An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint

Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 1; pp. 56 - 69
Main Authors Esrafilian, Amir, Chandra, Shekhar S., Gatti, Anthony A., Nissi, Mikko J., Mustonen, Anne-Mari, Saisanen, Laura, Reijonen, Jusa, Nieminen, Petteri, Julkunen, Petro, Toyras, Juha, Saxby, David J., Lloyd, David G., Korhonen, Rami K.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2024.3438272

Cover

Abstract Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci. Results: Volumes of knee bones, cartilages, and menisci did not significantly differ ( p >0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly ( p <0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain. Conclusion: The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions. Significance: The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.
AbstractList To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.OBJECTIVETo develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.METHODSMagnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci.Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.RESULTSVolumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain.The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.CONCLUSIONThe template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions.The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.SIGNIFICANCEThe MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.
To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci. Volumes of knee bones, cartilages, and menisci did not significantly differ (p>0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly (p<0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain. The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions. The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.
Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images (MRIs) were used to train nnU-Net networks for auto-segmentation of knee bones (femur, tibia, patella, and fibula), cartilages (femur, tibia, and patella), menisci, and major knee ligaments. Two different MRI sequences were used to broaden applicability. Next, we created MSK-FE models of an unseen dataset using two MSK-FE modeling pipelines: template-based and auto-meshing. MSK models had personalized knee geometries with multi-degree-of-freedom elastic foundation contacts. FE models used fibril-reinforced poroviscoelastic swelling material models for cartilages and menisci. Results: Volumes of knee bones, cartilages, and menisci did not significantly differ ( p >0.05) across MRI sequences. MSK models estimated secondary knee kinematics during passive knee flexion tests consistent with in vivo and simulation-based values from the literature. Between the template-based and auto-meshing FE models, estimated cartilage mechanics often differed significantly ( p <0.05), though differences were <15% (considering peaks during walking), i.e., <1.5 MPa for maximum principal stress, <1 percentage point for collagen fibril strain, and <3 percentage points for maximum shear strain. Conclusion: The template-based modeling provided a more rapid and robust tool than the auto-meshing approach, while the estimated knee biomechanics were comparable. Nonetheless, the auto-meshing approach might provide more accurate estimates in subjects with distinct knee irregularities, e.g., cartilage lesions. Significance: The MSK-FE modeling tool provides a rapid, easy-to-use, and robust approach for investigating task- and person-specific mechanical responses of the knee cartilage and menisci, holding significant promise, e.g., in personalized rehabilitation planning.
Author Gatti, Anthony A.
Mustonen, Anne-Mari
Reijonen, Jusa
Toyras, Juha
Chandra, Shekhar S.
Saisanen, Laura
Julkunen, Petro
Esrafilian, Amir
Saxby, David J.
Nieminen, Petteri
Korhonen, Rami K.
Lloyd, David G.
Nissi, Mikko J.
Author_xml – sequence: 1
  givenname: Amir
  orcidid: 0000-0002-8321-8528
  surname: Esrafilian
  fullname: Esrafilian, Amir
  email: amir.esrafilian@uef.fi
  organization: Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
– sequence: 2
  givenname: Shekhar S.
  orcidid: 0000-0001-6544-900X
  surname: Chandra
  fullname: Chandra, Shekhar S.
  organization: School of Electrical Engineering and Computer Science, The University of Queensland, Australia
– sequence: 3
  givenname: Anthony A.
  orcidid: 0000-0001-6717-8979
  surname: Gatti
  fullname: Gatti, Anthony A.
  organization: Department of Radiology, Stanford University, USA
– sequence: 4
  givenname: Mikko J.
  surname: Nissi
  fullname: Nissi, Mikko J.
  organization: Department of Technical Physics, University of Eastern Finland, Finland
– sequence: 5
  givenname: Anne-Mari
  orcidid: 0000-0003-2266-2518
  surname: Mustonen
  fullname: Mustonen, Anne-Mari
  organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Finland
– sequence: 6
  givenname: Laura
  orcidid: 0000-0002-8877-1170
  surname: Saisanen
  fullname: Saisanen, Laura
  organization: Department of Technical Physics, University of Eastern Finland, Finland
– sequence: 7
  givenname: Jusa
  surname: Reijonen
  fullname: Reijonen, Jusa
  organization: Department of Technical Physics, University of Eastern Finland, Finland
– sequence: 8
  givenname: Petteri
  surname: Nieminen
  fullname: Nieminen, Petteri
  organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Finland
– sequence: 9
  givenname: Petro
  surname: Julkunen
  fullname: Julkunen, Petro
  organization: Department of Technical Physics, University of Eastern Finland, Finland
– sequence: 10
  givenname: Juha
  orcidid: 0000-0002-8035-1606
  surname: Toyras
  fullname: Toyras, Juha
  organization: Department of Technical Physics, University of Eastern Finland, Finland
– sequence: 11
  givenname: David J.
  orcidid: 0000-0002-0874-7518
  surname: Saxby
  fullname: Saxby, David J.
  organization: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE) and Advance Design and Prototyping Technologies Institute, Griffith University, Australia
– sequence: 12
  givenname: David G.
  orcidid: 0000-0002-0824-9682
  surname: Lloyd
  fullname: Lloyd, David G.
  organization: Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE) and Advance Design and Prototyping Technologies Institute, Griffith University, Australia
– sequence: 13
  givenname: Rami K.
  orcidid: 0000-0002-3486-7855
  surname: Korhonen
  fullname: Korhonen, Rami K.
  organization: Department of Technical Physics, University of Eastern Finland, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39236141$$D View this record in MEDLINE/PubMed
BookMark eNplkV1LHDEUhoNY6mr7A4RSAt70ZtbJ50wut7K2VhehrLcOmcmZdmwm2U4SxH_fbHctRa_CgefNefPkGB067wChU1LOCSnV-frzajmnJeVzxllNK3qAZkSIuqCCkUM0K0tSF4oqfoSOQ3jII6-5fIuOmKJMEk5m6H7h8CJFP-oIBmtn8HffphDx2nuLez_hVQpdsj78AgtR27_M5eCGCHhpYQQX8cobsIP7gX2P40_A1w4Af_ODi-_Qm17bAO_35wm6u1yuL74WN7dfri4WN0XHuIiF0rIisgcDRLSdqlXVC91LA6wXBNq2rripKOUyg0YQTpkB4AAt6zoQnWAniO7uTW6jnx61tc1mGkY9PTWkbLaymtiO0GxlNXtZOfRpF9pM_neCEJtxCB1Yqx34FBpGSkKpopJl9OwF-uDT5PKTMpWNl5yRLfVxT6W8zPyr8Kw7A2QHdJMPYYL-Vcvtl75s-WGXGQDgP17K7EyxPwJLmeQ
CODEN IEBEAX
Cites_doi 10.1016/j.medengphy.2019.08.002
10.1080/21681163.2016.1172346
10.1016/j.joca.2023.01.004
10.1115/1.4038330
10.1038/s41584-023-00953-1
10.1016/j.jbiomech.2004.07.003
10.1371/journal.pcbi.1010337
10.3389/fbioe.2022.1059003
10.1016/j.media.2018.11.009
10.1136/ard.41.5.508
10.1016/j.joca.2012.09.002
10.1115/1.2894883
10.1055/s-2004-861579
10.1080/10255842.2017.1383984
10.1136/ard.2005.039370
10.1145/37402.37422
10.1145/166117.166119
10.1016/j.joca.2013.10.010
10.1177/03635465010290041501
10.1148/ryai.2021200078
10.1109/TNSRE.2020.3037411
10.1109/ACCESS.2020.2982061
10.1115/1.4032464
10.1038/s41598-020-59602-2
10.1007/s10334-021-00934-z
10.1115/1.4050028
10.1109/TBME.2007.901024
10.2307/1932409.JSTOR1932409
10.3899/jrheum.160226
10.1136/ard.16.4.494
10.1177/0954411913483537
10.1016/j.jbiomech.2017.09.022
10.1371/journal.pcbi.1006223
10.1016/j.eclinm.2020.100587
10.1038/srep21415
10.1002/jor.22340
10.1016/j.medengphy.2005.12.006
10.1038/s41598-017-09013-7
10.1002/jor.25177
10.1115/1.4033516
10.1145/218380.218473
10.1016/j.jbiomech.2018.10.008
10.1002/jor.25509
10.1038/s41598-023-45408-5
10.1111/j.1532-950X.2009.00527.x
10.1038/s41598-017-17228-x
10.1016/j.joca.2008.06.016
10.1016/j.neuroimage.2006.01.015
10.1002/jor.24273
10.1038/s41598-023-35832-y
10.1007/BF00583443
10.1016/j.cmpb.2009.09.002
10.1109/ISBI48211.2021.9433784
10.1007/s00167-004-0607-4
10.1186/1749-799X-5-69
10.1371/journal.pcbi.1011462
10.1007/s10278-017-0037-8
10.1007/s10237-016-0807-0
10.1016/j.jbiomech.2013.11.003
10.1115/1.4026358
10.1016/j.medengphy.2004.07.004
10.2519/jospt.2018.7459
10.1097/00003086-198405000-00046
10.1007/s10334-022-01004-8
10.1016/j.jbiomech.2011.05.006
10.1007/s10439-015-1326-3
10.1016/j.jbiomech.2022.111312
10.1117/1.JMI.1.2.024003
10.1016/j.jbiomech.2010.03.008
10.1002/jmri.28353
10.1016/j.ostima.2022.100010
10.12688/f1000research.20575.1
10.1109/TBME.2022.3156018
10.1115/1.4050027
10.1016/j.jbiomech.2016.10.025
10.1109/TNSRE.2022.3159685
10.1007/s10439-018-02184-y
10.1007/978-3-319-25202-5_10
10.1053/jars.2002.29877
10.1016/j.joca.2020.10.011
10.1038/s41592-020-01008-z
10.1016/j.jbiomech.2007.01.015
10.1115/1.4045906
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2024.3438272
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 69
ExternalDocumentID 10.1109/tbme.2024.3438272
39236141
10_1109_TBME_2024_3438272
10666719
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Saastamoisen säätiö; Saastamoinen Foundation
  funderid: 10.13039/501100017643
– fundername: Australian National Health and Medical Research Council
  grantid: APP2001734
– fundername: Suomen Kulttuurirahasto; Finnish Cultural Foundation
  grantid: 00230091
  funderid: 10.13039/501100003125
– fundername: Research Council of Finland
  grantid: 322424; 324529
  funderid: 10.13039/501100002341
– fundername: Sigrid Jusélius Foundation
– fundername: Novo Nordisk Fonden; Novo Nordisk Foundation
  grantid: NNF21OC0065373
  funderid: 10.13039/501100009708
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c345t-9a6716fede15bc9897f5af6de3f51ebb874d722469a6d51423dee4eeb3cce5c53
IEDL.DBID UNPAY
ISSN 0018-9294
1558-2531
IngestDate Sun Oct 26 03:51:35 EDT 2025
Sun Sep 28 10:48:05 EDT 2025
Mon Jun 30 13:06:41 EDT 2025
Mon Jul 21 05:57:41 EDT 2025
Wed Oct 01 04:08:59 EDT 2025
Wed Aug 27 01:55:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-9a6716fede15bc9897f5af6de3f51ebb874d722469a6d51423dee4eeb3cce5c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8035-1606
0000-0002-8321-8528
0000-0002-3486-7855
0000-0002-0824-9682
0000-0003-2266-2518
0000-0002-0874-7518
0000-0002-8877-1170
0000-0001-6544-900X
0000-0001-6717-8979
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/tbme.2024.3438272
PMID 39236141
PQID 3155804313
PQPubID 85474
PageCount 14
ParticipantIDs ieee_primary_10666719
pubmed_primary_39236141
proquest_miscellaneous_3101229263
proquest_journals_3155804313
unpaywall_primary_10_1109_tbme_2024_3438272
crossref_primary_10_1109_TBME_2024_3438272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jan.
2025-1-00
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref92
ref51
Yoo (ref55) 2002; 85
ref50
ref91
Erdemir (ref43) 2016; 29
ref90
ref46
ref45
ref89
ref48
ref47
ref41
ref85
ref44
ref88
ref87
Brett (ref60) 2023
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
Cignoni (ref53) 2008
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
Atkinson (ref67) 2020
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Sorkine (ref57) 2005
Woo (ref86)
ref71
ref70
ref73
ref72
ref24
Desai (ref42) 2022
ref68
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Schroeder (ref52) 2006
ref62
ref61
References_xml – ident: ref15
  doi: 10.1016/j.medengphy.2019.08.002
– ident: ref38
  doi: 10.1080/21681163.2016.1172346
– ident: ref13
  doi: 10.1016/j.joca.2023.01.004
– ident: ref75
  doi: 10.1115/1.4038330
– ident: ref11
  doi: 10.1038/s41584-023-00953-1
– ident: ref39
  doi: 10.1016/j.jbiomech.2004.07.003
– ident: ref12
  doi: 10.1371/journal.pcbi.1010337
– ident: ref22
  doi: 10.3389/fbioe.2022.1059003
– ident: ref40
  doi: 10.1016/j.media.2018.11.009
– ident: ref84
  doi: 10.1136/ard.41.5.508
– volume: 85
  start-page: 586
  year: 2002
  ident: ref55
  article-title: Engineering and algorithm design for an image processing API: A technical report on ITK - the Insight Toolkit
  publication-title: Stud. Health Technol. Inform.
– ident: ref7
  doi: 10.1016/j.joca.2012.09.002
– ident: ref36
  doi: 10.1115/1.2894883
– ident: ref48
  doi: 10.1055/s-2004-861579
– ident: ref29
  doi: 10.1080/10255842.2017.1383984
– ident: ref49
  doi: 10.1136/ard.2005.039370
– ident: ref51
  doi: 10.1145/37402.37422
– ident: ref54
  doi: 10.1145/166117.166119
– year: 2023
  ident: ref60
  article-title: nipynibabel: 5.1.0
  publication-title: Zenodo
– ident: ref26
  doi: 10.1016/j.joca.2013.10.010
– ident: ref69
  doi: 10.1177/03635465010290041501
– ident: ref79
  doi: 10.1148/ryai.2021200078
– ident: ref14
  doi: 10.1109/TNSRE.2020.3037411
– ident: ref23
  doi: 10.1109/ACCESS.2020.2982061
– ident: ref35
  doi: 10.1115/1.4032464
– ident: ref77
  doi: 10.1038/s41598-020-59602-2
– ident: ref81
  doi: 10.1007/s10334-021-00934-z
– ident: ref18
  doi: 10.1115/1.4050028
– ident: ref34
  doi: 10.1109/TBME.2007.901024
– ident: ref72
  doi: 10.2307/1932409.JSTOR1932409
– ident: ref3
  doi: 10.3899/jrheum.160226
– ident: ref44
  doi: 10.1136/ard.16.4.494
– ident: ref90
  doi: 10.1177/0954411913483537
– start-page: 129
  volume-title: Proc. Eurograph. Ital. Chapter Conf.
  year: 2008
  ident: ref53
  article-title: MeshLab: An open-source mesh processing tool
– ident: ref4
  doi: 10.1016/j.jbiomech.2017.09.022
– ident: ref33
  doi: 10.1371/journal.pcbi.1006223
– ident: ref1
  doi: 10.1016/j.eclinm.2020.100587
– ident: ref8
  doi: 10.1038/srep21415
– ident: ref20
  doi: 10.1002/jor.22340
– ident: ref62
  doi: 10.1016/j.medengphy.2005.12.006
– ident: ref76
  doi: 10.1038/s41598-017-09013-7
– ident: ref6
  doi: 10.1002/jor.25177
– ident: ref66
  doi: 10.1115/1.4033516
– ident: ref56
  doi: 10.1145/218380.218473
– ident: ref31
  doi: 10.1016/j.jbiomech.2018.10.008
– ident: ref78
  doi: 10.1002/jor.25509
– ident: ref91
  doi: 10.1038/s41598-023-45408-5
– ident: ref63
  doi: 10.1111/j.1532-950X.2009.00527.x
– volume-title: The Visualization Toolkit
  year: 2006
  ident: ref52
– ident: ref10
  doi: 10.1038/s41598-017-17228-x
– ident: ref41
  doi: 10.1016/j.joca.2008.06.016
– ident: ref46
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: ref73
  doi: 10.1002/jor.24273
– ident: ref85
  doi: 10.1038/s41598-023-35832-y
– start-page: 905
  volume-title: Proc. Mach. Learn. Res
  ident: ref86
  article-title: Semantic segmentation of 3D medical images through a kaleidoscope: Data from the Osteoarthritis Initiative
– ident: ref65
  doi: 10.1007/BF00583443
– ident: ref59
  doi: 10.1016/j.cmpb.2009.09.002
– ident: ref80
  doi: 10.1109/ISBI48211.2021.9433784
– start-page: 776
  volume-title: Proc. 46th Annu. Meeting Orthopaedic Res. Soc.
  year: 2020
  ident: ref67
  article-title: A comparison of the mechanical and dimensional properties of the Human medial and lateral patellofemoral ligaments
– ident: ref68
  doi: 10.1007/s00167-004-0607-4
– ident: ref70
  doi: 10.1186/1749-799X-5-69
– volume: 29
  issue: 2
  year: 2016
  ident: ref43
  article-title: Open knee: Open source modeling & simulation to enable scientific discovery and clinical care in knee biomechanics
  publication-title: J. Knee Surg.
– ident: ref92
  doi: 10.1371/journal.pcbi.1011462
– ident: ref50
  doi: 10.1007/s10278-017-0037-8
– ident: ref28
  doi: 10.1007/s10237-016-0807-0
– ident: ref5
  doi: 10.1016/j.jbiomech.2013.11.003
– ident: ref32
  doi: 10.1115/1.4026358
– ident: ref37
  doi: 10.1016/j.medengphy.2004.07.004
– ident: ref89
  doi: 10.2519/jospt.2018.7459
– ident: ref24
  doi: 10.1097/00003086-198405000-00046
– ident: ref58
  doi: 10.1007/s10334-022-01004-8
– ident: ref61
  doi: 10.1016/j.jbiomech.2011.05.006
– ident: ref30
  doi: 10.1007/s10439-015-1326-3
– volume-title: Eurographics 2005 - State of the Art Reports
  year: 2005
  ident: ref57
  article-title: Laplacian mesh processing
– ident: ref19
  doi: 10.1016/j.jbiomech.2022.111312
– ident: ref47
  doi: 10.1117/1.JMI.1.2.024003
– ident: ref74
  doi: 10.1016/j.jbiomech.2010.03.008
– ident: ref88
  doi: 10.1002/jmri.28353
– ident: ref82
  doi: 10.1016/j.ostima.2022.100010
– ident: ref2
  doi: 10.12688/f1000research.20575.1
– ident: ref17
  doi: 10.1109/TBME.2022.3156018
– ident: ref87
  doi: 10.1115/1.4050027
– ident: ref25
  doi: 10.1016/j.jbiomech.2016.10.025
– ident: ref9
  doi: 10.1109/TNSRE.2022.3159685
– ident: ref21
  doi: 10.1007/s10439-018-02184-y
– ident: ref27
  doi: 10.1007/978-3-319-25202-5_10
– ident: ref64
  doi: 10.1053/jars.2002.29877
– year: 2022
  ident: ref42
  article-title: SKM-TEA: A dataset for accelerated MRI reconstruction with dense image labels for quantitative clinical evaluation
– ident: ref83
  doi: 10.1016/j.joca.2020.10.011
– ident: ref45
  doi: 10.1038/s41592-020-01008-z
– ident: ref71
  doi: 10.1016/j.jbiomech.2007.01.015
– ident: ref16
  doi: 10.1115/1.4045906
SSID ssj0014846
Score 2.5007572
Snippet Objective: To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Methods: Magnetic resonance images...
To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline. Magnetic resonance images (MRIs) were used to...
To develop and assess an automatic and robust knee musculoskeletal finite element (MSK-FE) modeling pipeline.OBJECTIVETo develop and assess an automatic and...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 56
SubjectTerms Adult
Biological system modeling
Biomechanical Phenomena - physiology
Biomechanics
Bones
Cartilage
Cartilage mechanics
Customization
Degrees of freedom
Elastic foundations
Female
Femur
Fibula
Finite Element Analysis
Finite element method
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
In vivo methods and tests
Iron
Kinematics
Knee
Knee Joint - anatomy & histology
Knee Joint - diagnostic imaging
Knee Joint - physiology
knee osteoarthritis
Ligaments
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
mechanobiology
Meshing
Modelling
Models, Biological
multiscale modeling
Patella
Robustness
Shear strain
Strain
Tibia
Young Adult
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BD0APPEqhhoIWiRMoaWyv93EMKFFVlB5QKvWEtS9LVSNvRWyh8uuZsZ0o5SFxs-SxPd6Z0X6z8wJ4LypptZGI3Kj8lwvFR1p59FKU4zqr0szbLtviXJxe8LPL4nIoVu9qYUIIXfJZGNNlF8v30bV0VIYWjmBbUpPP-1KJvlhrGzLgqq_KmaRowZnmQwgzneiT5afFDF3BjI9zintJGmGDuCDHrSm9sx91A1b-hjX34WFb35jbH2a12tl_5k_gfMN5n3ZyPW4bO3Y_f2vq-N-_9hQeD0iUTXvVeQb3Qn0A-zv9CQ_gwWKIvD-Hb9OaTdsmIsANnpnas6_RtuuGLWNcMUS-bNFSTmtcX-NGhoi-o5lfEaRlsz5HndHgNSp_Z7FiCDzZF_wSO4tXdXMIF_PZ8vPpaJjNMHI5L5qRNsitqIIPaWGdVlpWhamED3lVpMFaJbmX1KwOCT2Csiz3IfCArrtzoXBF_gL26liHI2DaClNIr7UtPLfcWVsJ9JusMqmwE5kl8GEjofKmb8FRdq7LRJck2ZIkWw6STeCQFneHsF_XBI43Qi0HK12XOYIpRd2F8gTebW-jfVHQxNQhtkRDwUedCaR52SvD9uUbHUrg41Y7_mCxwUfusPjqHyy-hkcZDRfuzneOYa_53oY3iHga-7bT9F_YJPgV
  priority: 102
  providerName: IEEE
Title An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint
URI https://ieeexplore.ieee.org/document/10666719
https://www.ncbi.nlm.nih.gov/pubmed/39236141
https://www.proquest.com/docview/3155804313
https://www.proquest.com/docview/3101229263
https://doi.org/10.1109/tbme.2024.3438272
UnpaywallVersion publishedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7kCkofqtZqI7Ws4JNy5yXZH9nHa7mjVK6I3EF9MexmN1B6ZIuXUOpf70ySHlftgz5n2GwyszvfMDPfAHyQpbLaKERu1P7LZcaHOnMYpWQF10kZJ8621RYX8mzJzy_FZU8WTb0w2_n7eKw_1-gUMIpL-CillJXC23ZHCoTdA9hZXnydfO9uWjy0STv0EN0jah4Nq89gPrrGAx_UDlV5DF_uwrOmujF3t2a12vI5s-ddtda6pSqkUpPrUVPbUfHrDyLHf_qcF7DXI0826UzlJTzx1T7sbvER7sPTeZ9pfwU_JhWbNHVAQOsdM5Vj34Jt1jVbhLBiiHTZvKEa1rC-RseFCL6VmV0RhGXTriad0aA1andnoWQINNkXfBM7D1dVfQDL2XRxejbsZzEMi5SLeqiNxMiq9M7HwhY606oUppTOp6WIvbWZ4k4ROR0KOgRhSeq85x5D9aLwohDpaxhUofKHwLSVRiintRWOW15YW0qMk2xmYmnHKong47128puOciNvQ5Wxzhcn82lO_y_v_18EB6S_LUGMx1SsIzi6V2jen8p1npJ1EJtQGsH7zWM8T5QkMZUPDclQslEnEmXedIawWRyxZIpwJo7g08Yy_toiqfjBFt_-l_QRDOqfjX-HUKe2x20_4nFv6r8BPbT1kg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hIlF64FEKGAosEidQ0tje9XqPASUKbZMDSqWesLwPS1Ujb0VsIfj1zKydKOUhcbPksT3emdF-s_MCeJdVUqtSInKj8l-e5XygcoteSm64Sqo4sTpkWyyy2QU_vRSXfbF6qIVxzoXkMzekyxDLt960dFSGFo5gW1KTz7uCcy66cq1t0IDnXV3OKEYbThTvg5jxSJ0sP84n6AwmfJhS5EvSEBtEBiluTvGtHSmMWPkb2jyA_ba-KX98L1ernR1o-hAWG967xJPrYdvoofn5W1vH__65R_Cgx6Js3CnPY7jj6kM42OlQeAj35n3s_Ql8Hdds3DYeIa6zrKwt--J1u27Y0vsVQ-zL5i1ltfr1NW5liOkDzfSKQC2bdFnqjEavUQE88xVD6MnO8Evs1F_VzRFcTCfLT7NBP51hYFIumoEqkdusctbFQhuVK1mJssqsSysRO61zya2kdnVIaBGWJal1jjt03o1xwoj0KezVvnbPgSmdlUJapbSwXHOjdZWh56TzMs70SCYRvN9IqLjpmnAUwXkZqYIkW5Bki16yERzR4u4QdusawfFGqEVvp-siRTiVU3-hNIK329toYRQ2KWvnW6Kh8KNKMqR51inD9uUbHYrgw1Y7_mCxwUdusfjiHyy-gf3Zcn5enH9enL2E-wmNGg6nPcew13xr3SvEP41-HbT-F_tQ-2I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5GCht9WLeu61y6ocGeNpLFtn5Yj-lIKB0pYyTQvcxIlgylwSqLzWj_-t7Zbki3PmzPPiRZd9J9x52-A_ggS2W1UYjc6Pkvlxkf6sxhlJIVXCdlnDjbVlucy9MlP7sQFz1ZNL2F2c7fx2P9uUangFFcwkcppawU3rY7UiDsHsDO8vzb5Ed30-KhTdqmh-geUfNoWH0G89ExHvigtqnKY_hyF5411bW5-W1Wqy2fM9vrqrXWLVUhlZpcjZrajorbP4gc_-l3XsDzHnmySWcqL-GJr_Zhd4uPcB-ezvtM-yv4OanYpKkDAlrvmKkc-x5ss67ZIoQVQ6TL5g3VsIb1FTouRPCtzOySICybdjXpjBqt0XN3FkqGQJN9xZnYWbis6gNYzqaLL6fDvhfDsEi5qIfaSIysSu98LGyhM61KYUrpfFqK2FubKe4UkdOhoEMQlqTOe-4xVC8KLwqRvoZBFSr_Bpi20gjltLbCccsLa0uJcZLNTCztWCURfLzXTn7dUW7kbagy1vniZD7Naf_yfv8iOCD9bQliPKZiHcHxvULz_lSu85Ssg9iE0gjebz7jeaIkial8aEiGko06kShz2BnCZnDEkinCmTiCTxvL-GuJpOIHSzz6L-ljGNS_Gv8WoU5t3_VGfgeBf_SR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+and+Robust+Tool+for+Musculoskeletal+and+Finite+Element+Modeling+of+the+Knee+Joint&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Esrafilian%2C+Amir&rft.au=Chandra%2C+Shekhar+S.&rft.au=Gatti%2C+Anthony+A.&rft.au=Nissi%2C+Mikko+J.&rft.date=2025-01-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=72&rft.issue=1&rft.spage=56&rft.epage=69&rft_id=info:doi/10.1109%2FTBME.2024.3438272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2024_3438272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon