Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection

•A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed sub-series.•Multi-objective Archimedes optimization algorithm is proposed to optimize weights.•Optimized reduction coefficient is proposed to adjust...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 301; p. 117449
Main Authors Zhang, Lifang, Wang, Jianzhou, Niu, Xinsong, Liu, Zhenkun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2021.117449

Cover

Abstract •A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed sub-series.•Multi-objective Archimedes optimization algorithm is proposed to optimize weights.•Optimized reduction coefficient is proposed to adjust interval forecasting width.•Theoretical proof and experiments verify the effectiveness of the ensemble system. Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management.
AbstractList Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management.
•A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed sub-series.•Multi-objective Archimedes optimization algorithm is proposed to optimize weights.•Optimized reduction coefficient is proposed to adjust interval forecasting width.•Theoretical proof and experiments verify the effectiveness of the ensemble system. Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management.
ArticleNumber 117449
Author Niu, Xinsong
Wang, Jianzhou
Zhang, Lifang
Liu, Zhenkun
Author_xml – sequence: 1
  givenname: Lifang
  surname: Zhang
  fullname: Zhang, Lifang
  email: lifangzhang1106@126.com
– sequence: 2
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wjz@lzu.edu.cn
– sequence: 3
  givenname: Xinsong
  surname: Niu
  fullname: Niu, Xinsong
  email: xinsongniu@126.com
– sequence: 4
  givenname: Zhenkun
  surname: Liu
  fullname: Liu, Zhenkun
  email: zhenkunliudufe@163.com
BookMark eNqFkE1LxDAURYMoOKP-BcnSTWuStmkDLhTxCwQXug9p8mbMkCY1ySj66-04unEzqweXey68M0f7PnhA6JSSkhLKz1elGsFDXH6WjDBaUtrWtdhDM9q1rBCUdvtoRirCC8apOETzlFaETE1GZsjf-ARD7wB_WG9wGgEMXoQIWqVs_XKK8yse1i7bIvQr0Nm-A76K-tUOYCDhMGY72C-VbfBYuWWIEzBgtRlb98UQDDicwG3I4I_RwUK5BCe_9wg93968XN8Xj093D9dXj4Wu6iYXQmlR9ZSorq55YzSIRhsmWuhMY3rSM6rbynDDoSdc64oL0woGtWi6luvqCJ1tV8cY3taQshxs0uCc8hDWSTJe8aYltKNT9WJb1TGkFGEhtc0_z-SorJOUyI1kuZJ_kuVGstxKnnD-Dx-jHVT83A1ebkGYLLxbiDJpC16DsZP7LE2wuya-AZdtoBs
CitedBy_id crossref_primary_10_1016_j_eswa_2023_123054
crossref_primary_10_1016_j_asoc_2023_111090
crossref_primary_10_1016_j_egyr_2022_12_149
crossref_primary_10_1016_j_energy_2023_128730
crossref_primary_10_1007_s10489_024_05350_z
crossref_primary_10_1007_s10489_022_03644_8
crossref_primary_10_3390_e26030215
crossref_primary_10_1002_for_2888
crossref_primary_10_1109_ACCESS_2023_3320058
crossref_primary_10_1016_j_apenergy_2022_118674
crossref_primary_10_1016_j_energy_2023_129898
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1016_j_physa_2022_127173
crossref_primary_10_1016_j_apenergy_2022_118725
crossref_primary_10_1016_j_cie_2023_109237
crossref_primary_10_1016_j_egyr_2022_10_347
crossref_primary_10_1002_dac_5604
crossref_primary_10_1016_j_energy_2024_130521
crossref_primary_10_1016_j_apenergy_2022_118601
crossref_primary_10_1016_j_enconman_2024_118343
crossref_primary_10_1080_17445302_2023_2218323
crossref_primary_10_1002_ente_202300889
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_aei_2025_103267
crossref_primary_10_1016_j_renene_2024_122235
crossref_primary_10_1016_j_enconman_2022_115944
crossref_primary_10_1016_j_eswa_2023_120639
crossref_primary_10_3390_biomimetics9010001
crossref_primary_10_1093_ce_zkac010
crossref_primary_10_34133_research_0442
crossref_primary_10_1016_j_jclepro_2022_134048
crossref_primary_10_1016_j_engstruct_2024_119098
crossref_primary_10_1142_S2424786324500026
crossref_primary_10_1016_j_epsr_2022_108186
crossref_primary_10_1049_rpg2_12588
crossref_primary_10_1016_j_aei_2022_101806
crossref_primary_10_1016_j_enconman_2022_116579
crossref_primary_10_1007_s00521_023_08769_6
crossref_primary_10_1016_j_energy_2022_126172
crossref_primary_10_1016_j_energy_2022_124664
crossref_primary_10_3389_fenrg_2021_764635
crossref_primary_10_3390_atmos15030294
crossref_primary_10_1016_j_energy_2021_122128
crossref_primary_10_1016_j_asoc_2022_108544
crossref_primary_10_1016_j_ijepes_2023_109620
crossref_primary_10_1016_j_resourpol_2021_102335
crossref_primary_10_1016_j_resourpol_2022_102734
crossref_primary_10_1007_s41939_023_00318_x
crossref_primary_10_1002_for_2905
crossref_primary_10_1016_j_cscee_2023_100594
crossref_primary_10_1016_j_eswa_2024_124560
crossref_primary_10_1016_j_jobe_2023_106922
crossref_primary_10_3390_en16145281
crossref_primary_10_1016_j_epsr_2022_108174
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_1111_exsy_13209
crossref_primary_10_1016_j_seta_2021_101780
crossref_primary_10_1016_j_dsp_2022_103643
crossref_primary_10_1016_j_jairtraman_2024_102611
crossref_primary_10_1007_s10651_023_00569_4
crossref_primary_10_1016_j_compeleceng_2024_109407
crossref_primary_10_1016_j_apenergy_2023_122099
crossref_primary_10_3390_s23052799
crossref_primary_10_1007_s00500_022_07668_7
crossref_primary_10_1177_10963480221142873
crossref_primary_10_1016_j_apenergy_2023_121049
crossref_primary_10_1016_j_apenergy_2024_125108
crossref_primary_10_1016_j_apenergy_2025_125525
crossref_primary_10_1016_j_asoc_2023_110864
crossref_primary_10_1016_j_jenvman_2021_113951
crossref_primary_10_1016_j_apenergy_2024_122875
crossref_primary_10_1109_OJSP_2023_3298251
crossref_primary_10_32604_ee_2024_046374
crossref_primary_10_1016_j_measurement_2024_115373
crossref_primary_10_1007_s00500_024_10322_z
crossref_primary_10_1016_j_ijleo_2023_171465
Cites_doi 10.1109/TPWRS.2018.2858265
10.1109/4235.585893
10.1016/j.jclepro.2019.03.036
10.1016/j.apm.2020.07.019
10.1016/j.seta.2020.100946
10.1016/j.renene.2020.10.119
10.1016/j.apenergy.2018.02.070
10.1016/j.renene.2020.11.002
10.1016/j.engappai.2020.103783
10.1016/j.asoc.2020.106809
10.1016/j.resourpol.2021.102234
10.1016/j.apenergy.2021.116842
10.1016/j.measurement.2019.107283
10.1016/j.jclepro.2018.10.129
10.1016/j.energy.2020.117794
10.1016/j.apenergy.2019.114259
10.1016/j.asoc.2019.105837
10.1016/j.enconman.2021.113944
10.1080/07350015.1995.10524599
10.1016/j.renene.2008.09.006
10.1016/j.jclepro.2020.121027
10.1016/j.enconman.2018.04.099
10.1016/j.energy.2020.119361
10.1007/s10489-017-1019-8
10.1016/j.apenergy.2019.05.016
10.1109/TSP.2013.2288675
10.1016/j.asoc.2019.105972
10.1016/j.eswa.2020.114364
10.1016/j.apenergy.2019.03.097
10.1016/j.renene.2003.11.009
10.1007/s10489-020-01893-z
10.1016/j.advengsoft.2013.12.007
10.1016/j.energy.2020.119509
10.1016/j.asoc.2020.106996
10.1016/j.energy.2020.119174
10.1016/j.jbi.2020.103575
10.1016/j.energy.2020.119599
10.1016/j.energy.2021.121125
10.1016/j.renene.2020.10.126
10.1016/j.jclepro.2020.120605
10.1016/j.apenergy.2017.09.043
10.1016/j.applthermaleng.2018.10.020
10.1109/MHS.1995.494215
10.1016/j.apenergy.2010.10.031
10.1016/j.knosys.2020.106052
10.1016/j.apenergy.2017.10.031
10.1016/j.apenergy.2020.115561
10.1016/j.enconman.2017.10.099
10.1016/j.engappai.2020.104133
10.1016/j.enconman.2016.12.032
10.1016/j.enconman.2020.112869
10.1016/j.enconman.2018.02.006
10.1038/scientificamerican0792-66
10.1016/j.advengsoft.2017.07.002
10.1016/j.apenergy.2020.115975
10.1016/j.eswa.2021.114974
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117449
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117449
S0306261921008394
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-9ac93b10a84465dce95cd297e8d5db0b21c73d6d6eb06cc369d792e495876c3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sun Sep 28 07:48:04 EDT 2025
Thu Oct 09 00:17:54 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Fri Feb 23 02:40:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective Archimedes optimization algorithm
Sub-model selection
Artificial intelligence
Ensemble wind speed forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-9ac93b10a84465dce95cd297e8d5db0b21c73d6d6eb06cc369d792e495876c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636570181
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636570181
crossref_citationtrail_10_1016_j_apenergy_2021_117449
crossref_primary_10_1016_j_apenergy_2021_117449
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117449
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Santhosh, Venkaiah, Vinod Kumar (b0025) 2018; 168
Yang, Wang, Lu, Niu, Du (b0245) 2019; 222
Altan, Karasu, Zio (b0145) 2021; 100
Liu, Wu, Li (b0150) 2018; 161
Ribeiro MHDM, Mariani VC, Coelho L dos S. Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods. J Biomed Inform 2020. https://doi.org/10.1016/j.jbi.2020.103575.
Yang, Zhu, Li, Li (b0095) 2020; 87
Jiang, Yang, Li, Wang (b0235) 2021; 219
Liu, Duan, Chen (b0195) 2020; 280
Dragomiretskiy, Zosso (b0225) 2014; 62
Liu, Yang, Wang, Zhang (b0185) 2021; 165
Lu, Yue, Zhu, Li (b0220) 2020; 151
Qu, Zhang, Mao, Wang, Liu, Zhang (b0175) 2017; 154
Bora TC, Mariani VC, Coelho L dos S. Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 2019. https://doi.org/10.1016/j.applthermaleng.2018.10.020.
Song, Wang, Lu (b0030) 2018; 215
Eberhart, Kennedy (b0105) 1995
Du, Wang, Hao, Niu, Yang (b0055) 2020; 96
Zameer, Arshad, Khan, Raja (b0080) 2017; 134
Moreno SR, Mariani VC, Coelho L dos S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast. Renew Energy 2021. https://doi.org/10.1016/j.renene.2020.10.126.
Zhao, Guo, Guo, Lin, Zhu (b0210) 2021; 218
Erdem, Shi (b0020) 2011; 88
Mohandes, Halawani, Rehman, Hussain (b0070) 2004; 29
Niu, Wang (b0165) 2019; 241
Zhang, Zhang, Wang, Niu (b0155) 2020; 277
Wang, Li, Wang, Lu (b0045) 2021; 168
Jaseena, Kovoor (b0180) 2021; 234
da Silva RG, Ribeiro MHDM, Moreno SR, Mariani VC, Coelho L dos S. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 2021. https://doi.org/10.1016/j.energy.2020.119174.
Song, Tang, Ji, Todo (b0015) 2020; 201-202
Diebold, Mariano (b0260) 1995; 13
Wang, Wang, Li (b0065) 2020; 260
Jiang, Liu, Wang, Zhang (b0075) 2021; 73
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0115) 2017; 114
Wang, Hu, Meng, Zhu (b0250) 2017; 208
Kisvari, Lin, Liu (b0005) 2021; 163
Wei, Wang, Niu, Li (b0140) 2021; 292
Mirjalili, Mirjalili, Lewis (b0110) 2014; 69
Wang, Du, Niu, Yang (b0120) 2017; 208
Li, Wang, Li, Lu (b0275) 2019; 208
Wang, Niu, Liu, Zhang (b0050) 2020; 94
Luo, Li, Wang, Hu (b0170) 2021; 89
Kavasseri, Seetharaman (b0035) 2009; 34
Liu, Qin, Zhang, Pei, Jiang, Feng (b0285) 2020; 260
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0230) 2021; 51
Wang, Wang, Li, Yang, Li (b0290) 2021; 231
Xie, Zhang, Chen, Zhou (b0040) 2019; 34
Nie, Jiang, Zhang (b0060) 2020; 97
Jiang, Liu, Niu, Zhang (b0085) 2021; 217
Holland (b0100) 1992; 267
Liu, Yu, Wu, Duan, Yan (b0240) 2020; 202
Liu Z, Jiang P, Wang J, Zhang L. Ensemble Forecasting System for Short-Term Wind Speed Forecasting Based on Optimal Sub-Model Selection and Multi- Objective Version of Mayfly Optimization Algorithm. Expert Syst Appl 2021:114974. https://doi.org/10.1016/j.eswa.2021.114974.
Rodrigues Moreno, Gomes da Silva, Cocco Mariani, dos Santos Coelho (b0205) 2020; 213
Wang, Li, Zeng (b0265) 2021; 43
Ribeiro, dos Santos Coelho (b0280) 2020; 86
Zhou, Wang, Zhang (b0090) 2019; 250
Wolpert, Macready (b0130) 1997; 1
Wang, Zhang, Niu, Liu (b0255) 2020; 257
Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0125) 2018; 48
Jiang, Liu (b0160) 2019; 82
Ahmadi, Khashei (b0010) 2021; 99
Kavasseri (10.1016/j.apenergy.2021.117449_b0035) 2009; 34
Wang (10.1016/j.apenergy.2021.117449_b0065) 2020; 260
Rodrigues Moreno (10.1016/j.apenergy.2021.117449_b0205) 2020; 213
Wang (10.1016/j.apenergy.2021.117449_b0250) 2017; 208
Mohandes (10.1016/j.apenergy.2021.117449_b0070) 2004; 29
Zhou (10.1016/j.apenergy.2021.117449_b0090) 2019; 250
Ahmadi (10.1016/j.apenergy.2021.117449_b0010) 2021; 99
Luo (10.1016/j.apenergy.2021.117449_b0170) 2021; 89
Yang (10.1016/j.apenergy.2021.117449_b0245) 2019; 222
Qu (10.1016/j.apenergy.2021.117449_b0175) 2017; 154
Kisvari (10.1016/j.apenergy.2021.117449_b0005) 2021; 163
Jiang (10.1016/j.apenergy.2021.117449_b0075) 2021; 73
Liu (10.1016/j.apenergy.2021.117449_b0150) 2018; 161
Wei (10.1016/j.apenergy.2021.117449_b0140) 2021; 292
Eberhart (10.1016/j.apenergy.2021.117449_b0105) 1995
10.1016/j.apenergy.2021.117449_b0215
10.1016/j.apenergy.2021.117449_b0135
Liu (10.1016/j.apenergy.2021.117449_b0240) 2020; 202
10.1016/j.apenergy.2021.117449_b0270
10.1016/j.apenergy.2021.117449_b0190
Diebold (10.1016/j.apenergy.2021.117449_b0260) 1995; 13
Song (10.1016/j.apenergy.2021.117449_b0015) 2020; 201-202
Zameer (10.1016/j.apenergy.2021.117449_b0080) 2017; 134
Zhao (10.1016/j.apenergy.2021.117449_b0210) 2021; 218
Wang (10.1016/j.apenergy.2021.117449_b0255) 2020; 257
Hashim (10.1016/j.apenergy.2021.117449_b0230) 2021; 51
Wang (10.1016/j.apenergy.2021.117449_b0050) 2020; 94
Jiang (10.1016/j.apenergy.2021.117449_b0085) 2021; 217
Mirjalili (10.1016/j.apenergy.2021.117449_b0125) 2018; 48
Liu (10.1016/j.apenergy.2021.117449_b0195) 2020; 280
Erdem (10.1016/j.apenergy.2021.117449_b0020) 2011; 88
Dragomiretskiy (10.1016/j.apenergy.2021.117449_b0225) 2014; 62
Wang (10.1016/j.apenergy.2021.117449_b0265) 2021; 43
Song (10.1016/j.apenergy.2021.117449_b0030) 2018; 215
Nie (10.1016/j.apenergy.2021.117449_b0060) 2020; 97
Lu (10.1016/j.apenergy.2021.117449_b0220) 2020; 151
Altan (10.1016/j.apenergy.2021.117449_b0145) 2021; 100
Wolpert (10.1016/j.apenergy.2021.117449_b0130) 1997; 1
Wang (10.1016/j.apenergy.2021.117449_b0045) 2021; 168
Xie (10.1016/j.apenergy.2021.117449_b0040) 2019; 34
Santhosh (10.1016/j.apenergy.2021.117449_b0025) 2018; 168
Wang (10.1016/j.apenergy.2021.117449_b0120) 2017; 208
Jiang (10.1016/j.apenergy.2021.117449_b0235) 2021; 219
Holland (10.1016/j.apenergy.2021.117449_b0100) 1992; 267
Jaseena (10.1016/j.apenergy.2021.117449_b0180) 2021; 234
Liu (10.1016/j.apenergy.2021.117449_b0185) 2021; 165
Mirjalili (10.1016/j.apenergy.2021.117449_b0115) 2017; 114
Jiang (10.1016/j.apenergy.2021.117449_b0160) 2019; 82
Li (10.1016/j.apenergy.2021.117449_b0275) 2019; 208
Yang (10.1016/j.apenergy.2021.117449_b0095) 2020; 87
Mirjalili (10.1016/j.apenergy.2021.117449_b0110) 2014; 69
Niu (10.1016/j.apenergy.2021.117449_b0165) 2019; 241
Ribeiro (10.1016/j.apenergy.2021.117449_b0280) 2020; 86
Du (10.1016/j.apenergy.2021.117449_b0055) 2020; 96
Liu (10.1016/j.apenergy.2021.117449_b0285) 2020; 260
Zhang (10.1016/j.apenergy.2021.117449_b0155) 2020; 277
10.1016/j.apenergy.2021.117449_b0200
Wang (10.1016/j.apenergy.2021.117449_b0290) 2021; 231
References_xml – volume: 94
  start-page: 103783
  year: 2020
  ident: b0050
  article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting
  publication-title: Eng Appl Artif Intell
– volume: 257
  start-page: 120605
  year: 2020
  ident: b0255
  article-title: Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China
  publication-title: J Clean Prod
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: b0230
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl Intell
– volume: 163
  start-page: 1895
  year: 2021
  end-page: 1909
  ident: b0005
  article-title: Wind power forecasting – A data-driven method along with gated recurrent neural network
  publication-title: Renew Energy
– reference: Liu Z, Jiang P, Wang J, Zhang L. Ensemble Forecasting System for Short-Term Wind Speed Forecasting Based on Optimal Sub-Model Selection and Multi- Objective Version of Mayfly Optimization Algorithm. Expert Syst Appl 2021:114974. https://doi.org/10.1016/j.eswa.2021.114974.
– volume: 99
  start-page: 104133
  year: 2021
  ident: b0010
  article-title: Current status of hybrid structures in wind forecasting
  publication-title: Eng Appl Artif Intell
– volume: 260
  start-page: 121027
  year: 2020
  ident: b0065
  article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China
  publication-title: J Clean Prod
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: b0035
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
– volume: 100
  start-page: 106996
  year: 2021
  ident: b0145
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl Soft Comput
– volume: 202
  start-page: 117794
  year: 2020
  ident: b0240
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
– volume: 43
  start-page: 100946
  year: 2021
  ident: b0265
  article-title: Multi-layer cooperative combined forecasting system for short-term wind speed forecasting
  publication-title: Sustain Energy Technol Assessments
– volume: 267
  start-page: 66
  year: 1992
  end-page: 72
  ident: b0100
  article-title: Genetic Algorithms understand Genetic Algorithms
  publication-title: Sci Am
– volume: 96
  start-page: 106620
  year: 2020
  ident: b0055
  article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl Soft
  publication-title: Comput J
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: b0030
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0110
  publication-title: Grey Wolf Optimizer Adv Eng Softw
– volume: 241
  start-page: 519
  year: 2019
  end-page: 539
  ident: b0165
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
– volume: 34
  start-page: 371
  year: 2019
  end-page: 379
  ident: b0040
  article-title: A Nonparametric Bayesian Framework for Short-Term Wind Power Probabilistic Forecast
  publication-title: IEEE Trans Power Syst
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0130
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– reference: da Silva RG, Ribeiro MHDM, Moreno SR, Mariani VC, Coelho L dos S. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 2021. https://doi.org/10.1016/j.energy.2020.119174.
– reference: Bora TC, Mariani VC, Coelho L dos S. Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl Therm Eng 2019. https://doi.org/10.1016/j.applthermaleng.2018.10.020.
– volume: 292
  start-page: 116842
  year: 2021
  ident: b0140
  article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks
  publication-title: Appl Energy
– volume: 168
  start-page: 114364
  year: 2021
  ident: b0045
  article-title: A hesitant fuzzy wind speed forecasting system with novel defuzzification method and multi-objective optimization algorithm
  publication-title: Expert Syst Appl
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: b0020
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
– volume: 208
  start-page: 1365
  year: 2019
  end-page: 1383
  ident: b0275
  article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index
  publication-title: J Clean Prod
– volume: 201-202
  start-page: 106052
  year: 2020
  ident: b0015
  article-title: Evaluating a dendritic neuron model for wind speed forecasting
  publication-title: Knowledge-Based Syst
– volume: 86
  start-page: 105837
  year: 2020
  ident: b0280
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl Soft Comput J
– volume: 89
  start-page: 49
  year: 2021
  end-page: 72
  ident: b0170
  article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
  publication-title: Appl Math Model
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: b0070
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew Energy
– volume: 87
  start-page: 105972
  year: 2020
  ident: b0095
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Appl Soft Comput J
– volume: 161
  start-page: 266
  year: 2018
  end-page: 283
  ident: b0150
  article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction
  publication-title: Energy Convers Manag
– volume: 208
  start-page: 1097
  year: 2017
  end-page: 1112
  ident: b0250
  article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model
  publication-title: Appl Energy
– volume: 231
  start-page: 121125
  year: 2021
  ident: b0290
  article-title: Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction
  publication-title: Energy
– volume: 82
  start-page: 105587
  year: 2019
  ident: b0160
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. Appl Soft
  publication-title: Comput J
– volume: 222
  start-page: 942
  year: 2019
  end-page: 959
  ident: b0245
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: J Clean Prod
– volume: 97
  year: 2020
  ident: b0060
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Appl Soft Comput
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0115
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
– volume: 213
  start-page: 112869
  year: 2020
  ident: b0205
  article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network
  publication-title: Energy Convers Manag
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0225
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
– year: 1995
  ident: b0105
  article-title: New optimizer using particle swarm theory
  publication-title: Proc Int Symp Micro Mach Hum Sci
– volume: 48
  start-page: 805
  year: 2018
  end-page: 820
  ident: b0125
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl Intell
– reference: Moreno SR, Mariani VC, Coelho L dos S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast. Renew Energy 2021. https://doi.org/10.1016/j.renene.2020.10.126.
– volume: 208
  start-page: 344
  year: 2017
  end-page: 360
  ident: b0120
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Appl Energy
– volume: 151
  start-page: 107283
  year: 2020
  ident: b0220
  article-title: Variational mode decomposition denoising combined with improved Bhattacharyya distance
  publication-title: Measurement
– volume: 217
  start-page: 119361
  year: 2021
  ident: b0085
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
– volume: 218
  start-page: 119509
  year: 2021
  ident: b0210
  article-title: A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions
  publication-title: Energy
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0260
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
– volume: 234
  start-page: 113944
  year: 2021
  ident: b0180
  article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers Manag
– volume: 168
  start-page: 482
  year: 2018
  end-page: 493
  ident: b0025
  article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction
  publication-title: Energy Convers Manag
– volume: 260
  start-page: 114259
  year: 2020
  ident: b0285
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Appl Energy
– volume: 154
  start-page: 440
  year: 2017
  end-page: 454
  ident: b0175
  article-title: Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting
  publication-title: Energy Convers Manag
– volume: 280
  start-page: 115975
  year: 2020
  ident: b0195
  article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder
  publication-title: Appl Energy
– volume: 277
  start-page: 115561
  year: 2020
  ident: b0155
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Appl Energy
– volume: 250
  start-page: 1559
  year: 2019
  end-page: 1580
  ident: b0090
  article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems
  publication-title: Appl Energy
– volume: 165
  start-page: 573
  year: 2021
  end-page: 594
  ident: b0185
  article-title: A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections
  publication-title: Renew Energy
– volume: 219
  start-page: 119599
  year: 2021
  ident: b0235
  article-title: A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity
  publication-title: Energy
– volume: 134
  start-page: 361
  year: 2017
  end-page: 372
  ident: b0080
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manag
– volume: 73
  year: 2021
  ident: b0075
  article-title: Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm
  publication-title: Resources Policy
– reference: Ribeiro MHDM, Mariani VC, Coelho L dos S. Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods. J Biomed Inform 2020. https://doi.org/10.1016/j.jbi.2020.103575.
– volume: 34
  start-page: 371
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.117449_b0040
  article-title: A Nonparametric Bayesian Framework for Short-Term Wind Power Probabilistic Forecast
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2858265
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.apenergy.2021.117449_b0130
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 222
  start-page: 942
  year: 2019
  ident: 10.1016/j.apenergy.2021.117449_b0245
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.03.036
– volume: 89
  start-page: 49
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0170
  article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.07.019
– volume: 43
  start-page: 100946
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0265
  article-title: Multi-layer cooperative combined forecasting system for short-term wind speed forecasting
  publication-title: Sustain Energy Technol Assessments
  doi: 10.1016/j.seta.2020.100946
– volume: 163
  start-page: 1895
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0005
  article-title: Wind power forecasting – A data-driven method along with gated recurrent neural network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.10.119
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.apenergy.2021.117449_b0030
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 165
  start-page: 573
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0185
  article-title: A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.11.002
– volume: 94
  start-page: 103783
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0050
  article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103783
– volume: 97
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0060
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106809
– volume: 73
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0075
  article-title: Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2021.102234
– volume: 292
  start-page: 116842
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0140
  article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116842
– volume: 151
  start-page: 107283
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0220
  article-title: Variational mode decomposition denoising combined with improved Bhattacharyya distance
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107283
– volume: 96
  start-page: 106620
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0055
  article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl Soft
  publication-title: Comput J
– volume: 208
  start-page: 1365
  year: 2019
  ident: 10.1016/j.apenergy.2021.117449_b0275
  article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.10.129
– volume: 202
  start-page: 117794
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0240
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117794
– volume: 260
  start-page: 114259
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0285
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114259
– volume: 86
  start-page: 105837
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0280
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.105837
– volume: 234
  start-page: 113944
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0180
  article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113944
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 10.1016/j.apenergy.2021.117449_b0260
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.1995.10524599
– volume: 34
  start-page: 1388
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2021.117449_b0035
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 82
  start-page: 105587
  year: 2019
  ident: 10.1016/j.apenergy.2021.117449_b0160
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. Appl Soft
  publication-title: Comput J
– volume: 260
  start-page: 121027
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0065
  article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121027
– volume: 168
  start-page: 482
  year: 2018
  ident: 10.1016/j.apenergy.2021.117449_b0025
  article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.04.099
– volume: 217
  start-page: 119361
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0085
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119361
– volume: 48
  start-page: 805
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2021.117449_b0125
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1019-8
– volume: 250
  start-page: 1559
  year: 2019
  ident: 10.1016/j.apenergy.2021.117449_b0090
  article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.05.016
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2021.117449_b0225
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 87
  start-page: 105972
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0095
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.105972
– volume: 168
  start-page: 114364
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0045
  article-title: A hesitant fuzzy wind speed forecasting system with novel defuzzification method and multi-objective optimization algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114364
– volume: 241
  start-page: 519
  year: 2019
  ident: 10.1016/j.apenergy.2021.117449_b0165
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.097
– volume: 29
  start-page: 939
  issue: 6
  year: 2004
  ident: 10.1016/j.apenergy.2021.117449_b0070
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 51
  start-page: 1531
  issue: 3
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0230
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01893-z
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.apenergy.2021.117449_b0110
  publication-title: Grey Wolf Optimizer Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 218
  start-page: 119509
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0210
  article-title: A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119509
– volume: 100
  start-page: 106996
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0145
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106996
– ident: 10.1016/j.apenergy.2021.117449_b0200
  doi: 10.1016/j.energy.2020.119174
– ident: 10.1016/j.apenergy.2021.117449_b0215
  doi: 10.1016/j.jbi.2020.103575
– volume: 219
  start-page: 119599
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0235
  article-title: A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119599
– volume: 231
  start-page: 121125
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0290
  article-title: Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121125
– ident: 10.1016/j.apenergy.2021.117449_b0135
  doi: 10.1016/j.renene.2020.10.126
– volume: 257
  start-page: 120605
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0255
  article-title: Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120605
– volume: 208
  start-page: 1097
  year: 2017
  ident: 10.1016/j.apenergy.2021.117449_b0250
  article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.043
– ident: 10.1016/j.apenergy.2021.117449_b0270
  doi: 10.1016/j.applthermaleng.2018.10.020
– year: 1995
  ident: 10.1016/j.apenergy.2021.117449_b0105
  article-title: New optimizer using particle swarm theory
  publication-title: Proc Int Symp Micro Mach Hum Sci
  doi: 10.1109/MHS.1995.494215
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2021.117449_b0020
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 201-202
  start-page: 106052
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0015
  article-title: Evaluating a dendritic neuron model for wind speed forecasting
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2020.106052
– volume: 208
  start-page: 344
  year: 2017
  ident: 10.1016/j.apenergy.2021.117449_b0120
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.031
– volume: 277
  start-page: 115561
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0155
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115561
– volume: 154
  start-page: 440
  year: 2017
  ident: 10.1016/j.apenergy.2021.117449_b0175
  article-title: Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.099
– volume: 99
  start-page: 104133
  year: 2021
  ident: 10.1016/j.apenergy.2021.117449_b0010
  article-title: Current status of hybrid structures in wind forecasting
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.104133
– volume: 134
  start-page: 361
  year: 2017
  ident: 10.1016/j.apenergy.2021.117449_b0080
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.12.032
– volume: 213
  start-page: 112869
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0205
  article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112869
– volume: 161
  start-page: 266
  year: 2018
  ident: 10.1016/j.apenergy.2021.117449_b0150
  article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.02.006
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.apenergy.2021.117449_b0100
  article-title: Genetic Algorithms understand Genetic Algorithms
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.apenergy.2021.117449_b0115
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 280
  start-page: 115975
  year: 2020
  ident: 10.1016/j.apenergy.2021.117449_b0195
  article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115975
– ident: 10.1016/j.apenergy.2021.117449_b0190
  doi: 10.1016/j.eswa.2021.114974
SSID ssj0002120
Score 2.605563
Snippet •A novel ensemble system is proposed to perform point and interval forecasting.•Sub-model selection is used to select optimal sub-model for decomposed...
Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117449
SubjectTerms algorithms
Artificial intelligence
China
data collection
energy
Ensemble wind speed forecasting
Multi-objective Archimedes optimization algorithm
prediction
Sub-model selection
wind power
wind speed
Title Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection
URI https://dx.doi.org/10.1016/j.apenergy.2021.117449
https://www.proquest.com/docview/2636570181
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvbSHCmhRKQUZiavZxK_ER4QWLSC40ErcLL-2YrWbrMiueuO3M3acQlElDtySaCaKPPY343jmG4SOi3JKheeSgHMUhHMzhTUnFKFlKBzzZagTT8H1jZz84pd34m4DnQ21MDGtMmN_j-kJrfOTUR7N0fL-fnQbo90U_0d-GqYiJyjnVexicPL4nOZBMzUjCJMo_aJKeHZiliFV2ME-kZbx_JJHTs3_O6hXUJ38z_kW-pwDR3zaf9s22gjNDvr0gk5wB-2On6vWQDQv2-4LasZNFxZ2HvAf2ILjbgkuC0O0GpzpYtozjn9jccotJK2d9RiIEyktOMvQ4RaAZZErNrGZ_24fQGGBTXzZ2pLUTgd3qaUOSHxFt-fjn2cTkhstEMe4WBFlnGK2LEwd6dO8C0o4T1UVai-8LSwtXcW89DLYQjrHpPKVogH2VoClju2izaZtwjeEnTfWGuoNxFHcBqtquKhMORWSOVnTPSSGsdUuc5DHVhhzPSSbzfRgEx1tonub7KHRX71lz8LxpoYaTKf_mU8aXMWbukeDrTUstniCYprQrjtNJYupQhAVfX_H-_fRx3jXVzT-QJurh3U4gNBmZQ_T3D1EH04vriY3T9xc_BQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHAqHqqVF0KeRejWb-JX4WKFFW14XqMTN8msRq91kRXbFrb-9Y8cptKrEobcombEijz0Pe-YbhL4W5ZQKzyUB4ygI52YKe04oQstQOObLUCecgotLOfnBT2_EzQY6HmphYlpl1v29Tk_aOr8Z5dkcLe_uRlfR203-f8SnYYq_QFtc0CpGYEc_H_M8aMZmBGoSyZ-UCc-OzDKkEjsIFGkZLzB5BNX8t4X6S1cnA3TyGr3KniP-1v_cG7QRml208wRPcBftjR_L1oA079vuLWrGTRcWdh7wA8TguFuCzcLgrgZnupj3jONxLE7JhaS1s14J4oRKC9YydLgFzbLIJZvYzG_be2BYYBMHW1uS-ungLvXUAYp36OpkfH08IbnTAnGMixVRxilmy8LUET_Nu6CE81RVofbC28LS0lXMSy-DLaRzTCpfKRoguAJl6tge2mzaJuwj7Lyx1lBvwJHiNlhVw0NlyqmQzMmaHiAxzK12GYQ89sKY6yHbbKYHmegoE93L5ACNfvMtexiOZznUIDr9x4LSYCue5T0cZK1ht8UrFNOEdt1pKlnMFQK36P1_jP8FvZxcX5zr8--XZx_QdvzSlzd-RJur-3X4BH7Oyn5O6_gXpgf9qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+wind+speed+forecasting+with+multi-objective+Archimedes+optimization+algorithm+and+sub-model+selection&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Lifang&rft.au=Wang%2C+Jianzhou&rft.au=Niu%2C+Xinsong&rft.au=Liu%2C+Zhenkun&rft.date=2021-11-01&rft.issn=0306-2619&rft.volume=301&rft.spage=117449&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_117449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon