Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
•Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding the optimal solution of CS.•Use more accurate metrics to assess the forecasting performance of the proposed model. Electricity forecasting play...
Saved in:
| Published in | Applied energy Vol. 198; pp. 203 - 222 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.07.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-2619 1872-9118 |
| DOI | 10.1016/j.apenergy.2017.04.039 |
Cover
| Abstract | •Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding the optimal solution of CS.•Use more accurate metrics to assess the forecasting performance of the proposed model.
Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively. |
|---|---|
| AbstractList | •Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding the optimal solution of CS.•Use more accurate metrics to assess the forecasting performance of the proposed model.
Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively. Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively. |
| Author | Shao, Wei Ma, Jing Jin, Congjun Yu, Mengxia Xiao, Liye |
| Author_xml | – sequence: 1 givenname: Liye surname: Xiao fullname: Xiao, Liye organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Wei orcidid: 0000-0001-9515-7091 surname: Shao fullname: Shao, Wei email: weishao@uestc.edu.cn organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Mengxia surname: Yu fullname: Yu, Mengxia organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Jing surname: Ma fullname: Ma, Jing organization: Science and Technology on Special System Simulation Laboratory, Beijing, China – sequence: 5 givenname: Congjun surname: Jin fullname: Jin, Congjun organization: Science and Technology on Special System Simulation Laboratory, Beijing, China |
| BookMark | eNqFUU1v1DAQtVCR2Bb-AvKRS8LYSRNb4gCqKCBVQkJwtryTya63Thxs7672d_CHcbv0wqWnd5j3MXrvkl3MYSbG3gqoBYju_a62C80UN6daguhraGto9Au2EqqXlRZCXbAVNNBVshP6FbtMaQcAUkhYsT8_KJGNuOV2HrhdFu_QZhdmHkZu-fa0jm7gR3sgT5nPtI_WF8jHEO_5FAby_OjyluctcTctMRxo4LjH-xD4k7HfhFg4Ex9D5MUHcywhni_hSJGnU8r0eCO0Kbt585q9HK1P9OYfXrFft59_3nyt7r5_-Xbz6a7Cpr3OlbTCNhIa1KiU6NZi1DhKBaPo1agHUH3brbtrENi1SihNI2JPWFJAt3Ytmiv27uxb3v69p5TN5BKS93amsE9GlpaaFqTUhfrhTMUYUoo0GnT5saccrfNGgHnYwuzM0xbmYQsDrSlbFHn3n3yJbrLx9Lzw41lIpYeDo2gSOpqRBlfqymYI7jmLv7SLrpQ |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2019_03_035 crossref_primary_10_1016_j_eneco_2019_05_026 crossref_primary_10_1016_j_enbuild_2018_01_034 crossref_primary_10_1016_j_apenergy_2018_02_069 crossref_primary_10_1016_j_eswa_2022_118384 crossref_primary_10_1016_j_apenergy_2020_115801 crossref_primary_10_1016_j_apr_2019_05_007 crossref_primary_10_1016_j_renene_2020_09_110 crossref_primary_10_1016_j_apenergy_2019_01_063 crossref_primary_10_1007_s13042_023_01796_8 crossref_primary_10_1016_j_apenergy_2018_11_076 crossref_primary_10_1016_j_energy_2018_12_208 crossref_primary_10_3390_en11040697 crossref_primary_10_1016_j_apenergy_2018_11_034 crossref_primary_10_1016_j_apenergy_2018_02_070 crossref_primary_10_1177_0954410019827395 crossref_primary_10_1016_j_advengsoft_2022_103206 crossref_primary_10_1016_j_jclepro_2019_119318 crossref_primary_10_3390_math10122012 crossref_primary_10_1016_j_asoc_2019_105799 crossref_primary_10_1016_j_renene_2018_11_061 crossref_primary_10_1016_j_enpol_2020_111311 crossref_primary_10_1002_tee_23144 crossref_primary_10_1109_ACCESS_2023_3327135 crossref_primary_10_3390_su10113913 crossref_primary_10_1007_s12205_019_1543_7 crossref_primary_10_3233_JIFS_224567 crossref_primary_10_3390_en11061449 crossref_primary_10_1016_j_engappai_2019_08_018 crossref_primary_10_3390_su12041489 crossref_primary_10_1016_j_apenergy_2019_01_155 crossref_primary_10_1109_ACCESS_2020_2966268 crossref_primary_10_1016_j_jclepro_2019_03_036 crossref_primary_10_1016_j_apenergy_2018_11_063 crossref_primary_10_1016_j_renene_2018_02_092 crossref_primary_10_1007_s12667_019_00328_0 crossref_primary_10_1016_j_energy_2021_121764 crossref_primary_10_1016_j_cie_2021_107182 crossref_primary_10_1016_j_iswa_2022_200138 crossref_primary_10_1049_gtd2_12798 crossref_primary_10_3390_pr7110843 crossref_primary_10_1016_j_apenergy_2021_117446 crossref_primary_10_1007_s00500_020_05176_0 crossref_primary_10_1016_j_egyai_2020_100009 crossref_primary_10_1016_j_renene_2021_07_126 crossref_primary_10_1088_1742_6596_1800_1_012010 crossref_primary_10_3390_en14227473 crossref_primary_10_1016_j_asoc_2020_106996 crossref_primary_10_1016_j_energy_2024_130751 crossref_primary_10_3390_en13215675 crossref_primary_10_1016_j_apenergy_2017_12_054 crossref_primary_10_1016_j_asoc_2020_106917 crossref_primary_10_1016_j_apenergy_2019_01_046 crossref_primary_10_1016_j_energy_2019_116704 crossref_primary_10_3390_atmos12121702 crossref_primary_10_1007_s12652_021_03595_x crossref_primary_10_1016_j_asoc_2018_04_051 crossref_primary_10_1016_j_egyai_2020_100042 crossref_primary_10_1016_j_enconman_2018_02_012 crossref_primary_10_3390_su10010118 crossref_primary_10_1016_j_apenergy_2018_06_053 crossref_primary_10_1016_j_apenergy_2017_11_098 crossref_primary_10_3390_en14123459 crossref_primary_10_3390_en12132467 crossref_primary_10_1016_j_apenergy_2021_116983 crossref_primary_10_1016_j_jhydrol_2019_03_101 crossref_primary_10_1007_s40095_021_00408_x crossref_primary_10_1109_ACCESS_2020_3009248 crossref_primary_10_1016_j_apenergy_2019_03_044 crossref_primary_10_1088_1742_6596_2010_1_012104 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_3390_pr8010035 crossref_primary_10_1016_j_apenergy_2024_123920 crossref_primary_10_1088_1755_1315_295_2_012030 crossref_primary_10_1177_0309524X211052015 crossref_primary_10_3390_en15031236 crossref_primary_10_1016_j_knosys_2018_08_027 crossref_primary_10_1016_j_asoc_2020_106350 crossref_primary_10_1016_j_renene_2021_08_007 crossref_primary_10_1016_j_apenergy_2019_114345 crossref_primary_10_1016_j_asoc_2018_03_004 crossref_primary_10_1016_j_energy_2021_121989 crossref_primary_10_1016_j_epsr_2020_106304 crossref_primary_10_1016_j_energy_2022_125328 crossref_primary_10_1016_j_energy_2022_124957 |
| Cites_doi | 10.1016/j.eswa.2009.07.057 10.1109/59.41700 10.1016/j.energy.2013.07.011 10.1080/07350015.1995.10524599 10.1016/j.ijepes.2012.09.007 10.1016/j.epsr.2007.12.001 10.3139/120.110317 10.1109/NABIC.2009.5393690 10.1007/s00170-012-4013-7 10.1016/j.energy.2015.01.063 10.1109/CCECE.2000.849691 10.1016/j.egypro.2012.01.229 10.1016/j.asoc.2011.05.008 10.1109/TPWRS.1987.4335210 10.1016/S0378-7796(03)00150-0 10.1016/j.apenergy.2016.02.114 10.1016/j.renene.2012.06.012 10.1016/j.apenergy.2015.10.145 10.1016/j.apenergy.2011.07.044 10.1109/59.99410 10.1016/j.solener.2004.09.013 10.1007/s00521-013-1367-1 10.1016/j.renene.2007.01.014 10.1016/j.energy.2016.11.035 10.1016/j.ijepes.2014.07.029 10.1016/j.eneco.2015.05.014 10.1016/j.ijepes.2013.03.034 10.1016/j.apenergy.2015.12.082 10.1016/j.renene.2004.07.015 10.1016/j.apenergy.2016.01.050 10.1016/j.apenergy.2014.05.023 10.1016/j.cie.2012.03.016 10.1049/iet-gtd.2012.0142 10.1016/j.enconman.2014.12.053 10.1016/j.apenergy.2016.08.108 10.1016/j.renene.2007.06.013 10.1016/j.apenergy.2013.02.002 10.1016/j.apenergy.2016.06.098 10.1016/j.apenergy.2016.07.113 10.1016/j.enconman.2014.09.060 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2017.04.039 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 222 |
| ExternalDocumentID | 10_1016_j_apenergy_2017_04_039 S0306261917304348 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-2a1a3203c9c8816b1f9cf280f178f9d08746b6501c648189efcc7ececa094ab13 |
| IEDL.DBID | .~1 |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 11:14:24 EDT 2025 Thu Apr 24 23:14:49 EDT 2025 Thu Oct 09 00:38:28 EDT 2025 Fri Feb 23 02:31:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electrical power system Hybrid model Short-term wind speed forecasting (STWSF) Short-term load forecasting (STLF) Improved cuckoo search algorithm Short-term electricity price forecasting (STEPF) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-2a1a3203c9c8816b1f9cf280f178f9d08746b6501c648189efcc7ececa094ab13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9515-7091 |
| PQID | 2000340229 |
| PQPubID | 24069 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2000340229 crossref_citationtrail_10_1016_j_apenergy_2017_04_039 crossref_primary_10_1016_j_apenergy_2017_04_039 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_04_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-15 |
| PublicationDateYYYYMMDD | 2017-07-15 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Wang, Li, Peng, Liu (b0070) 2016; 182 Xiao, Shao, Wang, Zhang, Lu (b0110) 2016; 180 Flores, Tapia, Tapia (b0075) 2005; 30 Tascikaraoglu, Sanandaji, Poolla, Varaiya (b0025) 2016; 165 Torres, García, De Blas, De Francisco (b0040) 2005; 79 Chen, Qian, Meng (b0100) 2013; 2013 Xiao, Wang, Hou, Wu (b0215) 2015; 82 Chen, Hou (b0245) 2002; 2 Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proc world congress on nature & biologically inspired computing (NaBIC 2009), India; 2009. p. 210–14. Durgun, Yildiz (b0180) 2012; 54 Dieu, Schegner, Ongsakul (b0190) 2013; 7 Riahy, Abedi (b0030) 2008; 33 Zhang, Tan (b0120) 2013; 45 Hecht-Nielsen SR, “Kolmogorov’s mapping neural network existence theorem. In: IEEE Joint Conf on neural networks, vol. 3. New York, USA; 1987. p. 11–4. Nie, Liu, Liu, Wang (b0065) 2012; 16 Bachir Z, El-Hawary ME. Short term load forecasting by using wavelet neural networks. In Proc Can Conf electrical and computer engineering; 2000. p. 163–6. Basu, Chowdhury (b0185) 2013; 60 Xiao, Shao, Yu, Ma, Jin (b0020) 2017; 119 Yang, Deb (b0225) 2010; 1 . Yang, Deb (b0175) 2014; 24 Li, Goel, Wang (b0060) 2016; 170 Carro-Calvo, Salcedo-Sanz, Prieto, Kirchner-Bossi, Portilla-Figueras, Jiménez-Fernández (b0155) 2012; 89 Vahidinasab, Jadid, Kazemi (b0095) 2008; 78 Liu, Chen, Tian, Li (b0125) 2012; 48 Agrawal, Panda (b0195) 2012 Bazaraa, Sherali, Shetty (b0230) 2006 Hua, Huang (b0090) 2006; 174 Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013. Hagan, Behr (b0050) 1987; 2 Moghram, Rehman (b0055) 1989; 4 Zhang, Tan, Yang (b0115) 2012; 63 Liu, Tian, Li (b0135) 2014; 89 Yang XS, Deb S, Cuckoo search via levy flights. In: World congress on nature biologically inspired computing; 2009. p. 210–4. Liu, Tian, Pan, Li (b0105) 2013; 107 Raviv, Bouwman, Dijk (b0015) 2015; 50 Yang, Deb (b0165) 2014; 24 Liu, Tang, Zhang, Fan, Liu (b0150) 2014; 129 Diebold, Mariano (b0240) 1995; 13 Rajabioun (b0210) 2011; 11 Papalexopoulos, Hesterberg (b0035) 1990; 5 Yang (b0235) 2010 Xiao, Shao, Liang, Wang (b0250) 2016; 167 Zhao, Guo, Su, Zhao, Xiao, Liu (b0010) 2016; 162 Mabel, Fernández (b0080) 2008; 33 Al-Hamadi, Soliman (b0045) 2004; 68 Wu (b0140) 2010; 37 Zhao, Wei, Su (b0085) 2016; 178 Liu, Tian, Li, Zhang (b0160) 2015; 92 Xiao, Wang, Yang, Xiao (b0005) 2015; 64 Yildiz (b0200) 2013; 64 Liu, Tian, Chen, Li (b0145) 2013; 52 Liu (10.1016/j.apenergy.2017.04.039_b0160) 2015; 92 Basu (10.1016/j.apenergy.2017.04.039_b0185) 2013; 60 10.1016/j.apenergy.2017.04.039_b0130 10.1016/j.apenergy.2017.04.039_b0255 Al-Hamadi (10.1016/j.apenergy.2017.04.039_b0045) 2004; 68 Nie (10.1016/j.apenergy.2017.04.039_b0065) 2012; 16 Liu (10.1016/j.apenergy.2017.04.039_b0145) 2013; 52 Chen (10.1016/j.apenergy.2017.04.039_b0100) 2013; 2013 Wu (10.1016/j.apenergy.2017.04.039_b0140) 2010; 37 10.1016/j.apenergy.2017.04.039_b0260 Liu (10.1016/j.apenergy.2017.04.039_b0150) 2014; 129 Diebold (10.1016/j.apenergy.2017.04.039_b0240) 1995; 13 10.1016/j.apenergy.2017.04.039_b0205 Rajabioun (10.1016/j.apenergy.2017.04.039_b0210) 2011; 11 Wang (10.1016/j.apenergy.2017.04.039_b0070) 2016; 182 Carro-Calvo (10.1016/j.apenergy.2017.04.039_b0155) 2012; 89 Xiao (10.1016/j.apenergy.2017.04.039_b0215) 2015; 82 Papalexopoulos (10.1016/j.apenergy.2017.04.039_b0035) 1990; 5 Raviv (10.1016/j.apenergy.2017.04.039_b0015) 2015; 50 10.1016/j.apenergy.2017.04.039_b0170 Chen (10.1016/j.apenergy.2017.04.039_b0245) 2002; 2 Flores (10.1016/j.apenergy.2017.04.039_b0075) 2005; 30 Agrawal (10.1016/j.apenergy.2017.04.039_b0195) 2012 Xiao (10.1016/j.apenergy.2017.04.039_b0250) 2016; 167 Dieu (10.1016/j.apenergy.2017.04.039_b0190) 2013; 7 Torres (10.1016/j.apenergy.2017.04.039_b0040) 2005; 79 Mabel (10.1016/j.apenergy.2017.04.039_b0080) 2008; 33 Liu (10.1016/j.apenergy.2017.04.039_b0135) 2014; 89 Yang (10.1016/j.apenergy.2017.04.039_b0225) 2010; 1 Zhang (10.1016/j.apenergy.2017.04.039_b0115) 2012; 63 Yildiz (10.1016/j.apenergy.2017.04.039_b0200) 2013; 64 Yang (10.1016/j.apenergy.2017.04.039_b0235) 2010 Zhang (10.1016/j.apenergy.2017.04.039_b0120) 2013; 45 Li (10.1016/j.apenergy.2017.04.039_b0060) 2016; 170 Riahy (10.1016/j.apenergy.2017.04.039_b0030) 2008; 33 Liu (10.1016/j.apenergy.2017.04.039_b0125) 2012; 48 Xiao (10.1016/j.apenergy.2017.04.039_b0005) 2015; 64 Durgun (10.1016/j.apenergy.2017.04.039_b0180) 2012; 54 Tascikaraoglu (10.1016/j.apenergy.2017.04.039_b0025) 2016; 165 Vahidinasab (10.1016/j.apenergy.2017.04.039_b0095) 2008; 78 Zhao (10.1016/j.apenergy.2017.04.039_b0010) 2016; 162 Hua (10.1016/j.apenergy.2017.04.039_b0090) 2006; 174 Zhao (10.1016/j.apenergy.2017.04.039_b0085) 2016; 178 Liu (10.1016/j.apenergy.2017.04.039_b0105) 2013; 107 Xiao (10.1016/j.apenergy.2017.04.039_b0110) 2016; 180 10.1016/j.apenergy.2017.04.039_b0220 Yang (10.1016/j.apenergy.2017.04.039_b0165) 2014; 24 Hagan (10.1016/j.apenergy.2017.04.039_b0050) 1987; 2 Xiao (10.1016/j.apenergy.2017.04.039_b0020) 2017; 119 Bazaraa (10.1016/j.apenergy.2017.04.039_b0230) 2006 Yang (10.1016/j.apenergy.2017.04.039_b0175) 2014; 24 Moghram (10.1016/j.apenergy.2017.04.039_b0055) 1989; 4 |
| References_xml | – year: 2010 ident: b0235 article-title: Nature-inspired metaheuristic algorithms – volume: 7 start-page: 645 year: 2013 end-page: 654 ident: b0190 article-title: Cuckoo search algorithm for non-convex economic dispatch publication-title: IET Gen, Trans Distrib – volume: 182 start-page: 80 year: 2016 end-page: 93 ident: b0070 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy – volume: 1 start-page: 330 year: 2010 end-page: 343 ident: b0225 article-title: Engineering optimization by cuckoo search publication-title: Int J Mathe Modell Num Optimiz – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: b0175 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl – volume: 63 start-page: 695 year: 2012 end-page: 701 ident: b0115 article-title: Day-ahead electricity price forecasting by a new hybrid method publication-title: Comput Ind Eng – volume: 167 start-page: 135 year: 2016 end-page: 153 ident: b0250 article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting publication-title: Appl Energy – volume: 30 start-page: 523 year: 2005 end-page: 536 ident: b0075 article-title: Application of a control algorithm for wind speed prediction and active power generation publication-title: Renew Energy – volume: 174 start-page: 897 year: 2006 end-page: 909 ident: b0090 article-title: An effective genetic algorithm approach to large scale mixed integer programming problems publication-title: Appl Math Comput – volume: 178 start-page: 886 year: 2016 end-page: 901 ident: b0085 article-title: One day ahead wind speed forecasting: a resampling-based approach publication-title: Appl Energy – volume: 2 start-page: 006 year: 2002 ident: b0245 article-title: Research on superior combination forecasting model based on forecasting effective measure publication-title: J Univ Sci Technol China – volume: 92 start-page: 67 year: 2015 end-page: 81 ident: b0160 article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions publication-title: Energy Convers Manage – reference: Bachir Z, El-Hawary ME. Short term load forecasting by using wavelet neural networks. In Proc Can Conf electrical and computer engineering; 2000. p. 163–6. – volume: 89 start-page: 1 year: 2014 end-page: 11 ident: b0135 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage – volume: 4 start-page: 1484 year: 1989 end-page: 1491 ident: b0055 article-title: Analysis and evaluation of five short term load forecasting techniques publication-title: IEEE Trans Power Syst – volume: 107 start-page: 191 year: 2013 end-page: 208 ident: b0105 article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks publication-title: Appl Energy – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: b0165 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl – volume: 68 start-page: 47 year: 2004 end-page: 59 ident: b0045 article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model publication-title: Electr Power Syst Res – volume: 16 start-page: 1455 year: 2012 end-page: 1460 ident: b0065 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Proc – volume: 37 start-page: 2388 year: 2010 end-page: 2394 ident: b0140 article-title: A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization publication-title: Expert Syst Appl – volume: 33 start-page: 35 year: 2008 end-page: 41 ident: b0030 article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method publication-title: Renew Energy – volume: 60 start-page: 99 year: 2013 end-page: 108 ident: b0185 article-title: Cuckoo search algorithm for economic dispatch publication-title: Energy – volume: 119 start-page: 1057 year: 2017 end-page: 1074 ident: b0020 article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting publication-title: Energy – volume: 64 start-page: 55 year: 2013 end-page: 61 ident: b0200 article-title: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations publication-title: Int J Adv Manuf Technol – volume: 11 start-page: 5508 year: 2011 end-page: 5518 ident: b0210 article-title: Cuckoo optimization algorithm publication-title: Appl Soft Comput – reference: Hecht-Nielsen SR, “Kolmogorov’s mapping neural network existence theorem. In: IEEE Joint Conf on neural networks, vol. 3. New York, USA; 1987. p. 11–4. – volume: 2 start-page: 785 year: 1987 end-page: 791 ident: b0050 article-title: The time series approach to short term load forecasting publication-title: IEEE Transac Power Syst – reference: Yang XS, Deb S, Cuckoo search via levy flights. In: World congress on nature biologically inspired computing; 2009. p. 210–4. – volume: 54 start-page: 185 year: 2012 ident: b0180 article-title: Structural design optimization of vehicle components using cuckoo search algorithm publication-title: Mater Test – reference: Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proc world congress on nature & biologically inspired computing (NaBIC 2009), India; 2009. p. 210–14. – volume: 2013 year: 2013 ident: b0100 article-title: Multistep wind speed forecasting based on wavelet and gaussian processes publication-title: Math Probl Eng – volume: 162 start-page: 808 year: 2016 end-page: 826 ident: b0010 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl Energy – volume: 180 start-page: 213 year: 2016 end-page: 233 ident: b0110 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl Energy – volume: 45 start-page: 362 year: 2013 end-page: 368 ident: b0120 article-title: Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model publication-title: Int J Electr Power Energy Syst – volume: 50 start-page: 227 year: 2015 end-page: 239 ident: b0015 article-title: Forecasting day-ahead electricity prices: Utilizing hourly prices publication-title: Energy Econ – volume: 165 start-page: 735 year: 2016 end-page: 747 ident: b0025 article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform publication-title: Appl Energy – volume: 5 start-page: 1535 year: 1990 end-page: 1547 ident: b0035 article-title: A regression-based approach to short term system load forecasting publication-title: IEEE Trans Power Syst – year: 2006 ident: b0230 article-title: Nonlinear programming: theory and algorithms – volume: 52 start-page: 161 year: 2013 end-page: 173 ident: b0145 article-title: An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization publication-title: Int J Electr Power Energy Syst – volume: 89 start-page: 347 year: 2012 end-page: 354 ident: b0155 article-title: Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm publication-title: Appl Energy – volume: 64 start-page: 311 year: 2015 end-page: 327 ident: b0005 article-title: A hybrid model based on data preprocessing for electrical power forecasting publication-title: Int J Electr Power Energy Syst – volume: 82 start-page: 524 year: 2015 end-page: 549 ident: b0215 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy – volume: 33 start-page: 986 year: 2008 end-page: 992 ident: b0080 article-title: Analysis of wind power generation and prediction using ANN: a case study publication-title: Renew Energy – volume: 79 start-page: 65 year: 2005 end-page: 77 ident: b0040 article-title: Forecast of hourly average wind speed with ARMA models in Navarre publication-title: Sol Energy – reference: . – volume: 48 start-page: 545 year: 2012 end-page: 556 ident: b0125 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew Energy – start-page: 82 year: 2012 end-page: 89 ident: b0195 article-title: An efficient algorithm for gray level image enhancement using cuckoo search publication-title: Swarm, evolutionary, and memetic computing – volume: 170 start-page: 22 year: 2016 end-page: 29 ident: b0060 article-title: An ensemble approach for short-term load forecasting by extreme learning machine publication-title: Appl Energy – volume: 129 start-page: 336 year: 2014 end-page: 345 ident: b0150 article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids publication-title: Appl Energy – reference: Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013. – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: b0240 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat – volume: 78 start-page: 1332 year: 2008 end-page: 1342 ident: b0095 article-title: Day-ahead price forecasting in restructured power systems using artificial neural networks publication-title: Electr Power Syst Res – volume: 37 start-page: 2388 year: 2010 ident: 10.1016/j.apenergy.2017.04.039_b0140 article-title: A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.07.057 – start-page: 82 year: 2012 ident: 10.1016/j.apenergy.2017.04.039_b0195 article-title: An efficient algorithm for gray level image enhancement using cuckoo search – volume: 4 start-page: 1484 issue: 4 year: 1989 ident: 10.1016/j.apenergy.2017.04.039_b0055 article-title: Analysis and evaluation of five short term load forecasting techniques publication-title: IEEE Trans Power Syst doi: 10.1109/59.41700 – volume: 60 start-page: 99 issue: 13 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0185 article-title: Cuckoo search algorithm for economic dispatch publication-title: Energy doi: 10.1016/j.energy.2013.07.011 – volume: 13 start-page: 253 year: 1995 ident: 10.1016/j.apenergy.2017.04.039_b0240 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat doi: 10.1080/07350015.1995.10524599 – ident: 10.1016/j.apenergy.2017.04.039_b0255 – volume: 45 start-page: 362 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0120 article-title: Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.09.007 – volume: 78 start-page: 1332 year: 2008 ident: 10.1016/j.apenergy.2017.04.039_b0095 article-title: Day-ahead price forecasting in restructured power systems using artificial neural networks publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2007.12.001 – volume: 54 start-page: 185 issue: 3 year: 2012 ident: 10.1016/j.apenergy.2017.04.039_b0180 article-title: Structural design optimization of vehicle components using cuckoo search algorithm publication-title: Mater Test doi: 10.3139/120.110317 – ident: 10.1016/j.apenergy.2017.04.039_b0170 doi: 10.1109/NABIC.2009.5393690 – volume: 64 start-page: 55 issue: 1–4 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0200 article-title: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4013-7 – volume: 82 start-page: 524 year: 2015 ident: 10.1016/j.apenergy.2017.04.039_b0215 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2015.01.063 – ident: 10.1016/j.apenergy.2017.04.039_b0220 doi: 10.1109/CCECE.2000.849691 – volume: 16 start-page: 1455 year: 2012 ident: 10.1016/j.apenergy.2017.04.039_b0065 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Proc doi: 10.1016/j.egypro.2012.01.229 – volume: 11 start-page: 5508 year: 2011 ident: 10.1016/j.apenergy.2017.04.039_b0210 article-title: Cuckoo optimization algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.05.008 – volume: 2 start-page: 785 issue: 3 year: 1987 ident: 10.1016/j.apenergy.2017.04.039_b0050 article-title: The time series approach to short term load forecasting publication-title: IEEE Transac Power Syst doi: 10.1109/TPWRS.1987.4335210 – volume: 68 start-page: 47 issue: 1 year: 2004 ident: 10.1016/j.apenergy.2017.04.039_b0045 article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model publication-title: Electr Power Syst Res doi: 10.1016/S0378-7796(03)00150-0 – volume: 170 start-page: 22 year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0060 article-title: An ensemble approach for short-term load forecasting by extreme learning machine publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.114 – volume: 48 start-page: 545 year: 2012 ident: 10.1016/j.apenergy.2017.04.039_b0125 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew Energy doi: 10.1016/j.renene.2012.06.012 – year: 2010 ident: 10.1016/j.apenergy.2017.04.039_b0235 – volume: 162 start-page: 808 year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0010 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.145 – volume: 89 start-page: 347 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2017.04.039_b0155 article-title: Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.07.044 – volume: 5 start-page: 1535 issue: 4 year: 1990 ident: 10.1016/j.apenergy.2017.04.039_b0035 article-title: A regression-based approach to short term system load forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/59.99410 – ident: 10.1016/j.apenergy.2017.04.039_b0260 – ident: 10.1016/j.apenergy.2017.04.039_b0130 – ident: 10.1016/j.apenergy.2017.04.039_b0205 doi: 10.1109/NABIC.2009.5393690 – volume: 79 start-page: 65 issue: 1 year: 2005 ident: 10.1016/j.apenergy.2017.04.039_b0040 article-title: Forecast of hourly average wind speed with ARMA models in Navarre publication-title: Sol Energy doi: 10.1016/j.solener.2004.09.013 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2017.04.039_b0165 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1367-1 – volume: 33 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2017.04.039_b0030 article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method publication-title: Renew Energy doi: 10.1016/j.renene.2007.01.014 – volume: 119 start-page: 1057 year: 2017 ident: 10.1016/j.apenergy.2017.04.039_b0020 article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2016.11.035 – volume: 64 start-page: 311 issue: 64 year: 2015 ident: 10.1016/j.apenergy.2017.04.039_b0005 article-title: A hybrid model based on data preprocessing for electrical power forecasting publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.07.029 – volume: 50 start-page: 227 year: 2015 ident: 10.1016/j.apenergy.2017.04.039_b0015 article-title: Forecasting day-ahead electricity prices: Utilizing hourly prices publication-title: Energy Econ doi: 10.1016/j.eneco.2015.05.014 – volume: 52 start-page: 161 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0145 article-title: An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.03.034 – volume: 165 start-page: 735 year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0025 article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.082 – volume: 2013 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0100 article-title: Multistep wind speed forecasting based on wavelet and gaussian processes publication-title: Math Probl Eng – year: 2006 ident: 10.1016/j.apenergy.2017.04.039_b0230 – volume: 2 start-page: 006 year: 2002 ident: 10.1016/j.apenergy.2017.04.039_b0245 article-title: Research on superior combination forecasting model based on forecasting effective measure publication-title: J Univ Sci Technol China – volume: 30 start-page: 523 issue: 4 year: 2005 ident: 10.1016/j.apenergy.2017.04.039_b0075 article-title: Application of a control algorithm for wind speed prediction and active power generation publication-title: Renew Energy doi: 10.1016/j.renene.2004.07.015 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2017.04.039_b0175 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1367-1 – volume: 167 start-page: 135 year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0250 article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.050 – volume: 129 start-page: 336 year: 2014 ident: 10.1016/j.apenergy.2017.04.039_b0150 article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.023 – volume: 63 start-page: 695 year: 2012 ident: 10.1016/j.apenergy.2017.04.039_b0115 article-title: Day-ahead electricity price forecasting by a new hybrid method publication-title: Comput Ind Eng doi: 10.1016/j.cie.2012.03.016 – volume: 7 start-page: 645 issue: 6 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0190 article-title: Cuckoo search algorithm for non-convex economic dispatch publication-title: IET Gen, Trans Distrib doi: 10.1049/iet-gtd.2012.0142 – volume: 174 start-page: 897 year: 2006 ident: 10.1016/j.apenergy.2017.04.039_b0090 article-title: An effective genetic algorithm approach to large scale mixed integer programming problems publication-title: Appl Math Comput – volume: 92 start-page: 67 year: 2015 ident: 10.1016/j.apenergy.2017.04.039_b0160 article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.12.053 – volume: 182 start-page: 80 year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0070 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.108 – volume: 33 start-page: 986 issue: 5 year: 2008 ident: 10.1016/j.apenergy.2017.04.039_b0080 article-title: Analysis of wind power generation and prediction using ANN: a case study publication-title: Renew Energy doi: 10.1016/j.renene.2007.06.013 – volume: 107 start-page: 191 year: 2013 ident: 10.1016/j.apenergy.2017.04.039_b0105 article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.02.002 – volume: 178 start-page: 886 year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0085 article-title: One day ahead wind speed forecasting: a resampling-based approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.098 – volume: 180 start-page: 213 issue: C year: 2016 ident: 10.1016/j.apenergy.2017.04.039_b0110 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.113 – volume: 89 start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2017.04.039_b0135 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.09.060 – volume: 1 start-page: 330 issue: 4 year: 2010 ident: 10.1016/j.apenergy.2017.04.039_b0225 article-title: Engineering optimization by cuckoo search publication-title: Int J Mathe Modell Num Optimiz |
| SSID | ssj0002120 |
| Score | 2.5144928 |
| Snippet | •Propose a hybrid model that can be used to forecast the complex electrical power system.•Enhance the speed of local convergence and the accuracy of finding... Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 203 |
| SubjectTerms | algorithms case studies electric power Electrical power system electricity electricity costs Hybrid model Improved cuckoo search algorithm neural networks Short-term electricity price forecasting (STEPF) Short-term load forecasting (STLF) Short-term wind speed forecasting (STWSF) wavelet wind speed |
| Title | Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting |
| URI | https://dx.doi.org/10.1016/j.apenergy.2017.04.039 https://www.proquest.com/docview/2000340229 |
| Volume | 198 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDI4Qe1kOiGVBPBbklbiWSdpM0xwRAg2g5QJI3KI0TWB4tCNmRogLf2L_MHYfMCAkDhzb2lFVu4nj2N_H2E7heOBe-ihkCY-ktyLK0HWimBKQOW7IVA2Z_-80HVzI48v-5Rzb73phqKyynfubOb2erds7vfZr9kbDYe-Mol2K_wU6qUwkNfxKqYjFYPf5rcwjbqEZUTgi6Zku4ZtdO_J1hx2VeKka8pRIwz9foD5M1fX6c7jEFtvAEfaad_vF5ny5zBZm4ASX2erBW9caira_7fg3-9_V14EtC5g5s4YqgIXrJ2rbgkdLJBQTIIhLVC-bAnGouXKA8rWAwSIM6yyEL8BN3W1VQTfw3VX1gDL3gFEwNOQ6ZH8YEQ0bNIDR9Mw7O6ZS6xV2cXhwvj-IWjaGyCWyP4liK2wS88Rpl2UizUXQLsQZD0JlQRc8UzLNMd4TLpUYBWgfnFPe4ai4g7S5SFbZfFmVfo2BIkwYrWVucy_TwLVyUjlX2MSmhY3TddbvTGBcC1VOjBl3pqtJuzGd6QyZznBp0HTrrPeqN2rAOr7U0J2FzTu3M7iifKn7t3MJg_8kHbTY0lfTMVF78gQ35rHe-Mb4m-wnXVEiWfT_sPnJw9RvYQQ0ybdrF99mP_aOTganL7cwCuE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLfGOAAHBIOJjS8jce1e0qZNc0TTpgdsu7BJu0VpmsAbo33ae08TF_4J_mHsfrAHQtqBa2tHVe04tmP_DPC29iKKoEISy0wkKjiZlKQ6ScoJyIoCMt1B5h-fFNMz9eE8P9-A_bEXhssqB9vf2_TOWg9PJsPfnMxns8kn9nbZ_5ekpCpT5R24q_JUcwS29-OmziMdsBmJOmHytTbhiz03D12LHdd46Q7zlKeG__uE-stWdwfQ4SN4OHiO-K7_uMewEZoteLCGJ7gF2wc3bWtEOuzbxRP4ORbYoWtqXLu0xjaiwy_fuW8Lrx1PoVgiY1wSe9NXiGM3LAc5YYvkLeKsS0OEGv3Kf21bHBe-_NxeEc03JDcY--k6rAA45zls2CNG87vg3YJrrZ_C2eHB6f40GcYxJD5T-TJJnXRZKjJvfFnKopLR-JiWIkpdRlOLUquiIodP-kKRG2BC9F4HT6tSCOkqmW3DZtM24RmgZlAYY1TlqqCKKIz2Sntfu8wVtUuLHchHEVg_YJXzyIxLOxalXdhRdJZFZ4WyJLodmPzmm_doHbdymFHC9g-9s3Sk3Mr7ZlQJS5uSb1pcE9rVgmd7iowi89Ts_sf6r-He9PT4yB69P_n4HO7zG84qy_wFbC6vVuEluUPL6lWn7r8Aw-4Mdg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+application+of+a+hybrid+wavelet+neural+network+model+with+the+improved+cuckoo+search+algorithm+for+electrical+power+system+forecasting&rft.jtitle=Applied+energy&rft.au=Xiao%2C+Liye&rft.au=Shao%2C+Wei&rft.au=Yu%2C+Mengxia&rft.au=Ma%2C+Jing&rft.date=2017-07-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=198&rft.spage=203&rft.epage=222&rft_id=info:doi/10.1016%2Fj.apenergy.2017.04.039&rft.externalDocID=S0306261917304348 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |