A NEW APPROXIMATE INERTIAL MANIFOLD AND ASSOCIATED ALGORITHM

In this article the authors propose a new approximate inertial manifold(AIM) to the Navier-Stokes equations. The solutions are in the neighborhoods of this AIM with thickness δ=o(h^2k+1-ε). The article aims to investigate a two grids finite element approximation based on it and give error estimates...

Full description

Saved in:
Bibliographic Details
Published inActa Mathematica Scientia Vol. 26; no. 1; pp. 1 - 16
Main Author 李开泰 徐忠锋 杨晓忠
Format Journal Article
LanguageEnglish
Published Department of Mathematics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Mathematics,North China Electric Power University,Zhengzhou 450045,China 2006
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
1003-3998
DOI10.1016/S0252-9602(06)60021-0

Cover

Abstract In this article the authors propose a new approximate inertial manifold(AIM) to the Navier-Stokes equations. The solutions are in the neighborhoods of this AIM with thickness δ=o(h^2k+1-ε). The article aims to investigate a two grids finite element approximation based on it and give error estimates of the approximate solution |||(u-uh^*·,p-ph^*·)|||≤C(h^2k+1-ε+h^*(m+1)),where (h, h*) and (k, m) are co~trse and fine meshes and degree of finite element subspa~es, respectively. These results are much better them Standard G~tlerkin(SG) and nonlinear Galcrkin (NG) methods. For example, for 2D NS eqs and linear element, let uh,u^h, u^* be the SG, NG and their approximate solutions respectively, then ||u-uh||1≤Ch,||u-u^h||i≤Ch^2,||u-u^*||1≤Ch^3,and h^* ≈ h^2 for NG, h^* ≈ h^3/2 for theirs.
AbstractList O1; In this article the authors propose a new approximate inertial manifold(AIM)to the Navier-Stokes equations. The solutions are in the neighborhoods of this AIM with thickness δ = o(h2k+1-ε). The article aims to investigate a two grids finite element approximation based on it and give error estimates of the approximate solution|||(u - u*h,p - p*h*)||| ≤ C(h2k+1-ε + h*(m+1)),where (h, h*) and (k, m) are coarse and fine meshes and degree of finite element subspaces,respectively. These results are much better than Standard Galerkin(SG) and nonlinear Galerkin (NG) methods. For example, for 2D NS eqs and linear element, let uh, uh, u* be the SG, NG and their approximate solutions respectively, then‖u- uh‖1 ≤ Ch, ‖u- uh‖1 ≤ Ch2, ‖u- u*‖1 ≤ Ch3,and h* ≈ h2 for NG, h* ≈ h3/2 for theirs.
In this article the authors propose a new approximate inertial manifold(AIM) to the Navier-Stokes equations. The solutions are in the neighborhoods of this AIM with thickness δ=o(h^2k+1-ε). The article aims to investigate a two grids finite element approximation based on it and give error estimates of the approximate solution |||(u-uh^*·,p-ph^*·)|||≤C(h^2k+1-ε+h^*(m+1)),where (h, h*) and (k, m) are co~trse and fine meshes and degree of finite element subspa~es, respectively. These results are much better them Standard G~tlerkin(SG) and nonlinear Galcrkin (NG) methods. For example, for 2D NS eqs and linear element, let uh,u^h, u^* be the SG, NG and their approximate solutions respectively, then ||u-uh||1≤Ch,||u-u^h||i≤Ch^2,||u-u^*||1≤Ch^3,and h^* ≈ h^2 for NG, h^* ≈ h^3/2 for theirs.
In this article the authors propose a new approximate inertial manifold(AIM) to the Navier-Stokes equations. The solutions are in the neighborhoods of this AIM with thickness delta = o(h2k+1-E). The article aims to investigate a two grids finite element approximation based on it and give error estimates of the approximate solution.
Author 李开泰 徐忠锋 杨晓忠
AuthorAffiliation Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, China Department of Mathematics, North China Electric Power University, Zhengzhou 450055, China
AuthorAffiliation_xml – name: Department of Mathematics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Mathematics,North China Electric Power University,Zhengzhou 450045,China
Author_xml – sequence: 1
  fullname: 李开泰 徐忠锋 杨晓忠
BookMark eNqFkEFLwzAUx4MoOKcfQSgeRA_Vl6RJE_RS5jYL3SrbRG8hLalWa6tNh_Pbm23iwYuHkPDy-73H-x-g3bqpDULHGC4wYH45B8KILzmQM-DnHIBgH3ZQD7PQlUGEu6j3i-yjA2tfwHmEBz10HXnT4YMX3d3N0sd4Ei2GXjwdzhZxlHiTaBqP0uTGi6buzOfpIHb_7pmM01m8uJ0cor1CV9Yc_dx9dD8aLga3fpKO40GU-DkNWOczLSRQMMIEQlDJjdSBxDjHhkvMcioFhEUeyizgmQiDDIQWXLoScCnCkNE-Ot_2_dR1oesn9dIs29pNVHb1Wa0yZQgAB-y2cuzpln1vm4-lsZ16K21uqkrXpllaRQmjoaSBA6-2YN421ramUHnZ6a5s6q7VZaUwqHW6apOuWkengKtNugqczf7Y7235ptuvf72TH--5qZ8-SrdMpvPXoqyMIhgoI4zTb1ZLgmM
CitedBy_id crossref_primary_10_1142_S1793524518500080
crossref_primary_10_1016_j_apnum_2010_10_005
crossref_primary_10_1016_S0252_9602_09_60094_1
crossref_primary_10_1080_12265934_2011_615983
crossref_primary_10_1016_S0252_9602_18_30842_7
Cites_doi 10.1137/0732054
10.1137/0726063
10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P
10.1137/0915016
ClassificationCodes O1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(06)60021-0
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate A NEW APPROXIMATE INERTIAL MANIFOLD AND ASSOCIATED ALGORITHM
EISSN 1572-9087
1003-3998
EndPage 16
ExternalDocumentID sxwlxb_e200601001
10_1016_S0252_9602_06_60021_0
21035256
GrantInformation_xml – fundername: 国家重点基础研究发展计划(973计划); 中国科学院资助项目(10001028; 40375010)
  funderid: (G1999032801); 中国科学院资助项目(10001028; 40375010)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAFGU
AAHNG
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAPBV
AAQFI
AAUYE
AAXUO
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABPIF
ABTEG
ABTMW
ABXDB
ABXPI
ABYKQ
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACRLP
ACTTH
ACVWB
ACWMK
ADALY
ADBBV
ADEZE
ADKNI
ADMDM
ADTIX
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESTI
AEVTX
AFKWA
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
CQIGP
CS3
CSCUP
CW9
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IPNFZ
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VFIZW
ZMTXR
~G-
~L9
~WA
AACDK
AAEDW
AAJBT
AASML
AATNV
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABTKH
ABWVN
ACAOD
ACDTI
ACLOT
ACOKC
ACPIV
ACRPL
ACSTC
ACVFH
ACZOJ
ADCNI
ADMUD
ADNMO
ADTPH
AEFQL
AEIPS
AEMSY
AESKC
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AGQEE
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
AMXSW
ANKPU
ATHPR
AYFIA
CITATION
DPUIP
EFKBS
EFLBG
FIGPU
HG6
IKXTQ
IWAJR
NPVJJ
PT4
SJYHP
SNPRN
SOHCF
VEKWB
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
4A8
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c345t-5a89030e8e488396e9a4911c1e6915c39807fc79b46b874b08a8697fc06987753
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Wed Oct 01 14:44:18 EDT 2025
Wed Oct 01 03:09:06 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Nov 25 17:05:51 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords new approximation inertial manifold
Two level finite element
Navier-Stokes equations
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-5a89030e8e488396e9a4911c1e6915c39807fc79b46b874b08a8697fc06987753
Notes O189.31
O302
42-1227/O
Two level finite element, Navier-Stokes equations, new approximation inertial manifold
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 32537934
PQPubID 23500
PageCount 16
ParticipantIDs wanfang_journals_sxwlxb_e200601001
proquest_miscellaneous_32537934
crossref_citationtrail_10_1016_S0252_9602_06_60021_0
crossref_primary_10_1016_S0252_9602_06_60021_0
chongqing_backfile_21035256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006
2006-1-00
20060101
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 2006
PublicationDecade 2000
PublicationTitle Acta Mathematica Scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL ACTA MATHEMATICA SCIENTIA
PublicationYear 2006
Publisher Department of Mathematics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Mathematics,North China Electric Power University,Zhengzhou 450045,China
Publisher_xml – name: Department of Mathematics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Mathematics,North China Electric Power University,Zhengzhou 450045,China
References Lin (10.1016/S0252-9602(06)60021-0_bib1) 1997
Garcia-Archila (10.1016/S0252-9602(06)60021-0_bib3) 2000; 97
Girault (10.1016/S0252-9602(06)60021-0_bib5) 1986
Xu (10.1016/S0252-9602(06)60021-0_bib8) 1994; 15
Gunzburger (10.1016/S0252-9602(06)60021-0_bib6) 1989
Layton (10.1016/S0252-9602(06)60021-0_bib10) 1995; 80
Bezzi (10.1016/S0252-9602(06)60021-0_bib9) 1991
Ervin (10.1016/S0252-9602(06)60021-0_bib11) 1996; 12
Garcia-Achilla (10.1016/S0252-9602(06)60021-0_bib2) 1999; 68
Morion (10.1016/S0252-9602(06)60021-0_bib12) 1995; 32
Marion (10.1016/S0252-9602(06)60021-0_bib7) 1989; 26
Constantine (10.1016/S0252-9602(06)60021-0_bib4) 1988
References_xml – year: 1997
  ident: 10.1016/S0252-9602(06)60021-0_bib1
– year: 1989
  ident: 10.1016/S0252-9602(06)60021-0_bib6
– volume: 32
  start-page: 1170
  year: 1995
  ident: 10.1016/S0252-9602(06)60021-0_bib12
  article-title: Error estimates on a new nonlinear galerkin method based on two-grid finite elements
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0732054
– volume: 80
  start-page: 1
  year: 1995
  ident: 10.1016/S0252-9602(06)60021-0_bib10
  article-title: Two-level picad, defect correction for the Navier-Stokes equations
  publication-title: Appl Math and Computing
– volume: 26
  start-page: 1139
  year: 1989
  ident: 10.1016/S0252-9602(06)60021-0_bib7
  article-title: Nonlinear galerkin methods
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0726063
– volume: 12
  start-page: 333
  year: 1996
  ident: 10.1016/S0252-9602(06)60021-0_bib11
  article-title: A posteriori error estimators for a two-level finite element method for the navier-stokes equation
  publication-title: Numer Methods for Partial Differential Equations
  doi: 10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P
– volume: 97
  start-page: 470
  issue: 2
  year: 2000
  ident: 10.1016/S0252-9602(06)60021-0_bib3
  article-title: Post processing the galerkin method: the finite element case
  publication-title: SIAM J Numer Anal
– volume: 68
  start-page: 993
  year: 1999
  ident: 10.1016/S0252-9602(06)60021-0_bib2
  article-title: An approximate inertial manifolds approach to postprocessing the galerkin method for the navier-stokes equations
  publication-title: Math Comp
– year: 1986
  ident: 10.1016/S0252-9602(06)60021-0_bib5
– volume: 15
  start-page: 231
  year: 1994
  ident: 10.1016/S0252-9602(06)60021-0_bib8
  article-title: A novel two-grad method for semilinear elliptic equations
  publication-title: SIAM J Scientific Computing
  doi: 10.1137/0915016
– year: 1988
  ident: 10.1016/S0252-9602(06)60021-0_bib4
  article-title: Navier-Stokes Equations
– year: 1991
  ident: 10.1016/S0252-9602(06)60021-0_bib9
SSID ssj0016264
ssj0030150
Score 1.6614372
Snippet In this article the authors propose a new approximate inertial manifold(AIM) to the Navier-Stokes equations. The solutions are in the neighborhoods of this...
In this article the authors propose a new approximate inertial manifold(AIM) to the Navier-Stokes equations. The solutions are in the neighborhoods of this AIM...
O1; In this article the authors propose a new approximate inertial manifold(AIM)to the Navier-Stokes equations. The solutions are in the neighborhoods of this...
SourceID wanfang
proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Navier-Stokes方程
惯性流形
有限元分析
联合算法
Title A NEW APPROXIMATE INERTIAL MANIFOLD AND ASSOCIATED ALGORITHM
URI http://lib.cqvip.com/qk/86464X/20061/21035256.html
https://www.proquest.com/docview/32537934
https://d.wanfangdata.com.cn/periodical/sxwlxb-e200601001
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfG0CR44GOAKOMjQlgCRSlu4ji2xEu6ZazQfWh0otpL5GTONjGlsLbatAf-ds7OZzUEg5cospNLm5_Pd3bufofQG5-4R4xQ6dCME4cGnnIkGD5HCZIRGWRKGHb-7R22dUA_jf3x0q1OK2ppPku66dVv80r-B1VoA1x1luw_IFsLhQY4B3zhCAjD8UYYh_ZO9NUO9_b2d8eD7XCk68dH-6NBONRM_YPN3eGGoY8y3I0D6IfT4cfd_cGoZK8uvVIcMSx83Cc48nG4gUOGowBzgUOhTwTBnLW6GOYhDn0cbeL-OuYcRxzzPu73jBzoDcrbdVdxTb3dMDy1P0u9H1E1jOf24ckkP85UaUP1FCTzY3t8KidXumdxY6KJKwFDej6rYhm2a_pZPTDH8FIDnZgFMma6mlITf9Lq1ZRDVECDKSKOXf9PIosPXOZKOzK1g3RSga4xtyj88AT-CPzuuU197clW4lszruu7DizpFsxDkdC_oAbFXN9rOQ1Fvug1c1TsjHyp5WL9HRu7gpnIGNLY4Doycnp5cXaZxMo1RDlEZybedvVWE0zV3Z919FIP1qGGGa2S3CSnvW8e95awd-WjNHWIhuwHOESLLlizrlq5kHkGALccrNEDdK9cGVlhMcwfoiWVr6L75SrJKm3QdBXdbeGyilZMCHM6fYQ-hBZog9XSBqvSBqvSBgu0wWq0waq14TE62IxG61tOWRvEST3qzxxfcgH2SXEFFsgTTAlJwW6nPcVEz089wUmQpYFIKEt4QBPCJWcCmggTPIA1-hO0nE9y9RRZ2i55QaCkOvJpStzElVIwmLCyxPO4KzporX514Fum3zRjWuz2DJMw6yBavcw4LWn1dXWXs7iJnwQ8Yo1HTFhs8IhJB3Xr274XvDJ_u-FVhVQMFkB_1pO5msynsef6HlhZ2kGvSwDjco6axteG07ObXLSG7jQ7jc_R8ux8rl6A7z1LXppR-AvRRrrh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+NEW+APPROXIMATE+INERTIAL+MANIFOLD+AND+ASSOCIATED+ALGORITHM&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Li+Kaitai&rft.au=Xu+Zhongfeng&rft.au=Yang+Xiaozhong&rft.date=2006&rft.pub=Department+of+Mathematics%2CXi%27an+Jiaotong+University%2CXi%27an+710049%2CChina%25Department+of+Mathematics%2CNorth+China+Electric+Power+University%2CZhengzhou+450045%2CChina&rft.issn=0252-9602&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1016%2FS0252-9602%2806%2960021-0&rft.externalDocID=sxwlxb_e200601001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg