Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection
•A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed sub-series.•Multi-objective Archimedes optimization algorithm is proposed to optimize weights.•Optimized reduction coefficient is proposed to adjust...
        Saved in:
      
    
          | Published in | Applied energy Vol. 301; p. 117449 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.11.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-2619 1872-9118  | 
| DOI | 10.1016/j.apenergy.2021.117449 | 
Cover
| Abstract | •A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed sub-series.•Multi-objective Archimedes optimization algorithm is proposed to optimize weights.•Optimized reduction coefficient is proposed to adjust interval forecasting width.•Theoretical proof and experiments verify the effectiveness of the ensemble system.
Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management. | 
    
|---|---|
| AbstractList | Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management. •A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed sub-series.•Multi-objective Archimedes optimization algorithm is proposed to optimize weights.•Optimized reduction coefficient is proposed to adjust interval forecasting width.•Theoretical proof and experiments verify the effectiveness of the ensemble system. Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management.  | 
    
| ArticleNumber | 117449 | 
    
| Author | Niu, Xinsong Wang, Jianzhou Zhang, Lifang Liu, Zhenkun  | 
    
| Author_xml | – sequence: 1 givenname: Lifang surname: Zhang fullname: Zhang, Lifang email: lifangzhang1106@126.com – sequence: 2 givenname: Jianzhou surname: Wang fullname: Wang, Jianzhou email: wjz@lzu.edu.cn – sequence: 3 givenname: Xinsong surname: Niu fullname: Niu, Xinsong email: xinsongniu@126.com – sequence: 4 givenname: Zhenkun surname: Liu fullname: Liu, Zhenkun email: zhenkunliudufe@163.com  | 
    
| BookMark | eNqFkE1LxDAURYMoOKP-BcnSTWuStmkDLhTxCwQXug9p8mbMkCY1ySj66-04unEzqweXey68M0f7PnhA6JSSkhLKz1elGsFDXH6WjDBaUtrWtdhDM9q1rBCUdvtoRirCC8apOETzlFaETE1GZsjf-ARD7wB_WG9wGgEMXoQIWqVs_XKK8yse1i7bIvQr0Nm-A76K-tUOYCDhMGY72C-VbfBYuWWIEzBgtRlb98UQDDicwG3I4I_RwUK5BCe_9wg93968XN8Xj093D9dXj4Wu6iYXQmlR9ZSorq55YzSIRhsmWuhMY3rSM6rbynDDoSdc64oL0woGtWi6luvqCJ1tV8cY3taQshxs0uCc8hDWSTJe8aYltKNT9WJb1TGkFGEhtc0_z-SorJOUyI1kuZJ_kuVGstxKnnD-Dx-jHVT83A1ebkGYLLxbiDJpC16DsZP7LE2wuya-AZdtoBs | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_123054 crossref_primary_10_1016_j_asoc_2023_111090 crossref_primary_10_1016_j_egyr_2022_12_149 crossref_primary_10_1016_j_energy_2023_128730 crossref_primary_10_1007_s10489_024_05350_z crossref_primary_10_1007_s10489_022_03644_8 crossref_primary_10_3390_e26030215 crossref_primary_10_1002_for_2888 crossref_primary_10_1109_ACCESS_2023_3320058 crossref_primary_10_1016_j_apenergy_2022_118674 crossref_primary_10_1016_j_energy_2023_129898 crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_1016_j_physa_2022_127173 crossref_primary_10_1016_j_apenergy_2022_118725 crossref_primary_10_1016_j_cie_2023_109237 crossref_primary_10_1016_j_egyr_2022_10_347 crossref_primary_10_1002_dac_5604 crossref_primary_10_1016_j_energy_2024_130521 crossref_primary_10_1016_j_apenergy_2022_118601 crossref_primary_10_1016_j_enconman_2024_118343 crossref_primary_10_1080_17445302_2023_2218323 crossref_primary_10_1002_ente_202300889 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1016_j_aei_2025_103267 crossref_primary_10_1016_j_renene_2024_122235 crossref_primary_10_1016_j_enconman_2022_115944 crossref_primary_10_1016_j_eswa_2023_120639 crossref_primary_10_3390_biomimetics9010001 crossref_primary_10_1093_ce_zkac010 crossref_primary_10_34133_research_0442 crossref_primary_10_1016_j_jclepro_2022_134048 crossref_primary_10_1016_j_engstruct_2024_119098 crossref_primary_10_1142_S2424786324500026 crossref_primary_10_1016_j_epsr_2022_108186 crossref_primary_10_1049_rpg2_12588 crossref_primary_10_1016_j_aei_2022_101806 crossref_primary_10_1016_j_enconman_2022_116579 crossref_primary_10_1007_s00521_023_08769_6 crossref_primary_10_1016_j_energy_2022_126172 crossref_primary_10_1016_j_energy_2022_124664 crossref_primary_10_3389_fenrg_2021_764635 crossref_primary_10_3390_atmos15030294 crossref_primary_10_1016_j_energy_2021_122128 crossref_primary_10_1016_j_asoc_2022_108544 crossref_primary_10_1016_j_ijepes_2023_109620 crossref_primary_10_1016_j_resourpol_2021_102335 crossref_primary_10_1016_j_resourpol_2022_102734 crossref_primary_10_1007_s41939_023_00318_x crossref_primary_10_1002_for_2905 crossref_primary_10_1016_j_cscee_2023_100594 crossref_primary_10_1016_j_eswa_2024_124560 crossref_primary_10_1016_j_jobe_2023_106922 crossref_primary_10_3390_en16145281 crossref_primary_10_1016_j_epsr_2022_108174 crossref_primary_10_1007_s11831_022_09876_8 crossref_primary_10_1111_exsy_13209 crossref_primary_10_1016_j_seta_2021_101780 crossref_primary_10_1016_j_dsp_2022_103643 crossref_primary_10_1016_j_jairtraman_2024_102611 crossref_primary_10_1007_s10651_023_00569_4 crossref_primary_10_1016_j_compeleceng_2024_109407 crossref_primary_10_1016_j_apenergy_2023_122099 crossref_primary_10_3390_s23052799 crossref_primary_10_1007_s00500_022_07668_7 crossref_primary_10_1177_10963480221142873 crossref_primary_10_1016_j_apenergy_2023_121049 crossref_primary_10_1016_j_apenergy_2024_125108 crossref_primary_10_1016_j_apenergy_2025_125525 crossref_primary_10_1016_j_asoc_2023_110864 crossref_primary_10_1016_j_jenvman_2021_113951 crossref_primary_10_1016_j_apenergy_2024_122875 crossref_primary_10_1109_OJSP_2023_3298251 crossref_primary_10_32604_ee_2024_046374 crossref_primary_10_1016_j_measurement_2024_115373 crossref_primary_10_1007_s00500_024_10322_z crossref_primary_10_1016_j_ijleo_2023_171465  | 
    
| Cites_doi | 10.1109/TPWRS.2018.2858265 10.1109/4235.585893 10.1016/j.jclepro.2019.03.036 10.1016/j.apm.2020.07.019 10.1016/j.seta.2020.100946 10.1016/j.renene.2020.10.119 10.1016/j.apenergy.2018.02.070 10.1016/j.renene.2020.11.002 10.1016/j.engappai.2020.103783 10.1016/j.asoc.2020.106809 10.1016/j.resourpol.2021.102234 10.1016/j.apenergy.2021.116842 10.1016/j.measurement.2019.107283 10.1016/j.jclepro.2018.10.129 10.1016/j.energy.2020.117794 10.1016/j.apenergy.2019.114259 10.1016/j.asoc.2019.105837 10.1016/j.enconman.2021.113944 10.1080/07350015.1995.10524599 10.1016/j.renene.2008.09.006 10.1016/j.jclepro.2020.121027 10.1016/j.enconman.2018.04.099 10.1016/j.energy.2020.119361 10.1007/s10489-017-1019-8 10.1016/j.apenergy.2019.05.016 10.1109/TSP.2013.2288675 10.1016/j.asoc.2019.105972 10.1016/j.eswa.2020.114364 10.1016/j.apenergy.2019.03.097 10.1016/j.renene.2003.11.009 10.1007/s10489-020-01893-z 10.1016/j.advengsoft.2013.12.007 10.1016/j.energy.2020.119509 10.1016/j.asoc.2020.106996 10.1016/j.energy.2020.119174 10.1016/j.jbi.2020.103575 10.1016/j.energy.2020.119599 10.1016/j.energy.2021.121125 10.1016/j.renene.2020.10.126 10.1016/j.jclepro.2020.120605 10.1016/j.apenergy.2017.09.043 10.1016/j.applthermaleng.2018.10.020 10.1109/MHS.1995.494215 10.1016/j.apenergy.2010.10.031 10.1016/j.knosys.2020.106052 10.1016/j.apenergy.2017.10.031 10.1016/j.apenergy.2020.115561 10.1016/j.enconman.2017.10.099 10.1016/j.engappai.2020.104133 10.1016/j.enconman.2016.12.032 10.1016/j.enconman.2020.112869 10.1016/j.enconman.2018.02.006 10.1038/scientificamerican0792-66 10.1016/j.advengsoft.2017.07.002 10.1016/j.apenergy.2020.115975 10.1016/j.eswa.2021.114974  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.apenergy.2021.117449 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| EISSN | 1872-9118 | 
    
| ExternalDocumentID | 10_1016_j_apenergy_2021_117449 S0306261921008394  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c345t-9ac93b10a84465dce95cd297e8d5db0b21c73d6d6eb06cc369d792e495876c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0306-2619 | 
    
| IngestDate | Sun Sep 28 07:48:04 EDT 2025 Thu Oct 09 00:17:54 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Fri Feb 23 02:40:48 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multi-objective Archimedes optimization algorithm Sub-model selection Artificial intelligence Ensemble wind speed forecasting  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c345t-9ac93b10a84465dce95cd297e8d5db0b21c73d6d6eb06cc369d792e495876c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 2636570181 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_2636570181 crossref_citationtrail_10_1016_j_apenergy_2021_117449 crossref_primary_10_1016_j_apenergy_2021_117449 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117449  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-11-01 2021-11-00 20211101  | 
    
| PublicationDateYYYYMMDD | 2021-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied energy | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Santhosh, Venkaiah, Vinod Kumar (b0025) 2018; 168 Yang, Wang, Lu, Niu, Du (b0245) 2019; 222 Altan, Karasu, Zio (b0145) 2021; 100 Liu, Wu, Li (b0150) 2018; 161 Ribeiro MHDM, Mariani VC, Coelho L dos S. Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods. J Biomed Inform 2020. https://doi.org/10.1016/j.jbi.2020.103575. Yang, Zhu, Li, Li (b0095) 2020; 87 Jiang, Yang, Li, Wang (b0235) 2021; 219 Liu, Duan, Chen (b0195) 2020; 280 Dragomiretskiy, Zosso (b0225) 2014; 62 Liu, Yang, Wang, Zhang (b0185) 2021; 165 Lu, Yue, Zhu, Li (b0220) 2020; 151 Qu, Zhang, Mao, Wang, Liu, Zhang (b0175) 2017; 154 Bora TC, Mariani VC, Coelho L dos S. Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 2019. https://doi.org/10.1016/j.applthermaleng.2018.10.020. Song, Wang, Lu (b0030) 2018; 215 Eberhart, Kennedy (b0105) 1995 Du, Wang, Hao, Niu, Yang (b0055) 2020; 96 Zameer, Arshad, Khan, Raja (b0080) 2017; 134 Moreno SR, Mariani VC, Coelho L dos S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast. Renew Energy 2021. https://doi.org/10.1016/j.renene.2020.10.126. Zhao, Guo, Guo, Lin, Zhu (b0210) 2021; 218 Erdem, Shi (b0020) 2011; 88 Mohandes, Halawani, Rehman, Hussain (b0070) 2004; 29 Niu, Wang (b0165) 2019; 241 Zhang, Zhang, Wang, Niu (b0155) 2020; 277 Wang, Li, Wang, Lu (b0045) 2021; 168 Jaseena, Kovoor (b0180) 2021; 234 da Silva RG, Ribeiro MHDM, Moreno SR, Mariani VC, Coelho L dos S. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 2021. https://doi.org/10.1016/j.energy.2020.119174. Song, Tang, Ji, Todo (b0015) 2020; 201-202 Diebold, Mariano (b0260) 1995; 13 Wang, Wang, Li (b0065) 2020; 260 Jiang, Liu, Wang, Zhang (b0075) 2021; 73 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0115) 2017; 114 Wang, Hu, Meng, Zhu (b0250) 2017; 208 Kisvari, Lin, Liu (b0005) 2021; 163 Wei, Wang, Niu, Li (b0140) 2021; 292 Mirjalili, Mirjalili, Lewis (b0110) 2014; 69 Wang, Du, Niu, Yang (b0120) 2017; 208 Li, Wang, Li, Lu (b0275) 2019; 208 Wang, Niu, Liu, Zhang (b0050) 2020; 94 Luo, Li, Wang, Hu (b0170) 2021; 89 Kavasseri, Seetharaman (b0035) 2009; 34 Liu, Qin, Zhang, Pei, Jiang, Feng (b0285) 2020; 260 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0230) 2021; 51 Wang, Wang, Li, Yang, Li (b0290) 2021; 231 Xie, Zhang, Chen, Zhou (b0040) 2019; 34 Nie, Jiang, Zhang (b0060) 2020; 97 Jiang, Liu, Niu, Zhang (b0085) 2021; 217 Holland (b0100) 1992; 267 Liu, Yu, Wu, Duan, Yan (b0240) 2020; 202 Liu Z, Jiang P, Wang J, Zhang L. Ensemble Forecasting System for Short-Term Wind Speed Forecasting Based on Optimal Sub-Model Selection and Multi- Objective Version of Mayfly Optimization Algorithm. Expert Syst Appl 2021:114974. https://doi.org/10.1016/j.eswa.2021.114974. Rodrigues Moreno, Gomes da Silva, Cocco Mariani, dos Santos Coelho (b0205) 2020; 213 Wang, Li, Zeng (b0265) 2021; 43 Ribeiro, dos Santos Coelho (b0280) 2020; 86 Zhou, Wang, Zhang (b0090) 2019; 250 Wolpert, Macready (b0130) 1997; 1 Wang, Zhang, Niu, Liu (b0255) 2020; 257 Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0125) 2018; 48 Jiang, Liu (b0160) 2019; 82 Ahmadi, Khashei (b0010) 2021; 99 Kavasseri (10.1016/j.apenergy.2021.117449_b0035) 2009; 34 Wang (10.1016/j.apenergy.2021.117449_b0065) 2020; 260 Rodrigues Moreno (10.1016/j.apenergy.2021.117449_b0205) 2020; 213 Wang (10.1016/j.apenergy.2021.117449_b0250) 2017; 208 Mohandes (10.1016/j.apenergy.2021.117449_b0070) 2004; 29 Zhou (10.1016/j.apenergy.2021.117449_b0090) 2019; 250 Ahmadi (10.1016/j.apenergy.2021.117449_b0010) 2021; 99 Luo (10.1016/j.apenergy.2021.117449_b0170) 2021; 89 Yang (10.1016/j.apenergy.2021.117449_b0245) 2019; 222 Qu (10.1016/j.apenergy.2021.117449_b0175) 2017; 154 Kisvari (10.1016/j.apenergy.2021.117449_b0005) 2021; 163 Jiang (10.1016/j.apenergy.2021.117449_b0075) 2021; 73 Liu (10.1016/j.apenergy.2021.117449_b0150) 2018; 161 Wei (10.1016/j.apenergy.2021.117449_b0140) 2021; 292 Eberhart (10.1016/j.apenergy.2021.117449_b0105) 1995 10.1016/j.apenergy.2021.117449_b0215 10.1016/j.apenergy.2021.117449_b0135 Liu (10.1016/j.apenergy.2021.117449_b0240) 2020; 202 10.1016/j.apenergy.2021.117449_b0270 10.1016/j.apenergy.2021.117449_b0190 Diebold (10.1016/j.apenergy.2021.117449_b0260) 1995; 13 Song (10.1016/j.apenergy.2021.117449_b0015) 2020; 201-202 Zameer (10.1016/j.apenergy.2021.117449_b0080) 2017; 134 Zhao (10.1016/j.apenergy.2021.117449_b0210) 2021; 218 Wang (10.1016/j.apenergy.2021.117449_b0255) 2020; 257 Hashim (10.1016/j.apenergy.2021.117449_b0230) 2021; 51 Wang (10.1016/j.apenergy.2021.117449_b0050) 2020; 94 Jiang (10.1016/j.apenergy.2021.117449_b0085) 2021; 217 Mirjalili (10.1016/j.apenergy.2021.117449_b0125) 2018; 48 Liu (10.1016/j.apenergy.2021.117449_b0195) 2020; 280 Erdem (10.1016/j.apenergy.2021.117449_b0020) 2011; 88 Dragomiretskiy (10.1016/j.apenergy.2021.117449_b0225) 2014; 62 Wang (10.1016/j.apenergy.2021.117449_b0265) 2021; 43 Song (10.1016/j.apenergy.2021.117449_b0030) 2018; 215 Nie (10.1016/j.apenergy.2021.117449_b0060) 2020; 97 Lu (10.1016/j.apenergy.2021.117449_b0220) 2020; 151 Altan (10.1016/j.apenergy.2021.117449_b0145) 2021; 100 Wolpert (10.1016/j.apenergy.2021.117449_b0130) 1997; 1 Wang (10.1016/j.apenergy.2021.117449_b0045) 2021; 168 Xie (10.1016/j.apenergy.2021.117449_b0040) 2019; 34 Santhosh (10.1016/j.apenergy.2021.117449_b0025) 2018; 168 Wang (10.1016/j.apenergy.2021.117449_b0120) 2017; 208 Jiang (10.1016/j.apenergy.2021.117449_b0235) 2021; 219 Holland (10.1016/j.apenergy.2021.117449_b0100) 1992; 267 Jaseena (10.1016/j.apenergy.2021.117449_b0180) 2021; 234 Liu (10.1016/j.apenergy.2021.117449_b0185) 2021; 165 Mirjalili (10.1016/j.apenergy.2021.117449_b0115) 2017; 114 Jiang (10.1016/j.apenergy.2021.117449_b0160) 2019; 82 Li (10.1016/j.apenergy.2021.117449_b0275) 2019; 208 Yang (10.1016/j.apenergy.2021.117449_b0095) 2020; 87 Mirjalili (10.1016/j.apenergy.2021.117449_b0110) 2014; 69 Niu (10.1016/j.apenergy.2021.117449_b0165) 2019; 241 Ribeiro (10.1016/j.apenergy.2021.117449_b0280) 2020; 86 Du (10.1016/j.apenergy.2021.117449_b0055) 2020; 96 Liu (10.1016/j.apenergy.2021.117449_b0285) 2020; 260 Zhang (10.1016/j.apenergy.2021.117449_b0155) 2020; 277 10.1016/j.apenergy.2021.117449_b0200 Wang (10.1016/j.apenergy.2021.117449_b0290) 2021; 231  | 
    
| References_xml | – volume: 94 start-page: 103783 year: 2020 ident: b0050 article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting publication-title: Eng Appl Artif Intell – volume: 257 start-page: 120605 year: 2020 ident: b0255 article-title: Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China publication-title: J Clean Prod – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b0230 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl Intell – volume: 163 start-page: 1895 year: 2021 end-page: 1909 ident: b0005 article-title: Wind power forecasting – A data-driven method along with gated recurrent neural network publication-title: Renew Energy – reference: Liu Z, Jiang P, Wang J, Zhang L. Ensemble Forecasting System for Short-Term Wind Speed Forecasting Based on Optimal Sub-Model Selection and Multi- Objective Version of Mayfly Optimization Algorithm. Expert Syst Appl 2021:114974. https://doi.org/10.1016/j.eswa.2021.114974. – volume: 99 start-page: 104133 year: 2021 ident: b0010 article-title: Current status of hybrid structures in wind forecasting publication-title: Eng Appl Artif Intell – volume: 260 start-page: 121027 year: 2020 ident: b0065 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China publication-title: J Clean Prod – volume: 34 start-page: 1388 year: 2009 end-page: 1393 ident: b0035 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy – volume: 100 start-page: 106996 year: 2021 ident: b0145 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl Soft Comput – volume: 202 start-page: 117794 year: 2020 ident: b0240 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy – volume: 43 start-page: 100946 year: 2021 ident: b0265 article-title: Multi-layer cooperative combined forecasting system for short-term wind speed forecasting publication-title: Sustain Energy Technol Assessments – volume: 267 start-page: 66 year: 1992 end-page: 72 ident: b0100 article-title: Genetic Algorithms understand Genetic Algorithms publication-title: Sci Am – volume: 96 start-page: 106620 year: 2020 ident: b0055 article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl Soft publication-title: Comput J – volume: 215 start-page: 643 year: 2018 end-page: 658 ident: b0030 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0110 publication-title: Grey Wolf Optimizer Adv Eng Softw – volume: 241 start-page: 519 year: 2019 end-page: 539 ident: b0165 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy – volume: 34 start-page: 371 year: 2019 end-page: 379 ident: b0040 article-title: A Nonparametric Bayesian Framework for Short-Term Wind Power Probabilistic Forecast publication-title: IEEE Trans Power Syst – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0130 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput – reference: da Silva RG, Ribeiro MHDM, Moreno SR, Mariani VC, Coelho L dos S. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 2021. https://doi.org/10.1016/j.energy.2020.119174. – reference: Bora TC, Mariani VC, Coelho L dos S. Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 2019. https://doi.org/10.1016/j.applthermaleng.2018.10.020. – volume: 292 start-page: 116842 year: 2021 ident: b0140 article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks publication-title: Appl Energy – volume: 168 start-page: 114364 year: 2021 ident: b0045 article-title: A hesitant fuzzy wind speed forecasting system with novel defuzzification method and multi-objective optimization algorithm publication-title: Expert Syst Appl – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: b0020 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl Energy – volume: 208 start-page: 1365 year: 2019 end-page: 1383 ident: b0275 article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index publication-title: J Clean Prod – volume: 201-202 start-page: 106052 year: 2020 ident: b0015 article-title: Evaluating a dendritic neuron model for wind speed forecasting publication-title: Knowledge-Based Syst – volume: 86 start-page: 105837 year: 2020 ident: b0280 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl Soft Comput J – volume: 89 start-page: 49 year: 2021 end-page: 72 ident: b0170 article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach publication-title: Appl Math Model – volume: 29 start-page: 939 year: 2004 end-page: 947 ident: b0070 article-title: Support vector machines for wind speed prediction publication-title: Renew Energy – volume: 87 start-page: 105972 year: 2020 ident: b0095 article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight publication-title: Appl Soft Comput J – volume: 161 start-page: 266 year: 2018 end-page: 283 ident: b0150 article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction publication-title: Energy Convers Manag – volume: 208 start-page: 1097 year: 2017 end-page: 1112 ident: b0250 article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model publication-title: Appl Energy – volume: 231 start-page: 121125 year: 2021 ident: b0290 article-title: Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction publication-title: Energy – volume: 82 start-page: 105587 year: 2019 ident: b0160 article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. Appl Soft publication-title: Comput J – volume: 222 start-page: 942 year: 2019 end-page: 959 ident: b0245 article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China publication-title: J Clean Prod – volume: 97 year: 2020 ident: b0060 article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting publication-title: Appl Soft Comput – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0115 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw – volume: 213 start-page: 112869 year: 2020 ident: b0205 article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network publication-title: Energy Convers Manag – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0225 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process – year: 1995 ident: b0105 article-title: New optimizer using particle swarm theory publication-title: Proc Int Symp Micro Mach Hum Sci – volume: 48 start-page: 805 year: 2018 end-page: 820 ident: b0125 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Appl Intell – reference: Moreno SR, Mariani VC, Coelho L dos S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast. Renew Energy 2021. https://doi.org/10.1016/j.renene.2020.10.126. – volume: 208 start-page: 344 year: 2017 end-page: 360 ident: b0120 article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting publication-title: Appl Energy – volume: 151 start-page: 107283 year: 2020 ident: b0220 article-title: Variational mode decomposition denoising combined with improved Bhattacharyya distance publication-title: Measurement – volume: 217 start-page: 119361 year: 2021 ident: b0085 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy – volume: 218 start-page: 119509 year: 2021 ident: b0210 article-title: A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions publication-title: Energy – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: b0260 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat – volume: 234 start-page: 113944 year: 2021 ident: b0180 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers Manag – volume: 168 start-page: 482 year: 2018 end-page: 493 ident: b0025 article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction publication-title: Energy Convers Manag – volume: 260 start-page: 114259 year: 2020 ident: b0285 article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model publication-title: Appl Energy – volume: 154 start-page: 440 year: 2017 end-page: 454 ident: b0175 article-title: Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting publication-title: Energy Convers Manag – volume: 280 start-page: 115975 year: 2020 ident: b0195 article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder publication-title: Appl Energy – volume: 277 start-page: 115561 year: 2020 ident: b0155 article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting publication-title: Appl Energy – volume: 250 start-page: 1559 year: 2019 end-page: 1580 ident: b0090 article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems publication-title: Appl Energy – volume: 165 start-page: 573 year: 2021 end-page: 594 ident: b0185 article-title: A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections publication-title: Renew Energy – volume: 219 start-page: 119599 year: 2021 ident: b0235 article-title: A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity publication-title: Energy – volume: 134 start-page: 361 year: 2017 end-page: 372 ident: b0080 article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks publication-title: Energy Convers Manag – volume: 73 year: 2021 ident: b0075 article-title: Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm publication-title: Resources Policy – reference: Ribeiro MHDM, Mariani VC, Coelho L dos S. Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods. J Biomed Inform 2020. https://doi.org/10.1016/j.jbi.2020.103575. – volume: 34 start-page: 371 issue: 1 year: 2019 ident: 10.1016/j.apenergy.2021.117449_b0040 article-title: A Nonparametric Bayesian Framework for Short-Term Wind Power Probabilistic Forecast publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2858265 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.apenergy.2021.117449_b0130 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 222 start-page: 942 year: 2019 ident: 10.1016/j.apenergy.2021.117449_b0245 article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.03.036 – volume: 89 start-page: 49 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0170 article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach publication-title: Appl Math Model doi: 10.1016/j.apm.2020.07.019 – volume: 43 start-page: 100946 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0265 article-title: Multi-layer cooperative combined forecasting system for short-term wind speed forecasting publication-title: Sustain Energy Technol Assessments doi: 10.1016/j.seta.2020.100946 – volume: 163 start-page: 1895 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0005 article-title: Wind power forecasting – A data-driven method along with gated recurrent neural network publication-title: Renew Energy doi: 10.1016/j.renene.2020.10.119 – volume: 215 start-page: 643 year: 2018 ident: 10.1016/j.apenergy.2021.117449_b0030 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.070 – volume: 165 start-page: 573 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0185 article-title: A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections publication-title: Renew Energy doi: 10.1016/j.renene.2020.11.002 – volume: 94 start-page: 103783 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0050 article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103783 – volume: 97 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0060 article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106809 – volume: 73 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0075 article-title: Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm publication-title: Resources Policy doi: 10.1016/j.resourpol.2021.102234 – volume: 292 start-page: 116842 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0140 article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116842 – volume: 151 start-page: 107283 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0220 article-title: Variational mode decomposition denoising combined with improved Bhattacharyya distance publication-title: Measurement doi: 10.1016/j.measurement.2019.107283 – volume: 96 start-page: 106620 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0055 article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl Soft publication-title: Comput J – volume: 208 start-page: 1365 year: 2019 ident: 10.1016/j.apenergy.2021.117449_b0275 article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.10.129 – volume: 202 start-page: 117794 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0240 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy doi: 10.1016/j.energy.2020.117794 – volume: 260 start-page: 114259 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0285 article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114259 – volume: 86 start-page: 105837 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0280 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.105837 – volume: 234 start-page: 113944 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0180 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113944 – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10.1016/j.apenergy.2021.117449_b0260 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat doi: 10.1080/07350015.1995.10524599 – volume: 34 start-page: 1388 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2021.117449_b0035 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy doi: 10.1016/j.renene.2008.09.006 – volume: 82 start-page: 105587 year: 2019 ident: 10.1016/j.apenergy.2021.117449_b0160 article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. Appl Soft publication-title: Comput J – volume: 260 start-page: 121027 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0065 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.121027 – volume: 168 start-page: 482 year: 2018 ident: 10.1016/j.apenergy.2021.117449_b0025 article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.04.099 – volume: 217 start-page: 119361 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0085 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2020.119361 – volume: 48 start-page: 805 issue: 4 year: 2018 ident: 10.1016/j.apenergy.2021.117449_b0125 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Appl Intell doi: 10.1007/s10489-017-1019-8 – volume: 250 start-page: 1559 year: 2019 ident: 10.1016/j.apenergy.2021.117449_b0090 article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.05.016 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2021.117449_b0225 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – volume: 87 start-page: 105972 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0095 article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.105972 – volume: 168 start-page: 114364 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0045 article-title: A hesitant fuzzy wind speed forecasting system with novel defuzzification method and multi-objective optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114364 – volume: 241 start-page: 519 year: 2019 ident: 10.1016/j.apenergy.2021.117449_b0165 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.097 – volume: 29 start-page: 939 issue: 6 year: 2004 ident: 10.1016/j.apenergy.2021.117449_b0070 article-title: Support vector machines for wind speed prediction publication-title: Renew Energy doi: 10.1016/j.renene.2003.11.009 – volume: 51 start-page: 1531 issue: 3 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0230 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl Intell doi: 10.1007/s10489-020-01893-z – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.apenergy.2021.117449_b0110 publication-title: Grey Wolf Optimizer Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 218 start-page: 119509 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0210 article-title: A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions publication-title: Energy doi: 10.1016/j.energy.2020.119509 – volume: 100 start-page: 106996 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0145 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106996 – ident: 10.1016/j.apenergy.2021.117449_b0200 doi: 10.1016/j.energy.2020.119174 – ident: 10.1016/j.apenergy.2021.117449_b0215 doi: 10.1016/j.jbi.2020.103575 – volume: 219 start-page: 119599 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0235 article-title: A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity publication-title: Energy doi: 10.1016/j.energy.2020.119599 – volume: 231 start-page: 121125 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0290 article-title: Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction publication-title: Energy doi: 10.1016/j.energy.2021.121125 – ident: 10.1016/j.apenergy.2021.117449_b0135 doi: 10.1016/j.renene.2020.10.126 – volume: 257 start-page: 120605 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0255 article-title: Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120605 – volume: 208 start-page: 1097 year: 2017 ident: 10.1016/j.apenergy.2021.117449_b0250 article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.09.043 – ident: 10.1016/j.apenergy.2021.117449_b0270 doi: 10.1016/j.applthermaleng.2018.10.020 – year: 1995 ident: 10.1016/j.apenergy.2021.117449_b0105 article-title: New optimizer using particle swarm theory publication-title: Proc Int Symp Micro Mach Hum Sci doi: 10.1109/MHS.1995.494215 – volume: 88 start-page: 1405 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2021.117449_b0020 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 201-202 start-page: 106052 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0015 article-title: Evaluating a dendritic neuron model for wind speed forecasting publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2020.106052 – volume: 208 start-page: 344 year: 2017 ident: 10.1016/j.apenergy.2021.117449_b0120 article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.031 – volume: 277 start-page: 115561 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0155 article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115561 – volume: 154 start-page: 440 year: 2017 ident: 10.1016/j.apenergy.2021.117449_b0175 article-title: Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.10.099 – volume: 99 start-page: 104133 year: 2021 ident: 10.1016/j.apenergy.2021.117449_b0010 article-title: Current status of hybrid structures in wind forecasting publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104133 – volume: 134 start-page: 361 year: 2017 ident: 10.1016/j.apenergy.2021.117449_b0080 article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.12.032 – volume: 213 start-page: 112869 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0205 article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112869 – volume: 161 start-page: 266 year: 2018 ident: 10.1016/j.apenergy.2021.117449_b0150 article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.02.006 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.apenergy.2021.117449_b0100 article-title: Genetic Algorithms understand Genetic Algorithms publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.apenergy.2021.117449_b0115 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 280 start-page: 115975 year: 2020 ident: 10.1016/j.apenergy.2021.117449_b0195 article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115975 – ident: 10.1016/j.apenergy.2021.117449_b0190 doi: 10.1016/j.eswa.2021.114974  | 
    
| SSID | ssj0002120 | 
    
| Score | 2.605563 | 
    
| Snippet | •A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed... Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 117449 | 
    
| SubjectTerms | algorithms Artificial intelligence China data collection energy Ensemble wind speed forecasting Multi-objective Archimedes optimization algorithm prediction Sub-model selection wind power wind speed  | 
    
| Title | Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection | 
    
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.117449 https://www.proquest.com/docview/2636570181  | 
    
| Volume | 301 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvbSHCmhRKQUZiavZxK_ER4QWLSC40ErcLL-2YrWbrMiueuO3M3acQlElDtySaCaKPPY343jmG4SOi3JKheeSgHMUhHMzhTUnFKFlKBzzZagTT8H1jZz84pd34m4DnQ21MDGtMmN_j-kJrfOTUR7N0fL-fnQbo90U_0d-GqYiJyjnVexicPL4nOZBMzUjCJMo_aJKeHZiliFV2ME-kZbx_JJHTs3_O6hXUJ38z_kW-pwDR3zaf9s22gjNDvr0gk5wB-2On6vWQDQv2-4LasZNFxZ2HvAf2ILjbgkuC0O0GpzpYtozjn9jccotJK2d9RiIEyktOMvQ4RaAZZErNrGZ_24fQGGBTXzZ2pLUTgd3qaUOSHxFt-fjn2cTkhstEMe4WBFlnGK2LEwd6dO8C0o4T1UVai-8LSwtXcW89DLYQjrHpPKVogH2VoClju2izaZtwjeEnTfWGuoNxFHcBqtquKhMORWSOVnTPSSGsdUuc5DHVhhzPSSbzfRgEx1tonub7KHRX71lz8LxpoYaTKf_mU8aXMWbukeDrTUstniCYprQrjtNJYupQhAVfX_H-_fRx3jXVzT-QJurh3U4gNBmZQ_T3D1EH04vriY3T9xc_BQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHAqHqqVF0KeRejWb-JX4WKFFW14XqMTN8msRq91kRXbFrb-9Y8cptKrEobcombEijz0Pe-YbhL4W5ZQKzyUB4ygI52YKe04oQstQOObLUCecgotLOfnBT2_EzQY6HmphYlpl1v29Tk_aOr8Z5dkcLe_uRlfR203-f8SnYYq_QFtc0CpGYEc_H_M8aMZmBGoSyZ-UCc-OzDKkEjsIFGkZLzB5BNX8t4X6S1cnA3TyGr3KniP-1v_cG7QRml208wRPcBftjR_L1oA079vuLWrGTRcWdh7wA8TguFuCzcLgrgZnupj3jONxLE7JhaS1s14J4oRKC9YydLgFzbLIJZvYzG_be2BYYBMHW1uS-ungLvXUAYp36OpkfH08IbnTAnGMixVRxilmy8LUET_Nu6CE81RVofbC28LS0lXMSy-DLaRzTCpfKRoguAJl6tge2mzaJuwj7Lyx1lBvwJHiNlhVw0NlyqmQzMmaHiAxzK12GYQ89sKY6yHbbKYHmegoE93L5ACNfvMtexiOZznUIDr9x4LSYCue5T0cZK1ht8UrFNOEdt1pKlnMFQK36P1_jP8FvZxcX5zr8--XZx_QdvzSlzd-RJur-3X4BH7Oyn5O6_gXpgf9qQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+wind+speed+forecasting+with+multi-objective+Archimedes+optimization+algorithm+and+sub-model+selection&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Lifang&rft.au=Wang%2C+Jianzhou&rft.au=Niu%2C+Xinsong&rft.au=Liu%2C+Zhenkun&rft.date=2021-11-01&rft.issn=0306-2619&rft.volume=301&rft.spage=117449&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_117449 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |