PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outd...
Saved in:
| Published in | Atmospheric environment (1994) Vol. 183; pp. 20 - 32 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1352-2310 1873-2844 |
| DOI | 10.1016/j.atmosenv.2018.04.004 |
Cover
| Abstract | The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings.
[Display omitted]
•Meteorological factors are studied for PM2.5 forecasting.•Effective information of PM2.5 is extracted by CEEMD.•The proposed CEEMD-PSOGSA-SVR-GRNN model is effective for PM2.5 forecasting.•The proposed theory can be used to effectively forecast other pollutions. |
|---|---|
| AbstractList | The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings. The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings. [Display omitted] •Meteorological factors are studied for PM2.5 forecasting.•Effective information of PM2.5 is extracted by CEEMD.•The proposed CEEMD-PSOGSA-SVR-GRNN model is effective for PM2.5 forecasting.•The proposed theory can be used to effectively forecast other pollutions. |
| Author | Shen, Xiping Lian, Xiuyuan Wei, Lin Gao, Wenlong Zhu, Suling Qiu, Xuanlin Ren, Xiaowei Li, Juansheng Che, Jinxing Yang, Ling Liu, Xiaoning |
| Author_xml | – sequence: 1 givenname: Suling surname: Zhu fullname: Zhu, Suling organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China – sequence: 2 givenname: Xiuyuan surname: Lian fullname: Lian, Xiuyuan email: 819612640@qq.com organization: School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China – sequence: 3 givenname: Lin surname: Wei fullname: Wei, Lin organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China – sequence: 4 givenname: Jinxing surname: Che fullname: Che, Jinxing organization: School of Science, Nanchang Institute of Technology, Nanchang 330099, JiangXi, China – sequence: 5 givenname: Xiping surname: Shen fullname: Shen, Xiping organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China – sequence: 6 givenname: Ling surname: Yang fullname: Yang, Ling organization: School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China – sequence: 7 givenname: Xuanlin surname: Qiu fullname: Qiu, Xuanlin organization: School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China – sequence: 8 givenname: Xiaoning surname: Liu fullname: Liu, Xiaoning organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China – sequence: 9 givenname: Wenlong surname: Gao fullname: Gao, Wenlong organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China – sequence: 10 givenname: Xiaowei surname: Ren fullname: Ren, Xiaowei organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China – sequence: 11 givenname: Juansheng surname: Li fullname: Li, Juansheng organization: School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China |
| BookMark | eNqFkUtvEzEUhS1UJNrAX0BesmCG68c8IrEgSkNA6ksNsLU8nuvgaMZubaeIf8-MAhs21ZXuQzrnLL57Qc588EjIWwYlA1Z_OJQ6jyGhfyo5sLYEWQLIF-SctY0oeCvl2bSLihdcMHhFLlI6AIBols05eby75mVFbYhodMrO7-kxzX33457-cvknvdvdbncrqod9iNM90k4n7GnwdL3ZXF--p9v7mxuqfU-36xU1wSfXY5wjRswYYhjC3hk9UKtNDjG9Ji-tHhK--TsX5Pvnzbf1l-Lqdvt1vboqjJBVLjretWCbpmqt1v1SVDU2gLpjdp6GC9kumZA4lbW8q2pWVyDZrJYATScW5N0p9yGGxyOmrEaXDA6D9hiOSXEumoot55QFqU9SE0NKEa16iG7U8bdioGbG6qD-MVYzYwVSTYwn48f_jMZlnV3wOWo3PG__dLLjxOHJYVTJOPQGeze9I6s-uOci_gBUS54V |
| CitedBy_id | crossref_primary_10_1016_j_jth_2021_101314 crossref_primary_10_3390_s22041320 crossref_primary_10_1080_00207543_2020_1837407 crossref_primary_10_1016_j_mlwa_2023_100521 crossref_primary_10_1016_j_apor_2024_104069 crossref_primary_10_1016_j_compind_2020_103387 crossref_primary_10_1038_s41598_021_95027_1 crossref_primary_10_1007_s10661_022_10603_w crossref_primary_10_3390_ijerph20010695 crossref_primary_10_1002_for_3218 crossref_primary_10_1016_j_apr_2022_101363 crossref_primary_10_1016_j_apr_2020_06_028 crossref_primary_10_1016_j_envpol_2019_113187 crossref_primary_10_1016_j_eswa_2022_118707 crossref_primary_10_1016_j_jclepro_2020_121528 crossref_primary_10_1109_ACCESS_2020_2990288 crossref_primary_10_1016_j_envint_2023_107971 crossref_primary_10_1016_j_engappai_2019_08_018 crossref_primary_10_3389_fenvs_2022_873939 crossref_primary_10_1016_j_energy_2019_07_025 crossref_primary_10_1007_s00477_022_02202_5 crossref_primary_10_3390_atmos13091504 crossref_primary_10_1016_j_apr_2022_101358 crossref_primary_10_1016_j_renene_2024_121732 crossref_primary_10_1016_j_chemosphere_2023_140799 crossref_primary_10_1016_j_envsoft_2019_06_014 crossref_primary_10_1007_s11356_021_18362_w crossref_primary_10_1088_1742_6596_2412_1_012005 crossref_primary_10_1007_s00521_023_08805_5 crossref_primary_10_1155_2022_7207477 crossref_primary_10_1016_j_knosys_2024_111605 crossref_primary_10_1016_j_asoc_2020_106957 crossref_primary_10_1007_s11356_023_25238_8 crossref_primary_10_1002_for_2673 crossref_primary_10_1155_2021_7271383 crossref_primary_10_3390_su14169951 crossref_primary_10_1016_j_chemosphere_2019_01_121 crossref_primary_10_3390_atmos14111604 crossref_primary_10_28948_ngumuh_654092 crossref_primary_10_3390_machines9120312 crossref_primary_10_1007_s10462_022_10262_w crossref_primary_10_3390_computation11120249 crossref_primary_10_1016_j_scs_2020_102337 crossref_primary_10_1155_2021_5577041 crossref_primary_10_3390_rs14030599 crossref_primary_10_1016_j_scitotenv_2021_151204 crossref_primary_10_3390_app10072401 crossref_primary_10_1016_j_jastp_2024_106338 crossref_primary_10_1016_j_envpol_2020_114635 crossref_primary_10_1016_j_jclepro_2020_122722 crossref_primary_10_1016_j_scitotenv_2019_134474 crossref_primary_10_1016_j_atmosenv_2024_120730 crossref_primary_10_1108_MEQ_07_2024_0313 crossref_primary_10_3390_su142316291 crossref_primary_10_1063_5_0172382 crossref_primary_10_3389_fenvs_2022_941405 crossref_primary_10_1016_j_envpol_2020_116381 crossref_primary_10_3233_JIFS_230343 crossref_primary_10_1007_s13762_021_03730_3 crossref_primary_10_1016_j_eswa_2022_117707 crossref_primary_10_1016_j_asoc_2021_108110 crossref_primary_10_1016_j_scs_2020_102567 crossref_primary_10_1016_j_ijepes_2021_107595 crossref_primary_10_1016_j_knosys_2023_110476 crossref_primary_10_1109_ACCESS_2022_3146170 crossref_primary_10_1029_2021EA001694 crossref_primary_10_1016_j_jclepro_2020_121442 crossref_primary_10_1007_s11227_022_04638_6 crossref_primary_10_3390_en15176428 crossref_primary_10_1007_s11069_021_04614_y crossref_primary_10_1007_s11269_023_03528_7 crossref_primary_10_1007_s00477_021_02100_2 crossref_primary_10_1038_s41598_024_74122_z crossref_primary_10_1016_j_apr_2019_05_007 crossref_primary_10_1007_s00477_024_02693_4 crossref_primary_10_3390_stats6040077 crossref_primary_10_1016_j_apr_2019_03_004 crossref_primary_10_1155_2021_5599096 crossref_primary_10_1016_j_jclepro_2022_133383 crossref_primary_10_1155_2021_6507688 crossref_primary_10_1016_j_eng_2020_05_009 crossref_primary_10_1016_j_asoc_2019_105799 crossref_primary_10_1016_j_eswa_2023_120140 crossref_primary_10_1007_s11869_020_00925_4 crossref_primary_10_1007_s10473_022_0110_3 crossref_primary_10_1016_j_heliyon_2024_e39783 crossref_primary_10_1007_s11356_020_09891_x crossref_primary_10_1007_s12652_022_04423_6 crossref_primary_10_1016_j_atmosenv_2019_117200 crossref_primary_10_1039_D3RA02408C crossref_primary_10_1016_j_jclepro_2019_118773 crossref_primary_10_1016_j_scitotenv_2018_09_111 crossref_primary_10_1016_j_apr_2021_101211 crossref_primary_10_1016_j_energy_2022_124650 crossref_primary_10_1088_1742_6596_1624_2_022015 crossref_primary_10_3390_ijerph18052222 crossref_primary_10_3390_ijerph20032316 crossref_primary_10_1016_j_heliyon_2023_e14526 crossref_primary_10_1016_j_apr_2019_11_019 crossref_primary_10_1007_s11869_020_00936_1 crossref_primary_10_1007_s40095_019_0298_8 crossref_primary_10_3390_ijgi10010031 crossref_primary_10_1016_j_jclepro_2018_09_071 crossref_primary_10_1016_j_jclepro_2020_121941 crossref_primary_10_1109_ACCESS_2020_3000333 crossref_primary_10_1016_j_scitotenv_2020_143513 crossref_primary_10_3390_su17062546 crossref_primary_10_1016_j_jclepro_2023_139508 crossref_primary_10_5194_essd_14_5605_2022 crossref_primary_10_1016_j_apr_2020_02_022 crossref_primary_10_1016_j_ijsrc_2021_10_001 crossref_primary_10_1016_j_jenvman_2019_109855 crossref_primary_10_1021_acs_est_3c09177 crossref_primary_10_3390_atmos10040223 crossref_primary_10_1016_j_jclepro_2020_120983 crossref_primary_10_1016_j_envres_2023_116365 crossref_primary_10_1016_j_ijrefrig_2020_02_035 crossref_primary_10_1371_journal_pone_0287423 crossref_primary_10_1016_j_scitotenv_2019_134792 crossref_primary_10_1117_1_JRS_18_038501 crossref_primary_10_1016_j_envsoft_2022_105529 crossref_primary_10_1016_j_jclepro_2020_124023 crossref_primary_10_1007_s00477_021_02029_6 crossref_primary_10_3390_systems11060286 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1007_s12145_023_01111_7 crossref_primary_10_1007_s10661_024_13466_5 crossref_primary_10_3390_rs14071617 crossref_primary_10_1117_1_JRS_18_012006 crossref_primary_10_1016_j_apenergy_2019_114345 crossref_primary_10_1080_15481603_2021_1988429 |
| Cites_doi | 10.1016/j.atmosenv.2009.06.039 10.1109/72.788640 10.1016/j.apr.2016.01.004 10.1175/2010JCLI3654.1 10.1016/j.atmosenv.2016.08.007 10.1016/j.bspc.2010.11.001 10.1016/j.scitotenv.2013.06.095 10.1016/j.atmosenv.2008.01.068 10.1142/S1793536909000047 10.1016/j.scitotenv.2016.12.018 10.1016/j.scitotenv.2014.07.051 10.1016/j.atmosenv.2008.07.020 10.1016/j.atmosenv.2016.03.056 10.1016/j.scitotenv.2010.12.040 10.1016/j.atmosenv.2010.06.060 10.1016/j.atmosenv.2011.03.074 10.1016/j.ecoinf.2016.04.007 10.1016/j.envpol.2011.12.018 10.1016/j.ymssp.2012.09.015 10.1016/j.mcm.2011.04.017 10.1289/ehp.1104816 10.1098/rspa.1998.0193 10.1016/j.atmosenv.2015.02.030 10.1016/j.ins.2009.03.004 10.1016/j.ymssp.2015.03.002 10.1098/rspa.2015.0257 10.1186/s12989-014-0070-4 10.1142/S1793536910000422 10.1016/j.envpol.2017.08.069 10.1016/j.atmosenv.2016.10.046 10.1016/j.scitotenv.2012.10.070 10.1016/j.scitotenv.2017.01.166 10.1016/j.atmosenv.2012.08.008 10.1371/journal.pone.0132769 10.1007/s00382-010-0865-4 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.atmosenv.2018.04.004 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1873-2844 |
| EndPage | 32 |
| ExternalDocumentID | 10_1016_j_atmosenv_2018_04_004 S1352231018302292 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M -DZ -~X ..I .DC .HR .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K T9H TAE VH1 WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-b2b80f7758faad9356e70eab1fe70ec23489134e4e4ff2b561650418faa4007b3 |
| IEDL.DBID | .~1 |
| ISSN | 1352-2310 |
| IngestDate | Sun Sep 28 02:19:20 EDT 2025 Wed Oct 01 04:17:56 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Fri Feb 23 02:19:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PM2.5 concentrations Support vector regression Gravitational search algorithm Grey correlation analysis Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-b2b80f7758faad9356e70eab1fe70ec23489134e4e4ff2b561650418faa4007b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2237519891 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2237519891 crossref_primary_10_1016_j_atmosenv_2018_04_004 crossref_citationtrail_10_1016_j_atmosenv_2018_04_004 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2018_04_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 2018-06-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Atmospheric environment (1994) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Kindzierski, Kaul (bib31) 2015; 10 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib11) 1998; 454 World Health Organization (bib33) 2006 Baker, Foley (bib3) 2011; 45 Lei, Lin, He, Zuo (bib16) 2013; 35 Konovalov, Beekmann, Meleux, Dutot, Foret (bib14) 2009; 43 Stern, Builtjes, Schaap, Timmermans, Vautard, Hodzic, Memmesheimer, Feldmann, Renner, Wolke, Kerschbaumer (bib24) 2008; 42 Franzke (bib9) 2010; 23 Kennedy, Eberhart (bib13) 1995 Vlachogianni, Kassomenos, Karppinen, Karakitsios, Kukkonen (bib28) 2011; 409 Díaz-Robles, Ortega, Fu, Reed, Chow, Watson, Moncada-Herrera (bib5) 2008; 42 Bai, Li, Wang, Xie, Li (bib2) 2016; 7 Breaker, Ruzmaikin (bib4) 2011; 36 Sun, Zhang, Palazoglu, Singh, Zhang, Liu (bib23) 2013; 443 Xue, Zhou, Xu, Zhu, Li (bib36) 2015; 62 Zhang, Zhang, Palazoglu, Sun (bib39) 2012; 62 Fernando, Mammarella, Grandoni, Fedele, Di Marco, Dimitrova, Hyde (bib8) 2012; 163 Requia, Adams, Koutrakis (bib21) 2017; 584 Ausati, Amanollahi (bib1) 2016; 142 Goldberg, Burnett, Stieb, Brophy, Daskalopoulou, Valois, Brook (bib10) 2013; 463 Tai, Mickley, Jacob (bib25) 2010; 44 Xu, Yang, Wang (bib35) 2017; 148 Zhou, Jiang, Wang, Zhou (bib40) 2014; 496 Zhu, Lian, Liu, Hu, Wang, Che (bib41) 2017; 231 Wang, Liu (bib30) 2013; 3 Yeh, Shieh, Huang (bib38) 2010; 2 Vapnik (bib27) 1999; 10 Weichenthal, Hatzopoulou, Goldberg (bib32) 2014; 11 He, Lech, Maddage, Allen (bib12) 2011; 6 Wu, Huang (bib34) 2009; 1 Kuhn, Johnson (bib15) 2013 Rashedi, Nezamabadi-Pour, Saryazdi (bib20) 2009; 179 Feng, Li, Zhu, Hou, Jin, Wang (bib7) 2015; 107 To, Shen, Atenafu, Guan, McLimont, Stocks, Licskai (bib26) 2013; 121 Niu, Wang, Sun, Li (bib19) 2016; 134 Wang, Wei, Luo, Yue, Grunder (bib29) 2017; 580 Liang, Zou, Guo, Li, Zhang, Zhang, Huang, Chen (bib17) 2015; 471 Domańska, Łukasik (bib6) 2016; 34 Sánchez, Nieto, Fernández, del Coz Díaz, Iglesias-Rodríguez (bib22) 2011; 54 Mirjalili, Hashim (bib18) 2010 Yang, Yu, Cheng (bib37) 2006; 294 Bai (10.1016/j.atmosenv.2018.04.004_bib2) 2016; 7 Liang (10.1016/j.atmosenv.2018.04.004_bib17) 2015; 471 Ausati (10.1016/j.atmosenv.2018.04.004_bib1) 2016; 142 To (10.1016/j.atmosenv.2018.04.004_bib26) 2013; 121 He (10.1016/j.atmosenv.2018.04.004_bib12) 2011; 6 Baker (10.1016/j.atmosenv.2018.04.004_bib3) 2011; 45 Vapnik (10.1016/j.atmosenv.2018.04.004_bib27) 1999; 10 Lei (10.1016/j.atmosenv.2018.04.004_bib16) 2013; 35 Tai (10.1016/j.atmosenv.2018.04.004_bib25) 2010; 44 Feng (10.1016/j.atmosenv.2018.04.004_bib7) 2015; 107 Kuhn (10.1016/j.atmosenv.2018.04.004_bib15) 2013 Wang (10.1016/j.atmosenv.2018.04.004_bib31) 2015; 10 Díaz-Robles (10.1016/j.atmosenv.2018.04.004_bib5) 2008; 42 Konovalov (10.1016/j.atmosenv.2018.04.004_bib14) 2009; 43 Sun (10.1016/j.atmosenv.2018.04.004_bib23) 2013; 443 Franzke (10.1016/j.atmosenv.2018.04.004_bib9) 2010; 23 Niu (10.1016/j.atmosenv.2018.04.004_bib19) 2016; 134 Requia (10.1016/j.atmosenv.2018.04.004_bib21) 2017; 584 Xu (10.1016/j.atmosenv.2018.04.004_bib35) 2017; 148 Zhou (10.1016/j.atmosenv.2018.04.004_bib40) 2014; 496 Xue (10.1016/j.atmosenv.2018.04.004_bib36) 2015; 62 Huang (10.1016/j.atmosenv.2018.04.004_bib11) 1998; 454 Vlachogianni (10.1016/j.atmosenv.2018.04.004_bib28) 2011; 409 Yeh (10.1016/j.atmosenv.2018.04.004_bib38) 2010; 2 Breaker (10.1016/j.atmosenv.2018.04.004_bib4) 2011; 36 Weichenthal (10.1016/j.atmosenv.2018.04.004_bib32) 2014; 11 Yang (10.1016/j.atmosenv.2018.04.004_bib37) 2006; 294 Stern (10.1016/j.atmosenv.2018.04.004_bib24) 2008; 42 Wang (10.1016/j.atmosenv.2018.04.004_bib30) 2013; 3 Sánchez (10.1016/j.atmosenv.2018.04.004_bib22) 2011; 54 Wu (10.1016/j.atmosenv.2018.04.004_bib34) 2009; 1 Mirjalili (10.1016/j.atmosenv.2018.04.004_bib18) 2010 Goldberg (10.1016/j.atmosenv.2018.04.004_bib10) 2013; 463 Zhu (10.1016/j.atmosenv.2018.04.004_bib41) 2017; 231 World Health Organization (10.1016/j.atmosenv.2018.04.004_bib33) 2006 Rashedi (10.1016/j.atmosenv.2018.04.004_bib20) 2009; 179 Fernando (10.1016/j.atmosenv.2018.04.004_bib8) 2012; 163 Wang (10.1016/j.atmosenv.2018.04.004_bib29) 2017; 580 Zhang (10.1016/j.atmosenv.2018.04.004_bib39) 2012; 62 Domańska (10.1016/j.atmosenv.2018.04.004_bib6) 2016; 34 Kennedy (10.1016/j.atmosenv.2018.04.004_bib13) 1995 |
| References_xml | – start-page: 8 year: 2013 end-page: 10 ident: bib15 publication-title: Applied Predictive Modeling – volume: 3 start-page: 058 year: 2013 ident: bib30 article-title: Study on network traffic forecast model of SVR optimized by GAFSA publication-title: Appl. Res. Comput. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib11 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Roy. Soc. Lond A: Math., Phys. Eng. Sci. – volume: 35 start-page: 108 year: 2013 end-page: 126 ident: bib16 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. – volume: 2 start-page: 135 year: 2010 end-page: 156 ident: bib38 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 62 start-page: 64 year: 2012 end-page: 73 ident: bib39 article-title: Prediction of ozone levels using a hidden Markov model (HMM) with Gamma distribution publication-title: Atmos. Environ. – volume: 231 start-page: 1232 year: 2017 end-page: 1244 ident: bib41 article-title: Daily air quality index forecasting with hybrid models: a case in China publication-title: Environ. Pollut. – volume: 580 start-page: 719 year: 2017 end-page: 733 ident: bib29 article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine publication-title: Sci. Total Environ. – volume: 42 start-page: 4567 year: 2008 end-page: 4588 ident: bib24 article-title: A model inter-comparison study focussing on episodes with elevated PM publication-title: Atmos. Environ. – volume: 62 start-page: 444 year: 2015 end-page: 459 ident: bib36 article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 142 start-page: 465 year: 2016 end-page: 474 ident: bib1 article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM publication-title: Atmos. Environ. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: bib34 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 11 start-page: 70 year: 2014 ident: bib32 article-title: Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study publication-title: Part. Fibre Toxicol. – volume: 34 start-page: 70 year: 2016 end-page: 91 ident: bib6 article-title: Handling high-dimensional data in air pollution forecasting tasks publication-title: Ecol. Inf. – volume: 6 start-page: 139 year: 2011 end-page: 146 ident: bib12 article-title: Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech publication-title: Biomed. Signal Process Contr. – volume: 163 start-page: 62 year: 2012 end-page: 67 ident: bib8 article-title: Forecasting PM publication-title: Environ. Pollut. – volume: 496 start-page: 264 year: 2014 end-page: 274 ident: bib40 article-title: A hybrid model for PM publication-title: Sci. Total Environ. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib20 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 443 start-page: 93 year: 2013 end-page: 103 ident: bib23 article-title: Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California publication-title: Sci. Total Environ. – volume: 42 start-page: 8331 year: 2008 end-page: 8340 ident: bib5 article-title: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile publication-title: Atmos. Environ. – volume: 584 start-page: 1077 year: 2017 end-page: 1083 ident: bib21 article-title: Association of PM publication-title: Sci. Total Environ. – volume: 44 start-page: 3976 year: 2010 end-page: 3984 ident: bib25 article-title: Correlations between fine particulate matter (PM publication-title: Atmos. Environ. – volume: 107 start-page: 118 year: 2015 end-page: 128 ident: bib7 article-title: Artificial neural networks forecasting of PM publication-title: Atmos. Environ. – volume: 471 year: 2015 ident: bib17 article-title: Assessing Beijing's PM publication-title: Proceed. Royal Soc. A – year: 2006 ident: bib33 article-title: WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide-global Update 2005-Summary of Risk Assessment – volume: 45 start-page: 3758 year: 2011 end-page: 3767 ident: bib3 article-title: A nonlinear regression model estimating single sourcecon centrations of primary and secondarily formed PM publication-title: Atmos. Environ. – start-page: 374 year: 2010 end-page: 377 ident: bib18 article-title: A new hybrid PSOGSA algorithm for function optimization publication-title: Inter. Conf. on Comp. Inform. Appl. (ICCIA 2010), – volume: 23 start-page: 6074 year: 2010 end-page: 6081 ident: bib9 article-title: Long-range dependence and climate noise characteristics of Antarctic temperature data publication-title: J. Clim. – volume: 409 start-page: 1559 year: 2011 end-page: 1571 ident: bib28 article-title: Evaluation of a multiple regression model for the forecasting of the concentrations of NO publication-title: Sci. Total Environ. – volume: 10 start-page: e0132769 year: 2015 ident: bib31 article-title: Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: a three-step procedure case-crossover study publication-title: PLoS One – volume: 294 start-page: 269 year: 2006 end-page: 277 ident: bib37 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. – volume: 463 start-page: 931 year: 2013 end-page: 942 ident: bib10 article-title: Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec publication-title: Sci. Total Environ. – volume: 43 start-page: 6425 year: 2009 end-page: 6434 ident: bib14 article-title: Combining deterministic and statistical approaches for PM publication-title: Atmos. Environ. – volume: 7 start-page: 557 year: 2016 end-page: 566 ident: bib2 article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions publication-title: Atmos. Pollut. Res. – volume: 134 start-page: 168 year: 2016 end-page: 180 ident: bib19 article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM publication-title: Atmos. Environ. – volume: 148 start-page: 239 year: 2017 end-page: 257 ident: bib35 article-title: Air quality early-warning system for cities in China publication-title: Atmos. Environ. – volume: 10 start-page: 988 year: 1999 end-page: 999 ident: bib27 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Network. – volume: 36 start-page: 545 year: 2011 end-page: 559 ident: bib4 article-title: The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits publication-title: Clim. Dynam. – volume: 54 start-page: 1453 year: 2011 end-page: 1466 ident: bib22 article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain) publication-title: Math. Comput. Model. – start-page: 1942 year: 1995 end-page: 1948 ident: bib13 article-title: Particle swarm optimization publication-title: Neural Network. – volume: 121 start-page: 46 year: 2013 end-page: 52 ident: bib26 article-title: The air quality health index and asthma morbidity: a population-based study publication-title: Environ. Health Perspect. – volume: 43 start-page: 6425 issue: 40 year: 2009 ident: 10.1016/j.atmosenv.2018.04.004_bib14 article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.06.039 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 10.1016/j.atmosenv.2018.04.004_bib27 article-title: An overview of statistical learning theory publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.788640 – volume: 7 start-page: 557 issue: 3 year: 2016 ident: 10.1016/j.atmosenv.2018.04.004_bib2 article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2016.01.004 – volume: 23 start-page: 6074 issue: 22 year: 2010 ident: 10.1016/j.atmosenv.2018.04.004_bib9 article-title: Long-range dependence and climate noise characteristics of Antarctic temperature data publication-title: J. Clim. doi: 10.1175/2010JCLI3654.1 – volume: 294 start-page: 269 issue: 1 year: 2006 ident: 10.1016/j.atmosenv.2018.04.004_bib37 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. – volume: 142 start-page: 465 year: 2016 ident: 10.1016/j.atmosenv.2018.04.004_bib1 article-title: Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.08.007 – volume: 6 start-page: 139 issue: 2 year: 2011 ident: 10.1016/j.atmosenv.2018.04.004_bib12 article-title: Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech publication-title: Biomed. Signal Process Contr. doi: 10.1016/j.bspc.2010.11.001 – start-page: 374 year: 2010 ident: 10.1016/j.atmosenv.2018.04.004_bib18 article-title: A new hybrid PSOGSA algorithm for function optimization publication-title: Inter. Conf. on Comp. Inform. Appl. (ICCIA 2010), – volume: 463 start-page: 931 year: 2013 ident: 10.1016/j.atmosenv.2018.04.004_bib10 article-title: Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.06.095 – volume: 42 start-page: 4567 issue: 19 year: 2008 ident: 10.1016/j.atmosenv.2018.04.004_bib24 article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.01.068 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.atmosenv.2018.04.004_bib34 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 580 start-page: 719 year: 2017 ident: 10.1016/j.atmosenv.2018.04.004_bib29 article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.018 – volume: 496 start-page: 264 year: 2014 ident: 10.1016/j.atmosenv.2018.04.004_bib40 article-title: A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.07.051 – volume: 42 start-page: 8331 issue: 35 year: 2008 ident: 10.1016/j.atmosenv.2018.04.004_bib5 article-title: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.07.020 – volume: 134 start-page: 168 year: 2016 ident: 10.1016/j.atmosenv.2018.04.004_bib19 article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.056 – volume: 409 start-page: 1559 issue: 8 year: 2011 ident: 10.1016/j.atmosenv.2018.04.004_bib28 article-title: Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.12.040 – volume: 44 start-page: 3976 issue: 32 year: 2010 ident: 10.1016/j.atmosenv.2018.04.004_bib25 article-title: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.06.060 – volume: 45 start-page: 3758 issue: 22 year: 2011 ident: 10.1016/j.atmosenv.2018.04.004_bib3 article-title: A nonlinear regression model estimating single sourcecon centrations of primary and secondarily formed PM2.5 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.03.074 – volume: 34 start-page: 70 year: 2016 ident: 10.1016/j.atmosenv.2018.04.004_bib6 article-title: Handling high-dimensional data in air pollution forecasting tasks publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2016.04.007 – volume: 163 start-page: 62 year: 2012 ident: 10.1016/j.atmosenv.2018.04.004_bib8 article-title: Forecasting PM10 in metropolitan areas: efficacy of neural networks publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.12.018 – start-page: 1942 year: 1995 ident: 10.1016/j.atmosenv.2018.04.004_bib13 article-title: Particle swarm optimization publication-title: Neural Network. – volume: 35 start-page: 108 issue: 1 year: 2013 ident: 10.1016/j.atmosenv.2018.04.004_bib16 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.09.015 – volume: 54 start-page: 1453 issue: 5 year: 2011 ident: 10.1016/j.atmosenv.2018.04.004_bib22 article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain) publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.04.017 – volume: 121 start-page: 46 issue: 1 year: 2013 ident: 10.1016/j.atmosenv.2018.04.004_bib26 article-title: The air quality health index and asthma morbidity: a population-based study publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104816 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.atmosenv.2018.04.004_bib11 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Roy. Soc. Lond A: Math., Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 107 start-page: 118 year: 2015 ident: 10.1016/j.atmosenv.2018.04.004_bib7 article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.02.030 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.atmosenv.2018.04.004_bib20 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 62 start-page: 444 year: 2015 ident: 10.1016/j.atmosenv.2018.04.004_bib36 article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.03.002 – volume: 471 year: 2015 ident: 10.1016/j.atmosenv.2018.04.004_bib17 article-title: Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating publication-title: Proceed. Royal Soc. A doi: 10.1098/rspa.2015.0257 – volume: 3 start-page: 058 year: 2013 ident: 10.1016/j.atmosenv.2018.04.004_bib30 article-title: Study on network traffic forecast model of SVR optimized by GAFSA publication-title: Appl. Res. Comput. – volume: 11 start-page: 70 issue: 1 year: 2014 ident: 10.1016/j.atmosenv.2018.04.004_bib32 article-title: Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-014-0070-4 – volume: 2 start-page: 135 issue: 02 year: 2010 ident: 10.1016/j.atmosenv.2018.04.004_bib38 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000422 – volume: 231 start-page: 1232 year: 2017 ident: 10.1016/j.atmosenv.2018.04.004_bib41 article-title: Daily air quality index forecasting with hybrid models: a case in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.069 – volume: 148 start-page: 239 year: 2017 ident: 10.1016/j.atmosenv.2018.04.004_bib35 article-title: Air quality early-warning system for cities in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.10.046 – start-page: 8 year: 2013 ident: 10.1016/j.atmosenv.2018.04.004_bib15 – volume: 443 start-page: 93 year: 2013 ident: 10.1016/j.atmosenv.2018.04.004_bib23 article-title: Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.10.070 – volume: 584 start-page: 1077 year: 2017 ident: 10.1016/j.atmosenv.2018.04.004_bib21 article-title: Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: a spatiotemporal analysis of the impacts of the energy generation and fuel sales publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.166 – volume: 62 start-page: 64 year: 2012 ident: 10.1016/j.atmosenv.2018.04.004_bib39 article-title: Prediction of ozone levels using a hidden Markov model (HMM) with Gamma distribution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.08.008 – volume: 10 start-page: e0132769 issue: 7 year: 2015 ident: 10.1016/j.atmosenv.2018.04.004_bib31 article-title: Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: a three-step procedure case-crossover study publication-title: PLoS One doi: 10.1371/journal.pone.0132769 – year: 2006 ident: 10.1016/j.atmosenv.2018.04.004_bib33 – volume: 36 start-page: 545 issue: 3–4 year: 2011 ident: 10.1016/j.atmosenv.2018.04.004_bib4 article-title: The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits publication-title: Clim. Dynam. doi: 10.1007/s00382-010-0865-4 |
| SSID | ssj0003797 |
| Score | 2.6081917 |
| Snippet | The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 20 |
| SubjectTerms | air pollution air quality algorithms atmospheric chemistry China cities climate Gravitational search algorithm Grey correlation analysis landscapes meteorological parameters Particle swarm optimization particulates PM2.5 concentrations pollutants pollution control respiratory tract diseases Support vector regression |
| Title | PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors |
| URI | https://dx.doi.org/10.1016/j.atmosenv.2018.04.004 https://www.proquest.com/docview/2237519891 |
| Volume | 183 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuItIzESmocTJ2NVSguopaKA2CzHtatWNIG2MPLbuWscXkLqgDJEts5W5DvffY7vQciJjriJeKqcJDY9h6UqcKRisWMUoBPlaZBpDHButaPmPbt6DB8XSK2MhUG3Sqv7C50-09a2p2JXs_I8GFS6HmKHADNOBWCIEtTDjHGsYnD2_uXmEfCiwAoQO0j9LUp4CBwZ5ROdvaGLVzxLeWoLtv1hoH6p6pn9uVgjqxY40mrxbetkQWcbZOVbOsENsl3_iloDUrttJ5vkpdPyz0IK-FQrOUFHZ4r-7n3afbil-CeWdro3jW6Vyqd-Pob2iKJ169E8o7V6vXV-Shu37TaVWY82alWqbJVPnGIEqDsflyqU2vo9W-T-on5Xazq21oKjAhZOndRPY9dwOD0YKXtJEEaau1qmnsG38gOG95lMw2OMnwLqAmjHPKTGyuppsE0WszzTO4QmrlG-4Qo64fTohlLqmBsGIuHBYSuOdklYLrBQNhE51sN4EqXH2VCUjBHIGOEyAYzZJZXPcc9FKo65I5KSf-KHUAmwF3PHHpcMF7Dj8BpFZjp_nQgQOh6iq5m394_598kytgqvswOyOB2_6kPAN9P0aCbAR2SpenndbH8AwV769Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADYhU7RuJIaBYnTo5VKS1LC6KAuFmOayNQm5S2cOTbmWkcNiFxQDlEcWwr8oxnid_MEHKgI24inioniU3XYakKHKlY7BgF1onyNPA0Bji32lHzlp3dh_dTpFbGwiCs0sr-QqZPpLVtqdjVrAweHysdD22HADNOBaCIEpDDMyz0OXpgR2-fOI-AFxVWoLeD3b-ECT8BSfr5SGeviPGKJzlPbcW2XzTUD1k9UUAni2TBWo60WnzcEpnS2TKZ_5JPcJms1T_D1qCr3bejFfJ81fKPQgoGqlZyhEhnioD3B9q5u6b4K5ZedS4bnSqVvYd8CM99iuqtS_OM1ur11vEhbVy321RmXdqoVamyZT5xij6Y3fmwlKHUFvBZJbcn9Zta07HFFhwVsHDspH4au4aD-2Ck7CZBGGnuapl6Bu_KDxgeaDINlzF-CmYX2HbMw95YWj0N1sh0lmd6ndDENco3XEEjuI9uKKWOuWHAEx54W3G0QcJygYWymcixIEZPlJCzJ1ESRiBhhMsEEGaDVD7GDYpcHH-OSEr6iW9cJUBh_Dl2vyS4gC2H5ygy0_nLSADX8RCxZt7mP-bfI7PNm9aFuDhtn2-ROXxTQNC2yfR4-KJ3wNgZp7sTZn4HiIL8ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM2.5+forecasting+using+SVR+with+PSOGSA+algorithm+based+on+CEEMD%2C+GRNN+and+GCA+considering+meteorological+factors&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Zhu%2C+Suling&rft.au=Lian%2C+Xiuyuan&rft.au=Wei%2C+Lin&rft.au=Che%2C+Jinxing&rft.date=2018-06-01&rft.issn=1352-2310&rft.volume=183+p.20-32&rft.spage=20&rft.epage=32&rft_id=info:doi/10.1016%2Fj.atmosenv.2018.04.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |