Innovative heat management method and metaheuristic algorithm optimized power supply-demand balance for PEMFC-ASHP-CHP system

The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combinat...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 371; p. 123778
Main Authors Yu, Sen, Fan, Yi, Shi, Zhengrong, Zhang, Jingkui, Zhang, Tao, Zhang, Jiakai, Liu, Zewen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text
ISSN0306-2619
DOI10.1016/j.apenergy.2024.123778

Cover

Abstract The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combination (DC), Parallel Combination (PC), Series Combination (SC). And compared the energy management strategies and power balance of the system. To further improve reliability and flexibility, a diversion PEMFC-ASHP-CHP system was proposed by combining PC and SC's system advantages. Additionally, an iterative algorithm addressed the mismatch between power supply and demand. An empirical formula was proposed to improve iterative convergence speed for practical control situations. The coefficients were optimized using six metaheuristic algorithms, and the outcomes were summarized into an optimized operational plane to enhance the system control response speed further. The results show that the PC method performs better than DC and SC. It achieves a power consumption reduction of 52.8% and a COP improvement of 111.4% compared with the ASHP system. Meanwhile, the diversion system can more effectively utilize waste heat from the PEMFC and further improve the system's performance. The Queuing Search Algorithm (QSA) demonstrates superior accuracy for coefficient optimization. By using the established empirical formula, the convergence speeds of global and local iterative methods are improved by 26.10% and 41.78%, respectively, compared to the direct iterative algorithm. Ultimately, the optimized operational plane can achieve a maximum 37.16% hydrogen consumption reduction compared to the unoptimized system. •Compared performance of three PEMFC-ASHP integration methods for CHP systems.•Proposed a diversion system to solve low evaporation temperature operational issues.•Developed an algorithm to balance power supply & demand and reduce energy waste.•Reducing hydrogen consumption by up to 37.16%.•QSA derives two empirical formulas which improve iteration speeds by 26.10% and 41.78% seperately.
AbstractList The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combination (DC), Parallel Combination (PC), Series Combination (SC). And compared the energy management strategies and power balance of the system. To further improve reliability and flexibility, a diversion PEMFC-ASHP-CHP system was proposed by combining PC and SC's system advantages. Additionally, an iterative algorithm addressed the mismatch between power supply and demand. An empirical formula was proposed to improve iterative convergence speed for practical control situations. The coefficients were optimized using six metaheuristic algorithms, and the outcomes were summarized into an optimized operational plane to enhance the system control response speed further. The results show that the PC method performs better than DC and SC. It achieves a power consumption reduction of 52.8% and a COP improvement of 111.4% compared with the ASHP system. Meanwhile, the diversion system can more effectively utilize waste heat from the PEMFC and further improve the system's performance. The Queuing Search Algorithm (QSA) demonstrates superior accuracy for coefficient optimization. By using the established empirical formula, the convergence speeds of global and local iterative methods are improved by 26.10% and 41.78%, respectively, compared to the direct iterative algorithm. Ultimately, the optimized operational plane can achieve a maximum 37.16% hydrogen consumption reduction compared to the unoptimized system. •Compared performance of three PEMFC-ASHP integration methods for CHP systems.•Proposed a diversion system to solve low evaporation temperature operational issues.•Developed an algorithm to balance power supply & demand and reduce energy waste.•Reducing hydrogen consumption by up to 37.16%.•QSA derives two empirical formulas which improve iteration speeds by 26.10% and 41.78% seperately.
The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combination (DC), Parallel Combination (PC), Series Combination (SC). And compared the energy management strategies and power balance of the system. To further improve reliability and flexibility, a diversion PEMFC-ASHP-CHP system was proposed by combining PC and SC's system advantages. Additionally, an iterative algorithm addressed the mismatch between power supply and demand. An empirical formula was proposed to improve iterative convergence speed for practical control situations. The coefficients were optimized using six metaheuristic algorithms, and the outcomes were summarized into an optimized operational plane to enhance the system control response speed further. The results show that the PC method performs better than DC and SC. It achieves a power consumption reduction of 52.8% and a COP improvement of 111.4% compared with the ASHP system. Meanwhile, the diversion system can more effectively utilize waste heat from the PEMFC and further improve the system's performance. The Queuing Search Algorithm (QSA) demonstrates superior accuracy for coefficient optimization. By using the established empirical formula, the convergence speeds of global and local iterative methods are improved by 26.10% and 41.78%, respectively, compared to the direct iterative algorithm. Ultimately, the optimized operational plane can achieve a maximum 37.16% hydrogen consumption reduction compared to the unoptimized system.
ArticleNumber 123778
Author Zhang, Jiakai
Liu, Zewen
Yu, Sen
Zhang, Jingkui
Fan, Yi
Shi, Zhengrong
Zhang, Tao
Author_xml – sequence: 1
  givenname: Sen
  surname: Yu
  fullname: Yu, Sen
– sequence: 2
  givenname: Yi
  surname: Fan
  fullname: Fan, Yi
  email: yifan0112@shiep.edu.cn
– sequence: 3
  givenname: Zhengrong
  surname: Shi
  fullname: Shi, Zhengrong
  email: zhengrongshi@shiep.edu.cn
– sequence: 4
  givenname: Jingkui
  surname: Zhang
  fullname: Zhang, Jingkui
  email: zhangjingkui@shiep.edu.cn
– sequence: 5
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 6
  givenname: Jiakai
  surname: Zhang
  fullname: Zhang, Jiakai
– sequence: 7
  givenname: Zewen
  surname: Liu
  fullname: Liu, Zewen
BookMark eNqFkMFKAzEQhnOooFVfQXL0sjXZNOkWPChFbUGxoJ5Dmsy2KbvJmqSVCr67KdWLFw_DDMP_DcPXRz3nHSB0QcmAEiqu1gPVgYOw3A1KUg4HtGSjUdVDJ4QRUZSCjo9RP8Y1IaSkJTlBXzPn_FYluwW8ApVwq5xaQgsuj5BW3mDlzH5UK9gEG5PVWDVLH2xatdh3ybb2Ewzu_AcEHDdd1-wKA-2eWqhGOQ249gHP757uJ8Xty3ReTKZzHHcxQXuGjmrVRDj_6afo7f7udTItHp8fZpPbx0KzIU8FNRoYN9W44lzVIFRdKjNcCEP4iCwMJ6TKu4rRKhdlYiSAC2KI5ozVYz5mp-jycLcL_n0DMcnWRg1Nfg_8JkpGORNDSkuao-IQ1cHHGKCWXbCtCjtJidw7lmv561juHcuD4wxe_wG1TVmsdyko2_yP3xxwyB62FoKM2kK2Z2wAnaTx9r8T3_2soj8
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119397
crossref_primary_10_1016_j_energy_2024_134002
crossref_primary_10_1016_j_apenergy_2025_125635
crossref_primary_10_1016_j_ijhydene_2025_01_071
Cites_doi 10.1016/j.applthermaleng.2019.114002
10.1016/j.energy.2022.125530
10.1016/j.enconman.2020.113777
10.1016/j.enbuild.2021.111294
10.1016/j.ins.2022.09.025
10.21105/joss.02178
10.1016/j.jclepro.2020.120582
10.1016/j.apm.2018.06.036
10.1016/j.energy.2015.11.079
10.1016/j.egyr.2023.08.005
10.1016/j.neucom.2022.05.100
10.1016/j.ijepes.2023.109201
10.1016/j.ijhydene.2021.12.121
10.1016/j.ijhydene.2019.08.246
10.1016/j.swevo.2023.101375
10.1016/j.apenergy.2015.03.031
10.1016/j.jobe.2023.106735
10.1016/j.ijhydene.2022.08.090
10.1016/j.knosys.2022.108902
10.1016/j.enconman.2021.113990
10.1016/j.energy.2023.127485
10.1016/j.rser.2022.112440
10.1016/j.ins.2023.119656
10.1016/j.enconman.2019.112328
10.1016/j.applthermaleng.2023.120947
10.1016/j.comcom.2020.07.019
10.1016/j.rser.2021.111072
10.1016/j.ijhydene.2015.08.003
10.1016/j.apenergy.2021.118415
10.1016/j.apenergy.2023.121600
10.1016/j.ijhydene.2022.08.154
10.1016/j.jpowsour.2009.01.082
10.1016/j.fraope.2023.100037
10.1016/j.rser.2021.111634
10.1016/j.ijhydene.2022.03.159
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2024.123778
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2024_123778
S0306261924011619
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-1dce35d89855afe6af2ad4b6d0570bd50086af831883113676e560d0c533f9593
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Oct 03 00:15:28 EDT 2025
Wed Oct 01 04:38:12 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Sat Nov 02 16:00:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Air source heat pump
Proton exchange membrane fuel cell
Distributed building supply system
CHP system
Metaheuristic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-1dce35d89855afe6af2ad4b6d0570bd50086af831883113676e560d0c533f9593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153641121
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153641121
crossref_primary_10_1016_j_apenergy_2024_123778
crossref_citationtrail_10_1016_j_apenergy_2024_123778
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_123778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Frazzica, Briguglio, Sapienza, Freni, Brunaccini, Antonucci (bb0050) 2015; 40
Zhao, Cai, Luo, Zhengkai (bb0080) 2022; 47
Yu, Fan, Shi, Li, Zhao, Zhang (bb0015) 2023
Al-Shammari (bb0125) 2016; 95
Wu, Zhai, Sui, Zhang (bb0090) 2021; 235
Sankarananth, Karthiga (bb0105) 2023; 10
Li, Wei, Li, Zeng (bb0170) 2022; 500
Wilberforce, Rezk, Olabi, Epelle, Abdelkareem (bb0115) 2023; 262
Liu (bb0120) 2022; 613
Zhu, Han, Ge, Yang, Liang (bb0035) 2023; 555
Cheng (bb0195) 2020; 161
Cai, Yang, Zhou, Zhan, Gao (bb0160) 2023; 649
Li, Tian, Wei (bb0070) 2022; 310
Chen (bb0100) 2023; 277
Ren, Wei, Zhai (bb0010) 2022; 162
Spiegel (bb0150) 2008
Zhang (bb0180) 2018; 63
Ziegler, Prettico, Mateo, Román (bb0185) 2023; 152
Kwan (bb0040) 2019; 160
Han, Li, Qin (bb0165) 2023; 83
Chu, He, Jiang, Zhang, Zhongting, Gaofei (bb0075) 2021; 250
Šanić (bb0055) 2022; 47
Witte, Tuschy (bb0135) 2020; 5
Chen, Li (bb0130) 2022; 248
Nguyen, Shabani (bb0155) 2020; 204
Zhang, Yiji, Kadam, Zhibin (bb0065) 2023; 348
Korkmaz, Suleyman, Çetinkaya, Olgun Konur, Erginer, Ozgur Colpan (bb0110) 2023
El-Mageed, Amr, Abohany, Saad, Sallam (bb0200) 2023; 134
Mohsin, Rizwan Raza, Mohsin-ul-Mulk, Hacker (bb0205) 2020; 45
Kuruoglu (bb0175) 2023; 4
Capuano, Sorrentino, Agelin-Chaab (bb0045) 2023; 231
Yuan, Zou, Jung, Kim (bb0085) 2022; 47
Tan, Haoqin, Liu, Chen, Xuan (bb0145) 2022; 47
Miansari, Sedighi, Amidpour, Alizadeh, Miansari (bb0140) 2009; 190
Alizadeh, Torabi (bb0210) 2021; 229
Papadimitrakis, Giamarelos, Stogiannos, Zois, Livanos, Alexandridis (bb0095) 2021; 145
Xu, Liu, Wei, Wang, Yang, Ce (bb0020) 2020; 257
de Fato, Agelin-Chaab, Sorrentino (bb0025) 2023; 4
Tan, Feng, Wang (bb0030) 2021; 152
Zhu, Xingxing Zhang, Gong, Li (bb0005) 2023; 73
Arsalis, Kær, Nielsen (bb0060) 2015; 147
Alhasan, Ahmad, Wazirali, Aleisa (bb0190) 2023; 35
Chen (10.1016/j.apenergy.2024.123778_bb0130) 2022; 248
Chu (10.1016/j.apenergy.2024.123778_bb0075) 2021; 250
Mohsin (10.1016/j.apenergy.2024.123778_bb0205) 2020; 45
El-Mageed (10.1016/j.apenergy.2024.123778_bb0200) 2023; 134
Ren (10.1016/j.apenergy.2024.123778_bb0010) 2022; 162
de Fato (10.1016/j.apenergy.2024.123778_bb0025) 2023; 4
Al-Shammari (10.1016/j.apenergy.2024.123778_bb0125) 2016; 95
Šanić (10.1016/j.apenergy.2024.123778_bb0055) 2022; 47
Xu (10.1016/j.apenergy.2024.123778_bb0020) 2020; 257
Kuruoglu (10.1016/j.apenergy.2024.123778_bb0175) 2023; 4
Zhao (10.1016/j.apenergy.2024.123778_bb0080) 2022; 47
Nguyen (10.1016/j.apenergy.2024.123778_bb0155) 2020; 204
Wilberforce (10.1016/j.apenergy.2024.123778_bb0115) 2023; 262
Capuano (10.1016/j.apenergy.2024.123778_bb0045) 2023; 231
Zhu (10.1016/j.apenergy.2024.123778_bb0035) 2023; 555
Li (10.1016/j.apenergy.2024.123778_bb0070) 2022; 310
Korkmaz (10.1016/j.apenergy.2024.123778_bb0110) 2023
Miansari (10.1016/j.apenergy.2024.123778_bb0140) 2009; 190
Alhasan (10.1016/j.apenergy.2024.123778_bb0190) 2023; 35
Zhang (10.1016/j.apenergy.2024.123778_bb0180) 2018; 63
Sankarananth (10.1016/j.apenergy.2024.123778_bb0105) 2023; 10
Liu (10.1016/j.apenergy.2024.123778_bb0120) 2022; 613
Ziegler (10.1016/j.apenergy.2024.123778_bb0185) 2023; 152
Yuan (10.1016/j.apenergy.2024.123778_bb0085) 2022; 47
Kwan (10.1016/j.apenergy.2024.123778_bb0040) 2019; 160
Arsalis (10.1016/j.apenergy.2024.123778_bb0060) 2015; 147
Han (10.1016/j.apenergy.2024.123778_bb0165) 2023; 83
Spiegel (10.1016/j.apenergy.2024.123778_bb0150) 2008
Cheng (10.1016/j.apenergy.2024.123778_bb0195) 2020; 161
Tan (10.1016/j.apenergy.2024.123778_bb0030) 2021; 152
Frazzica (10.1016/j.apenergy.2024.123778_bb0050) 2015; 40
Tan (10.1016/j.apenergy.2024.123778_bb0145) 2022; 47
Zhu (10.1016/j.apenergy.2024.123778_bb0005) 2023; 73
Yu (10.1016/j.apenergy.2024.123778_bb0015) 2023
Zhang (10.1016/j.apenergy.2024.123778_bb0065) 2023; 348
Li (10.1016/j.apenergy.2024.123778_bb0170) 2022; 500
Chen (10.1016/j.apenergy.2024.123778_bb0100) 2023; 277
Wu (10.1016/j.apenergy.2024.123778_bb0090) 2021; 235
Alizadeh (10.1016/j.apenergy.2024.123778_bb0210) 2021; 229
Papadimitrakis (10.1016/j.apenergy.2024.123778_bb0095) 2021; 145
Cai (10.1016/j.apenergy.2024.123778_bb0160) 2023; 649
Witte (10.1016/j.apenergy.2024.123778_bb0135) 2020; 5
References_xml – start-page: 97
  year: 2008
  end-page: 125
  ident: bb0150
  article-title: Chapter 5 - fuel cell mass transport
  publication-title: PEM fuel cell modeling and simulation using Matlab
– volume: 134
  year: 2023
  ident: bb0200
  article-title: Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution
  publication-title: Appl Soft Comput
– volume: 5
  start-page: 2178
  year: 2020
  ident: bb0135
  article-title: TESPy: thermal engineering Systems in Python
  publication-title: The Journal of Open Source Software
– volume: 63
  start-page: 464
  year: 2018
  end-page: 490
  ident: bb0180
  article-title: Mi Xiao, Liang Gao, and Quanke Pan,
  publication-title: Appl Math Model
– volume: 235
  year: 2021
  ident: bb0090
  article-title: A novel distributed energy system using high-temperature proton exchange membrane fuel cell integrated with hybrid-energy heat pump
  publication-title: Energy Convers Manag
– year: 2023
  ident: bb0015
  article-title: Hydrogen-based combined heat and power systems: a review of technologies and challenges
  publication-title: Int J Hydrog Energy
– volume: 45
  start-page: 24093
  year: 2020
  end-page: 24107
  ident: bb0205
  article-title: Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis
  publication-title: Int J Hydrog Energy
– volume: 160
  year: 2019
  ident: bb0040
  article-title: Xiaofeng Wu, and Qinghe Yao,
  publication-title: Appl Therm Eng
– volume: 229
  year: 2021
  ident: bb0210
  article-title: Precise PEM fuel cell parameter extraction based on a self-consistent model and SCCSA optimization algorithm
  publication-title: Energy Convers Manag
– volume: 500
  start-page: 662
  year: 2022
  end-page: 678
  ident: bb0170
  article-title: A survey on firefly algorithms
  publication-title: Neurocomputing
– volume: 613
  start-page: 469
  year: 2022
  end-page: 493
  ident: bb0120
  article-title: Zhongbo Hu, and Qinghua Su,
  publication-title: Inf Sci
– volume: 152
  year: 2023
  ident: bb0185
  article-title: Methodology for integrating flexibility into realistic large-scale distribution network planning using Tabu search
  publication-title: Int J Electr Power Energy Syst
– volume: 40
  start-page: 14746
  year: 2015
  end-page: 14756
  ident: bb0050
  article-title: Analysis of different heat pumping technologies integrating small scale solid oxide fuel cell system for more efficient building heating systems
  publication-title: Int J Hydrog Energy
– volume: 152
  year: 2021
  ident: bb0030
  article-title: Performance comparison of different heat pumps in low-temperature waste heat recovery
  publication-title: Renew Sust Energ Rev
– volume: 231
  year: 2023
  ident: bb0045
  article-title: Design and analysis of a hybrid space heating system based on HT-PEM fuel cell and an air source heat pump with a novel heat recovery strategy
  publication-title: Appl Therm Eng
– volume: 162
  year: 2022
  ident: bb0010
  article-title: A review on the integration and optimization of distributed energy systems
  publication-title: Renew Sust Energ Rev
– volume: 277
  year: 2023
  ident: bb0100
  article-title: Changjun Xie, Yang Li, WenChao Zhu, Lamei Xu, and Hoay Beng Gooi,
  publication-title: Energy
– volume: 310
  year: 2022
  ident: bb0070
  article-title: Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies
  publication-title: Appl Energy
– volume: 204
  year: 2020
  ident: bb0155
  article-title: Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications
  publication-title: Energy Convers Manag
– volume: 649
  year: 2023
  ident: bb0160
  article-title: Toward explicit control between exploration and exploitation in evolutionary algorithms: a case study of differential evolution
  publication-title: Inf Sci
– volume: 95
  start-page: 266
  year: 2016
  end-page: 273
  ident: bb0125
  article-title: Afram Keivani, Shahaboddin Shamshirband, Ali Mostafaeipour, por lip Yee, Dalibor Petković, and Sudheer Ch,
  publication-title: Energy
– volume: 161
  start-page: 132
  year: 2020
  end-page: 141
  ident: bb0195
  article-title: Luo Zhong, Xiao Zhang, and Jiaxu Xing,
  publication-title: Comput Commun
– volume: 47
  start-page: 7932
  year: 2022
  end-page: 7948
  ident: bb0085
  article-title: Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm
  publication-title: Int J Hydrog Energy
– volume: 35
  year: 2023
  ident: bb0190
  article-title: And Weaam abo Shdeed,
  publication-title: J King Saud Univers - Comput Inform Sci
– volume: 83
  year: 2023
  ident: bb0165
  article-title: A novel hybrid particle swarm optimization with marine predators
  publication-title: Swarm and Evolutionary Comput
– volume: 73
  year: 2023
  ident: bb0005
  article-title: A review of distributed energy system optimization for building decarbonization
  publication-title: J Building Engin
– volume: 4
  year: 2023
  ident: bb0025
  article-title: E-prime - advances in electrical engineering
  publication-title: Electronics and Energy
– volume: 147
  start-page: 569
  year: 2015
  end-page: 581
  ident: bb0060
  article-title: Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications
  publication-title: Appl Energy
– volume: 257
  year: 2020
  ident: bb0020
  article-title: Atmospheric air quality in Beijing improved by application of air source heat pump (ASHP) systems
  publication-title: J Clean Prod
– volume: 555
  year: 2023
  ident: bb0035
  article-title: Performance analysis and multi-objective optimization of a poly-generation system based on PEMFC
  publication-title: Desalination
– volume: 250
  year: 2021
  ident: bb0075
  article-title: Optimization of operation strategy for a grid interactive regional energy system
  publication-title: Energ Buildings
– volume: 10
  start-page: 1299
  year: 2023
  end-page: 1312
  ident: bb0105
  article-title: Suganya E, Sountharrajan S, and Durga Prasad Bavirisetti,
  publication-title: Energy Rep
– volume: 47
  start-page: 35790
  year: 2022
  end-page: 35809
  ident: bb0145
  article-title: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance
  publication-title: Int J Hydrog Energy
– volume: 248
  year: 2022
  ident: bb0130
  article-title: Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem
  publication-title: Knowl-Based Syst
– volume: 4
  year: 2023
  ident: bb0175
  article-title: Chun Lin Kuo, and Wai kin victor Chan,
  publication-title: Franklin Open
– volume: 262
  year: 2023
  ident: bb0115
  article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms
  publication-title: Energy
– volume: 47
  start-page: 35068
  year: 2022
  end-page: 35080
  ident: bb0055
  article-title: Domina and Frano Barbir,
  publication-title: Int J Hydrog Energy
– volume: 348
  year: 2023
  ident: bb0065
  article-title: A fuel cell range extender integrating with heat pump for cabin heat and power generation
  publication-title: Appl Energy
– volume: 190
  start-page: 356
  year: 2009
  end-page: 361
  ident: bb0140
  article-title: Experimental and thermodynamic approach on proton exchange membrane fuel cell performance
  publication-title: J Power Sources
– year: 2023
  ident: bb0110
  article-title: Comparison of various metaheuristic algorithms to extract the optimal PEMFC modeling parameters
  publication-title: Int J Hydrog Energy
– volume: 47
  start-page: 16597
  year: 2022
  end-page: 16609
  ident: bb0080
  article-title: Multi-stack coupled energy management strategy of a PEMFC based-CCHP system applied to data centers
  publication-title: Int J Hydrog Energy
– volume: 145
  year: 2021
  ident: bb0095
  article-title: Metaheuristic search in smart grid: a review with emphasis on planning, scheduling and power flow optimization applications
  publication-title: Renew Sust Energ Rev
– volume: 160
  year: 2019
  ident: 10.1016/j.apenergy.2024.123778_bb0040
  article-title: Xiaofeng Wu, and Qinghe Yao, performance comparison of several heat pump technologies for fuel cell micro-CHP integration using a multi-objective optimisation approach
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114002
– volume: 262
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0115
  article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125530
– volume: 229
  year: 2021
  ident: 10.1016/j.apenergy.2024.123778_bb0210
  article-title: Precise PEM fuel cell parameter extraction based on a self-consistent model and SCCSA optimization algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113777
– volume: 250
  year: 2021
  ident: 10.1016/j.apenergy.2024.123778_bb0075
  article-title: Optimization of operation strategy for a grid interactive regional energy system
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2021.111294
– volume: 613
  start-page: 469
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0120
  article-title: Zhongbo Hu, and Qinghua Su, neighborhood-based differential evolution algorithm with direction induced strategy for the large-scale combined heat and power economic dispatch problem
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.09.025
– year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0110
  article-title: Comparison of various metaheuristic algorithms to extract the optimal PEMFC modeling parameters
  publication-title: Int J Hydrog Energy
– volume: 5
  start-page: 2178
  issue: 49
  year: 2020
  ident: 10.1016/j.apenergy.2024.123778_bb0135
  article-title: TESPy: thermal engineering Systems in Python
  publication-title: The Journal of Open Source Software
  doi: 10.21105/joss.02178
– year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0015
  article-title: Hydrogen-based combined heat and power systems: a review of technologies and challenges
  publication-title: Int J Hydrog Energy
– volume: 257
  year: 2020
  ident: 10.1016/j.apenergy.2024.123778_bb0020
  article-title: Atmospheric air quality in Beijing improved by application of air source heat pump (ASHP) systems
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120582
– volume: 4
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0025
  article-title: Analysis and comparison of innovative PEMFC systems coupled with an ASHP for space heating in cold climates. E-prime - advances in electrical engineering
  publication-title: Electronics and Energy
– volume: 134
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0200
  article-title: Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution
  publication-title: Appl Soft Comput
– volume: 63
  start-page: 464
  year: 2018
  ident: 10.1016/j.apenergy.2024.123778_bb0180
  article-title: Mi Xiao, Liang Gao, and Quanke Pan, queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.06.036
– volume: 95
  start-page: 266
  year: 2016
  ident: 10.1016/j.apenergy.2024.123778_bb0125
  article-title: Afram Keivani, Shahaboddin Shamshirband, Ali Mostafaeipour, por lip Yee, Dalibor Petković, and Sudheer Ch, prediction of heat load in district heating systems by support vector machine with firefly searching algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.079
– volume: 10
  start-page: 1299
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0105
  article-title: Suganya E, Sountharrajan S, and Durga Prasad Bavirisetti, AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.08.005
– volume: 500
  start-page: 662
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0170
  article-title: A survey on firefly algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.100
– volume: 152
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0185
  article-title: Methodology for integrating flexibility into realistic large-scale distribution network planning using Tabu search
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109201
– volume: 47
  start-page: 7932
  issue: 12
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0085
  article-title: Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.12.121
– start-page: 97
  year: 2008
  ident: 10.1016/j.apenergy.2024.123778_bb0150
  article-title: Chapter 5 - fuel cell mass transport
– volume: 45
  start-page: 24093
  issue: 45
  year: 2020
  ident: 10.1016/j.apenergy.2024.123778_bb0205
  article-title: Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.08.246
– volume: 83
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0165
  article-title: A novel hybrid particle swarm optimization with marine predators
  publication-title: Swarm and Evolutionary Comput
  doi: 10.1016/j.swevo.2023.101375
– volume: 147
  start-page: 569
  year: 2015
  ident: 10.1016/j.apenergy.2024.123778_bb0060
  article-title: Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.031
– volume: 73
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0005
  article-title: A review of distributed energy system optimization for building decarbonization
  publication-title: J Building Engin
  doi: 10.1016/j.jobe.2023.106735
– volume: 47
  start-page: 35068
  issue: 82
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0055
  article-title: Domina and Frano Barbir, stand-alone micro-trigeneration system coupling electrolyzer, fuel cell, and heat pump with renewables
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.08.090
– volume: 248
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0130
  article-title: Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108902
– volume: 235
  year: 2021
  ident: 10.1016/j.apenergy.2024.123778_bb0090
  article-title: A novel distributed energy system using high-temperature proton exchange membrane fuel cell integrated with hybrid-energy heat pump
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113990
– volume: 277
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0100
  article-title: Changjun Xie, Yang Li, WenChao Zhu, Lamei Xu, and Hoay Beng Gooi, an improved metaheuristic-based MPPT for centralized thermoelectric generation systems under dynamic temperature conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127485
– volume: 162
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0010
  article-title: A review on the integration and optimization of distributed energy systems
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2022.112440
– volume: 649
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0160
  article-title: Toward explicit control between exploration and exploitation in evolutionary algorithms: a case study of differential evolution
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.119656
– volume: 204
  year: 2020
  ident: 10.1016/j.apenergy.2024.123778_bb0155
  article-title: Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112328
– volume: 231
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0045
  article-title: Design and analysis of a hybrid space heating system based on HT-PEM fuel cell and an air source heat pump with a novel heat recovery strategy
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2023.120947
– volume: 161
  start-page: 132
  year: 2020
  ident: 10.1016/j.apenergy.2024.123778_bb0195
  article-title: Luo Zhong, Xiao Zhang, and Jiaxu Xing, a staged adaptive firefly algorithm for UAV charging planning in wireless sensor networks
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2020.07.019
– volume: 145
  year: 2021
  ident: 10.1016/j.apenergy.2024.123778_bb0095
  article-title: Metaheuristic search in smart grid: a review with emphasis on planning, scheduling and power flow optimization applications
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2021.111072
– volume: 35
  issue: 9
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0190
  article-title: And Weaam abo Shdeed, adaptive mean center of mass particle swarm optimizer for auto-localization in 3D wireless sensor networks
  publication-title: J King Saud Univers - Comput Inform Sci
– volume: 40
  start-page: 14746
  issue: 42
  year: 2015
  ident: 10.1016/j.apenergy.2024.123778_bb0050
  article-title: Analysis of different heat pumping technologies integrating small scale solid oxide fuel cell system for more efficient building heating systems
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2015.08.003
– volume: 310
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0070
  article-title: Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118415
– volume: 348
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0065
  article-title: A fuel cell range extender integrating with heat pump for cabin heat and power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121600
– volume: 47
  start-page: 35790
  issue: 84
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0145
  article-title: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.08.154
– volume: 190
  start-page: 356
  issue: 2
  year: 2009
  ident: 10.1016/j.apenergy.2024.123778_bb0140
  article-title: Experimental and thermodynamic approach on proton exchange membrane fuel cell performance
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.01.082
– volume: 4
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0175
  article-title: Chun Lin Kuo, and Wai kin victor Chan, sparse neural network optimization by simulated annealing
  publication-title: Franklin Open
  doi: 10.1016/j.fraope.2023.100037
– volume: 152
  year: 2021
  ident: 10.1016/j.apenergy.2024.123778_bb0030
  article-title: Performance comparison of different heat pumps in low-temperature waste heat recovery
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2021.111634
– volume: 47
  start-page: 16597
  issue: 37
  year: 2022
  ident: 10.1016/j.apenergy.2024.123778_bb0080
  article-title: Multi-stack coupled energy management strategy of a PEMFC based-CCHP system applied to data centers
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.03.159
– volume: 555
  year: 2023
  ident: 10.1016/j.apenergy.2024.123778_bb0035
  article-title: Performance analysis and multi-objective optimization of a poly-generation system based on PEMFC
  publication-title: DCMD and heat pump Desalination
SSID ssj0002120
Score 2.4716182
Snippet The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123778
SubjectTerms air
Air source heat pump
algorithms
CHP system
Distributed building supply system
energy
energy use and consumption
evolution
fuel cells
heat
heat pumps
hydrogen
Metaheuristic algorithms
Proton exchange membrane fuel cell
renewable energy sources
supply balance
Title Innovative heat management method and metaheuristic algorithm optimized power supply-demand balance for PEMFC-ASHP-CHP system
URI https://dx.doi.org/10.1016/j.apenergy.2024.123778
https://www.proquest.com/docview/3153641121
Volume 371
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002120
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002120
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002120
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002120
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBYlfdkextotrF1bVOir8sOWXOcxhAS3oyWQBvomZOm8pjROaJLBBuvf3jtL7i8GfdiDwTaSMTrpu0_o7jvGTorIFnnsjIigawSinxLoZ6xIZI58AySuL8odvrhMsqk8v1bXW2xQ58JQWGXAfo_pFVqHN-0wmu3lbNaeENv1Gwg6TKikP6U8pSoGrYfnMI8oSDNiY0GtX2QJ37bMEqoMO9wnRrKFIH5K5db-7aDeQHXlf0af2adAHHnf_9sO24Jyl318ISe4y5rD56w1bBqW7eoL-3sWap_-Ak7gy-dPQS_cl5DmpnR0a25g47Wbubn7ubifrW_mfIGwMp_9AceXVFONr6gS6G_hYE69cgqOtMCR_fLx8GI0EP1JNhaDbMy9TPRXNh0NrwaZCHUXhI2lWouusxArl_ZSpUwBiSki42SeOOR2ndwp2gaZIkU0wKuSfAPkTa5jkToWJHTcZI1yUcI3xgvXgxwxIkGzS2njFFKQnUKmPWPztKP2mKoHW9sgSk61Me50HX12q2sjaTKS9kbaY-2nfksvy_Fuj15tS_1qgmn0He_2Pa6Nr3H10ZGKKWGxWekYHUYikbN29__j-9_ZB3ryMYIHrLG-38Ahcp11flRN5iO23T_7kV0-AhlXAJk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEA-iD949HOqdnN6pEe41-9Emtfsoyy71Y2VBBd9CmkzPFbe7uLsHJ3h_uzNN6sch-OBDobRJKZnkN7-Qmd8w9quIbJHHzogI2kYg-imBfsaKRObIN0Di-qLc4cFZkl3K4yt1tcS6dS4MhVUG7PeYXqF1eNIMo9mcjkbNc2K7fgNBhwkk_bkiVXRAO7DGv-c4jyhoM2JrQc1fpAnfNMwUqhQ73ChGsoEofkD11t72UP9hdeWA-mvsS2CO_ND_3DpbgnKDfX6hJ7jBNnvPaWvYNKzb2Vf2cBSKn_4BTujLx09RL9zXkOamdHRrrmHhxZu5uf09uRvNr8d8grgyHt2D41MqqsZnVAr0r3Awpl45RUda4Eh_-bA36HfF4Xk2FN1syL1O9Dd22e9ddDMRCi8IG0s1F21nIVYu7aRKmQISU0TGyTxxSO5auVO0DzJFinCAV6X5BkicXMsidyxI6XiTLZeTEr4zXrgO5AgSCdpdShunkIJsFTLtGJunLbXFVD3Y2gZVciqOcavr8LMbXRtJk5G0N9IWaz71m3pdjnd7dGpb6lczTKPzeLfvfm18jcuPzlRMCZPFTMfoMRKJpLW9_YHv77HV7GJwqk-Pzk5-sE_0xgcM_mTL87sF7CDxmee71cR-BPkiAi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+heat+management+method+and+metaheuristic+algorithm+optimized+power+supply-demand+balance+for+PEMFC-ASHP-CHP+system&rft.jtitle=Applied+energy&rft.au=Yu%2C+Sen&rft.au=Fan%2C+Yi&rft.au=Shi%2C+Zhengrong&rft.au=Zhang%2C+Jingkui&rft.date=2024-10-01&rft.issn=0306-2619&rft.volume=371+p.123778-&rft_id=info:doi/10.1016%2Fj.apenergy.2024.123778&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon