 Schneider, Castell, Vogt, Dauge, Lahoz, Bartonova (bib40) 2017; 106 Malings (10.1016/j.atmosenv.2020.117479_bib31) 2020; 54 Bukowiecki (10.1016/j.atmosenv.2020.117479_bib8) 2002; 36 Goldstein (10.1016/j.atmosenv.2020.117479_bib18) 1977; 11 Kampa (10.1016/j.atmosenv.2020.117479_bib25) 2008; 151 Requia (10.1016/j.atmosenv.2020.117479_bib37) 2017 Apte (10.1016/j.atmosenv.2020.117479_bib4) 2017; 51 Adams (10.1016/j.atmosenv.2020.117479_bib1) 2016; 168 Englert (10.1016/j.atmosenv.2020.117479_bib16) 2004; 149 Jiao (10.1016/j.atmosenv.2020.117479_bib24) 2016; 9 Shairsingh (10.1016/j.atmosenv.2020.117479_bib42) 2018; 183 Sydbom (10.1016/j.atmosenv.2020.117479_bib44) 2001; 17 Brauer (10.1016/j.atmosenv.2020.117479_bib7) 2013; 185 Good (10.1016/j.atmosenv.2020.117479_bib19) 2016; 26 Hoek (10.1016/j.atmosenv.2020.117479_bib22) 2013; 12 Messier (10.1016/j.atmosenv.2020.117479_bib32) 2018; 52 Goldstein (10.1016/j.atmosenv.2020.117479_bib17) 1977; 11 Larson (10.1016/j.atmosenv.2020.117479_bib28) 2009; 43 Saraswat (10.1016/j.atmosenv.2020.117479_bib39) 2013; 47 (10.1016/j.atmosenv.2020.117479_bib36) 2018 Lin (10.1016/j.atmosenv.2020.117479_bib30) 2017 Schwela (10.1016/j.atmosenv.2020.117479_bib41) 2000; 15 United States Environmental Protection Agency (10.1016/j.atmosenv.2020.117479_bib45) 2016 Wallace (10.1016/j.atmosenv.2020.117479_bib47) 2009; 11 Adams (10.1016/j.atmosenv.2020.117479_bib2) 2015 Miskell (10.1016/j.atmosenv.2020.117479_bib33) 2017; 575 Rückerl (10.1016/j.atmosenv.2020.117479_bib38) 2011; 23 De Hoogh (10.1016/j.atmosenv.2020.117479_bib13) 2013; 47 (10.1016/j.atmosenv.2020.117479_bib43) 2018 Mukherjee (10.1016/j.atmosenv.2020.117479_bib34) 2017; 17 Chastko (10.1016/j.atmosenv.2020.117479_bib10) 2019; 240 Hankey (10.1016/j.atmosenv.2020.117479_bib21) 2015; 49 Kanaroglou (10.1016/j.atmosenv.2020.117479_bib26) 2013; 79 Apte (10.1016/j.atmosenv.2020.117479_bib3) 2011; 45 Apte (10.1016/j.atmosenv.2020.117479_bib5) 2017; 51 Bulot (10.1016/j.atmosenv.2020.117479_bib9) 2019; 9 Cohen (10.1016/j.atmosenv.2020.117479_bib12) 2017; 389 Baxter (10.1016/j.atmosenv.2020.117479_bib6) 2013; 23 Green (10.1016/j.atmosenv.2020.117479_bib20) 2006; 40 Jerrett (10.1016/j.atmosenv.2020.117479_bib23) 2017 Ozkaynak (10.1016/j.atmosenv.2020.117479_bib35) 2013; 23 Eeftens (10.1016/j.atmosenv.2020.117479_bib14) 2012; 46 Chastko (10.1016/j.atmosenv.2020.117479_bib11) 2019; 6 Westerdahl (10.1016/j.atmosenv.2020.117479_bib48) 2005; 39 Schneider (10.1016/j.atmosenv.2020.117479_bib40) 2017; 106 Elen (10.1016/j.atmosenv.2020.117479_bib15) 2013; 13 LeDell (10.1016/j.atmosenv.2020.117479_bib29) 2008 Kumar (10.1016/j.atmosenv.2020.117479_bib27) 2015; 75 van der Laan (10.1016/j.atmosenv.2020.117479_bib46) 2007; 6 |
| References_xml | – year: 2017 ident: bib30 article-title: Practical field calibration of portable monitors for mobile measurements of multiple air pollutants publication-title: Atmosphere (Basel) – year: 2016 ident: bib45 article-title: List of designated reference and equivalent methods publication-title: Natl. Expo. Res. Lab. Expo. Methods Meas. Div. – volume: 11 start-page: 47 year: 1977 end-page: 52 ident: bib17 article-title: Analysis of air pollution patterns in New York City—I. Can one station represent the large metropolitan area? publication-title: Atmos. Environ. – start-page: 183 year: 2015 end-page: 196 ident: bib2 article-title: A method for reducing classical error in long-term average air pollution concentrations from incomplete time-series data publication-title: Volume: Spatial Analysis in Health Geography – volume: 51 start-page: 6999 year: 2017 end-page: 7008 ident: bib4 article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data publication-title: Environ. Sci. Technol. – volume: 106 start-page: 234 year: 2017 end-page: 247 ident: bib40 article-title: Mapping urban air quality in near real-time using observations from low-cost sensors and model information publication-title: Environ. Int. – volume: 240 start-page: 249 year: 2019 end-page: 258 ident: bib10 article-title: Assessing the accuracy of long-term air pollution estimates produced with temporally adjusted short-term observations from unstructured sampling publication-title: J. Environ. Manag. – volume: 6 start-page: 1489 year: 2019 end-page: 1495 ident: bib11 article-title: Improving long-term air pollution estimates with incomplete data: a method-fusion approach publication-title: MethodsX – volume: 23 start-page: 566 year: 2013 end-page: 572 ident: bib35 article-title: Air pollution exposure prediction approaches used in air pollution epidemiology studies publication-title: J. Expo. Sci. Environ. Epidemiol. – volume: 47 start-page: 5778 year: 2013 end-page: 5786 ident: bib13 article-title: Development of land use regression models for particle composition in twenty study areas in Europe publication-title: Environ. Sci. Technol. – volume: 23 start-page: 654 year: 2013 end-page: 659 ident: bib6 article-title: Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations publication-title: J. Expo. Sci. Environ. Epidemiol. – volume: 52 start-page: 12563 year: 2018 end-page: 12572 ident: bib32 article-title: Mapping air pollution with google Street View cars: efficient approaches with mobile monitoring and land use regression publication-title: Environ. Sci. Technol. – volume: 575 start-page: 1119 year: 2017 end-page: 1129 ident: bib33 article-title: Low-cost sensors and crowd-sourced data: observations of siting impacts on a network of air-quality instruments publication-title: Sci. Total Environ. – volume: 43 start-page: 4672 year: 2009 end-page: 4678 ident: bib28 article-title: Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression publication-title: Environ. Sci. Technol. – volume: 39 start-page: 3597 year: 2005 end-page: 3610 ident: bib48 article-title: Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles publication-title: Atmos. Environ. – volume: 23 start-page: 555 year: 2011 end-page: 592 ident: bib38 article-title: Health effects of particulate air pollution: a review of epidemiological evidence publication-title: Inhal. Toxicol. – volume: 185 start-page: 1557 year: 2013 end-page: 1558 ident: bib7 article-title: Traffic-related air pollution and health in Canada publication-title: Can. Med. Assoc. J. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib9 article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment publication-title: Sci. Rep. – volume: 13 start-page: 221 year: 2013 end-page: 240 ident: bib15 article-title: The Aeroflex: a bicycle for mobile air quality measurements publication-title: Sensors (Switzerland) – volume: 151 start-page: 362 year: 2008 end-page: 367 ident: bib25 article-title: Human health effects of air pollution publication-title: Environ. Pollut. – year: 2008 ident: bib29 article-title: h2o: R Interface for “H2O – year: 2018 ident: bib43 article-title: Field Evaluation Purple Air PM Sensor – volume: 9 start-page: 5281 year: 2016 end-page: 5292 ident: bib24 article-title: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States publication-title: Atmos. Meas. Tech. – volume: 149 start-page: 235 year: 2004 end-page: 242 ident: bib16 article-title: Fine particles and human health--a review of epidemiological studies. [Review] [19 refs] publication-title: Toxicol. Lett. – volume: 17 year: 2017 ident: bib34 article-title: Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California publication-title: Sensors (Switzerland) – volume: 45 start-page: 4470 year: 2011 end-page: 4480 ident: bib3 article-title: Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India publication-title: Atmos. Environ. – volume: 36 start-page: 5569 year: 2002 end-page: 5579 ident: bib8 article-title: A mobile pollutant measurement laboratory — measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution publication-title: Atmos. Environ. – volume: 168 start-page: 133 year: 2016 end-page: 141 ident: bib1 article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models publication-title: J. Environ. Manag. – volume: 6 year: 2007 ident: bib46 article-title: Super learner publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 26 start-page: 397 year: 2016 end-page: 404 ident: bib19 article-title: The Fort Collins Commuter Study: impact of route type and transport mode on personal exposure to multiple air pollutants publication-title: J. Expo. Sci. Environ. Epidemiol. – volume: 51 start-page: 6999 year: 2017 end-page: 7008 ident: bib5 article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data publication-title: Environ. Sci. Technol. – volume: 11 start-page: 998 year: 2009 end-page: 1003 ident: bib47 article-title: Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada publication-title: J. Environ. Monit. – volume: 11 start-page: 53 year: 1977 end-page: 57 ident: bib18 article-title: Analysis of air pollution patterns in New York City—II. Can one aerometric station represent the area surrounding it? publication-title: Atmos. Environ. – volume: 54 start-page: 160 year: 2020 end-page: 174 ident: bib31 article-title: Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation publication-title: Aerosol Sci. Technol. – volume: 389 start-page: 1907 year: 2017 end-page: 1918 ident: bib12 article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 publication-title: Lancet – volume: 40 start-page: 5608 year: 2006 end-page: 5616 ident: bib20 article-title: The implications of tapered element oscillating microbalance (TEOM) software configuration on particulate matter measurements in the UK and Europe publication-title: Atmos. Environ. – volume: 47 start-page: 12903 year: 2013 end-page: 12911 ident: bib39 article-title: Spatiotemporal land use regression models of fine, ultrafine and black carbon particulate matter in New Delhi, India publication-title: Environ. Sci. Technol. – volume: 17 start-page: 733 year: 2001 end-page: 746 ident: bib44 article-title: Health effects of diesel exhaust emissions publication-title: Eur. Respir. J. – year: 2018 ident: bib36 article-title: R: A Language and Environment for Statistical Computing – volume: 49 start-page: 9194 year: 2015 end-page: 9202 ident: bib21 article-title: Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring publication-title: Environ. Sci. Technol. – volume: 12 start-page: 43 year: 2013 ident: bib22 article-title: Long-term air pollution exposure and cardio- respiratory mortality: a review publication-title: Environ. Health – volume: 79 start-page: 421 year: 2013 end-page: 427 ident: bib26 article-title: Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model publication-title: Atmos. Environ. – start-page: e1 year: 2017 end-page: e8 ident: bib37 article-title: Global association of air pollution and cardiorespiratory diseases: a systematic review, meta-analysis, and investigation of modifier variables publication-title: Am. J. Public Health – volume: 46 start-page: 11195 year: 2012 end-page: 11205 ident: bib14 article-title: Development of land use regression models for PM2.5, PM 2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project publication-title: Environ. Sci. Technol. – volume: 183 start-page: 57 year: 2018 end-page: 68 ident: bib42 article-title: Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale publication-title: Atmos. Environ. – year: 2017 ident: bib23 article-title: Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science publication-title: Environ. Res. – volume: 75 start-page: 199 year: 2015 end-page: 205 ident: bib27 article-title: The rise of low-cost sensing for managing air pollution in cities publication-title: Environ. Int. – volume: 15 start-page: 13 year: 2000 end-page: 42 ident: bib41 article-title: Air pollution and health in urban areas publication-title: Rev. Environ. Health – year: 2016 ident: 10.1016/j.atmosenv.2020.117479_bib45 article-title: List of designated reference and equivalent methods publication-title: Natl. Expo. Res. Lab. Expo. Methods Meas. Div. – volume: 168 start-page: 133 year: 2016 ident: 10.1016/j.atmosenv.2020.117479_bib1 article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.12.012 – volume: 240 start-page: 249 year: 2019 ident: 10.1016/j.atmosenv.2020.117479_bib10 article-title: Assessing the accuracy of long-term air pollution estimates produced with temporally adjusted short-term observations from unstructured sampling publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.03.108 – volume: 106 start-page: 234 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib40 article-title: Mapping urban air quality in near real-time using observations from low-cost sensors and model information publication-title: Environ. Int. doi: 10.1016/j.envint.2017.05.005 – volume: 26 start-page: 397 year: 2016 ident: 10.1016/j.atmosenv.2020.117479_bib19 article-title: The Fort Collins Commuter Study: impact of route type and transport mode on personal exposure to multiple air pollutants publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/jes.2015.68 – volume: 15 start-page: 13 year: 2000 ident: 10.1016/j.atmosenv.2020.117479_bib41 article-title: Air pollution and health in urban areas publication-title: Rev. Environ. Health doi: 10.1515/REVEH.2000.15.1-2.13 – year: 2018 ident: 10.1016/j.atmosenv.2020.117479_bib43 – volume: 23 start-page: 566 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib35 article-title: Air pollution exposure prediction approaches used in air pollution epidemiology studies publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/jes.2013.15 – start-page: 183 year: 2015 ident: 10.1016/j.atmosenv.2020.117479_bib2 article-title: A method for reducing classical error in long-term average air pollution concentrations from incomplete time-series data – volume: 51 start-page: 6999 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib4 article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00891 – volume: 17 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib34 article-title: Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California publication-title: Sensors (Switzerland) doi: 10.3390/s17081805 – volume: 52 start-page: 12563 year: 2018 ident: 10.1016/j.atmosenv.2020.117479_bib32 article-title: Mapping air pollution with google Street View cars: efficient approaches with mobile monitoring and land use regression publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03395 – volume: 185 start-page: 1557 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib7 article-title: Traffic-related air pollution and health in Canada publication-title: Can. Med. Assoc. J. doi: 10.1503/cmaj.121568 – volume: 183 start-page: 57 year: 2018 ident: 10.1016/j.atmosenv.2020.117479_bib42 article-title: Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.04.010 – volume: 12 start-page: 43 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib22 article-title: Long-term air pollution exposure and cardio- respiratory mortality: a review publication-title: Environ. Health doi: 10.1186/1476-069X-12-43 – volume: 43 start-page: 4672 year: 2009 ident: 10.1016/j.atmosenv.2020.117479_bib28 article-title: Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression publication-title: Environ. Sci. Technol. doi: 10.1021/es803068e – volume: 17 start-page: 733 year: 2001 ident: 10.1016/j.atmosenv.2020.117479_bib44 article-title: Health effects of diesel exhaust emissions publication-title: Eur. Respir. J. doi: 10.1183/09031936.01.17407330 – volume: 6 start-page: 1489 year: 2019 ident: 10.1016/j.atmosenv.2020.117479_bib11 article-title: Improving long-term air pollution estimates with incomplete data: a method-fusion approach publication-title: MethodsX doi: 10.1016/j.mex.2019.06.005 – volume: 23 start-page: 654 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib6 article-title: Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/jes.2013.62 – volume: 151 start-page: 362 year: 2008 ident: 10.1016/j.atmosenv.2020.117479_bib25 article-title: Human health effects of air pollution publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.06.012 – volume: 46 start-page: 11195 year: 2012 ident: 10.1016/j.atmosenv.2020.117479_bib14 article-title: Development of land use regression models for PM2.5, PM 2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project publication-title: Environ. Sci. Technol. doi: 10.1021/es301948k – year: 2018 ident: 10.1016/j.atmosenv.2020.117479_bib36 – volume: 11 start-page: 47 year: 1977 ident: 10.1016/j.atmosenv.2020.117479_bib17 article-title: Analysis of air pollution patterns in New York City—I. Can one station represent the large metropolitan area? publication-title: Atmos. Environ. doi: 10.1016/0004-6981(77)90205-0 – year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib30 article-title: Practical field calibration of portable monitors for mobile measurements of multiple air pollutants – volume: 47 start-page: 12903 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib39 article-title: Spatiotemporal land use regression models of fine, ultrafine and black carbon particulate matter in New Delhi, India publication-title: Environ. Sci. Technol. doi: 10.1021/es401489h – volume: 13 start-page: 221 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib15 article-title: The Aeroflex: a bicycle for mobile air quality measurements publication-title: Sensors (Switzerland) doi: 10.3390/s130100221 – year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib23 article-title: Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science publication-title: Environ. Res. doi: 10.1016/j.envres.2017.04.023 – volume: 6 year: 2007 ident: 10.1016/j.atmosenv.2020.117479_bib46 article-title: Super learner publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1309 – volume: 40 start-page: 5608 year: 2006 ident: 10.1016/j.atmosenv.2020.117479_bib20 article-title: The implications of tapered element oscillating microbalance (TEOM) software configuration on particulate matter measurements in the UK and Europe publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.04.052 – volume: 23 start-page: 555 year: 2011 ident: 10.1016/j.atmosenv.2020.117479_bib38 article-title: Health effects of particulate air pollution: a review of epidemiological evidence publication-title: Inhal. Toxicol. doi: 10.3109/08958378.2011.593587 – volume: 11 start-page: 998 year: 2009 ident: 10.1016/j.atmosenv.2020.117479_bib47 article-title: Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada publication-title: J. Environ. Monit. doi: 10.1039/b818477a – volume: 45 start-page: 4470 year: 2011 ident: 10.1016/j.atmosenv.2020.117479_bib3 article-title: Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.05.028 – volume: 11 start-page: 53 year: 1977 ident: 10.1016/j.atmosenv.2020.117479_bib18 article-title: Analysis of air pollution patterns in New York City—II. Can one aerometric station represent the area surrounding it? publication-title: Atmos. Environ. doi: 10.1016/0004-6981(77)90206-2 – volume: 79 start-page: 421 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib26 article-title: Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.07.014 – volume: 39 start-page: 3597 year: 2005 ident: 10.1016/j.atmosenv.2020.117479_bib48 article-title: Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.02.034 – volume: 389 start-page: 1907 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib12 article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 publication-title: Lancet doi: 10.1016/S0140-6736(17)30505-6 – volume: 47 start-page: 5778 year: 2013 ident: 10.1016/j.atmosenv.2020.117479_bib13 article-title: Development of land use regression models for particle composition in twenty study areas in Europe publication-title: Environ. Sci. Technol. doi: 10.1021/es400156t – volume: 9 start-page: 5281 year: 2016 ident: 10.1016/j.atmosenv.2020.117479_bib24 article-title: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-9-5281-2016 – volume: 36 start-page: 5569 year: 2002 ident: 10.1016/j.atmosenv.2020.117479_bib8 article-title: A mobile pollutant measurement laboratory — measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(02)00694-5 – year: 2008 ident: 10.1016/j.atmosenv.2020.117479_bib29 – volume: 49 start-page: 9194 year: 2015 ident: 10.1016/j.atmosenv.2020.117479_bib21 article-title: Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01209 – volume: 149 start-page: 235 year: 2004 ident: 10.1016/j.atmosenv.2020.117479_bib16 article-title: Fine particles and human health--a review of epidemiological studies. [Review] [19 refs] publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2003.12.035 – volume: 575 start-page: 1119 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib33 article-title: Low-cost sensors and crowd-sourced data: observations of siting impacts on a network of air-quality instruments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.09.177 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.atmosenv.2020.117479_bib9 article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment publication-title: Sci. Rep. doi: 10.1038/s41598-019-43716-3 – volume: 75 start-page: 199 year: 2015 ident: 10.1016/j.atmosenv.2020.117479_bib27 article-title: The rise of low-cost sensing for managing air pollution in cities publication-title: Environ. Int. doi: 10.1016/j.envint.2014.11.019 – volume: 54 start-page: 160 year: 2020 ident: 10.1016/j.atmosenv.2020.117479_bib31 article-title: Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2019.1623863 – volume: 51 start-page: 6999 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib5 article-title: High-resolution air pollution mapping with google Street View cars: exploiting big data publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00891 – start-page: e1 year: 2017 ident: 10.1016/j.atmosenv.2020.117479_bib37 article-title: Global association of air pollution and cardiorespiratory diseases: a systematic review, meta-analysis, and investigation of modifier variables publication-title: Am. J. Public Health |
| SSID | ssj0003797 |
| Score | 2.4952765 |
| Snippet | Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM2.5) air pollution... Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 μm (PM₂.₅) air pollution... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117479 |
| SubjectTerms | Air pollution algorithms artificial intelligence atmospheric chemistry Citizen science Community science Cross-validation Cycling humidity land use Land use regression Machine learning North Carolina Particulate matter particulates regression analysis United States Environmental Protection Agency |
| Title | Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction |
| URI | https://dx.doi.org/10.1016/j.atmosenv.2020.117479 https://www.proquest.com/docview/2431884322 |
| Volume | 230 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamcYEDgsHE-DE9JI4zbWIncY7TtKmA2AUm7WbZjls60aRKWqZe9ufyd_Ce49CCkHbgmMqOXu3Pz5_j997H2LuqyCUST8ORKwtOFbi4EWPHU2HytJRZMg36KZ8v88mV_HidXe-xsyEXhsIqo-_vfXrw1vGXURzN0XI-H31JiDsgO0kRp2mSU8KvlAWpGLy_24Z5iKIXWMHGnFrvZAnf4Iwsms7XP_CcmIb7S0khXf_eoP5y1WH_uXjCHkfiCKe9bU_Znq8P2KOdcoIH7PB8m7WGTeOy7Z6xnyQ8jECDoHtDCejQTGEZ_ifJd3lYhDKbYOYtLEn8mKYL0OauaWGx_YzYAeEGx8tXYDf4ELJLVhvo8yoRMh3cfkNHA25DOZezE6DISVh3Hlo_62Nua6CPv9BFm8IwcAT8vJd3OgHqsXuxTsYuQtCnh6hyMQMk20DhrWhEG7x2Uz9nVxfnX88mPAo8cCdktuI2Lwsr8nxaiswJY6uxTd24ogo0TjlRqCojSiOstHjuU2kxLRE-hTXEOkzhxCHbr5vav2CAJyNZpcqXCpsWxqhxpRJnvEgSYb3Ij1g2zKp2sfo5iXB810OY240e0KAJDbpHwxEb_e637Ot_3NujHECj_0Cyxk3q3r5vB5RpXOZ0d2Nq36w7nSLRU0qi-335H-9_xR7SUx_q9prtr9q1f4OkamWPw6o5Zg9OP3yaXP4Cw0gpDw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVKOQAHVAoVpXwMEscuydr74T2iqlWAthdaqTfL9jppKrIb7SagXPpz-R3M2LtNQEg9cExiR7P28_h5PTOPsQ9lniVIPHWEXFlEVIEr0mJoIy50xoskjcdeP-XsPBtdJl-u0qstdtTnwlBYZef7g0_33rr7ZtCN5mA-nQ6-xcQdkJ1wxCmPM_mAPUxSntMJ7OPtOs5D5EFhBVtH1HwjTfgGp2RWt676gQdF7i8wE4rp-vcO9Zev9hvQyQ572jFH-BSMe8a2XLXLnmzUE9xle8frtDVs2q3b9jn7RcrDiDTwwjeUgQ71GOb-QUm_y8HM19kEPW1gTurHNF-ANrd1A7P1e8QWCDg4YK4Es8IPPr1ksYKQWImYaeHnNXoasCtKupwcAoVOwrJ10LhJCLqtgN7-QtvZ5IchQsRPg77TIVCPzZt1Mnbmoz4ddDIXE0C2DRTfikY03m3X1Qt2eXJ8cTSKOoWHyIokXUQmK3IjsmxciNQKbcqh4XZYUgkaK63IZZkSpxEmMXjwkzwfF4if3GiiHTq3Yo9tV3XlXjLAo1FScukKiU1zreWwlLHVTsSxME5k-yztZ1XZrvw5qXB8V32c243q0aAIDSqgYZ8N7vrNQwGQe3sUPWjUH1BWuEvd2_d9jzKF65wub3Tl6mWrODI9KRP0v6_-4__fsUeji7NTdfr5_OsBe0y_hLi312x70SzdG2RYC_PWr6DfWzYqpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+modelling+of+particulate+matter+air+pollution+sensor+measurements+collected+by+community+scientists+while+cycling%2C+land+use+regression+with+spatial+cross-validation%2C+and+applications+of+machine+learning+for+data+correction&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Adams%2C+Matthew+D.&rft.au=Massey%2C+Felix&rft.au=Chastko%2C+Karl&rft.au=Cupini%2C+Calvin&rft.date=2020-06-01&rft.issn=1352-2310&rft.volume=230&rft.spage=117479&rft_id=info:doi/10.1016%2Fj.atmosenv.2020.117479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2020_117479 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |