Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism

•EQC is used to unify the heterogeneous energy in the form of exergy.•Equal exergy replacement mechanism for unification of heterogeneous energy in value.•Exchange any form of energy anytime for customers to reduce the energy cost.•Uncertainty of price quantified by IGDT to reduce the risk of VES. I...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 327; p. 120055
Main Authors Ding, Jianyong, Gao, Ciwei, Song, Meng, Yan, Xingyu, Chen, Tao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2022.120055

Cover

Abstract •EQC is used to unify the heterogeneous energy in the form of exergy.•Equal exergy replacement mechanism for unification of heterogeneous energy in value.•Exchange any form of energy anytime for customers to reduce the energy cost.•Uncertainty of price quantified by IGDT to reduce the risk of VES. Integrated Demand Response (IDR) is an effective way to make full use of the resources of the integrated energy system (IES) to achieve a positive interaction between supply and demand. Energy cascade utilization is one of the important technical principles of the IES to improve energy utilization efficiency and realize comprehensive benefit optimization. The design of an incentive mechanism is an important prerequisite for realizing IDR. When formulating the incentive mechanism, the coupling between the conversion efficiency of multiple energy sources and the depreciation of energy quality in the process of energy cascade utilization should be comprehensively considered. The exergy is the index that can evaluate the engineering value of any form of energy. Therefore, this paper unifies the multiple heterogeneous energy sources in the IES in the form of exergy through the energy quality coefficient. To more accurately reflect the difference in energy value of multiple heterogeneous energy sources during the time of invocation, an equal exergy replacement mechanism is designed according to the principle of high energy quality and high price. The regulated energy of the customer participating in the IDR is stored in the form of exergy, and the customer can exchange any form of energy at any time under the same exergy. On this basis, a bi-level optimal scheduling model for virtual energy station (VES) to participate in the day-ahead market is established, which realizes the improvement of multi-subject interests. And use Information Gap Decision Theory (IGDT) to deal with the risks posed by uncertainty in day-ahead market prices. Finally, the case study shows that the designed incentive mechanism can further reduce the energy purchase cost of customers, and VES can obtain higher benefits than only providing internal energy sales services. The IGDT method can reduce operational risk, which verifies the feasibility of the method.
AbstractList •EQC is used to unify the heterogeneous energy in the form of exergy.•Equal exergy replacement mechanism for unification of heterogeneous energy in value.•Exchange any form of energy anytime for customers to reduce the energy cost.•Uncertainty of price quantified by IGDT to reduce the risk of VES. Integrated Demand Response (IDR) is an effective way to make full use of the resources of the integrated energy system (IES) to achieve a positive interaction between supply and demand. Energy cascade utilization is one of the important technical principles of the IES to improve energy utilization efficiency and realize comprehensive benefit optimization. The design of an incentive mechanism is an important prerequisite for realizing IDR. When formulating the incentive mechanism, the coupling between the conversion efficiency of multiple energy sources and the depreciation of energy quality in the process of energy cascade utilization should be comprehensively considered. The exergy is the index that can evaluate the engineering value of any form of energy. Therefore, this paper unifies the multiple heterogeneous energy sources in the IES in the form of exergy through the energy quality coefficient. To more accurately reflect the difference in energy value of multiple heterogeneous energy sources during the time of invocation, an equal exergy replacement mechanism is designed according to the principle of high energy quality and high price. The regulated energy of the customer participating in the IDR is stored in the form of exergy, and the customer can exchange any form of energy at any time under the same exergy. On this basis, a bi-level optimal scheduling model for virtual energy station (VES) to participate in the day-ahead market is established, which realizes the improvement of multi-subject interests. And use Information Gap Decision Theory (IGDT) to deal with the risks posed by uncertainty in day-ahead market prices. Finally, the case study shows that the designed incentive mechanism can further reduce the energy purchase cost of customers, and VES can obtain higher benefits than only providing internal energy sales services. The IGDT method can reduce operational risk, which verifies the feasibility of the method.
Integrated Demand Response (IDR) is an effective way to make full use of the resources of the integrated energy system (IES) to achieve a positive interaction between supply and demand. Energy cascade utilization is one of the important technical principles of the IES to improve energy utilization efficiency and realize comprehensive benefit optimization. The design of an incentive mechanism is an important prerequisite for realizing IDR. When formulating the incentive mechanism, the coupling between the conversion efficiency of multiple energy sources and the depreciation of energy quality in the process of energy cascade utilization should be comprehensively considered. The exergy is the index that can evaluate the engineering value of any form of energy. Therefore, this paper unifies the multiple heterogeneous energy sources in the IES in the form of exergy through the energy quality coefficient. To more accurately reflect the difference in energy value of multiple heterogeneous energy sources during the time of invocation, an equal exergy replacement mechanism is designed according to the principle of high energy quality and high price. The regulated energy of the customer participating in the IDR is stored in the form of exergy, and the customer can exchange any form of energy at any time under the same exergy. On this basis, a bi-level optimal scheduling model for virtual energy station (VES) to participate in the day-ahead market is established, which realizes the improvement of multi-subject interests. And use Information Gap Decision Theory (IGDT) to deal with the risks posed by uncertainty in day-ahead market prices. Finally, the case study shows that the designed incentive mechanism can further reduce the energy purchase cost of customers, and VES can obtain higher benefits than only providing internal energy sales services. The IGDT method can reduce operational risk, which verifies the feasibility of the method.
ArticleNumber 120055
Author Gao, Ciwei
Song, Meng
Chen, Tao
Ding, Jianyong
Yan, Xingyu
Author_xml – sequence: 1
  givenname: Jianyong
  surname: Ding
  fullname: Ding, Jianyong
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Ciwei
  surname: Gao
  fullname: Gao, Ciwei
  email: ciwei.gao@seu.edu.cn
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, China
– sequence: 3
  givenname: Meng
  surname: Song
  fullname: Song, Meng
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Xingyu
  surname: Yan
  fullname: Yan, Xingyu
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, China
– sequence: 5
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, China
BookMark eNqFkMtOwzAQRS0EEm3hF1CWbFL8iO1UYgFUvCQkNrC2HGcCrhwntd2K_j2hgQ2brmY0994ZzZmiY995QOiC4DnBRFyt5roHD-FjN6eY0jmhGHN-hCaklDRfEFIeowlmWORUkMUpmsa4whjTwTdB-s7mDrbgsq5PttUui-YT6o2z_iPrmmxrQ9oM0_FAFpNOtvNZpSPU2dDAeq9-7dUAvdMGWvApa8F8am9je4ZOGu0inP_WGXp_uH9bPuUvr4_Py9uX3LCCp1wQw0hVcsYKQzEzTUGwFARrbnQlRS15tZBaYyM5p1RKXJeiYZUgrCiAk5LN0OW4tw_degMxqdZGA85pD90mKroouSgKxuVgFaPVhC7GAI3qw_B72CmC1Q9TtVJ_TNUPUzUyHYLX_4LGjkRS0NYdjt-McRg4bC0EFY0Fb6C2AUxSdWcPrfgGCaOZsg
CitedBy_id crossref_primary_10_1088_2516_1083_acef9e
crossref_primary_10_1002_ese3_1747
crossref_primary_10_1016_j_energy_2024_131113
crossref_primary_10_1016_j_energy_2023_128236
crossref_primary_10_1016_j_egyr_2025_03_017
crossref_primary_10_1016_j_joule_2023_06_015
crossref_primary_10_1016_j_apenergy_2024_122770
crossref_primary_10_1016_j_apenergy_2024_124286
Cites_doi 10.1016/j.apenergy.2019.03.135
10.1016/j.jclepro.2019.119270
10.1016/j.energy.2020.117155
10.1109/TSTE.2017.2731786
10.1109/TIE.2018.2826454
10.1016/j.apenergy.2018.05.095
10.1109/TII.2019.2932107
10.1109/TSG.2021.3074333
10.1016/j.energy.2011.09.038
10.1016/j.energy.2020.119387
10.1016/j.apenergy.2016.02.075
10.1016/j.apenergy.2020.115819
10.1016/j.energy.2019.04.004
10.1109/TIA.2022.3152454
10.1016/j.apenergy.2021.116639
10.1109/TSG.2021.3061619
10.1016/j.apenergy.2017.05.150
10.1016/j.renene.2017.10.005
10.1109/TIE.2018.2793181
10.1109/TSTE.2018.2861986
10.1016/j.energy.2015.05.109
10.1049/iet-gtd.2019.1084
10.1016/j.energy.2020.119006
10.1016/j.apenergy.2019.01.217
10.1016/j.energy.2020.118022
10.1016/j.energy.2016.12.124
10.17775/CSEEJPES.2017.01260
10.1016/j.ijepes.2019.105525
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.120055
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_120055
S0306261922013125
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-61c31b85334c203cf4107610a5cab76d75b97aa0c75522770d86f3b61344e5183
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Wed Oct 01 14:26:21 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Wed Oct 01 04:37:56 EDT 2025
Fri Feb 23 02:42:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Virtual energy station
Exergy equal exergy replacement
Information gap decision theory
Day-ahead market
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-61c31b85334c203cf4107610a5cab76d75b97aa0c75522770d86f3b61344e5183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2985644357
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2985644357
crossref_primary_10_1016_j_apenergy_2022_120055
crossref_citationtrail_10_1016_j_apenergy_2022_120055
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bahrami, Sheikhi (b0040) 2016; 7
Pan, Gu, Wu, Lu, Lu (b0025) 2019; 239
Sun, Wu, Xie, Sun (b0195) 2021; 38
Xu, Sun, Guo (b0035) 2018; 38
Wu, Yan, Jia, Hatziargyriou, Djilali, Sun (b0005) 2016; 167
Qi, Han, Zhang, Wang (b0105) 2016; 36
Hao, Feng, Li, Yi (b0115) 2014; 34
Chen, Zhang, Tang, Lin, Li (b0050) 2019; 176
Wang, Ma, Song, Ma, Qi, Huang (b0070) 2020; 205
Xiao, Pei, Dong, Kong (b0060) 2018; 4
Fan, Ai, Piao (b0085) 2018; 226
Liu, Cheng, Yu, Zhong, Lei (b0095) 2018; 65
Li, Gao, Chen, Guo, Han (b0185) 2021; 288
Gazijahani, Salehi (b0160) 2020; 16
Li, Wang, Yang, Liu, Yin, Wang (b0100) 2021; 214
Wang, Gu, Li (b0150) 2018; 116
Aliasghari, Mohammadi-Ivatloo, Abapour (b0165) 2020; 248
Hu, Zhang, Chen, Li, Wang, Zhang (b0135) 2020; 197
Guo, Wu, Cheng, Huang, Gao (b0110) 2017; 35
He, Lu, Geng, Zhang, Li, Guo (b0045) 2020; 116
Shao, Ding, Wang, Song (b0015) 2018; 9
Liu, Wang, Wang (b0010) 2019; 10
Ebrahimi, Carriveau, Ting, McGillis (b0125) 2019; 242
Ge, Chen, Wen, Zeng, Hua (b0130) 2017; 37
Hu, Shang, Chen, Wang, Zhang, Cheng (b0140) 2019; 43
Sheikhi, Bahrami, Ranjbar (b0075) 2015; 89
Jiang, Wang, Feng, Zheng, Shi (b0145) 2017; 120
Xue, Liu, Fu, Jiang (b0170) 2006; 04
Li, Yu, Qu, Wang (b0020) 2019; 43
Liu, Zhao, Wang (b0065) 2020; 279
Coskun, Oktay, Dincer (b0120) 2011; 36
Niu, Gao, Chen (b0190) 2022; 13
Dai, Esmaeilbeigi, Charkhgard (b0155) 2021; 12
Yu, Hong, Ding, Ye (b0080) 2019; 66
Chen, Qi, Rong, Peng, Zhao, Zhang (b0055) 2021; 217
Zheng, Sun, Li, Qi, Shi, Li (b0090) 2020; 14
Gao (b0175) 2017
Wang, Zhong, Ma, Xia, Kang (b0030) 2017; 202
Yan, Gao, Song, Chen, Ding, Guo (b0180) 2022; 58
Pan (10.1016/j.apenergy.2022.120055_b0025) 2019; 239
Hu (10.1016/j.apenergy.2022.120055_b0140) 2019; 43
Aliasghari (10.1016/j.apenergy.2022.120055_b0165) 2020; 248
Bahrami (10.1016/j.apenergy.2022.120055_b0040) 2016; 7
Jiang (10.1016/j.apenergy.2022.120055_b0145) 2017; 120
Guo (10.1016/j.apenergy.2022.120055_b0110) 2017; 35
Coskun (10.1016/j.apenergy.2022.120055_b0120) 2011; 36
Niu (10.1016/j.apenergy.2022.120055_b0190) 2022; 13
Sun (10.1016/j.apenergy.2022.120055_b0195) 2021; 38
Xue (10.1016/j.apenergy.2022.120055_b0170) 2006; 04
Wang (10.1016/j.apenergy.2022.120055_b0030) 2017; 202
Shao (10.1016/j.apenergy.2022.120055_b0015) 2018; 9
Fan (10.1016/j.apenergy.2022.120055_b0085) 2018; 226
Chen (10.1016/j.apenergy.2022.120055_b0050) 2019; 176
Liu (10.1016/j.apenergy.2022.120055_b0095) 2018; 65
Wang (10.1016/j.apenergy.2022.120055_b0150) 2018; 116
Wu (10.1016/j.apenergy.2022.120055_b0005) 2016; 167
Xu (10.1016/j.apenergy.2022.120055_b0035) 2018; 38
Sheikhi (10.1016/j.apenergy.2022.120055_b0075) 2015; 89
Qi (10.1016/j.apenergy.2022.120055_b0105) 2016; 36
Li (10.1016/j.apenergy.2022.120055_b0185) 2021; 288
Liu (10.1016/j.apenergy.2022.120055_b0065) 2020; 279
Li (10.1016/j.apenergy.2022.120055_b0020) 2019; 43
Wang (10.1016/j.apenergy.2022.120055_b0070) 2020; 205
Gazijahani (10.1016/j.apenergy.2022.120055_b0160) 2020; 16
Xiao (10.1016/j.apenergy.2022.120055_b0060) 2018; 4
Ebrahimi (10.1016/j.apenergy.2022.120055_b0125) 2019; 242
Ge (10.1016/j.apenergy.2022.120055_b0130) 2017; 37
Li (10.1016/j.apenergy.2022.120055_b0100) 2021; 214
Hao (10.1016/j.apenergy.2022.120055_b0115) 2014; 34
Liu (10.1016/j.apenergy.2022.120055_b0010) 2019; 10
He (10.1016/j.apenergy.2022.120055_b0045) 2020; 116
Zheng (10.1016/j.apenergy.2022.120055_b0090) 2020; 14
Dai (10.1016/j.apenergy.2022.120055_b0155) 2021; 12
Chen (10.1016/j.apenergy.2022.120055_b0055) 2021; 217
Yu (10.1016/j.apenergy.2022.120055_b0080) 2019; 66
Gao (10.1016/j.apenergy.2022.120055_b0175) 2017
Yan (10.1016/j.apenergy.2022.120055_b0180) 2022; 58
Hu (10.1016/j.apenergy.2022.120055_b0135) 2020; 197
References_xml – volume: 176
  start-page: 171
  year: 2019
  end-page: 183
  ident: b0050
  article-title: Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response
  publication-title: Energy
– volume: 16
  start-page: 2212
  year: 2020
  end-page: 2220
  ident: b0160
  article-title: IGDT-based complementarity approach for dealing with strategic decision making of price-maker VPP considering demand flexibility
  publication-title: IEEE Trans Ind Inform
– volume: 13
  start-page: 1061
  year: 2022
  end-page: 1074
  ident: b0190
  article-title: Energy pricing mechanism considering energy converter devices as components of pan-energy transmission system
  publication-title: IEEE Trans Smart Grid
– volume: 38
  start-page: 7194
  year: 2018
  end-page: 7205
  ident: b0035
  article-title: Review and prospect of integrated demand response
  publication-title: Proc CSEE
– volume: 242
  start-page: 1198
  year: 2019
  end-page: 1208
  ident: b0125
  article-title: Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility
  publication-title: Appl Energy
– volume: 36
  start-page: 6358
  year: 2011
  end-page: 6366
  ident: b0120
  article-title: Modified exergoeconomic modeling of geothermal power plants
  publication-title: Energy
– volume: 202
  start-page: 772
  year: 2017
  end-page: 782
  ident: b0030
  article-title: Review and prospect of integrated demand response in the multi-energy system
  publication-title: Appl Energy
– volume: 7
  start-page: 650
  year: 2016
  end-page: 658
  ident: b0040
  article-title: From demand response in smart grid toward integrated demand response in smart energy hub
  publication-title: IEEE Trans Smart Grid
– volume: 226
  start-page: 469
  year: 2018
  end-page: 482
  ident: b0085
  article-title: Bargaining-based cooperative energy trading for distribution company and demand response
  publication-title: Appl Energy
– volume: 04
  start-page: 349
  year: 2006
  end-page: 355
  ident: b0170
  article-title: One new assessment method for the energy utilization manner
  publication-title: Acta Energiae Solaris Sinica
– volume: 205
  year: 2020
  ident: b0070
  article-title: Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response
  publication-title: Energy
– volume: 288
  year: 2021
  ident: b0185
  article-title: Planning strategies of power-to-gas based on cooperative game and symbiosis cooperation
  publication-title: Appl Energy
– volume: 43
  start-page: 32
  year: 2019
  end-page: 41
  ident: b0020
  article-title: Interactive equilibrium supply and demand model for electricity-gas energy distribution system with participation of integrated load aggregators
  publication-title: Automat Electric Power Syst
– volume: 36
  start-page: 3223
  year: 2016
  end-page: 3231
  ident: b0105
  article-title: Exergoeconomic analysis methodology based on energy level and case study
  publication-title: Proc CSEE
– volume: 58
  start-page: 4037
  year: 2022
  end-page: 4049
  ident: b0180
  article-title: An IGDT-based day-ahead co-optimization of energy and reserve in a VPP considering multiple uncertainties
  publication-title: IEEE T Ind Appl
– volume: 66
  start-page: 1488
  year: 2019
  end-page: 1498
  ident: b0080
  article-title: An incentive-based demand response (DR) model considering composited DR resources
  publication-title: IEEE Trans Ind Electron
– volume: 43
  start-page: 22
  year: 2019
  end-page: 31
  ident: b0140
  article-title: Multi-objective planning method for regional integrated energy systems considering energy quality
  publication-title: Automat Electric Power Syst
– year: 2017
  ident: b0175
  article-title: The reserve capacity assessment an frequency regulation control strategy of LED lighting loads
– volume: 120
  start-page: 209
  year: 2017
  end-page: 216
  ident: b0145
  article-title: Adapted computational method of energy level and energy quality evolution for combined cooling, heating and power systems with energy storage units
  publication-title: Energy
– volume: 9
  start-page: 361
  year: 2018
  end-page: 370
  ident: b0015
  article-title: Modeling and integration of flexible demand in heat and electricity integrated energy system
  publication-title: IEEE Trans Sustain Energy
– volume: 14
  start-page: 1077
  year: 2020
  end-page: 1090
  ident: b0090
  article-title: Bargaining-based cooperative game among multi-aggregators with overlapping consumers in incentive-based demand response
  publication-title: IET Gener Transm Distrib
– volume: 12
  start-page: 3163
  year: 2021
  end-page: 3174
  ident: b0155
  article-title: The utilization of shared energy storage in energy systems: a comprehensive review
  publication-title: IEEE Trans Smart Grid
– volume: 279
  year: 2020
  ident: b0065
  article-title: Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response
  publication-title: Appl Energy
– volume: 116
  start-page: 438
  year: 2018
  end-page: 446
  ident: b0150
  article-title: Flexible operation of shared energy storage at households to facilitate PV penetration
  publication-title: Renew Energy
– volume: 38
  start-page: 193
  year: 2021
  end-page: 207
  ident: b0195
  article-title: Optimal configuration of energy storage for integrated load aggregator based on information gap decision theory
  publication-title: Modern Electric Power
– volume: 217
  year: 2021
  ident: b0055
  article-title: Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement
  publication-title: Energy
– volume: 65
  start-page: 6740
  year: 2018
  end-page: 6750
  ident: b0095
  article-title: Energy-sharing provider for PV prosumer clusters: a hybrid approach using stochastic programming and Stackelberg game
  publication-title: IEEE Trans Ind Electron
– volume: 35
  start-page: 1387
  year: 2017
  end-page: 1394
  ident: b0110
  article-title: Efficiency analysis model of integrated energy system based on the exergy efficiency
  publication-title: Renew Energyy Resour
– volume: 10
  start-page: 1139
  year: 2019
  end-page: 1151
  ident: b0010
  article-title: Hybrid energy sharing for multiple microgrids in an integrated heat-electricity energy system
  publication-title: IEEE Trans Sustain Energy
– volume: 4
  start-page: 155
  year: 2018
  end-page: 167
  ident: b0060
  article-title: Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel
  publication-title: CSEE J Power Energy Syst
– volume: 37
  start-page: 34
  year: 2017
  end-page: 40
  ident: b0130
  article-title: Distributed energy system analysis based on energy network theory
  publication-title: Electric Power Automat Equip
– volume: 167
  start-page: 155
  year: 2016
  end-page: 157
  ident: b0005
  article-title: Integrated energy systems
  publication-title: Appl Energy
– volume: 34
  start-page: 3266
  year: 2014
  end-page: 3275
  ident: b0115
  article-title: Exergoeconomic optimization and analysis of a dual-gas sourced polygeneration system
  publication-title: Proc CSEE
– volume: 197
  year: 2020
  ident: b0135
  article-title: Multi-objective planning for integrated energy systems considering both exergy efficiency and economy
  publication-title: Energy
– volume: 239
  start-page: 280
  year: 2019
  end-page: 295
  ident: b0025
  article-title: Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices
  publication-title: Appl Energy
– volume: 248
  year: 2020
  ident: b0165
  article-title: Risk-based scheduling strategy for electric vehicle aggregator using hybrid Stochastic/IGDT approach
  publication-title: J Clean Prod
– volume: 214
  year: 2021
  ident: b0100
  article-title: Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game
  publication-title: Energy
– volume: 116
  year: 2020
  ident: b0045
  article-title: Environmental economic dispatch of integrated regional energy system considering integrated demand response
  publication-title: Int J Electr Power Energy Syst
– volume: 89
  start-page: 490
  year: 2015
  end-page: 499
  ident: b0075
  article-title: An autonomous demand response program for electricity and natural gas networks in smart energy hubs
  publication-title: Energy
– volume: 242
  start-page: 1198
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0125
  article-title: Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.135
– year: 2017
  ident: 10.1016/j.apenergy.2022.120055_b0175
– volume: 248
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0165
  article-title: Risk-based scheduling strategy for electric vehicle aggregator using hybrid Stochastic/IGDT approach
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119270
– volume: 197
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0135
  article-title: Multi-objective planning for integrated energy systems considering both exergy efficiency and economy
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117155
– volume: 9
  start-page: 361
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2022.120055_b0015
  article-title: Modeling and integration of flexible demand in heat and electricity integrated energy system
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2731786
– volume: 66
  start-page: 1488
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0080
  article-title: An incentive-based demand response (DR) model considering composited DR resources
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2826454
– volume: 226
  start-page: 469
  year: 2018
  ident: 10.1016/j.apenergy.2022.120055_b0085
  article-title: Bargaining-based cooperative energy trading for distribution company and demand response
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.095
– volume: 16
  start-page: 2212
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0160
  article-title: IGDT-based complementarity approach for dealing with strategic decision making of price-maker VPP considering demand flexibility
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2932107
– volume: 13
  start-page: 1061
  issue: 2
  year: 2022
  ident: 10.1016/j.apenergy.2022.120055_b0190
  article-title: Energy pricing mechanism considering energy converter devices as components of pan-energy transmission system
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3074333
– volume: 34
  start-page: 3266
  issue: 20
  year: 2014
  ident: 10.1016/j.apenergy.2022.120055_b0115
  article-title: Exergoeconomic optimization and analysis of a dual-gas sourced polygeneration system
  publication-title: Proc CSEE
– volume: 36
  start-page: 6358
  issue: 11
  year: 2011
  ident: 10.1016/j.apenergy.2022.120055_b0120
  article-title: Modified exergoeconomic modeling of geothermal power plants
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.038
– volume: 217
  year: 2021
  ident: 10.1016/j.apenergy.2022.120055_b0055
  article-title: Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119387
– volume: 167
  start-page: 155
  year: 2016
  ident: 10.1016/j.apenergy.2022.120055_b0005
  article-title: Integrated energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.075
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0065
  article-title: Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115819
– volume: 35
  start-page: 1387
  issue: 9
  year: 2017
  ident: 10.1016/j.apenergy.2022.120055_b0110
  article-title: Efficiency analysis model of integrated energy system based on the exergy efficiency
  publication-title: Renew Energyy Resour
– volume: 37
  start-page: 34
  issue: 6
  year: 2017
  ident: 10.1016/j.apenergy.2022.120055_b0130
  article-title: Distributed energy system analysis based on energy network theory
  publication-title: Electric Power Automat Equip
– volume: 04
  start-page: 349
  year: 2006
  ident: 10.1016/j.apenergy.2022.120055_b0170
  article-title: One new assessment method for the energy utilization manner
  publication-title: Acta Energiae Solaris Sinica
– volume: 43
  start-page: 22
  issue: 19
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0140
  article-title: Multi-objective planning method for regional integrated energy systems considering energy quality
  publication-title: Automat Electric Power Syst
– volume: 7
  start-page: 650
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2022.120055_b0040
  article-title: From demand response in smart grid toward integrated demand response in smart energy hub
  publication-title: IEEE Trans Smart Grid
– volume: 38
  start-page: 193
  issue: 02
  year: 2021
  ident: 10.1016/j.apenergy.2022.120055_b0195
  article-title: Optimal configuration of energy storage for integrated load aggregator based on information gap decision theory
  publication-title: Modern Electric Power
– volume: 176
  start-page: 171
  issue: C
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0050
  article-title: Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.004
– volume: 58
  start-page: 4037
  issue: 3
  year: 2022
  ident: 10.1016/j.apenergy.2022.120055_b0180
  article-title: An IGDT-based day-ahead co-optimization of energy and reserve in a VPP considering multiple uncertainties
  publication-title: IEEE T Ind Appl
  doi: 10.1109/TIA.2022.3152454
– volume: 288
  year: 2021
  ident: 10.1016/j.apenergy.2022.120055_b0185
  article-title: Planning strategies of power-to-gas based on cooperative game and symbiosis cooperation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116639
– volume: 43
  start-page: 32
  issue: 19
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0020
  article-title: Interactive equilibrium supply and demand model for electricity-gas energy distribution system with participation of integrated load aggregators
  publication-title: Automat Electric Power Syst
– volume: 12
  start-page: 3163
  issue: 4
  year: 2021
  ident: 10.1016/j.apenergy.2022.120055_b0155
  article-title: The utilization of shared energy storage in energy systems: a comprehensive review
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3061619
– volume: 202
  start-page: 772
  year: 2017
  ident: 10.1016/j.apenergy.2022.120055_b0030
  article-title: Review and prospect of integrated demand response in the multi-energy system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.150
– volume: 36
  start-page: 3223
  issue: 12
  year: 2016
  ident: 10.1016/j.apenergy.2022.120055_b0105
  article-title: Exergoeconomic analysis methodology based on energy level and case study
  publication-title: Proc CSEE
– volume: 116
  start-page: 438
  year: 2018
  ident: 10.1016/j.apenergy.2022.120055_b0150
  article-title: Flexible operation of shared energy storage at households to facilitate PV penetration
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.005
– volume: 65
  start-page: 6740
  issue: 8
  year: 2018
  ident: 10.1016/j.apenergy.2022.120055_b0095
  article-title: Energy-sharing provider for PV prosumer clusters: a hybrid approach using stochastic programming and Stackelberg game
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2793181
– volume: 10
  start-page: 1139
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0010
  article-title: Hybrid energy sharing for multiple microgrids in an integrated heat-electricity energy system
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2861986
– volume: 89
  start-page: 490
  year: 2015
  ident: 10.1016/j.apenergy.2022.120055_b0075
  article-title: An autonomous demand response program for electricity and natural gas networks in smart energy hubs
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.109
– volume: 14
  start-page: 1077
  issue: 6
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0090
  article-title: Bargaining-based cooperative game among multi-aggregators with overlapping consumers in incentive-based demand response
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2019.1084
– volume: 214
  year: 2021
  ident: 10.1016/j.apenergy.2022.120055_b0100
  article-title: Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119006
– volume: 239
  start-page: 280
  year: 2019
  ident: 10.1016/j.apenergy.2022.120055_b0025
  article-title: Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.217
– volume: 205
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0070
  article-title: Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118022
– volume: 120
  start-page: 209
  year: 2017
  ident: 10.1016/j.apenergy.2022.120055_b0145
  article-title: Adapted computational method of energy level and energy quality evolution for combined cooling, heating and power systems with energy storage units
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.124
– volume: 38
  start-page: 7194
  issue: 24
  year: 2018
  ident: 10.1016/j.apenergy.2022.120055_b0035
  article-title: Review and prospect of integrated demand response
  publication-title: Proc CSEE
– volume: 4
  start-page: 155
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2022.120055_b0060
  article-title: Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel
  publication-title: CSEE J Power Energy Syst
  doi: 10.17775/CSEEJPES.2017.01260
– volume: 116
  year: 2020
  ident: 10.1016/j.apenergy.2022.120055_b0045
  article-title: Environmental economic dispatch of integrated regional energy system considering integrated demand response
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105525
SSID ssj0002120
Score 2.4345958
Snippet •EQC is used to unify the heterogeneous energy in the form of exergy.•Equal exergy replacement mechanism for unification of heterogeneous energy in...
Integrated Demand Response (IDR) is an effective way to make full use of the resources of the integrated energy system (IES) to achieve a positive interaction...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120055
SubjectTerms case studies
Day-ahead market
exergy
Exergy equal exergy replacement
Information gap decision theory
markets
prices
risk
supply balance
uncertainty
Virtual energy station
Title Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism
URI https://dx.doi.org/10.1016/j.apenergy.2022.120055
https://www.proquest.com/docview/2985644357
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIq3gsS1Wx9J0x7HtGmA4AJIu0VJmkqbtnXsIXHit2OnLQMktAO3to6bKE5sJ_HnEHKTRwwcZa48HQTKY8IwTwutvViLCEg8VA71_vgU917ZfZ_3N0i7xsJgWGWl-0ud7rR19aVZ9WZzOhg0n9Hbdf5_iDljQgSaY_YvGNONj1WYR1ilZoTCHpb-hhIeNtTUOoQdrBPDsBHgDgv_y0D9UtXO_nT3yG7lONJW2bZ9smEnB2TnWzrBA3LcWaHWoGg1beeHRN0OvBFGB9ECNMQYaLCmBRuDUHRa5BS4EEZCy2bSeXk8T9HCZRQe7JujvjvqzLo4LqyEji0Chwfz8RF57XZe2j2vulvBMxHjC1gxmijQCQJxTehHJmcB7mj4ihulRZwJrlOhlG8EBw9NCD9L4jzSYPwZsxz0wDHZnBQTe0IoTzOu8cL6nGXM6ljlUW65ToxiMUt8c0p43aHSVInH8f6LkawjzIayFoREQchSEKek-cU3LVNvrOVIa3nJH4NIgn1Yy3tdC1jCDMNjEzWxxXIuwzTh4DVGXJz94__nZBvfykiYC7K5mC3tJfgzC33lBuwV2WrdPfSePgHmufXr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcgAOVctDPPpwJa5h8_DE2eN2BVoK7KUgcbNsx5F2xT5gF4mfz0ziUFqp4tBblPEkkcf-ZuzMNwY4qTJJgTKayCaJiaRyMrLK2ii3KiMRpqZmvV-P8uGt_HmHd2swaLkwnFYZsL_B9Bqtw51u6M3uYjzu_uJot47_U64Zk-I6bEgkTO7ARv_icjh6BeQ0VGek9hErvCEKT07NwtckO1oqpulpwpss-C8f9Rda1y7o_CN8CLGj6Def9wnW_GwHtt9UFNyB_bPfxDVqGmbuchfMj3F0zwlCYk4gMSUZLWvJzTAbXcwrQVrMJBHNZ4pl84desJMrBV34h1r6XEsffZ3KxS8RU8_c4fFyuge352c3g2EUjleIXCZxRYtGlyW2YC6uS-PMVTLhTY3YoDNW5aVC21PGxE4hBWlKxWWRV5kl_y-lR4KCfejM5jN_AAJ7JVo-s76SpfQ2N1VWebSFMzKXRewOAdsO1S7UHucjMO51m2Q20a0hNBtCN4Y4hO6r3qKpvvGuRq-1l_5jHGlyEe_qfm8NrGmS8Z8TM_Pzp6VOewVS4JihOvqP53-DzeHN9ZW-uhhdHsMWS5rEmM_QWT0--S8U3qzs1zB8XwA_EPiW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-level+optimal+scheduling+of+virtual+energy+station+based+on+equal+exergy+replacement+mechanism&rft.jtitle=Applied+energy&rft.au=Ding%2C+Jianyong&rft.au=Gao%2C+Ciwei&rft.au=Song%2C+Meng&rft.au=Yan%2C+Xingyu&rft.date=2022-12-01&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon