PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors

The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outd...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 183; pp. 20 - 32
Main Authors Zhu, Suling, Lian, Xiuyuan, Wei, Lin, Che, Jinxing, Shen, Xiping, Yang, Ling, Qiu, Xuanlin, Liu, Xiaoning, Gao, Wenlong, Ren, Xiaowei, Li, Juansheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2018
Subjects
Online AccessGet full text
ISSN1352-2310
1873-2844
DOI10.1016/j.atmosenv.2018.04.004

Cover

Abstract The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings. [Display omitted] •Meteorological factors are studied for PM2.5 forecasting.•Effective information of PM2.5 is extracted by CEEMD.•The proposed CEEMD-PSOGSA-SVR-GRNN model is effective for PM2.5 forecasting.•The proposed theory can be used to effectively forecast other pollutions.
AbstractList The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings.
The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings. [Display omitted] •Meteorological factors are studied for PM2.5 forecasting.•Effective information of PM2.5 is extracted by CEEMD.•The proposed CEEMD-PSOGSA-SVR-GRNN model is effective for PM2.5 forecasting.•The proposed theory can be used to effectively forecast other pollutions.
Author Shen, Xiping
Lian, Xiuyuan
Wei, Lin
Gao, Wenlong
Zhu, Suling
Qiu, Xuanlin
Ren, Xiaowei
Li, Juansheng
Che, Jinxing
Yang, Ling
Liu, Xiaoning
Author_xml – sequence: 1
  givenname: Suling
  surname: Zhu
  fullname: Zhu, Suling
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
– sequence: 2
  givenname: Xiuyuan
  surname: Lian
  fullname: Lian, Xiuyuan
  email: 819612640@qq.com
  organization: School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China
– sequence: 3
  givenname: Lin
  surname: Wei
  fullname: Wei, Lin
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
– sequence: 4
  givenname: Jinxing
  surname: Che
  fullname: Che, Jinxing
  organization: School of Science, Nanchang Institute of Technology, Nanchang 330099, JiangXi, China
– sequence: 5
  givenname: Xiping
  surname: Shen
  fullname: Shen, Xiping
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
– sequence: 6
  givenname: Ling
  surname: Yang
  fullname: Yang, Ling
  organization: School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China
– sequence: 7
  givenname: Xuanlin
  surname: Qiu
  fullname: Qiu, Xuanlin
  organization: School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China
– sequence: 8
  givenname: Xiaoning
  surname: Liu
  fullname: Liu, Xiaoning
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
– sequence: 9
  givenname: Wenlong
  surname: Gao
  fullname: Gao, Wenlong
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
– sequence: 10
  givenname: Xiaowei
  surname: Ren
  fullname: Ren, Xiaowei
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
– sequence: 11
  givenname: Juansheng
  surname: Li
  fullname: Li, Juansheng
  organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
BookMark eNqFkUtvEzEUhS1UJNrAX0BesmCG68c8IrEgSkNA6ksNsLU8nuvgaMZubaeIf8-MAhs21ZXuQzrnLL57Qc588EjIWwYlA1Z_OJQ6jyGhfyo5sLYEWQLIF-SctY0oeCvl2bSLihdcMHhFLlI6AIBols05eby75mVFbYhodMrO7-kxzX33457-cvknvdvdbncrqod9iNM90k4n7GnwdL3ZXF--p9v7mxuqfU-36xU1wSfXY5wjRswYYhjC3hk9UKtNDjG9Ji-tHhK--TsX5Pvnzbf1l-Lqdvt1vboqjJBVLjretWCbpmqt1v1SVDU2gLpjdp6GC9kumZA4lbW8q2pWVyDZrJYATScW5N0p9yGGxyOmrEaXDA6D9hiOSXEumoot55QFqU9SE0NKEa16iG7U8bdioGbG6qD-MVYzYwVSTYwn48f_jMZlnV3wOWo3PG__dLLjxOHJYVTJOPQGeze9I6s-uOci_gBUS54V
CitedBy_id crossref_primary_10_1016_j_jth_2021_101314
crossref_primary_10_3390_s22041320
crossref_primary_10_1080_00207543_2020_1837407
crossref_primary_10_1016_j_mlwa_2023_100521
crossref_primary_10_1016_j_apor_2024_104069
crossref_primary_10_1016_j_compind_2020_103387
crossref_primary_10_1038_s41598_021_95027_1
crossref_primary_10_1007_s10661_022_10603_w
crossref_primary_10_3390_ijerph20010695
crossref_primary_10_1002_for_3218
crossref_primary_10_1016_j_apr_2022_101363
crossref_primary_10_1016_j_apr_2020_06_028
crossref_primary_10_1016_j_envpol_2019_113187
crossref_primary_10_1016_j_eswa_2022_118707
crossref_primary_10_1016_j_jclepro_2020_121528
crossref_primary_10_1109_ACCESS_2020_2990288
crossref_primary_10_1016_j_envint_2023_107971
crossref_primary_10_1016_j_engappai_2019_08_018
crossref_primary_10_3389_fenvs_2022_873939
crossref_primary_10_1016_j_energy_2019_07_025
crossref_primary_10_1007_s00477_022_02202_5
crossref_primary_10_3390_atmos13091504
crossref_primary_10_1016_j_apr_2022_101358
crossref_primary_10_1016_j_renene_2024_121732
crossref_primary_10_1016_j_chemosphere_2023_140799
crossref_primary_10_1016_j_envsoft_2019_06_014
crossref_primary_10_1007_s11356_021_18362_w
crossref_primary_10_1088_1742_6596_2412_1_012005
crossref_primary_10_1007_s00521_023_08805_5
crossref_primary_10_1155_2022_7207477
crossref_primary_10_1016_j_knosys_2024_111605
crossref_primary_10_1016_j_asoc_2020_106957
crossref_primary_10_1007_s11356_023_25238_8
crossref_primary_10_1002_for_2673
crossref_primary_10_1155_2021_7271383
crossref_primary_10_3390_su14169951
crossref_primary_10_1016_j_chemosphere_2019_01_121
crossref_primary_10_3390_atmos14111604
crossref_primary_10_28948_ngumuh_654092
crossref_primary_10_3390_machines9120312
crossref_primary_10_1007_s10462_022_10262_w
crossref_primary_10_3390_computation11120249
crossref_primary_10_1016_j_scs_2020_102337
crossref_primary_10_1155_2021_5577041
crossref_primary_10_3390_rs14030599
crossref_primary_10_1016_j_scitotenv_2021_151204
crossref_primary_10_3390_app10072401
crossref_primary_10_1016_j_jastp_2024_106338
crossref_primary_10_1016_j_envpol_2020_114635
crossref_primary_10_1016_j_jclepro_2020_122722
crossref_primary_10_1016_j_scitotenv_2019_134474
crossref_primary_10_1016_j_atmosenv_2024_120730
crossref_primary_10_1108_MEQ_07_2024_0313
crossref_primary_10_3390_su142316291
crossref_primary_10_1063_5_0172382
crossref_primary_10_3389_fenvs_2022_941405
crossref_primary_10_1016_j_envpol_2020_116381
crossref_primary_10_3233_JIFS_230343
crossref_primary_10_1007_s13762_021_03730_3
crossref_primary_10_1016_j_eswa_2022_117707
crossref_primary_10_1016_j_asoc_2021_108110
crossref_primary_10_1016_j_scs_2020_102567
crossref_primary_10_1016_j_ijepes_2021_107595
crossref_primary_10_1016_j_knosys_2023_110476
crossref_primary_10_1109_ACCESS_2022_3146170
crossref_primary_10_1029_2021EA001694
crossref_primary_10_1016_j_jclepro_2020_121442
crossref_primary_10_1007_s11227_022_04638_6
crossref_primary_10_3390_en15176428
crossref_primary_10_1007_s11069_021_04614_y
crossref_primary_10_1007_s11269_023_03528_7
crossref_primary_10_1007_s00477_021_02100_2
crossref_primary_10_1038_s41598_024_74122_z
crossref_primary_10_1016_j_apr_2019_05_007
crossref_primary_10_1007_s00477_024_02693_4
crossref_primary_10_3390_stats6040077
crossref_primary_10_1016_j_apr_2019_03_004
crossref_primary_10_1155_2021_5599096
crossref_primary_10_1016_j_jclepro_2022_133383
crossref_primary_10_1155_2021_6507688
crossref_primary_10_1016_j_eng_2020_05_009
crossref_primary_10_1016_j_asoc_2019_105799
crossref_primary_10_1016_j_eswa_2023_120140
crossref_primary_10_1007_s11869_020_00925_4
crossref_primary_10_1007_s10473_022_0110_3
crossref_primary_10_1016_j_heliyon_2024_e39783
crossref_primary_10_1007_s11356_020_09891_x
crossref_primary_10_1007_s12652_022_04423_6
crossref_primary_10_1016_j_atmosenv_2019_117200
crossref_primary_10_1039_D3RA02408C
crossref_primary_10_1016_j_jclepro_2019_118773
crossref_primary_10_1016_j_scitotenv_2018_09_111
crossref_primary_10_1016_j_apr_2021_101211
crossref_primary_10_1016_j_energy_2022_124650
crossref_primary_10_1088_1742_6596_1624_2_022015
crossref_primary_10_3390_ijerph18052222
crossref_primary_10_3390_ijerph20032316
crossref_primary_10_1016_j_heliyon_2023_e14526
crossref_primary_10_1016_j_apr_2019_11_019
crossref_primary_10_1007_s11869_020_00936_1
crossref_primary_10_1007_s40095_019_0298_8
crossref_primary_10_3390_ijgi10010031
crossref_primary_10_1016_j_jclepro_2018_09_071
crossref_primary_10_1016_j_jclepro_2020_121941
crossref_primary_10_1109_ACCESS_2020_3000333
crossref_primary_10_1016_j_scitotenv_2020_143513
crossref_primary_10_3390_su17062546
crossref_primary_10_1016_j_jclepro_2023_139508
crossref_primary_10_5194_essd_14_5605_2022
crossref_primary_10_1016_j_apr_2020_02_022
crossref_primary_10_1016_j_ijsrc_2021_10_001
crossref_primary_10_1016_j_jenvman_2019_109855
crossref_primary_10_1021_acs_est_3c09177
crossref_primary_10_3390_atmos10040223
crossref_primary_10_1016_j_jclepro_2020_120983
crossref_primary_10_1016_j_envres_2023_116365
crossref_primary_10_1016_j_ijrefrig_2020_02_035
crossref_primary_10_1371_journal_pone_0287423
crossref_primary_10_1016_j_scitotenv_2019_134792
crossref_primary_10_1117_1_JRS_18_038501
crossref_primary_10_1016_j_envsoft_2022_105529
crossref_primary_10_1016_j_jclepro_2020_124023
crossref_primary_10_1007_s00477_021_02029_6
crossref_primary_10_3390_systems11060286
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1007_s12145_023_01111_7
crossref_primary_10_1007_s10661_024_13466_5
crossref_primary_10_3390_rs14071617
crossref_primary_10_1117_1_JRS_18_012006
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_1080_15481603_2021_1988429
Cites_doi 10.1016/j.atmosenv.2009.06.039
10.1109/72.788640
10.1016/j.apr.2016.01.004
10.1175/2010JCLI3654.1
10.1016/j.atmosenv.2016.08.007
10.1016/j.bspc.2010.11.001
10.1016/j.scitotenv.2013.06.095
10.1016/j.atmosenv.2008.01.068
10.1142/S1793536909000047
10.1016/j.scitotenv.2016.12.018
10.1016/j.scitotenv.2014.07.051
10.1016/j.atmosenv.2008.07.020
10.1016/j.atmosenv.2016.03.056
10.1016/j.scitotenv.2010.12.040
10.1016/j.atmosenv.2010.06.060
10.1016/j.atmosenv.2011.03.074
10.1016/j.ecoinf.2016.04.007
10.1016/j.envpol.2011.12.018
10.1016/j.ymssp.2012.09.015
10.1016/j.mcm.2011.04.017
10.1289/ehp.1104816
10.1098/rspa.1998.0193
10.1016/j.atmosenv.2015.02.030
10.1016/j.ins.2009.03.004
10.1016/j.ymssp.2015.03.002
10.1098/rspa.2015.0257
10.1186/s12989-014-0070-4
10.1142/S1793536910000422
10.1016/j.envpol.2017.08.069
10.1016/j.atmosenv.2016.10.046
10.1016/j.scitotenv.2012.10.070
10.1016/j.scitotenv.2017.01.166
10.1016/j.atmosenv.2012.08.008
10.1371/journal.pone.0132769
10.1007/s00382-010-0865-4
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.atmosenv.2018.04.004
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
EndPage 32
ExternalDocumentID 10_1016_j_atmosenv_2018_04_004
S1352231018302292
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.HR
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
T9H
TAE
VH1
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-b2b80f7758faad9356e70eab1fe70ec23489134e4e4ff2b561650418faa4007b3
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Sun Sep 28 02:19:20 EDT 2025
Wed Oct 01 04:17:56 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Fri Feb 23 02:19:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PM2.5 concentrations
Support vector regression
Gravitational search algorithm
Grey correlation analysis
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-b2b80f7758faad9356e70eab1fe70ec23489134e4e4ff2b561650418faa4007b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2237519891
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2237519891
crossref_primary_10_1016_j_atmosenv_2018_04_004
crossref_citationtrail_10_1016_j_atmosenv_2018_04_004
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2018_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Atmospheric environment (1994)
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Kindzierski, Kaul (bib31) 2015; 10
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib11) 1998; 454
World Health Organization (bib33) 2006
Baker, Foley (bib3) 2011; 45
Lei, Lin, He, Zuo (bib16) 2013; 35
Konovalov, Beekmann, Meleux, Dutot, Foret (bib14) 2009; 43
Stern, Builtjes, Schaap, Timmermans, Vautard, Hodzic, Memmesheimer, Feldmann, Renner, Wolke, Kerschbaumer (bib24) 2008; 42
Franzke (bib9) 2010; 23
Kennedy, Eberhart (bib13) 1995
Vlachogianni, Kassomenos, Karppinen, Karakitsios, Kukkonen (bib28) 2011; 409
Díaz-Robles, Ortega, Fu, Reed, Chow, Watson, Moncada-Herrera (bib5) 2008; 42
Bai, Li, Wang, Xie, Li (bib2) 2016; 7
Breaker, Ruzmaikin (bib4) 2011; 36
Sun, Zhang, Palazoglu, Singh, Zhang, Liu (bib23) 2013; 443
Xue, Zhou, Xu, Zhu, Li (bib36) 2015; 62
Zhang, Zhang, Palazoglu, Sun (bib39) 2012; 62
Fernando, Mammarella, Grandoni, Fedele, Di Marco, Dimitrova, Hyde (bib8) 2012; 163
Requia, Adams, Koutrakis (bib21) 2017; 584
Ausati, Amanollahi (bib1) 2016; 142
Goldberg, Burnett, Stieb, Brophy, Daskalopoulou, Valois, Brook (bib10) 2013; 463
Tai, Mickley, Jacob (bib25) 2010; 44
Xu, Yang, Wang (bib35) 2017; 148
Zhou, Jiang, Wang, Zhou (bib40) 2014; 496
Zhu, Lian, Liu, Hu, Wang, Che (bib41) 2017; 231
Wang, Liu (bib30) 2013; 3
Yeh, Shieh, Huang (bib38) 2010; 2
Vapnik (bib27) 1999; 10
Weichenthal, Hatzopoulou, Goldberg (bib32) 2014; 11
He, Lech, Maddage, Allen (bib12) 2011; 6
Wu, Huang (bib34) 2009; 1
Kuhn, Johnson (bib15) 2013
Rashedi, Nezamabadi-Pour, Saryazdi (bib20) 2009; 179
Feng, Li, Zhu, Hou, Jin, Wang (bib7) 2015; 107
To, Shen, Atenafu, Guan, McLimont, Stocks, Licskai (bib26) 2013; 121
Niu, Wang, Sun, Li (bib19) 2016; 134
Wang, Wei, Luo, Yue, Grunder (bib29) 2017; 580
Liang, Zou, Guo, Li, Zhang, Zhang, Huang, Chen (bib17) 2015; 471
Domańska, Łukasik (bib6) 2016; 34
Sánchez, Nieto, Fernández, del Coz Díaz, Iglesias-Rodríguez (bib22) 2011; 54
Mirjalili, Hashim (bib18) 2010
Yang, Yu, Cheng (bib37) 2006; 294
Bai (10.1016/j.atmosenv.2018.04.004_bib2) 2016; 7
Liang (10.1016/j.atmosenv.2018.04.004_bib17) 2015; 471
Ausati (10.1016/j.atmosenv.2018.04.004_bib1) 2016; 142
To (10.1016/j.atmosenv.2018.04.004_bib26) 2013; 121
He (10.1016/j.atmosenv.2018.04.004_bib12) 2011; 6
Baker (10.1016/j.atmosenv.2018.04.004_bib3) 2011; 45
Vapnik (10.1016/j.atmosenv.2018.04.004_bib27) 1999; 10
Lei (10.1016/j.atmosenv.2018.04.004_bib16) 2013; 35
Tai (10.1016/j.atmosenv.2018.04.004_bib25) 2010; 44
Feng (10.1016/j.atmosenv.2018.04.004_bib7) 2015; 107
Kuhn (10.1016/j.atmosenv.2018.04.004_bib15) 2013
Wang (10.1016/j.atmosenv.2018.04.004_bib31) 2015; 10
Díaz-Robles (10.1016/j.atmosenv.2018.04.004_bib5) 2008; 42
Konovalov (10.1016/j.atmosenv.2018.04.004_bib14) 2009; 43
Sun (10.1016/j.atmosenv.2018.04.004_bib23) 2013; 443
Franzke (10.1016/j.atmosenv.2018.04.004_bib9) 2010; 23
Niu (10.1016/j.atmosenv.2018.04.004_bib19) 2016; 134
Requia (10.1016/j.atmosenv.2018.04.004_bib21) 2017; 584
Xu (10.1016/j.atmosenv.2018.04.004_bib35) 2017; 148
Zhou (10.1016/j.atmosenv.2018.04.004_bib40) 2014; 496
Xue (10.1016/j.atmosenv.2018.04.004_bib36) 2015; 62
Huang (10.1016/j.atmosenv.2018.04.004_bib11) 1998; 454
Vlachogianni (10.1016/j.atmosenv.2018.04.004_bib28) 2011; 409
Yeh (10.1016/j.atmosenv.2018.04.004_bib38) 2010; 2
Breaker (10.1016/j.atmosenv.2018.04.004_bib4) 2011; 36
Weichenthal (10.1016/j.atmosenv.2018.04.004_bib32) 2014; 11
Yang (10.1016/j.atmosenv.2018.04.004_bib37) 2006; 294
Stern (10.1016/j.atmosenv.2018.04.004_bib24) 2008; 42
Wang (10.1016/j.atmosenv.2018.04.004_bib30) 2013; 3
Sánchez (10.1016/j.atmosenv.2018.04.004_bib22) 2011; 54
Wu (10.1016/j.atmosenv.2018.04.004_bib34) 2009; 1
Mirjalili (10.1016/j.atmosenv.2018.04.004_bib18) 2010
Goldberg (10.1016/j.atmosenv.2018.04.004_bib10) 2013; 463
Zhu (10.1016/j.atmosenv.2018.04.004_bib41) 2017; 231
World Health Organization (10.1016/j.atmosenv.2018.04.004_bib33) 2006
Rashedi (10.1016/j.atmosenv.2018.04.004_bib20) 2009; 179
Fernando (10.1016/j.atmosenv.2018.04.004_bib8) 2012; 163
Wang (10.1016/j.atmosenv.2018.04.004_bib29) 2017; 580
Zhang (10.1016/j.atmosenv.2018.04.004_bib39) 2012; 62
Domańska (10.1016/j.atmosenv.2018.04.004_bib6) 2016; 34
Kennedy (10.1016/j.atmosenv.2018.04.004_bib13) 1995
References_xml – start-page: 8
  year: 2013
  end-page: 10
  ident: bib15
  publication-title: Applied Predictive Modeling
– volume: 3
  start-page: 058
  year: 2013
  ident: bib30
  article-title: Study on network traffic forecast model of SVR optimized by GAFSA
  publication-title: Appl. Res. Comput.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib11
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Roy. Soc. Lond A: Math., Phys. Eng. Sci.
– volume: 35
  start-page: 108
  year: 2013
  end-page: 126
  ident: bib16
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 2
  start-page: 135
  year: 2010
  end-page: 156
  ident: bib38
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 62
  start-page: 64
  year: 2012
  end-page: 73
  ident: bib39
  article-title: Prediction of ozone levels using a hidden Markov model (HMM) with Gamma distribution
  publication-title: Atmos. Environ.
– volume: 231
  start-page: 1232
  year: 2017
  end-page: 1244
  ident: bib41
  article-title: Daily air quality index forecasting with hybrid models: a case in China
  publication-title: Environ. Pollut.
– volume: 580
  start-page: 719
  year: 2017
  end-page: 733
  ident: bib29
  article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 4567
  year: 2008
  end-page: 4588
  ident: bib24
  article-title: A model inter-comparison study focussing on episodes with elevated PM
  publication-title: Atmos. Environ.
– volume: 62
  start-page: 444
  year: 2015
  end-page: 459
  ident: bib36
  article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 142
  start-page: 465
  year: 2016
  end-page: 474
  ident: bib1
  article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM
  publication-title: Atmos. Environ.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bib34
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 11
  start-page: 70
  year: 2014
  ident: bib32
  article-title: Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study
  publication-title: Part. Fibre Toxicol.
– volume: 34
  start-page: 70
  year: 2016
  end-page: 91
  ident: bib6
  article-title: Handling high-dimensional data in air pollution forecasting tasks
  publication-title: Ecol. Inf.
– volume: 6
  start-page: 139
  year: 2011
  end-page: 146
  ident: bib12
  article-title: Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech
  publication-title: Biomed. Signal Process Contr.
– volume: 163
  start-page: 62
  year: 2012
  end-page: 67
  ident: bib8
  article-title: Forecasting PM
  publication-title: Environ. Pollut.
– volume: 496
  start-page: 264
  year: 2014
  end-page: 274
  ident: bib40
  article-title: A hybrid model for PM
  publication-title: Sci. Total Environ.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib20
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 443
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib23
  article-title: Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 8331
  year: 2008
  end-page: 8340
  ident: bib5
  article-title: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
  publication-title: Atmos. Environ.
– volume: 584
  start-page: 1077
  year: 2017
  end-page: 1083
  ident: bib21
  article-title: Association of PM
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 3976
  year: 2010
  end-page: 3984
  ident: bib25
  article-title: Correlations between fine particulate matter (PM
  publication-title: Atmos. Environ.
– volume: 107
  start-page: 118
  year: 2015
  end-page: 128
  ident: bib7
  article-title: Artificial neural networks forecasting of PM
  publication-title: Atmos. Environ.
– volume: 471
  year: 2015
  ident: bib17
  article-title: Assessing Beijing's PM
  publication-title: Proceed. Royal Soc. A
– year: 2006
  ident: bib33
  article-title: WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide-global Update 2005-Summary of Risk Assessment
– volume: 45
  start-page: 3758
  year: 2011
  end-page: 3767
  ident: bib3
  article-title: A nonlinear regression model estimating single sourcecon centrations of primary and secondarily formed PM
  publication-title: Atmos. Environ.
– start-page: 374
  year: 2010
  end-page: 377
  ident: bib18
  article-title: A new hybrid PSOGSA algorithm for function optimization
  publication-title: Inter. Conf. on Comp. Inform. Appl. (ICCIA 2010),
– volume: 23
  start-page: 6074
  year: 2010
  end-page: 6081
  ident: bib9
  article-title: Long-range dependence and climate noise characteristics of Antarctic temperature data
  publication-title: J. Clim.
– volume: 409
  start-page: 1559
  year: 2011
  end-page: 1571
  ident: bib28
  article-title: Evaluation of a multiple regression model for the forecasting of the concentrations of NO
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: e0132769
  year: 2015
  ident: bib31
  article-title: Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: a three-step procedure case-crossover study
  publication-title: PLoS One
– volume: 294
  start-page: 269
  year: 2006
  end-page: 277
  ident: bib37
  article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN
  publication-title: J. Sound Vib.
– volume: 463
  start-page: 931
  year: 2013
  end-page: 942
  ident: bib10
  article-title: Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 6425
  year: 2009
  end-page: 6434
  ident: bib14
  article-title: Combining deterministic and statistical approaches for PM
  publication-title: Atmos. Environ.
– volume: 7
  start-page: 557
  year: 2016
  end-page: 566
  ident: bib2
  article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
  publication-title: Atmos. Pollut. Res.
– volume: 134
  start-page: 168
  year: 2016
  end-page: 180
  ident: bib19
  article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM
  publication-title: Atmos. Environ.
– volume: 148
  start-page: 239
  year: 2017
  end-page: 257
  ident: bib35
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos. Environ.
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: bib27
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Network.
– volume: 36
  start-page: 545
  year: 2011
  end-page: 559
  ident: bib4
  article-title: The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits
  publication-title: Clim. Dynam.
– volume: 54
  start-page: 1453
  year: 2011
  end-page: 1466
  ident: bib22
  article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain)
  publication-title: Math. Comput. Model.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib13
  article-title: Particle swarm optimization
  publication-title: Neural Network.
– volume: 121
  start-page: 46
  year: 2013
  end-page: 52
  ident: bib26
  article-title: The air quality health index and asthma morbidity: a population-based study
  publication-title: Environ. Health Perspect.
– volume: 43
  start-page: 6425
  issue: 40
  year: 2009
  ident: 10.1016/j.atmosenv.2018.04.004_bib14
  article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.06.039
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 10.1016/j.atmosenv.2018.04.004_bib27
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.788640
– volume: 7
  start-page: 557
  issue: 3
  year: 2016
  ident: 10.1016/j.atmosenv.2018.04.004_bib2
  article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2016.01.004
– volume: 23
  start-page: 6074
  issue: 22
  year: 2010
  ident: 10.1016/j.atmosenv.2018.04.004_bib9
  article-title: Long-range dependence and climate noise characteristics of Antarctic temperature data
  publication-title: J. Clim.
  doi: 10.1175/2010JCLI3654.1
– volume: 294
  start-page: 269
  issue: 1
  year: 2006
  ident: 10.1016/j.atmosenv.2018.04.004_bib37
  article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN
  publication-title: J. Sound Vib.
– volume: 142
  start-page: 465
  year: 2016
  ident: 10.1016/j.atmosenv.2018.04.004_bib1
  article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.08.007
– volume: 6
  start-page: 139
  issue: 2
  year: 2011
  ident: 10.1016/j.atmosenv.2018.04.004_bib12
  article-title: Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech
  publication-title: Biomed. Signal Process Contr.
  doi: 10.1016/j.bspc.2010.11.001
– start-page: 374
  year: 2010
  ident: 10.1016/j.atmosenv.2018.04.004_bib18
  article-title: A new hybrid PSOGSA algorithm for function optimization
  publication-title: Inter. Conf. on Comp. Inform. Appl. (ICCIA 2010),
– volume: 463
  start-page: 931
  year: 2013
  ident: 10.1016/j.atmosenv.2018.04.004_bib10
  article-title: Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.06.095
– volume: 42
  start-page: 4567
  issue: 19
  year: 2008
  ident: 10.1016/j.atmosenv.2018.04.004_bib24
  article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.01.068
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.atmosenv.2018.04.004_bib34
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 580
  start-page: 719
  year: 2017
  ident: 10.1016/j.atmosenv.2018.04.004_bib29
  article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.018
– volume: 496
  start-page: 264
  year: 2014
  ident: 10.1016/j.atmosenv.2018.04.004_bib40
  article-title: A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.07.051
– volume: 42
  start-page: 8331
  issue: 35
  year: 2008
  ident: 10.1016/j.atmosenv.2018.04.004_bib5
  article-title: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.07.020
– volume: 134
  start-page: 168
  year: 2016
  ident: 10.1016/j.atmosenv.2018.04.004_bib19
  article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.056
– volume: 409
  start-page: 1559
  issue: 8
  year: 2011
  ident: 10.1016/j.atmosenv.2018.04.004_bib28
  article-title: Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.12.040
– volume: 44
  start-page: 3976
  issue: 32
  year: 2010
  ident: 10.1016/j.atmosenv.2018.04.004_bib25
  article-title: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.06.060
– volume: 45
  start-page: 3758
  issue: 22
  year: 2011
  ident: 10.1016/j.atmosenv.2018.04.004_bib3
  article-title: A nonlinear regression model estimating single sourcecon centrations of primary and secondarily formed PM2.5
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.03.074
– volume: 34
  start-page: 70
  year: 2016
  ident: 10.1016/j.atmosenv.2018.04.004_bib6
  article-title: Handling high-dimensional data in air pollution forecasting tasks
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2016.04.007
– volume: 163
  start-page: 62
  year: 2012
  ident: 10.1016/j.atmosenv.2018.04.004_bib8
  article-title: Forecasting PM10 in metropolitan areas: efficacy of neural networks
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.12.018
– start-page: 1942
  year: 1995
  ident: 10.1016/j.atmosenv.2018.04.004_bib13
  article-title: Particle swarm optimization
  publication-title: Neural Network.
– volume: 35
  start-page: 108
  issue: 1
  year: 2013
  ident: 10.1016/j.atmosenv.2018.04.004_bib16
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.09.015
– volume: 54
  start-page: 1453
  issue: 5
  year: 2011
  ident: 10.1016/j.atmosenv.2018.04.004_bib22
  article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain)
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.04.017
– volume: 121
  start-page: 46
  issue: 1
  year: 2013
  ident: 10.1016/j.atmosenv.2018.04.004_bib26
  article-title: The air quality health index and asthma morbidity: a population-based study
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104816
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.atmosenv.2018.04.004_bib11
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Roy. Soc. Lond A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 107
  start-page: 118
  year: 2015
  ident: 10.1016/j.atmosenv.2018.04.004_bib7
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.030
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.atmosenv.2018.04.004_bib20
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 62
  start-page: 444
  year: 2015
  ident: 10.1016/j.atmosenv.2018.04.004_bib36
  article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.03.002
– volume: 471
  year: 2015
  ident: 10.1016/j.atmosenv.2018.04.004_bib17
  article-title: Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating
  publication-title: Proceed. Royal Soc. A
  doi: 10.1098/rspa.2015.0257
– volume: 3
  start-page: 058
  year: 2013
  ident: 10.1016/j.atmosenv.2018.04.004_bib30
  article-title: Study on network traffic forecast model of SVR optimized by GAFSA
  publication-title: Appl. Res. Comput.
– volume: 11
  start-page: 70
  issue: 1
  year: 2014
  ident: 10.1016/j.atmosenv.2018.04.004_bib32
  article-title: Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-014-0070-4
– volume: 2
  start-page: 135
  issue: 02
  year: 2010
  ident: 10.1016/j.atmosenv.2018.04.004_bib38
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000422
– volume: 231
  start-page: 1232
  year: 2017
  ident: 10.1016/j.atmosenv.2018.04.004_bib41
  article-title: Daily air quality index forecasting with hybrid models: a case in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.069
– volume: 148
  start-page: 239
  year: 2017
  ident: 10.1016/j.atmosenv.2018.04.004_bib35
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.10.046
– start-page: 8
  year: 2013
  ident: 10.1016/j.atmosenv.2018.04.004_bib15
– volume: 443
  start-page: 93
  year: 2013
  ident: 10.1016/j.atmosenv.2018.04.004_bib23
  article-title: Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.10.070
– volume: 584
  start-page: 1077
  year: 2017
  ident: 10.1016/j.atmosenv.2018.04.004_bib21
  article-title: Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: a spatiotemporal analysis of the impacts of the energy generation and fuel sales
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.166
– volume: 62
  start-page: 64
  year: 2012
  ident: 10.1016/j.atmosenv.2018.04.004_bib39
  article-title: Prediction of ozone levels using a hidden Markov model (HMM) with Gamma distribution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.08.008
– volume: 10
  start-page: e0132769
  issue: 7
  year: 2015
  ident: 10.1016/j.atmosenv.2018.04.004_bib31
  article-title: Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: a three-step procedure case-crossover study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132769
– year: 2006
  ident: 10.1016/j.atmosenv.2018.04.004_bib33
– volume: 36
  start-page: 545
  issue: 3–4
  year: 2011
  ident: 10.1016/j.atmosenv.2018.04.004_bib4
  article-title: The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-010-0865-4
SSID ssj0003797
Score 2.6081917
Snippet The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms air pollution
air quality
algorithms
atmospheric chemistry
China
cities
climate
Gravitational search algorithm
Grey correlation analysis
landscapes
meteorological parameters
Particle swarm optimization
particulates
PM2.5 concentrations
pollutants
pollution control
respiratory tract diseases
Support vector regression
Title PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
URI https://dx.doi.org/10.1016/j.atmosenv.2018.04.004
https://www.proquest.com/docview/2237519891
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuItIzESmocTJ2NVSguopaKA2CzHtatWNIG2MPLbuWscXkLqgDJEts5W5DvffY7vQciJjriJeKqcJDY9h6UqcKRisWMUoBPlaZBpDHButaPmPbt6DB8XSK2MhUG3Sqv7C50-09a2p2JXs_I8GFS6HmKHADNOBWCIEtTDjHGsYnD2_uXmEfCiwAoQO0j9LUp4CBwZ5ROdvaGLVzxLeWoLtv1hoH6p6pn9uVgjqxY40mrxbetkQWcbZOVbOsENsl3_iloDUrttJ5vkpdPyz0IK-FQrOUFHZ4r-7n3afbil-CeWdro3jW6Vyqd-Pob2iKJ169E8o7V6vXV-Shu37TaVWY82alWqbJVPnGIEqDsflyqU2vo9W-T-on5Xazq21oKjAhZOndRPY9dwOD0YKXtJEEaau1qmnsG38gOG95lMw2OMnwLqAmjHPKTGyuppsE0WszzTO4QmrlG-4Qo64fTohlLqmBsGIuHBYSuOdklYLrBQNhE51sN4EqXH2VCUjBHIGOEyAYzZJZXPcc9FKo65I5KSf-KHUAmwF3PHHpcMF7Dj8BpFZjp_nQgQOh6iq5m394_598kytgqvswOyOB2_6kPAN9P0aCbAR2SpenndbH8AwV769Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADYhU7RuJIaBYnTo5VKS1LC6KAuFmOayNQm5S2cOTbmWkcNiFxQDlEcWwr8oxnid_MEHKgI24inioniU3XYakKHKlY7BgF1onyNPA0Bji32lHzlp3dh_dTpFbGwiCs0sr-QqZPpLVtqdjVrAweHysdD22HADNOBaCIEpDDMyz0OXpgR2-fOI-AFxVWoLeD3b-ECT8BSfr5SGeviPGKJzlPbcW2XzTUD1k9UUAni2TBWo60WnzcEpnS2TKZ_5JPcJms1T_D1qCr3bejFfJ81fKPQgoGqlZyhEhnioD3B9q5u6b4K5ZedS4bnSqVvYd8CM99iuqtS_OM1ur11vEhbVy321RmXdqoVamyZT5xij6Y3fmwlKHUFvBZJbcn9Zta07HFFhwVsHDspH4au4aD-2Ck7CZBGGnuapl6Bu_KDxgeaDINlzF-CmYX2HbMw95YWj0N1sh0lmd6ndDENco3XEEjuI9uKKWOuWHAEx54W3G0QcJygYWymcixIEZPlJCzJ1ESRiBhhMsEEGaDVD7GDYpcHH-OSEr6iW9cJUBh_Dl2vyS4gC2H5ygy0_nLSADX8RCxZt7mP-bfI7PNm9aFuDhtn2-ROXxTQNC2yfR4-KJ3wNgZp7sTZn4HiIL8ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM2.5+forecasting+using+SVR+with+PSOGSA+algorithm+based+on+CEEMD%2C+GRNN+and+GCA+considering+meteorological+factors&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Zhu%2C+Suling&rft.au=Lian%2C+Xiuyuan&rft.au=Wei%2C+Lin&rft.au=Che%2C+Jinxing&rft.date=2018-06-01&rft.issn=1352-2310&rft.volume=183+p.20-32&rft.spage=20&rft.epage=32&rft_id=info:doi/10.1016%2Fj.atmosenv.2018.04.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon