Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation

The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris-Lecar (ML) model, the att...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 5; pp. 180 - 190
Main Author 贾冰
Format Journal Article
LanguageEnglish
Published 01.05.2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/23/5/050510

Cover

Abstract The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris-Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period- 1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period- 1 firing neuron that lead to complete synchronization of period- 1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.
AbstractList The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris-Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period-1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period-1 firing neuron that lead to complete synchronization of period-1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.
The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris-Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period- 1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period- 1 firing neuron that lead to complete synchronization of period- 1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.
Author 贾冰
AuthorAffiliation Center for Computational System Biology, School of Mathematical Science, Fudan University, Shanghai 200433, China
Author_xml – sequence: 1
  fullname: 贾冰
BookMark eNqNkT1PHDEQhq2ISDkIPwFp06VZbvy5XlEhlAASEgVJbXmNzTnasxfbCzl-Pb47RJGGVPZonmcsv3OIDkIMFqETDKcYpFxi0bEWAxdLQpd8CRw4hk9oQYDLlkrKDtDinfmCDnP-AyAwELpA5W4TzCrF4F908TE0JemQ_e4aXaMbE-dptPdN3uRi17VcTzHXujaDnauYm2dfVrVh__pcfHhoBrvSTz6mXAmd6oyrOLlm8G5OZvfIV_TZ6THb47fzCP3--ePXxVV7c3t5fXF-0xrKeGl7bjV0g3O6EwZrJpwhWhDqJDgjheiZAwu8c5IP3AjJBXF24PdABTGuA3qEvu_nTik-zjYXtfbZ2HHUwcY5K9xtpV4C_R-UgOiB9RU926MmxZyTdcr4svtXzc6PCoParkVtI1fbyBWhiqv9WqrN_7Gn5Nc6bT70vr15qxgeHmvO7yLrGeUgGX0FQfGf5A
CitedBy_id crossref_primary_10_1155_2016_3414909
crossref_primary_10_1007_s11071_015_2226_7
crossref_primary_10_7498_aps_64_198701
crossref_primary_10_1142_S0218127415500698
Cites_doi 10.1143/PTP.69.32
10.1126/science.1099745
10.1016/j.physa.2010.02.029
10.1007/s11571-012-9222-0
10.1088/0256-307X/26/3/030504
10.1098/rsta.2007.2103
10.1007/s10827-005-0354-7
10.1016/j.neulet.2009.10.088
10.1142/S0218127400000840
10.1103/PhysRevE.74.031922
10.1103/PhysRevLett.96.244102
10.1088/0256-307X/26/11/110501
10.1016/j.brainres.2008.07.118
10.1152/jn.00109.2004
10.1088/0253-6102/59/2/16
10.1016/S0370-1573(02)00137-0
10.1088/0253-6102/57/1/10
10.1103/PhysRevE.79.016202
10.1146/annurev.ne.18.030195.003011
10.1016/j.physa.2008.02.067
10.1063/1.3559136
10.1088/1674-1056/20/2/020508
10.1113/jphysiol.1980.sp013370
10.1109/TNN.2004.824272
10.1016/j.physrep.2008.09.002
10.1152/jn.1996.75.2.957
10.1073/pnas.90.5.2078
10.1038/338334a0
10.1063/1.1756118
10.1088/0253-6102/53/2/32
10.1016/j.physleta.2003.09.077
10.1016/S0375-9601(01)00278-X
10.1142/S0217979211101673
10.1152/jn.90634.2008
10.1142/S0218127409023135
10.1016/j.physa.2013.03.039
10.1016/j.physrep.2003.10.015
10.1371/journal.pone.0055403
10.1162/089976603321780326
10.1007/BF00337410
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
7TK
DOI 10.1088/1674-1056/23/5/050510
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Neurosciences Abstracts
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
EISSN 2058-3834
1741-4199
EndPage 190
ExternalDocumentID 10_1088_1674_1056_23_5_050510
49435084
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
7TK
ID FETCH-LOGICAL-c345t-95ea07bffa76c1a46fc2a623f80fc86694f0e057f85b5c68562feb5d0362cf703
ISSN 1674-1056
IngestDate Fri Sep 05 12:41:27 EDT 2025
Thu Sep 04 18:22:27 EDT 2025
Wed Oct 01 03:34:48 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Wed Feb 14 10:37:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-95ea07bffa76c1a46fc2a623f80fc86694f0e057f85b5c68562feb5d0362cf703
Notes Jia Bing( Center for Computational System Biology, School of Mathematical Science, Fudan University, Shanghai 200433, China)
The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris-Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period- 1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period- 1 firing neuron that lead to complete synchronization of period- 1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.
11-5639/O4
synchronization, neuronal network, Hopf bifurcation, coexistence
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1762069049
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1768569803
proquest_miscellaneous_1762069049
crossref_citationtrail_10_1088_1674_1056_23_5_050510
crossref_primary_10_1088_1674_1056_23_5_050510
chongqing_primary_49435084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2014
References 22
23
24
25
26
27
28
29
Ding X L (43) 2009; 7
Tang Z (10) 2012; 57
Ma J (4) 2013; 59
30
31
32
11
33
34
13
14
15
37
16
38
17
Guttman R (35) 1980; 305
39
18
Lechner H A (36) 1996; 75
Li Y Y (12) 2009; 26
19
Zhang N (7) 2009; 26
Wang C N (3) 2010; 53
Yuan L (8) 2011; 20
1
2
5
6
Li Y Y (9) 2009; 26
40
41
20
42
21
References_xml – ident: 19
  doi: 10.1143/PTP.69.32
– ident: 16
  doi: 10.1126/science.1099745
– ident: 11
  doi: 10.1016/j.physa.2010.02.029
– ident: 42
  doi: 10.1007/s11571-012-9222-0
– volume: 26
  start-page: 030504
  issn: 0256-307X
  year: 2009
  ident: 12
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/26/3/030504
– ident: 22
  doi: 10.1098/rsta.2007.2103
– ident: 30
  doi: 10.1007/s10827-005-0354-7
– ident: 17
  doi: 10.1016/j.neulet.2009.10.088
– ident: 24
  doi: 10.1142/S0218127400000840
– ident: 29
  doi: 10.1103/PhysRevE.74.031922
– ident: 21
  doi: 10.1103/PhysRevLett.96.244102
– volume: 26
  start-page: 110501
  issn: 0256-307X
  year: 2009
  ident: 7
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/26/11/110501
– ident: 20
  doi: 10.1016/j.brainres.2008.07.118
– ident: 37
  doi: 10.1152/jn.00109.2004
– volume: 59
  start-page: 233
  issn: 0253-6102
  year: 2013
  ident: 4
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/59/2/16
– ident: 2
  doi: 10.1016/S0370-1573(02)00137-0
– volume: 57
  start-page: 61
  issn: 0253-6102
  year: 2012
  ident: 10
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/57/1/10
– volume: 26
  start-page: 030504
  issn: 0256-307X
  year: 2009
  ident: 9
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/26/3/030504
– ident: 23
  doi: 10.1103/PhysRevE.79.016202
– ident: 13
  doi: 10.1146/annurev.ne.18.030195.003011
– volume: 7
  start-page: 297
  year: 2009
  ident: 43
  publication-title: J. Dyn. Control.
– ident: 28
  doi: 10.1016/j.physa.2008.02.067
– ident: 6
  doi: 10.1063/1.3559136
– volume: 20
  start-page: 020508
  issn: 1674-1056
  year: 2011
  ident: 8
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/20/2/020508
– volume: 305
  start-page: 377
  year: 1980
  ident: 35
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1980.sp013370
– ident: 26
  doi: 10.1109/TNN.2004.824272
– ident: 1
  doi: 10.1016/j.physrep.2008.09.002
– volume: 75
  start-page: 957
  year: 1996
  ident: 36
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.75.2.957
– ident: 14
  doi: 10.1073/pnas.90.5.2078
– ident: 18
  doi: 10.1038/338334a0
– ident: 27
  doi: 10.1063/1.1756118
– volume: 53
  start-page: 382
  issn: 0253-6102
  year: 2010
  ident: 3
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/53/2/32
– ident: 39
  doi: 10.1103/PhysRevE.79.016202
– ident: 31
  doi: 10.1016/j.physleta.2003.09.077
– ident: 33
  doi: 10.1016/S0375-9601(01)00278-X
– ident: 34
  doi: 10.1142/S0217979211101673
– ident: 38
  doi: 10.1152/jn.90634.2008
– ident: 32
  doi: 10.1142/S0218127409023135
– ident: 40
  doi: 10.1016/j.physa.2013.03.039
– ident: 41
  doi: 10.1016/j.physrep.2003.10.015
– ident: 5
  doi: 10.1371/journal.pone.0055403
– ident: 25
  doi: 10.1162/089976603321780326
– ident: 15
  doi: 10.1007/BF00337410
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0103476
Snippet The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 180
SubjectTerms Bifurcations
Dynamical systems
Firing
Hopf分支
Joining
Mathematical models
Neurons
Synchronism
Synchronization
中枢神经系统
共存
时空行为
神经元
耦合系统
静止状态
非同步
Title Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
URI http://lib.cqvip.com/qk/85823A/201405/49435084.html
https://www.proquest.com/docview/1762069049
https://www.proquest.com/docview/1768569803
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiKfo8pCR8Allm4ft2MdmyapwACR2pb1FiWuzK62S0scBfj0zSZx0AS2PS-S6zlT192Vm7MyMCXkNFsGCXXVBnPA04LYUgU41KMPUlMrYaCmXbZTvB7k44-_Pxflk4vailnbb6sh8_21eyf-gCn2AK2bJ_gOyg1DogDbgC1dAGK5_hfHnb7Vpi9t2uZR43kPdxWD1aY_NbnUFHmVXrrkNH2828BmDN7AoR73xoedYELMNgPZp-xsYUa5BxqJZuTfVpdutzQhi782ynLNMsflblgumM5ZBI2VKs7nGhg6ZkhnLT1h2zPSc5YopGBSxXDItmUr70WoIp8UhGcjMUaCSLAv3dyUiPsYA9opUphxUvOjLXLd9cShUkPjNy8v9N9qt8oy6M516Oxx1x4j-ouJBLeJug5ePGS1Ye6ItkSFQxYyWbYg35Bq8wlDxW-R2DNofj_h49_GTt9gSy1fgwtzL9JleSs2GvlmczMSs-wWsw3HR1F--Ai7X_Znr5rz1UU7vk3v94oLOO6Y8IBNbPyR32iBfs3lEtj_xhY58oY2jJe35Qju-UM8X_LLnC0W-0JEvdOALRb6ADOQL3ePLY3J2kp8eL4L-1I3AJFxsAy1sGaaVc2UqTVRy6UxcgpPsVOiMklJzF8LjnTolKmGkAgfa2Uos0RUyDgzIE3JQN7V9SmisRVmVtoIlbMqx0JBQ1ggdx0tpcQd9Sg6HeSxWXXWVwmM1JdxPbGH6evV4bMpV0cZNKFUgNgViU8RJIYoOmyk5Gm7zIv9wwyuPWgGqFd-XlbVtdpsiQqpIDWvoG8fADGgVJoc3_Zln5O74lDwnB9v1zr4Ab3ZbvWyp-AO3PZC-
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronization+transition+of+a+coupled+system+composed+of+neurons+with+coexisting+behaviors+near+a+Hopf+bifurcation&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%B4%BE%E5%86%B0&rft.date=2014-05-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=5&rft.spage=180&rft.epage=190&rft_id=info:doi/10.1088%2F1674-1056%2F23%2F5%2F050510&rft.externalDocID=49435084
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg