An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint
Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, an...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 72; no. 1; pp. 56 - 69 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2024.3438272 |
Cover
| Abstract | Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci. Results: Volumes of knee bones, cartilages, and menisci did not significantly differ ( p >0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly ( p <0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain. Conclusion: The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions. Significance: The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning. |
|---|---|
| AbstractList | To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.OBJECTIVETo develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.METHODSMagnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.RESULTSVolumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.CONCLUSIONThe template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.SIGNIFICANCEThe MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning. To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci. Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain. The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions. The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning. Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci. Results: Volumes of knee bones, cartilages, and menisci did not significantly differ ( p >0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly ( p <0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain. Conclusion: The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions. Significance: The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning. |
| Author | Gatti, Anthony A. Mustonen, Anne-Mari Reijonen, Jusa Toyras, Juha Chandra, Shekhar S. Saisanen, Laura Julkunen, Petro Esrafilian, Amir Saxby, David J. Nieminen, Petteri Korhonen, Rami K. Lloyd, David G. Nissi, Mikko J. |
| Author_xml | – sequence: 1 givenname: Amir orcidid: 0000-0002-8321-8528 surname: Esrafilian fullname: Esrafilian, Amir email: amir.esrafilian@uef.fi organization: Department of Technical Physics, University of Eastern Finland, Kuopio, Finland – sequence: 2 givenname: Shekhar S. orcidid: 0000-0001-6544-900X surname: Chandra fullname: Chandra, Shekhar S. organization: School of Electrical Engineering and Computer Science, The University of Queensland, Australia – sequence: 3 givenname: Anthony A. orcidid: 0000-0001-6717-8979 surname: Gatti fullname: Gatti, Anthony A. organization: Department of Radiology, Stanford University, USA – sequence: 4 givenname: Mikko J. surname: Nissi fullname: Nissi, Mikko J. organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 5 givenname: Anne-Mari orcidid: 0000-0003-2266-2518 surname: Mustonen fullname: Mustonen, Anne-Mari organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Finland – sequence: 6 givenname: Laura orcidid: 0000-0002-8877-1170 surname: Saisanen fullname: Saisanen, Laura organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 7 givenname: Jusa surname: Reijonen fullname: Reijonen, Jusa organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 8 givenname: Petteri surname: Nieminen fullname: Nieminen, Petteri organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Finland – sequence: 9 givenname: Petro surname: Julkunen fullname: Julkunen, Petro organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 10 givenname: Juha orcidid: 0000-0002-8035-1606 surname: Toyras fullname: Toyras, Juha organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 11 givenname: David J. orcidid: 0000-0002-0874-7518 surname: Saxby fullname: Saxby, David J. organization: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE) and Advance Design and Prototyping Technologies Institute, Griffith University, Australia – sequence: 12 givenname: David G. orcidid: 0000-0002-0824-9682 surname: Lloyd fullname: Lloyd, David G. organization: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE) and Advance Design and Prototyping Technologies Institute, Griffith University, Australia – sequence: 13 givenname: Rami K. orcidid: 0000-0002-3486-7855 surname: Korhonen fullname: Korhonen, Rami K. organization: Department of Technical Physics, University of Eastern Finland, Finland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39236141$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkV1LHDEUhoNY6mr7A4RSAt70ZtbJ50wut7K2VhehrLcOmcmZdmwm2U4SxH_fbHctRa_CgefNefPkGB067wChU1LOCSnV-frzajmnJeVzxllNK3qAZkSIuqCCkUM0K0tSF4oqfoSOQ3jII6-5fIuOmKJMEk5m6H7h8CJFP-oIBmtn8HffphDx2nuLez_hVQpdsj78AgtR27_M5eCGCHhpYQQX8cobsIP7gX2P40_A1w4Af_ODi-_Qm17bAO_35wm6u1yuL74WN7dfri4WN0XHuIiF0rIisgcDRLSdqlXVC91LA6wXBNq2rripKOUyg0YQTpkB4AAt6zoQnWAniO7uTW6jnx61tc1mGkY9PTWkbLaymtiO0GxlNXtZOfRpF9pM_neCEJtxCB1Yqx34FBpGSkKpopJl9OwF-uDT5PKTMpWNl5yRLfVxT6W8zPyr8Kw7A2QHdJMPYYL-Vcvtl75s-WGXGQDgP17K7EyxPwJLmeQ |
| CODEN | IEBEAX |
| Cites_doi | 10.1016/j.medengphy.2019.08.002 10.1080/21681163.2016.1172346 10.1016/j.joca.2023.01.004 10.1115/1.4038330 10.1038/s41584-023-00953-1 10.1016/j.jbiomech.2004.07.003 10.1371/journal.pcbi.1010337 10.3389/fbioe.2022.1059003 10.1016/j.media.2018.11.009 10.1136/ard.41.5.508 10.1016/j.joca.2012.09.002 10.1115/1.2894883 10.1055/s-2004-861579 10.1080/10255842.2017.1383984 10.1136/ard.2005.039370 10.1145/37402.37422 10.1145/166117.166119 10.1016/j.joca.2013.10.010 10.1177/03635465010290041501 10.1148/ryai.2021200078 10.1109/TNSRE.2020.3037411 10.1109/ACCESS.2020.2982061 10.1115/1.4032464 10.1038/s41598-020-59602-2 10.1007/s10334-021-00934-z 10.1115/1.4050028 10.1109/TBME.2007.901024 10.2307/1932409.JSTOR1932409 10.3899/jrheum.160226 10.1136/ard.16.4.494 10.1177/0954411913483537 10.1016/j.jbiomech.2017.09.022 10.1371/journal.pcbi.1006223 10.1016/j.eclinm.2020.100587 10.1038/srep21415 10.1002/jor.22340 10.1016/j.medengphy.2005.12.006 10.1038/s41598-017-09013-7 10.1002/jor.25177 10.1115/1.4033516 10.1145/218380.218473 10.1016/j.jbiomech.2018.10.008 10.1002/jor.25509 10.1038/s41598-023-45408-5 10.1111/j.1532-950X.2009.00527.x 10.1038/s41598-017-17228-x 10.1016/j.joca.2008.06.016 10.1016/j.neuroimage.2006.01.015 10.1002/jor.24273 10.1038/s41598-023-35832-y 10.1007/BF00583443 10.1016/j.cmpb.2009.09.002 10.1109/ISBI48211.2021.9433784 10.1007/s00167-004-0607-4 10.1186/1749-799X-5-69 10.1371/journal.pcbi.1011462 10.1007/s10278-017-0037-8 10.1007/s10237-016-0807-0 10.1016/j.jbiomech.2013.11.003 10.1115/1.4026358 10.1016/j.medengphy.2004.07.004 10.2519/jospt.2018.7459 10.1097/00003086-198405000-00046 10.1007/s10334-022-01004-8 10.1016/j.jbiomech.2011.05.006 10.1007/s10439-015-1326-3 10.1016/j.jbiomech.2022.111312 10.1117/1.JMI.1.2.024003 10.1016/j.jbiomech.2010.03.008 10.1002/jmri.28353 10.1016/j.ostima.2022.100010 10.12688/f1000research.20575.1 10.1109/TBME.2022.3156018 10.1115/1.4050027 10.1016/j.jbiomech.2016.10.025 10.1109/TNSRE.2022.3159685 10.1007/s10439-018-02184-y 10.1007/978-3-319-25202-5_10 10.1053/jars.2002.29877 10.1016/j.joca.2020.10.011 10.1038/s41592-020-01008-z 10.1016/j.jbiomech.2007.01.015 10.1115/1.4045906 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TBME.2024.3438272 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 69 |
| ExternalDocumentID | 10.1109/tbme.2024.3438272 39236141 10_1109_TBME_2024_3438272 10666719 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Saastamoisen säätiö; Saastamoinen Foundation funderid: 10.13039/501100017643 – fundername: Australian National Health and Medical Research Council grantid: APP2001734 – fundername: Suomen Kulttuurirahasto; Finnish Cultural Foundation grantid: 00230091 funderid: 10.13039/501100003125 – fundername: Research Council of Finland grantid: 322424; 324529 funderid: 10.13039/501100002341 – fundername: Sigrid Jusélius Foundation – fundername: Novo Nordisk Fonden; Novo Nordisk Foundation grantid: NNF21OC0065373 funderid: 10.13039/501100009708 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c345t-9a6716fede15bc9897f5af6de3f51ebb874d722469a6d51423dee4eeb3cce5c53 |
| IEDL.DBID | UNPAY |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Oct 26 03:51:35 EDT 2025 Sun Sep 28 10:48:05 EDT 2025 Mon Jun 30 13:06:41 EDT 2025 Mon Jul 21 05:57:41 EDT 2025 Wed Oct 01 04:08:59 EDT 2025 Wed Aug 27 01:55:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-9a6716fede15bc9897f5af6de3f51ebb874d722469a6d51423dee4eeb3cce5c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8035-1606 0000-0002-8321-8528 0000-0002-3486-7855 0000-0002-0824-9682 0000-0003-2266-2518 0000-0002-0874-7518 0000-0002-8877-1170 0000-0001-6544-900X 0000-0001-6717-8979 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/tbme.2024.3438272 |
| PMID | 39236141 |
| PQID | 3155804313 |
| PQPubID | 85474 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10666719 pubmed_primary_39236141 proquest_miscellaneous_3101229263 proquest_journals_3155804313 unpaywall_primary_10_1109_tbme_2024_3438272 crossref_primary_10_1109_TBME_2024_3438272 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Jan. 2025-1-00 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref92 ref51 Yoo (ref55) 2002; 85 ref50 ref91 Erdemir (ref43) 2016; 29 ref90 ref46 ref45 ref89 ref48 ref47 ref41 ref85 ref44 ref88 ref87 Brett (ref60) 2023 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 Cignoni (ref53) 2008 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 Atkinson (ref67) 2020 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Sorkine (ref57) 2005 Woo (ref86) ref71 ref70 ref73 ref72 ref24 Desai (ref42) 2022 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Schroeder (ref52) 2006 ref62 ref61 |
| References_xml | – ident: ref15 doi: 10.1016/j.medengphy.2019.08.002 – ident: ref38 doi: 10.1080/21681163.2016.1172346 – ident: ref13 doi: 10.1016/j.joca.2023.01.004 – ident: ref75 doi: 10.1115/1.4038330 – ident: ref11 doi: 10.1038/s41584-023-00953-1 – ident: ref39 doi: 10.1016/j.jbiomech.2004.07.003 – ident: ref12 doi: 10.1371/journal.pcbi.1010337 – ident: ref22 doi: 10.3389/fbioe.2022.1059003 – ident: ref40 doi: 10.1016/j.media.2018.11.009 – ident: ref84 doi: 10.1136/ard.41.5.508 – volume: 85 start-page: 586 year: 2002 ident: ref55 article-title: Engineering and algorithm design for an image processing API: A technical report on ITK - the Insight Toolkit publication-title: Stud. Health Technol. Inform. – ident: ref7 doi: 10.1016/j.joca.2012.09.002 – ident: ref36 doi: 10.1115/1.2894883 – ident: ref48 doi: 10.1055/s-2004-861579 – ident: ref29 doi: 10.1080/10255842.2017.1383984 – ident: ref49 doi: 10.1136/ard.2005.039370 – ident: ref51 doi: 10.1145/37402.37422 – ident: ref54 doi: 10.1145/166117.166119 – year: 2023 ident: ref60 article-title: nipynibabel: 5.1.0 publication-title: Zenodo – ident: ref26 doi: 10.1016/j.joca.2013.10.010 – ident: ref69 doi: 10.1177/03635465010290041501 – ident: ref79 doi: 10.1148/ryai.2021200078 – ident: ref14 doi: 10.1109/TNSRE.2020.3037411 – ident: ref23 doi: 10.1109/ACCESS.2020.2982061 – ident: ref35 doi: 10.1115/1.4032464 – ident: ref77 doi: 10.1038/s41598-020-59602-2 – ident: ref81 doi: 10.1007/s10334-021-00934-z – ident: ref18 doi: 10.1115/1.4050028 – ident: ref34 doi: 10.1109/TBME.2007.901024 – ident: ref72 doi: 10.2307/1932409.JSTOR1932409 – ident: ref3 doi: 10.3899/jrheum.160226 – ident: ref44 doi: 10.1136/ard.16.4.494 – ident: ref90 doi: 10.1177/0954411913483537 – start-page: 129 volume-title: Proc. Eurograph. Ital. Chapter Conf. year: 2008 ident: ref53 article-title: MeshLab: An open-source mesh processing tool – ident: ref4 doi: 10.1016/j.jbiomech.2017.09.022 – ident: ref33 doi: 10.1371/journal.pcbi.1006223 – ident: ref1 doi: 10.1016/j.eclinm.2020.100587 – ident: ref8 doi: 10.1038/srep21415 – ident: ref20 doi: 10.1002/jor.22340 – ident: ref62 doi: 10.1016/j.medengphy.2005.12.006 – ident: ref76 doi: 10.1038/s41598-017-09013-7 – ident: ref6 doi: 10.1002/jor.25177 – ident: ref66 doi: 10.1115/1.4033516 – ident: ref56 doi: 10.1145/218380.218473 – ident: ref31 doi: 10.1016/j.jbiomech.2018.10.008 – ident: ref78 doi: 10.1002/jor.25509 – ident: ref91 doi: 10.1038/s41598-023-45408-5 – ident: ref63 doi: 10.1111/j.1532-950X.2009.00527.x – volume-title: The Visualization Toolkit year: 2006 ident: ref52 – ident: ref10 doi: 10.1038/s41598-017-17228-x – ident: ref41 doi: 10.1016/j.joca.2008.06.016 – ident: ref46 doi: 10.1016/j.neuroimage.2006.01.015 – ident: ref73 doi: 10.1002/jor.24273 – ident: ref85 doi: 10.1038/s41598-023-35832-y – start-page: 905 volume-title: Proc. Mach. Learn. Res ident: ref86 article-title: Semantic segmentation of 3D medical images through a kaleidoscope: Data from the Osteoarthritis Initiative – ident: ref65 doi: 10.1007/BF00583443 – ident: ref59 doi: 10.1016/j.cmpb.2009.09.002 – ident: ref80 doi: 10.1109/ISBI48211.2021.9433784 – start-page: 776 volume-title: Proc. 46th Annu. Meeting Orthopaedic Res. Soc. year: 2020 ident: ref67 article-title: A comparison of the mechanical and dimensional properties of the Human medial and lateral patellofemoral ligaments – ident: ref68 doi: 10.1007/s00167-004-0607-4 – ident: ref70 doi: 10.1186/1749-799X-5-69 – volume: 29 issue: 2 year: 2016 ident: ref43 article-title: Open knee: Open source modeling & simulation to enable scientific discovery and clinical care in knee biomechanics publication-title: J. Knee Surg. – ident: ref92 doi: 10.1371/journal.pcbi.1011462 – ident: ref50 doi: 10.1007/s10278-017-0037-8 – ident: ref28 doi: 10.1007/s10237-016-0807-0 – ident: ref5 doi: 10.1016/j.jbiomech.2013.11.003 – ident: ref32 doi: 10.1115/1.4026358 – ident: ref37 doi: 10.1016/j.medengphy.2004.07.004 – ident: ref89 doi: 10.2519/jospt.2018.7459 – ident: ref24 doi: 10.1097/00003086-198405000-00046 – ident: ref58 doi: 10.1007/s10334-022-01004-8 – ident: ref61 doi: 10.1016/j.jbiomech.2011.05.006 – ident: ref30 doi: 10.1007/s10439-015-1326-3 – volume-title: Eurographics 2005 - State of the Art Reports year: 2005 ident: ref57 article-title: Laplacian mesh processing – ident: ref19 doi: 10.1016/j.jbiomech.2022.111312 – ident: ref47 doi: 10.1117/1.JMI.1.2.024003 – ident: ref74 doi: 10.1016/j.jbiomech.2010.03.008 – ident: ref88 doi: 10.1002/jmri.28353 – ident: ref82 doi: 10.1016/j.ostima.2022.100010 – ident: ref2 doi: 10.12688/f1000research.20575.1 – ident: ref17 doi: 10.1109/TBME.2022.3156018 – ident: ref87 doi: 10.1115/1.4050027 – ident: ref25 doi: 10.1016/j.jbiomech.2016.10.025 – ident: ref9 doi: 10.1109/TNSRE.2022.3159685 – ident: ref21 doi: 10.1007/s10439-018-02184-y – ident: ref27 doi: 10.1007/978-3-319-25202-5_10 – ident: ref64 doi: 10.1053/jars.2002.29877 – year: 2022 ident: ref42 article-title: SKM-TEA: A dataset for accelerated MRI reconstruction with dense image labels for quantitative clinical evaluation – ident: ref83 doi: 10.1016/j.joca.2020.10.011 – ident: ref45 doi: 10.1038/s41592-020-01008-z – ident: ref71 doi: 10.1016/j.jbiomech.2007.01.015 – ident: ref16 doi: 10.1115/1.4045906 |
| SSID | ssj0014846 |
| Score | 2.5007572 |
| Snippet | Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images... To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Magnetic resonance images (MRIs) were used to... To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.OBJECTIVETo develop and assess an automatic and... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 56 |
| SubjectTerms | Adult Biological system modeling Biomechanical Phenomena - physiology Biomechanics Bones Cartilage Cartilage mechanics Customization Degrees of freedom Elastic foundations Female Femur Fibula Finite Element Analysis Finite element method Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation In vivo methods and tests Iron Kinematics Knee Knee Joint - anatomy & histology Knee Joint - diagnostic imaging Knee Joint - physiology knee osteoarthritis Ligaments Magnetic resonance imaging Magnetic Resonance Imaging - methods Male mechanobiology Meshing Modelling Models, Biological multiscale modeling Patella Robustness Shear strain Strain Tibia Young Adult |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BD0APPEqhhoIWiRMoaWyv93EMKFFVlB5QKvWEtS9LVSNvRWyh8uuZsZ0o5SFxs-SxPd6Z0X6z8wJ4LypptZGI3Kj8lwvFR1p59FKU4zqr0szbLtviXJxe8LPL4nIoVu9qYUIIXfJZGNNlF8v30bV0VIYWjmBbUpPP-1KJvlhrGzLgqq_KmaRowZnmQwgzneiT5afFDF3BjI9zintJGmGDuCDHrSm9sx91A1b-hjX34WFb35jbH2a12tl_5k_gfMN5n3ZyPW4bO3Y_f2vq-N-_9hQeD0iUTXvVeQb3Qn0A-zv9CQ_gwWKIvD-Hb9OaTdsmIsANnpnas6_RtuuGLWNcMUS-bNFSTmtcX-NGhoi-o5lfEaRlsz5HndHgNSp_Z7FiCDzZF_wSO4tXdXMIF_PZ8vPpaJjNMHI5L5qRNsitqIIPaWGdVlpWhamED3lVpMFaJbmX1KwOCT2Csiz3IfCArrtzoXBF_gL26liHI2DaClNIr7UtPLfcWVsJ9JusMqmwE5kl8GEjofKmb8FRdq7LRJck2ZIkWw6STeCQFneHsF_XBI43Qi0HK12XOYIpRd2F8gTebW-jfVHQxNQhtkRDwUedCaR52SvD9uUbHUrg41Y7_mCxwUfusPjqHyy-hkcZDRfuzneOYa_53oY3iHga-7bT9F_YJPgV priority: 102 providerName: IEEE |
| Title | An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint |
| URI | https://ieeexplore.ieee.org/document/10666719 https://www.ncbi.nlm.nih.gov/pubmed/39236141 https://www.proquest.com/docview/3155804313 https://www.proquest.com/docview/3101229263 https://doi.org/10.1109/tbme.2024.3438272 |
| UnpaywallVersion | publishedVersion |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7kCkofqtZqI7Ws4JNy5yXZH9nHa7mjVK6I3EF9MexmN1B6ZIuXUOpf70ySHlftgz5n2GwyszvfMDPfAHyQpbLaKERu1P7LZcaHOnMYpWQF10kZJ8621RYX8mzJzy_FZU8WTb0w2_n7eKw_1-gUMIpL-CillJXC23ZHCoTdA9hZXnydfO9uWjy0STv0EN0jah4Nq89gPrrGAx_UDlV5DF_uwrOmujF3t2a12vI5s-ddtda6pSqkUpPrUVPbUfHrDyLHf_qcF7DXI0826UzlJTzx1T7sbvER7sPTeZ9pfwU_JhWbNHVAQOsdM5Vj34Jt1jVbhLBiiHTZvKEa1rC-RseFCL6VmV0RhGXTriad0aA1andnoWQINNkXfBM7D1dVfQDL2XRxejbsZzEMi5SLeqiNxMiq9M7HwhY606oUppTOp6WIvbWZ4k4ROR0KOgRhSeq85x5D9aLwohDpaxhUofKHwLSVRiintRWOW15YW0qMk2xmYmnHKong47128puOciNvQ5Wxzhcn82lO_y_v_18EB6S_LUGMx1SsIzi6V2jen8p1npJ1EJtQGsH7zWM8T5QkMZUPDclQslEnEmXedIawWRyxZIpwJo7g08Yy_toiqfjBFt_-l_QRDOqfjX-HUKe2x20_4nFv6r8BPbT1kg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hIlF64FEKGAosEidQ0tje9XqPASUKbZMDSqWesLwPS1Ujb0VsIfj1zKydKOUhcbPksT3emdF-s_MCeJdVUqtSInKj8l-e5XygcoteSm64Sqo4sTpkWyyy2QU_vRSXfbF6qIVxzoXkMzekyxDLt960dFSGFo5gW1KTz7uCcy66cq1t0IDnXV3OKEYbThTvg5jxSJ0sP84n6AwmfJhS5EvSEBtEBiluTvGtHSmMWPkb2jyA_ba-KX98L1ernR1o-hAWG967xJPrYdvoofn5W1vH__65R_Cgx6Js3CnPY7jj6kM42OlQeAj35n3s_Ql8Hdds3DYeIa6zrKwt--J1u27Y0vsVQ-zL5i1ltfr1NW5liOkDzfSKQC2bdFnqjEavUQE88xVD6MnO8Evs1F_VzRFcTCfLT7NBP51hYFIumoEqkdusctbFQhuVK1mJssqsSysRO61zya2kdnVIaBGWJal1jjt03o1xwoj0KezVvnbPgSmdlUJapbSwXHOjdZWh56TzMs70SCYRvN9IqLjpmnAUwXkZqYIkW5Bki16yERzR4u4QdusawfFGqEVvp-siRTiVU3-hNIK329toYRQ2KWvnW6Kh8KNKMqR51inD9uUbHYrgw1Y7_mCxwUdusfjiHyy-gf3Zcn5enH9enL2E-wmNGg6nPcew13xr3SvEP41-HbT-F_tQ-2I |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5GCht9WLeu61y6ocGeNpLFtn5Yj-lIKB0pYyTQvcxIlgylwSqLzWj_-t7Zbki3PmzPPiRZd9J9x52-A_ggS2W1UYjc6Pkvlxkf6sxhlJIVXCdlnDjbVlucy9MlP7sQFz1ZNL2F2c7fx2P9uUangFFcwkcppawU3rY7UiDsHsDO8vzb5Ed30-KhTdqmh-geUfNoWH0G89ExHvigtqnKY_hyF5411bW5-W1Wqy2fM9vrqrXWLVUhlZpcjZrajorbP4gc_-l3XsDzHnmySWcqL-GJr_Zhd4uPcB-ezvtM-yv4OanYpKkDAlrvmKkc-x5ss67ZIoQVQ6TL5g3VsIb1FTouRPCtzOySICybdjXpjBqt0XN3FkqGQJN9xZnYWbis6gNYzqaLL6fDvhfDsEi5qIfaSIysSu98LGyhM61KYUrpfFqK2FubKe4UkdOhoEMQlqTOe-4xVC8KLwqRvoZBFSr_Bpi20gjltLbCccsLa0uJcZLNTCztWCURfLzXTn7dUW7kbagy1vniZD7Naf_yfv8iOCD9bQliPKZiHcHxvULz_lSu85Ssg9iE0gjebz7jeaIkial8aEiGko06kShz2BnCZnDEkinCmTiCTxvL-GuJpOIHSzz6L-ljGNS_Gv8WoU5t3_VGfgeBf_SR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+and+Robust+Tool+for+Musculoskeletal+and+Finite+Element+Modeling+of+the+Knee+Joint&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Esrafilian%2C+Amir&rft.au=Chandra%2C+Shekhar+S.&rft.au=Gatti%2C+Anthony+A.&rft.au=Nissi%2C+Mikko+J.&rft.date=2025-01-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=72&rft.issue=1&rft.spage=56&rft.epage=69&rft_id=info:doi/10.1109%2FTBME.2024.3438272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2024_3438272 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |