Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting

•Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding the optimal solution of CS.•Use more accurate metrics to assess the forecasting performance of the proposed model. Electricity forecasting play...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 198; pp. 203 - 222
Main Authors Xiao, Liye, Shao, Wei, Yu, Mengxia, Ma, Jing, Jin, Congjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2017
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2017.04.039

Cover

Abstract •Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding the optimal solution of CS.•Use more accurate metrics to assess the forecasting performance of the proposed model. Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively.
AbstractList •Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding the optimal solution of CS.•Use more accurate metrics to assess the forecasting performance of the proposed model. Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively.
Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively.
Author Shao, Wei
Ma, Jing
Jin, Congjun
Yu, Mengxia
Xiao, Liye
Author_xml – sequence: 1
  givenname: Liye
  surname: Xiao
  fullname: Xiao, Liye
  organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-9515-7091
  surname: Shao
  fullname: Shao, Wei
  email: weishao@uestc.edu.cn
  organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Mengxia
  surname: Yu
  fullname: Yu, Mengxia
  organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
  organization: Science and Technology on Special System Simulation Laboratory, Beijing, China
– sequence: 5
  givenname: Congjun
  surname: Jin
  fullname: Jin, Congjun
  organization: Science and Technology on Special System Simulation Laboratory, Beijing, China
BookMark eNqFUU1v1DAQtVCR2Bb-AvKRS8LYSRNb4gCqKCBVQkJwtryTya63Thxs7672d_CHcbv0wqWnd5j3MXrvkl3MYSbG3gqoBYju_a62C80UN6daguhraGto9Au2EqqXlRZCXbAVNNBVshP6FbtMaQcAUkhYsT8_KJGNuOV2HrhdFu_QZhdmHkZu-fa0jm7gR3sgT5nPtI_WF8jHEO_5FAby_OjyluctcTctMRxo4LjH-xD4k7HfhFg4Ex9D5MUHcywhni_hSJGnU8r0eCO0Kbt585q9HK1P9OYfXrFft59_3nyt7r5_-Xbz6a7Cpr3OlbTCNhIa1KiU6NZi1DhKBaPo1agHUH3brbtrENi1SihNI2JPWFJAt3Ytmiv27uxb3v69p5TN5BKS93amsE9GlpaaFqTUhfrhTMUYUoo0GnT5saccrfNGgHnYwuzM0xbmYQsDrSlbFHn3n3yJbrLx9Lzw41lIpYeDo2gSOpqRBlfqymYI7jmLv7SLrpQ
CitedBy_id crossref_primary_10_1016_j_asoc_2019_03_035
crossref_primary_10_1016_j_eneco_2019_05_026
crossref_primary_10_1016_j_enbuild_2018_01_034
crossref_primary_10_1016_j_apenergy_2018_02_069
crossref_primary_10_1016_j_eswa_2022_118384
crossref_primary_10_1016_j_apenergy_2020_115801
crossref_primary_10_1016_j_apr_2019_05_007
crossref_primary_10_1016_j_renene_2020_09_110
crossref_primary_10_1016_j_apenergy_2019_01_063
crossref_primary_10_1007_s13042_023_01796_8
crossref_primary_10_1016_j_apenergy_2018_11_076
crossref_primary_10_1016_j_energy_2018_12_208
crossref_primary_10_3390_en11040697
crossref_primary_10_1016_j_apenergy_2018_11_034
crossref_primary_10_1016_j_apenergy_2018_02_070
crossref_primary_10_1177_0954410019827395
crossref_primary_10_1016_j_advengsoft_2022_103206
crossref_primary_10_1016_j_jclepro_2019_119318
crossref_primary_10_3390_math10122012
crossref_primary_10_1016_j_asoc_2019_105799
crossref_primary_10_1016_j_renene_2018_11_061
crossref_primary_10_1016_j_enpol_2020_111311
crossref_primary_10_1002_tee_23144
crossref_primary_10_1109_ACCESS_2023_3327135
crossref_primary_10_3390_su10113913
crossref_primary_10_1007_s12205_019_1543_7
crossref_primary_10_3233_JIFS_224567
crossref_primary_10_3390_en11061449
crossref_primary_10_1016_j_engappai_2019_08_018
crossref_primary_10_3390_su12041489
crossref_primary_10_1016_j_apenergy_2019_01_155
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1016_j_jclepro_2019_03_036
crossref_primary_10_1016_j_apenergy_2018_11_063
crossref_primary_10_1016_j_renene_2018_02_092
crossref_primary_10_1007_s12667_019_00328_0
crossref_primary_10_1016_j_energy_2021_121764
crossref_primary_10_1016_j_cie_2021_107182
crossref_primary_10_1016_j_iswa_2022_200138
crossref_primary_10_1049_gtd2_12798
crossref_primary_10_3390_pr7110843
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1007_s00500_020_05176_0
crossref_primary_10_1016_j_egyai_2020_100009
crossref_primary_10_1016_j_renene_2021_07_126
crossref_primary_10_1088_1742_6596_1800_1_012010
crossref_primary_10_3390_en14227473
crossref_primary_10_1016_j_asoc_2020_106996
crossref_primary_10_1016_j_energy_2024_130751
crossref_primary_10_3390_en13215675
crossref_primary_10_1016_j_apenergy_2017_12_054
crossref_primary_10_1016_j_asoc_2020_106917
crossref_primary_10_1016_j_apenergy_2019_01_046
crossref_primary_10_1016_j_energy_2019_116704
crossref_primary_10_3390_atmos12121702
crossref_primary_10_1007_s12652_021_03595_x
crossref_primary_10_1016_j_asoc_2018_04_051
crossref_primary_10_1016_j_egyai_2020_100042
crossref_primary_10_1016_j_enconman_2018_02_012
crossref_primary_10_3390_su10010118
crossref_primary_10_1016_j_apenergy_2018_06_053
crossref_primary_10_1016_j_apenergy_2017_11_098
crossref_primary_10_3390_en14123459
crossref_primary_10_3390_en12132467
crossref_primary_10_1016_j_apenergy_2021_116983
crossref_primary_10_1016_j_jhydrol_2019_03_101
crossref_primary_10_1007_s40095_021_00408_x
crossref_primary_10_1109_ACCESS_2020_3009248
crossref_primary_10_1016_j_apenergy_2019_03_044
crossref_primary_10_1088_1742_6596_2010_1_012104
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_3390_pr8010035
crossref_primary_10_1016_j_apenergy_2024_123920
crossref_primary_10_1088_1755_1315_295_2_012030
crossref_primary_10_1177_0309524X211052015
crossref_primary_10_3390_en15031236
crossref_primary_10_1016_j_knosys_2018_08_027
crossref_primary_10_1016_j_asoc_2020_106350
crossref_primary_10_1016_j_renene_2021_08_007
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_1016_j_asoc_2018_03_004
crossref_primary_10_1016_j_energy_2021_121989
crossref_primary_10_1016_j_epsr_2020_106304
crossref_primary_10_1016_j_energy_2022_125328
crossref_primary_10_1016_j_energy_2022_124957
Cites_doi 10.1016/j.eswa.2009.07.057
10.1109/59.41700
10.1016/j.energy.2013.07.011
10.1080/07350015.1995.10524599
10.1016/j.ijepes.2012.09.007
10.1016/j.epsr.2007.12.001
10.3139/120.110317
10.1109/NABIC.2009.5393690
10.1007/s00170-012-4013-7
10.1016/j.energy.2015.01.063
10.1109/CCECE.2000.849691
10.1016/j.egypro.2012.01.229
10.1016/j.asoc.2011.05.008
10.1109/TPWRS.1987.4335210
10.1016/S0378-7796(03)00150-0
10.1016/j.apenergy.2016.02.114
10.1016/j.renene.2012.06.012
10.1016/j.apenergy.2015.10.145
10.1016/j.apenergy.2011.07.044
10.1109/59.99410
10.1016/j.solener.2004.09.013
10.1007/s00521-013-1367-1
10.1016/j.renene.2007.01.014
10.1016/j.energy.2016.11.035
10.1016/j.ijepes.2014.07.029
10.1016/j.eneco.2015.05.014
10.1016/j.ijepes.2013.03.034
10.1016/j.apenergy.2015.12.082
10.1016/j.renene.2004.07.015
10.1016/j.apenergy.2016.01.050
10.1016/j.apenergy.2014.05.023
10.1016/j.cie.2012.03.016
10.1049/iet-gtd.2012.0142
10.1016/j.enconman.2014.12.053
10.1016/j.apenergy.2016.08.108
10.1016/j.renene.2007.06.013
10.1016/j.apenergy.2013.02.002
10.1016/j.apenergy.2016.06.098
10.1016/j.apenergy.2016.07.113
10.1016/j.enconman.2014.09.060
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.04.039
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 222
ExternalDocumentID 10_1016_j_apenergy_2017_04_039
S0306261917304348
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-2a1a3203c9c8816b1f9cf280f178f9d08746b6501c648189efcc7ececa094ab13
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sun Sep 28 11:14:24 EDT 2025
Thu Apr 24 23:14:49 EDT 2025
Thu Oct 09 00:38:28 EDT 2025
Fri Feb 23 02:31:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrical power system
Hybrid model
Short-term wind speed forecasting (STWSF)
Short-term load forecasting (STLF)
Improved cuckoo search algorithm
Short-term electricity price forecasting (STEPF)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-2a1a3203c9c8816b1f9cf280f178f9d08746b6501c648189efcc7ececa094ab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9515-7091
PQID 2000340229
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2000340229
crossref_citationtrail_10_1016_j_apenergy_2017_04_039
crossref_primary_10_1016_j_apenergy_2017_04_039
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_04_039
PublicationCentury 2000
PublicationDate 2017-07-15
PublicationDateYYYYMMDD 2017-07-15
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Wang, Li, Peng, Liu (b0070) 2016; 182
Xiao, Shao, Wang, Zhang, Lu (b0110) 2016; 180
Flores, Tapia, Tapia (b0075) 2005; 30
Tascikaraoglu, Sanandaji, Poolla, Varaiya (b0025) 2016; 165
Torres, García, De Blas, De Francisco (b0040) 2005; 79
Chen, Qian, Meng (b0100) 2013; 2013
Xiao, Wang, Hou, Wu (b0215) 2015; 82
Chen, Hou (b0245) 2002; 2
Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proc world congress on nature & biologically inspired computing (NaBIC 2009), India; 2009. p. 210–14.
Durgun, Yildiz (b0180) 2012; 54
Dieu, Schegner, Ongsakul (b0190) 2013; 7
Riahy, Abedi (b0030) 2008; 33
Zhang, Tan (b0120) 2013; 45
Hecht-Nielsen SR, “Kolmogorov’s mapping neural network existence theorem. In: IEEE Joint Conf on neural networks, vol. 3. New York, USA; 1987. p. 11–4.
Nie, Liu, Liu, Wang (b0065) 2012; 16
Bachir Z, El-Hawary ME. Short term load forecasting by using wavelet neural networks. In Proc Can Conf electrical and computer engineering; 2000. p. 163–6.
Basu, Chowdhury (b0185) 2013; 60
Xiao, Shao, Yu, Ma, Jin (b0020) 2017; 119
Yang, Deb (b0225) 2010; 1
.
Yang, Deb (b0175) 2014; 24
Li, Goel, Wang (b0060) 2016; 170
Carro-Calvo, Salcedo-Sanz, Prieto, Kirchner-Bossi, Portilla-Figueras, Jiménez-Fernández (b0155) 2012; 89
Vahidinasab, Jadid, Kazemi (b0095) 2008; 78
Liu, Chen, Tian, Li (b0125) 2012; 48
Agrawal, Panda (b0195) 2012
Bazaraa, Sherali, Shetty (b0230) 2006
Hua, Huang (b0090) 2006; 174
Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013.
Hagan, Behr (b0050) 1987; 2
Moghram, Rehman (b0055) 1989; 4
Zhang, Tan, Yang (b0115) 2012; 63
Liu, Tian, Li (b0135) 2014; 89
Yang XS, Deb S, Cuckoo search via levy flights. In: World congress on nature biologically inspired computing; 2009. p. 210–4.
Liu, Tian, Pan, Li (b0105) 2013; 107
Raviv, Bouwman, Dijk (b0015) 2015; 50
Yang, Deb (b0165) 2014; 24
Liu, Tang, Zhang, Fan, Liu (b0150) 2014; 129
Diebold, Mariano (b0240) 1995; 13
Rajabioun (b0210) 2011; 11
Papalexopoulos, Hesterberg (b0035) 1990; 5
Yang (b0235) 2010
Xiao, Shao, Liang, Wang (b0250) 2016; 167
Zhao, Guo, Su, Zhao, Xiao, Liu (b0010) 2016; 162
Mabel, Fernández (b0080) 2008; 33
Al-Hamadi, Soliman (b0045) 2004; 68
Wu (b0140) 2010; 37
Zhao, Wei, Su (b0085) 2016; 178
Liu, Tian, Li, Zhang (b0160) 2015; 92
Xiao, Wang, Yang, Xiao (b0005) 2015; 64
Yildiz (b0200) 2013; 64
Liu, Tian, Chen, Li (b0145) 2013; 52
Liu (10.1016/j.apenergy.2017.04.039_b0160) 2015; 92
Basu (10.1016/j.apenergy.2017.04.039_b0185) 2013; 60
10.1016/j.apenergy.2017.04.039_b0130
10.1016/j.apenergy.2017.04.039_b0255
Al-Hamadi (10.1016/j.apenergy.2017.04.039_b0045) 2004; 68
Nie (10.1016/j.apenergy.2017.04.039_b0065) 2012; 16
Liu (10.1016/j.apenergy.2017.04.039_b0145) 2013; 52
Chen (10.1016/j.apenergy.2017.04.039_b0100) 2013; 2013
Wu (10.1016/j.apenergy.2017.04.039_b0140) 2010; 37
10.1016/j.apenergy.2017.04.039_b0260
Liu (10.1016/j.apenergy.2017.04.039_b0150) 2014; 129
Diebold (10.1016/j.apenergy.2017.04.039_b0240) 1995; 13
10.1016/j.apenergy.2017.04.039_b0205
Rajabioun (10.1016/j.apenergy.2017.04.039_b0210) 2011; 11
Wang (10.1016/j.apenergy.2017.04.039_b0070) 2016; 182
Carro-Calvo (10.1016/j.apenergy.2017.04.039_b0155) 2012; 89
Xiao (10.1016/j.apenergy.2017.04.039_b0215) 2015; 82
Papalexopoulos (10.1016/j.apenergy.2017.04.039_b0035) 1990; 5
Raviv (10.1016/j.apenergy.2017.04.039_b0015) 2015; 50
10.1016/j.apenergy.2017.04.039_b0170
Chen (10.1016/j.apenergy.2017.04.039_b0245) 2002; 2
Flores (10.1016/j.apenergy.2017.04.039_b0075) 2005; 30
Agrawal (10.1016/j.apenergy.2017.04.039_b0195) 2012
Xiao (10.1016/j.apenergy.2017.04.039_b0250) 2016; 167
Dieu (10.1016/j.apenergy.2017.04.039_b0190) 2013; 7
Torres (10.1016/j.apenergy.2017.04.039_b0040) 2005; 79
Mabel (10.1016/j.apenergy.2017.04.039_b0080) 2008; 33
Liu (10.1016/j.apenergy.2017.04.039_b0135) 2014; 89
Yang (10.1016/j.apenergy.2017.04.039_b0225) 2010; 1
Zhang (10.1016/j.apenergy.2017.04.039_b0115) 2012; 63
Yildiz (10.1016/j.apenergy.2017.04.039_b0200) 2013; 64
Yang (10.1016/j.apenergy.2017.04.039_b0235) 2010
Zhang (10.1016/j.apenergy.2017.04.039_b0120) 2013; 45
Li (10.1016/j.apenergy.2017.04.039_b0060) 2016; 170
Riahy (10.1016/j.apenergy.2017.04.039_b0030) 2008; 33
Liu (10.1016/j.apenergy.2017.04.039_b0125) 2012; 48
Xiao (10.1016/j.apenergy.2017.04.039_b0005) 2015; 64
Durgun (10.1016/j.apenergy.2017.04.039_b0180) 2012; 54
Tascikaraoglu (10.1016/j.apenergy.2017.04.039_b0025) 2016; 165
Vahidinasab (10.1016/j.apenergy.2017.04.039_b0095) 2008; 78
Zhao (10.1016/j.apenergy.2017.04.039_b0010) 2016; 162
Hua (10.1016/j.apenergy.2017.04.039_b0090) 2006; 174
Zhao (10.1016/j.apenergy.2017.04.039_b0085) 2016; 178
Liu (10.1016/j.apenergy.2017.04.039_b0105) 2013; 107
Xiao (10.1016/j.apenergy.2017.04.039_b0110) 2016; 180
10.1016/j.apenergy.2017.04.039_b0220
Yang (10.1016/j.apenergy.2017.04.039_b0165) 2014; 24
Hagan (10.1016/j.apenergy.2017.04.039_b0050) 1987; 2
Xiao (10.1016/j.apenergy.2017.04.039_b0020) 2017; 119
Bazaraa (10.1016/j.apenergy.2017.04.039_b0230) 2006
Yang (10.1016/j.apenergy.2017.04.039_b0175) 2014; 24
Moghram (10.1016/j.apenergy.2017.04.039_b0055) 1989; 4
References_xml – year: 2010
  ident: b0235
  article-title: Nature-inspired metaheuristic algorithms
– volume: 7
  start-page: 645
  year: 2013
  end-page: 654
  ident: b0190
  article-title: Cuckoo search algorithm for non-convex economic dispatch
  publication-title: IET Gen, Trans Distrib
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: b0070
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
– volume: 1
  start-page: 330
  year: 2010
  end-page: 343
  ident: b0225
  article-title: Engineering optimization by cuckoo search
  publication-title: Int J Mathe Modell Num Optimiz
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: b0175
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput Appl
– volume: 63
  start-page: 695
  year: 2012
  end-page: 701
  ident: b0115
  article-title: Day-ahead electricity price forecasting by a new hybrid method
  publication-title: Comput Ind Eng
– volume: 167
  start-page: 135
  year: 2016
  end-page: 153
  ident: b0250
  article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
  publication-title: Appl Energy
– volume: 30
  start-page: 523
  year: 2005
  end-page: 536
  ident: b0075
  article-title: Application of a control algorithm for wind speed prediction and active power generation
  publication-title: Renew Energy
– volume: 174
  start-page: 897
  year: 2006
  end-page: 909
  ident: b0090
  article-title: An effective genetic algorithm approach to large scale mixed integer programming problems
  publication-title: Appl Math Comput
– volume: 178
  start-page: 886
  year: 2016
  end-page: 901
  ident: b0085
  article-title: One day ahead wind speed forecasting: a resampling-based approach
  publication-title: Appl Energy
– volume: 2
  start-page: 006
  year: 2002
  ident: b0245
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– volume: 92
  start-page: 67
  year: 2015
  end-page: 81
  ident: b0160
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
– reference: Bachir Z, El-Hawary ME. Short term load forecasting by using wavelet neural networks. In Proc Can Conf electrical and computer engineering; 2000. p. 163–6.
– volume: 89
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0135
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
– volume: 4
  start-page: 1484
  year: 1989
  end-page: 1491
  ident: b0055
  article-title: Analysis and evaluation of five short term load forecasting techniques
  publication-title: IEEE Trans Power Syst
– volume: 107
  start-page: 191
  year: 2013
  end-page: 208
  ident: b0105
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: b0165
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput Appl
– volume: 68
  start-page: 47
  year: 2004
  end-page: 59
  ident: b0045
  article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
  publication-title: Electr Power Syst Res
– volume: 16
  start-page: 1455
  year: 2012
  end-page: 1460
  ident: b0065
  article-title: Hybrid of ARIMA and SVMs for short-term load forecasting
  publication-title: Energy Proc
– volume: 37
  start-page: 2388
  year: 2010
  end-page: 2394
  ident: b0140
  article-title: A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization
  publication-title: Expert Syst Appl
– volume: 33
  start-page: 35
  year: 2008
  end-page: 41
  ident: b0030
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew Energy
– volume: 60
  start-page: 99
  year: 2013
  end-page: 108
  ident: b0185
  article-title: Cuckoo search algorithm for economic dispatch
  publication-title: Energy
– volume: 119
  start-page: 1057
  year: 2017
  end-page: 1074
  ident: b0020
  article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting
  publication-title: Energy
– volume: 64
  start-page: 55
  year: 2013
  end-page: 61
  ident: b0200
  article-title: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations
  publication-title: Int J Adv Manuf Technol
– volume: 11
  start-page: 5508
  year: 2011
  end-page: 5518
  ident: b0210
  article-title: Cuckoo optimization algorithm
  publication-title: Appl Soft Comput
– reference: Hecht-Nielsen SR, “Kolmogorov’s mapping neural network existence theorem. In: IEEE Joint Conf on neural networks, vol. 3. New York, USA; 1987. p. 11–4.
– volume: 2
  start-page: 785
  year: 1987
  end-page: 791
  ident: b0050
  article-title: The time series approach to short term load forecasting
  publication-title: IEEE Transac Power Syst
– reference: Yang XS, Deb S, Cuckoo search via levy flights. In: World congress on nature biologically inspired computing; 2009. p. 210–4.
– volume: 54
  start-page: 185
  year: 2012
  ident: b0180
  article-title: Structural design optimization of vehicle components using cuckoo search algorithm
  publication-title: Mater Test
– reference: Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proc world congress on nature & biologically inspired computing (NaBIC 2009), India; 2009. p. 210–14.
– volume: 2013
  year: 2013
  ident: b0100
  article-title: Multistep wind speed forecasting based on wavelet and gaussian processes
  publication-title: Math Probl Eng
– volume: 162
  start-page: 808
  year: 2016
  end-page: 826
  ident: b0010
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl Energy
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: b0110
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl Energy
– volume: 45
  start-page: 362
  year: 2013
  end-page: 368
  ident: b0120
  article-title: Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model
  publication-title: Int J Electr Power Energy Syst
– volume: 50
  start-page: 227
  year: 2015
  end-page: 239
  ident: b0015
  article-title: Forecasting day-ahead electricity prices: Utilizing hourly prices
  publication-title: Energy Econ
– volume: 165
  start-page: 735
  year: 2016
  end-page: 747
  ident: b0025
  article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform
  publication-title: Appl Energy
– volume: 5
  start-page: 1535
  year: 1990
  end-page: 1547
  ident: b0035
  article-title: A regression-based approach to short term system load forecasting
  publication-title: IEEE Trans Power Syst
– year: 2006
  ident: b0230
  article-title: Nonlinear programming: theory and algorithms
– volume: 52
  start-page: 161
  year: 2013
  end-page: 173
  ident: b0145
  article-title: An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 89
  start-page: 347
  year: 2012
  end-page: 354
  ident: b0155
  article-title: Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm
  publication-title: Appl Energy
– volume: 64
  start-page: 311
  year: 2015
  end-page: 327
  ident: b0005
  article-title: A hybrid model based on data preprocessing for electrical power forecasting
  publication-title: Int J Electr Power Energy Syst
– volume: 82
  start-page: 524
  year: 2015
  end-page: 549
  ident: b0215
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
– volume: 33
  start-page: 986
  year: 2008
  end-page: 992
  ident: b0080
  article-title: Analysis of wind power generation and prediction using ANN: a case study
  publication-title: Renew Energy
– volume: 79
  start-page: 65
  year: 2005
  end-page: 77
  ident: b0040
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre
  publication-title: Sol Energy
– reference: .
– volume: 48
  start-page: 545
  year: 2012
  end-page: 556
  ident: b0125
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew Energy
– start-page: 82
  year: 2012
  end-page: 89
  ident: b0195
  article-title: An efficient algorithm for gray level image enhancement using cuckoo search
  publication-title: Swarm, evolutionary, and memetic computing
– volume: 170
  start-page: 22
  year: 2016
  end-page: 29
  ident: b0060
  article-title: An ensemble approach for short-term load forecasting by extreme learning machine
  publication-title: Appl Energy
– volume: 129
  start-page: 336
  year: 2014
  end-page: 345
  ident: b0150
  article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
  publication-title: Appl Energy
– reference: Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013.
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0240
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
– volume: 78
  start-page: 1332
  year: 2008
  end-page: 1342
  ident: b0095
  article-title: Day-ahead price forecasting in restructured power systems using artificial neural networks
  publication-title: Electr Power Syst Res
– volume: 37
  start-page: 2388
  year: 2010
  ident: 10.1016/j.apenergy.2017.04.039_b0140
  article-title: A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.07.057
– start-page: 82
  year: 2012
  ident: 10.1016/j.apenergy.2017.04.039_b0195
  article-title: An efficient algorithm for gray level image enhancement using cuckoo search
– volume: 4
  start-page: 1484
  issue: 4
  year: 1989
  ident: 10.1016/j.apenergy.2017.04.039_b0055
  article-title: Analysis and evaluation of five short term load forecasting techniques
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.41700
– volume: 60
  start-page: 99
  issue: 13
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0185
  article-title: Cuckoo search algorithm for economic dispatch
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.011
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.apenergy.2017.04.039_b0240
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.1995.10524599
– ident: 10.1016/j.apenergy.2017.04.039_b0255
– volume: 45
  start-page: 362
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0120
  article-title: Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.09.007
– volume: 78
  start-page: 1332
  year: 2008
  ident: 10.1016/j.apenergy.2017.04.039_b0095
  article-title: Day-ahead price forecasting in restructured power systems using artificial neural networks
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2007.12.001
– volume: 54
  start-page: 185
  issue: 3
  year: 2012
  ident: 10.1016/j.apenergy.2017.04.039_b0180
  article-title: Structural design optimization of vehicle components using cuckoo search algorithm
  publication-title: Mater Test
  doi: 10.3139/120.110317
– ident: 10.1016/j.apenergy.2017.04.039_b0170
  doi: 10.1109/NABIC.2009.5393690
– volume: 64
  start-page: 55
  issue: 1–4
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0200
  article-title: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4013-7
– volume: 82
  start-page: 524
  year: 2015
  ident: 10.1016/j.apenergy.2017.04.039_b0215
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.063
– ident: 10.1016/j.apenergy.2017.04.039_b0220
  doi: 10.1109/CCECE.2000.849691
– volume: 16
  start-page: 1455
  year: 2012
  ident: 10.1016/j.apenergy.2017.04.039_b0065
  article-title: Hybrid of ARIMA and SVMs for short-term load forecasting
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2012.01.229
– volume: 11
  start-page: 5508
  year: 2011
  ident: 10.1016/j.apenergy.2017.04.039_b0210
  article-title: Cuckoo optimization algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.05.008
– volume: 2
  start-page: 785
  issue: 3
  year: 1987
  ident: 10.1016/j.apenergy.2017.04.039_b0050
  article-title: The time series approach to short term load forecasting
  publication-title: IEEE Transac Power Syst
  doi: 10.1109/TPWRS.1987.4335210
– volume: 68
  start-page: 47
  issue: 1
  year: 2004
  ident: 10.1016/j.apenergy.2017.04.039_b0045
  article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
  publication-title: Electr Power Syst Res
  doi: 10.1016/S0378-7796(03)00150-0
– volume: 170
  start-page: 22
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0060
  article-title: An ensemble approach for short-term load forecasting by extreme learning machine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.114
– volume: 48
  start-page: 545
  year: 2012
  ident: 10.1016/j.apenergy.2017.04.039_b0125
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.06.012
– year: 2010
  ident: 10.1016/j.apenergy.2017.04.039_b0235
– volume: 162
  start-page: 808
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0010
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.145
– volume: 89
  start-page: 347
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2017.04.039_b0155
  article-title: Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.07.044
– volume: 5
  start-page: 1535
  issue: 4
  year: 1990
  ident: 10.1016/j.apenergy.2017.04.039_b0035
  article-title: A regression-based approach to short term system load forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.99410
– ident: 10.1016/j.apenergy.2017.04.039_b0260
– ident: 10.1016/j.apenergy.2017.04.039_b0130
– ident: 10.1016/j.apenergy.2017.04.039_b0205
  doi: 10.1109/NABIC.2009.5393690
– volume: 79
  start-page: 65
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2017.04.039_b0040
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.013
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.04.039_b0165
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1367-1
– volume: 33
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2017.04.039_b0030
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.01.014
– volume: 119
  start-page: 1057
  year: 2017
  ident: 10.1016/j.apenergy.2017.04.039_b0020
  article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.035
– volume: 64
  start-page: 311
  issue: 64
  year: 2015
  ident: 10.1016/j.apenergy.2017.04.039_b0005
  article-title: A hybrid model based on data preprocessing for electrical power forecasting
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.07.029
– volume: 50
  start-page: 227
  year: 2015
  ident: 10.1016/j.apenergy.2017.04.039_b0015
  article-title: Forecasting day-ahead electricity prices: Utilizing hourly prices
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2015.05.014
– volume: 52
  start-page: 161
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0145
  article-title: An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.03.034
– volume: 165
  start-page: 735
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0025
  article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.082
– volume: 2013
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0100
  article-title: Multistep wind speed forecasting based on wavelet and gaussian processes
  publication-title: Math Probl Eng
– year: 2006
  ident: 10.1016/j.apenergy.2017.04.039_b0230
– volume: 2
  start-page: 006
  year: 2002
  ident: 10.1016/j.apenergy.2017.04.039_b0245
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– volume: 30
  start-page: 523
  issue: 4
  year: 2005
  ident: 10.1016/j.apenergy.2017.04.039_b0075
  article-title: Application of a control algorithm for wind speed prediction and active power generation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2004.07.015
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.04.039_b0175
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1367-1
– volume: 167
  start-page: 135
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0250
  article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.050
– volume: 129
  start-page: 336
  year: 2014
  ident: 10.1016/j.apenergy.2017.04.039_b0150
  article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.05.023
– volume: 63
  start-page: 695
  year: 2012
  ident: 10.1016/j.apenergy.2017.04.039_b0115
  article-title: Day-ahead electricity price forecasting by a new hybrid method
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2012.03.016
– volume: 7
  start-page: 645
  issue: 6
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0190
  article-title: Cuckoo search algorithm for non-convex economic dispatch
  publication-title: IET Gen, Trans Distrib
  doi: 10.1049/iet-gtd.2012.0142
– volume: 174
  start-page: 897
  year: 2006
  ident: 10.1016/j.apenergy.2017.04.039_b0090
  article-title: An effective genetic algorithm approach to large scale mixed integer programming problems
  publication-title: Appl Math Comput
– volume: 92
  start-page: 67
  year: 2015
  ident: 10.1016/j.apenergy.2017.04.039_b0160
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.12.053
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0070
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 33
  start-page: 986
  issue: 5
  year: 2008
  ident: 10.1016/j.apenergy.2017.04.039_b0080
  article-title: Analysis of wind power generation and prediction using ANN: a case study
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.06.013
– volume: 107
  start-page: 191
  year: 2013
  ident: 10.1016/j.apenergy.2017.04.039_b0105
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.02.002
– volume: 178
  start-page: 886
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0085
  article-title: One day ahead wind speed forecasting: a resampling-based approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.098
– volume: 180
  start-page: 213
  issue: C
  year: 2016
  ident: 10.1016/j.apenergy.2017.04.039_b0110
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.113
– volume: 89
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.04.039_b0135
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.060
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  ident: 10.1016/j.apenergy.2017.04.039_b0225
  article-title: Engineering optimization by cuckoo search
  publication-title: Int J Mathe Modell Num Optimiz
SSID ssj0002120
Score 2.5144928
Snippet •Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding...
Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 203
SubjectTerms algorithms
case studies
electric power
Electrical power system
electricity
electricity costs
Hybrid model
Improved cuckoo search algorithm
neural networks
Short-term electricity price forecasting (STEPF)
Short-term load forecasting (STLF)
Short-term wind speed forecasting (STWSF)
wavelet
wind speed
Title Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
URI https://dx.doi.org/10.1016/j.apenergy.2017.04.039
https://www.proquest.com/docview/2000340229
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDI4Qe1kOiGVBPBbklbiWSdpM0xwRAg2g5QJI3KI0TWB4tCNmRogLf2L_MHYfMCAkDhzb2lFVu4nj2N_H2E7heOBe-ihkCY-ktyLK0HWimBKQOW7IVA2Z_-80HVzI48v-5Rzb73phqKyynfubOb2erds7vfZr9kbDYe-Mol2K_wU6qUwkNfxKqYjFYPf5rcwjbqEZUTgi6Zku4ZtdO_J1hx2VeKka8pRIwz9foD5M1fX6c7jEFtvAEfaad_vF5ny5zBZm4ASX2erBW9caira_7fg3-9_V14EtC5g5s4YqgIXrJ2rbgkdLJBQTIIhLVC-bAnGouXKA8rWAwSIM6yyEL8BN3W1VQTfw3VX1gDL3gFEwNOQ6ZH8YEQ0bNIDR9Mw7O6ZS6xV2cXhwvj-IWjaGyCWyP4liK2wS88Rpl2UizUXQLsQZD0JlQRc8UzLNMd4TLpUYBWgfnFPe4ai4g7S5SFbZfFmVfo2BIkwYrWVucy_TwLVyUjlX2MSmhY3TddbvTGBcC1VOjBl3pqtJuzGd6QyZznBp0HTrrPeqN2rAOr7U0J2FzTu3M7iifKn7t3MJg_8kHbTY0lfTMVF78gQ35rHe-Mb4m-wnXVEiWfT_sPnJw9RvYQQ0ybdrF99mP_aOTganL7cwCuE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLfGOAAHBIOJjS8jce1e0qZNc0TTpgdsu7BJu0VpmsAbo33ae08TF_4J_mHsfrAHQtqBa2tHVe04tmP_DPC29iKKoEISy0wkKjiZlKQ6ScoJyIoCMt1B5h-fFNMz9eE8P9-A_bEXhssqB9vf2_TOWg9PJsPfnMxns8kn9nbZ_5ekpCpT5R24q_JUcwS29-OmziMdsBmJOmHytTbhiz03D12LHdd46Q7zlKeG__uE-stWdwfQ4SN4OHiO-K7_uMewEZoteLCGJ7gF2wc3bWtEOuzbxRP4ORbYoWtqXLu0xjaiwy_fuW8Lrx1PoVgiY1wSe9NXiGM3LAc5YYvkLeKsS0OEGv3Kf21bHBe-_NxeEc03JDcY--k6rAA45zls2CNG87vg3YJrrZ_C2eHB6f40GcYxJD5T-TJJnXRZKjJvfFnKopLR-JiWIkpdRlOLUquiIodP-kKRG2BC9F4HT6tSCOkqmW3DZtM24RmgZlAYY1TlqqCKKIz2Sntfu8wVtUuLHchHEVg_YJXzyIxLOxalXdhRdJZFZ4WyJLodmPzmm_doHbdymFHC9g-9s3Sk3Mr7ZlQJS5uSb1pcE9rVgmd7iowi89Ts_sf6r-He9PT4yB69P_n4HO7zG84qy_wFbC6vVuEluUPL6lWn7r8Aw-4Mdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+application+of+a+hybrid+wavelet+neural+network+model+with+the+improved+cuckoo+search+algorithm+for+electrical+power+system+forecasting&rft.jtitle=Applied+energy&rft.au=Xiao%2C+Liye&rft.au=Shao%2C+Wei&rft.au=Yu%2C+Mengxia&rft.au=Ma%2C+Jing&rft.date=2017-07-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=198&rft.spage=203&rft.epage=222&rft_id=info:doi/10.1016%2Fj.apenergy.2017.04.039&rft.externalDocID=S0306261917304348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon