Temporal evolution of the optical path difference of a supersonic turbulent boundary layer
The density distribution of a supersonic turbulent boundary layer is measured with the nanoparticle-based planar laser scattering technique, and the temporal evolution of its optical path difference (OPD) in a short time interval is characterized by proper orthogonal decomposition (POD). Based on th...
        Saved in:
      
    
          | Published in | Chinese physics B Vol. 22; no. 1; pp. 231 - 236 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-1056 2058-3834 1741-4199  | 
| DOI | 10.1088/1674-1056/22/1/014202 | 
Cover
| Summary: | The density distribution of a supersonic turbulent boundary layer is measured with the nanoparticle-based planar laser scattering technique, and the temporal evolution of its optical path difference (OPD) in a short time interval is characterized by proper orthogonal decomposition (POD). Based on the advantage of POD in capturing the energy of a signal, a temporal evolution model is suggested for the POD coefficients of the OPD. In this model, the first few coefficients vary linearly with time, and the others are modeled by Gaussian statistics. As an application, this method is used to compute the shortexposure optical transfer function. | 
|---|---|
| Bibliography: | aero-optics, supersonic turbulent boundary layer, optical transfer function 11-5639/O4 The density distribution of a supersonic turbulent boundary layer is measured with the nanoparticle-based planar laser scattering technique, and the temporal evolution of its optical path difference (OPD) in a short time interval is characterized by proper orthogonal decomposition (POD). Based on the advantage of POD in capturing the energy of a signal, a temporal evolution model is suggested for the POD coefficients of the OPD. In this model, the first few coefficients vary linearly with time, and the others are modeled by Gaussian statistics. As an application, this method is used to compute the shortexposure optical transfer function. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 1674-1056 2058-3834 1741-4199  | 
| DOI: | 10.1088/1674-1056/22/1/014202 |