Innovative heat management method and metaheuristic algorithm optimized power supply-demand balance for PEMFC-ASHP-CHP system
The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combinat...
        Saved in:
      
    
          | Published in | Applied energy Vol. 371; p. 123778 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.10.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-2619 | 
| DOI | 10.1016/j.apenergy.2024.123778 | 
Cover
| Abstract | The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combination (DC), Parallel Combination (PC), Series Combination (SC). And compared the energy management strategies and power balance of the system. To further improve reliability and flexibility, a diversion PEMFC-ASHP-CHP system was proposed by combining PC and SC's system advantages. Additionally, an iterative algorithm addressed the mismatch between power supply and demand. An empirical formula was proposed to improve iterative convergence speed for practical control situations. The coefficients were optimized using six metaheuristic algorithms, and the outcomes were summarized into an optimized operational plane to enhance the system control response speed further. The results show that the PC method performs better than DC and SC. It achieves a power consumption reduction of 52.8% and a COP improvement of 111.4% compared with the ASHP system. Meanwhile, the diversion system can more effectively utilize waste heat from the PEMFC and further improve the system's performance. The Queuing Search Algorithm (QSA) demonstrates superior accuracy for coefficient optimization. By using the established empirical formula, the convergence speeds of global and local iterative methods are improved by 26.10% and 41.78%, respectively, compared to the direct iterative algorithm. Ultimately, the optimized operational plane can achieve a maximum 37.16% hydrogen consumption reduction compared to the unoptimized system.
•Compared performance of three PEMFC-ASHP integration methods for CHP systems.•Proposed a diversion system to solve low evaporation temperature operational issues.•Developed an algorithm to balance power supply & demand and reduce energy waste.•Reducing hydrogen consumption by up to 37.16%.•QSA derives two empirical formulas which improve iteration speeds by 26.10% and 41.78% seperately. | 
    
|---|---|
| AbstractList | The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combination (DC), Parallel Combination (PC), Series Combination (SC). And compared the energy management strategies and power balance of the system. To further improve reliability and flexibility, a diversion PEMFC-ASHP-CHP system was proposed by combining PC and SC's system advantages. Additionally, an iterative algorithm addressed the mismatch between power supply and demand. An empirical formula was proposed to improve iterative convergence speed for practical control situations. The coefficients were optimized using six metaheuristic algorithms, and the outcomes were summarized into an optimized operational plane to enhance the system control response speed further. The results show that the PC method performs better than DC and SC. It achieves a power consumption reduction of 52.8% and a COP improvement of 111.4% compared with the ASHP system. Meanwhile, the diversion system can more effectively utilize waste heat from the PEMFC and further improve the system's performance. The Queuing Search Algorithm (QSA) demonstrates superior accuracy for coefficient optimization. By using the established empirical formula, the convergence speeds of global and local iterative methods are improved by 26.10% and 41.78%, respectively, compared to the direct iterative algorithm. Ultimately, the optimized operational plane can achieve a maximum 37.16% hydrogen consumption reduction compared to the unoptimized system.
•Compared performance of three PEMFC-ASHP integration methods for CHP systems.•Proposed a diversion system to solve low evaporation temperature operational issues.•Developed an algorithm to balance power supply & demand and reduce energy waste.•Reducing hydrogen consumption by up to 37.16%.•QSA derives two empirical formulas which improve iteration speeds by 26.10% and 41.78% seperately. The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel Cell (PEMFC) and Air Source Heat Pump (ASHP) were integrated to form PEMFC-ASHP-CHP systems in three combination methods, i.e., Direct Combination (DC), Parallel Combination (PC), Series Combination (SC). And compared the energy management strategies and power balance of the system. To further improve reliability and flexibility, a diversion PEMFC-ASHP-CHP system was proposed by combining PC and SC's system advantages. Additionally, an iterative algorithm addressed the mismatch between power supply and demand. An empirical formula was proposed to improve iterative convergence speed for practical control situations. The coefficients were optimized using six metaheuristic algorithms, and the outcomes were summarized into an optimized operational plane to enhance the system control response speed further. The results show that the PC method performs better than DC and SC. It achieves a power consumption reduction of 52.8% and a COP improvement of 111.4% compared with the ASHP system. Meanwhile, the diversion system can more effectively utilize waste heat from the PEMFC and further improve the system's performance. The Queuing Search Algorithm (QSA) demonstrates superior accuracy for coefficient optimization. By using the established empirical formula, the convergence speeds of global and local iterative methods are improved by 26.10% and 41.78%, respectively, compared to the direct iterative algorithm. Ultimately, the optimized operational plane can achieve a maximum 37.16% hydrogen consumption reduction compared to the unoptimized system.  | 
    
| ArticleNumber | 123778 | 
    
| Author | Zhang, Jiakai Liu, Zewen Yu, Sen Zhang, Jingkui Fan, Yi Shi, Zhengrong Zhang, Tao  | 
    
| Author_xml | – sequence: 1 givenname: Sen surname: Yu fullname: Yu, Sen – sequence: 2 givenname: Yi surname: Fan fullname: Fan, Yi email: yifan0112@shiep.edu.cn – sequence: 3 givenname: Zhengrong surname: Shi fullname: Shi, Zhengrong email: zhengrongshi@shiep.edu.cn – sequence: 4 givenname: Jingkui surname: Zhang fullname: Zhang, Jingkui email: zhangjingkui@shiep.edu.cn – sequence: 5 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 6 givenname: Jiakai surname: Zhang fullname: Zhang, Jiakai – sequence: 7 givenname: Zewen surname: Liu fullname: Liu, Zewen  | 
    
| BookMark | eNqFkMFKAzEQhnOooFVfQXL0sjXZNOkWPChFbUGxoJ5Dmsy2KbvJmqSVCr67KdWLFw_DDMP_DcPXRz3nHSB0QcmAEiqu1gPVgYOw3A1KUg4HtGSjUdVDJ4QRUZSCjo9RP8Y1IaSkJTlBXzPn_FYluwW8ApVwq5xaQgsuj5BW3mDlzH5UK9gEG5PVWDVLH2xatdh3ybb2Ewzu_AcEHDdd1-wKA-2eWqhGOQ249gHP757uJ8Xty3ReTKZzHHcxQXuGjmrVRDj_6afo7f7udTItHp8fZpPbx0KzIU8FNRoYN9W44lzVIFRdKjNcCEP4iCwMJ6TKu4rRKhdlYiSAC2KI5ozVYz5mp-jycLcL_n0DMcnWRg1Nfg_8JkpGORNDSkuao-IQ1cHHGKCWXbCtCjtJidw7lmv561juHcuD4wxe_wG1TVmsdyko2_yP3xxwyB62FoKM2kK2Z2wAnaTx9r8T3_2soj8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119397 crossref_primary_10_1016_j_energy_2024_134002 crossref_primary_10_1016_j_apenergy_2025_125635 crossref_primary_10_1016_j_ijhydene_2025_01_071  | 
    
| Cites_doi | 10.1016/j.applthermaleng.2019.114002 10.1016/j.energy.2022.125530 10.1016/j.enconman.2020.113777 10.1016/j.enbuild.2021.111294 10.1016/j.ins.2022.09.025 10.21105/joss.02178 10.1016/j.jclepro.2020.120582 10.1016/j.apm.2018.06.036 10.1016/j.energy.2015.11.079 10.1016/j.egyr.2023.08.005 10.1016/j.neucom.2022.05.100 10.1016/j.ijepes.2023.109201 10.1016/j.ijhydene.2021.12.121 10.1016/j.ijhydene.2019.08.246 10.1016/j.swevo.2023.101375 10.1016/j.apenergy.2015.03.031 10.1016/j.jobe.2023.106735 10.1016/j.ijhydene.2022.08.090 10.1016/j.knosys.2022.108902 10.1016/j.enconman.2021.113990 10.1016/j.energy.2023.127485 10.1016/j.rser.2022.112440 10.1016/j.ins.2023.119656 10.1016/j.enconman.2019.112328 10.1016/j.applthermaleng.2023.120947 10.1016/j.comcom.2020.07.019 10.1016/j.rser.2021.111072 10.1016/j.ijhydene.2015.08.003 10.1016/j.apenergy.2021.118415 10.1016/j.apenergy.2023.121600 10.1016/j.ijhydene.2022.08.154 10.1016/j.jpowsour.2009.01.082 10.1016/j.fraope.2023.100037 10.1016/j.rser.2021.111634 10.1016/j.ijhydene.2022.03.159  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.apenergy.2024.123778 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| ExternalDocumentID | 10_1016_j_apenergy_2024_123778 S0306261924011619  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ZY4 ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c345t-1dce35d89855afe6af2ad4b6d0570bd50086af831883113676e560d0c533f9593 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0306-2619 | 
    
| IngestDate | Fri Oct 03 00:15:28 EDT 2025 Wed Oct 01 04:38:12 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Sat Nov 02 16:00:44 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Air source heat pump Proton exchange membrane fuel cell Distributed building supply system CHP system Metaheuristic algorithms  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c345t-1dce35d89855afe6af2ad4b6d0570bd50086af831883113676e560d0c533f9593 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 3153641121 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3153641121 crossref_primary_10_1016_j_apenergy_2024_123778 crossref_citationtrail_10_1016_j_apenergy_2024_123778 elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_123778  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-10-01 2024-10-00 20241001  | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied energy | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Frazzica, Briguglio, Sapienza, Freni, Brunaccini, Antonucci (bb0050) 2015; 40 Zhao, Cai, Luo, Zhengkai (bb0080) 2022; 47 Yu, Fan, Shi, Li, Zhao, Zhang (bb0015) 2023 Al-Shammari (bb0125) 2016; 95 Wu, Zhai, Sui, Zhang (bb0090) 2021; 235 Sankarananth, Karthiga (bb0105) 2023; 10 Li, Wei, Li, Zeng (bb0170) 2022; 500 Wilberforce, Rezk, Olabi, Epelle, Abdelkareem (bb0115) 2023; 262 Liu (bb0120) 2022; 613 Zhu, Han, Ge, Yang, Liang (bb0035) 2023; 555 Cheng (bb0195) 2020; 161 Cai, Yang, Zhou, Zhan, Gao (bb0160) 2023; 649 Li, Tian, Wei (bb0070) 2022; 310 Chen (bb0100) 2023; 277 Ren, Wei, Zhai (bb0010) 2022; 162 Spiegel (bb0150) 2008 Zhang (bb0180) 2018; 63 Ziegler, Prettico, Mateo, Román (bb0185) 2023; 152 Kwan (bb0040) 2019; 160 Han, Li, Qin (bb0165) 2023; 83 Chu, He, Jiang, Zhang, Zhongting, Gaofei (bb0075) 2021; 250 Šanić (bb0055) 2022; 47 Witte, Tuschy (bb0135) 2020; 5 Chen, Li (bb0130) 2022; 248 Nguyen, Shabani (bb0155) 2020; 204 Zhang, Yiji, Kadam, Zhibin (bb0065) 2023; 348 Korkmaz, Suleyman, Çetinkaya, Olgun Konur, Erginer, Ozgur Colpan (bb0110) 2023 El-Mageed, Amr, Abohany, Saad, Sallam (bb0200) 2023; 134 Mohsin, Rizwan Raza, Mohsin-ul-Mulk, Hacker (bb0205) 2020; 45 Kuruoglu (bb0175) 2023; 4 Capuano, Sorrentino, Agelin-Chaab (bb0045) 2023; 231 Yuan, Zou, Jung, Kim (bb0085) 2022; 47 Tan, Haoqin, Liu, Chen, Xuan (bb0145) 2022; 47 Miansari, Sedighi, Amidpour, Alizadeh, Miansari (bb0140) 2009; 190 Alizadeh, Torabi (bb0210) 2021; 229 Papadimitrakis, Giamarelos, Stogiannos, Zois, Livanos, Alexandridis (bb0095) 2021; 145 Xu, Liu, Wei, Wang, Yang, Ce (bb0020) 2020; 257 de Fato, Agelin-Chaab, Sorrentino (bb0025) 2023; 4 Tan, Feng, Wang (bb0030) 2021; 152 Zhu, Xingxing Zhang, Gong, Li (bb0005) 2023; 73 Arsalis, Kær, Nielsen (bb0060) 2015; 147 Alhasan, Ahmad, Wazirali, Aleisa (bb0190) 2023; 35 Chen (10.1016/j.apenergy.2024.123778_bb0130) 2022; 248 Chu (10.1016/j.apenergy.2024.123778_bb0075) 2021; 250 Mohsin (10.1016/j.apenergy.2024.123778_bb0205) 2020; 45 El-Mageed (10.1016/j.apenergy.2024.123778_bb0200) 2023; 134 Ren (10.1016/j.apenergy.2024.123778_bb0010) 2022; 162 de Fato (10.1016/j.apenergy.2024.123778_bb0025) 2023; 4 Al-Shammari (10.1016/j.apenergy.2024.123778_bb0125) 2016; 95 Šanić (10.1016/j.apenergy.2024.123778_bb0055) 2022; 47 Xu (10.1016/j.apenergy.2024.123778_bb0020) 2020; 257 Kuruoglu (10.1016/j.apenergy.2024.123778_bb0175) 2023; 4 Zhao (10.1016/j.apenergy.2024.123778_bb0080) 2022; 47 Nguyen (10.1016/j.apenergy.2024.123778_bb0155) 2020; 204 Wilberforce (10.1016/j.apenergy.2024.123778_bb0115) 2023; 262 Capuano (10.1016/j.apenergy.2024.123778_bb0045) 2023; 231 Zhu (10.1016/j.apenergy.2024.123778_bb0035) 2023; 555 Li (10.1016/j.apenergy.2024.123778_bb0070) 2022; 310 Korkmaz (10.1016/j.apenergy.2024.123778_bb0110) 2023 Miansari (10.1016/j.apenergy.2024.123778_bb0140) 2009; 190 Alhasan (10.1016/j.apenergy.2024.123778_bb0190) 2023; 35 Zhang (10.1016/j.apenergy.2024.123778_bb0180) 2018; 63 Sankarananth (10.1016/j.apenergy.2024.123778_bb0105) 2023; 10 Liu (10.1016/j.apenergy.2024.123778_bb0120) 2022; 613 Ziegler (10.1016/j.apenergy.2024.123778_bb0185) 2023; 152 Yuan (10.1016/j.apenergy.2024.123778_bb0085) 2022; 47 Kwan (10.1016/j.apenergy.2024.123778_bb0040) 2019; 160 Arsalis (10.1016/j.apenergy.2024.123778_bb0060) 2015; 147 Han (10.1016/j.apenergy.2024.123778_bb0165) 2023; 83 Spiegel (10.1016/j.apenergy.2024.123778_bb0150) 2008 Cheng (10.1016/j.apenergy.2024.123778_bb0195) 2020; 161 Tan (10.1016/j.apenergy.2024.123778_bb0030) 2021; 152 Frazzica (10.1016/j.apenergy.2024.123778_bb0050) 2015; 40 Tan (10.1016/j.apenergy.2024.123778_bb0145) 2022; 47 Zhu (10.1016/j.apenergy.2024.123778_bb0005) 2023; 73 Yu (10.1016/j.apenergy.2024.123778_bb0015) 2023 Zhang (10.1016/j.apenergy.2024.123778_bb0065) 2023; 348 Li (10.1016/j.apenergy.2024.123778_bb0170) 2022; 500 Chen (10.1016/j.apenergy.2024.123778_bb0100) 2023; 277 Wu (10.1016/j.apenergy.2024.123778_bb0090) 2021; 235 Alizadeh (10.1016/j.apenergy.2024.123778_bb0210) 2021; 229 Papadimitrakis (10.1016/j.apenergy.2024.123778_bb0095) 2021; 145 Cai (10.1016/j.apenergy.2024.123778_bb0160) 2023; 649 Witte (10.1016/j.apenergy.2024.123778_bb0135) 2020; 5  | 
    
| References_xml | – start-page: 97 year: 2008 end-page: 125 ident: bb0150 article-title: Chapter 5 - fuel cell mass transport publication-title: PEM fuel cell modeling and simulation using Matlab – volume: 134 year: 2023 ident: bb0200 article-title: Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution publication-title: Appl Soft Comput – volume: 5 start-page: 2178 year: 2020 ident: bb0135 article-title: TESPy: thermal engineering Systems in Python publication-title: The Journal of Open Source Software – volume: 63 start-page: 464 year: 2018 end-page: 490 ident: bb0180 article-title: Mi Xiao, Liang Gao, and Quanke Pan, publication-title: Appl Math Model – volume: 235 year: 2021 ident: bb0090 article-title: A novel distributed energy system using high-temperature proton exchange membrane fuel cell integrated with hybrid-energy heat pump publication-title: Energy Convers Manag – year: 2023 ident: bb0015 article-title: Hydrogen-based combined heat and power systems: a review of technologies and challenges publication-title: Int J Hydrog Energy – volume: 45 start-page: 24093 year: 2020 end-page: 24107 ident: bb0205 article-title: Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis publication-title: Int J Hydrog Energy – volume: 160 year: 2019 ident: bb0040 article-title: Xiaofeng Wu, and Qinghe Yao, publication-title: Appl Therm Eng – volume: 229 year: 2021 ident: bb0210 article-title: Precise PEM fuel cell parameter extraction based on a self-consistent model and SCCSA optimization algorithm publication-title: Energy Convers Manag – volume: 500 start-page: 662 year: 2022 end-page: 678 ident: bb0170 article-title: A survey on firefly algorithms publication-title: Neurocomputing – volume: 613 start-page: 469 year: 2022 end-page: 493 ident: bb0120 article-title: Zhongbo Hu, and Qinghua Su, publication-title: Inf Sci – volume: 152 year: 2023 ident: bb0185 article-title: Methodology for integrating flexibility into realistic large-scale distribution network planning using Tabu search publication-title: Int J Electr Power Energy Syst – volume: 40 start-page: 14746 year: 2015 end-page: 14756 ident: bb0050 article-title: Analysis of different heat pumping technologies integrating small scale solid oxide fuel cell system for more efficient building heating systems publication-title: Int J Hydrog Energy – volume: 152 year: 2021 ident: bb0030 article-title: Performance comparison of different heat pumps in low-temperature waste heat recovery publication-title: Renew Sust Energ Rev – volume: 231 year: 2023 ident: bb0045 article-title: Design and analysis of a hybrid space heating system based on HT-PEM fuel cell and an air source heat pump with a novel heat recovery strategy publication-title: Appl Therm Eng – volume: 162 year: 2022 ident: bb0010 article-title: A review on the integration and optimization of distributed energy systems publication-title: Renew Sust Energ Rev – volume: 277 year: 2023 ident: bb0100 article-title: Changjun Xie, Yang Li, WenChao Zhu, Lamei Xu, and Hoay Beng Gooi, publication-title: Energy – volume: 310 year: 2022 ident: bb0070 article-title: Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies publication-title: Appl Energy – volume: 204 year: 2020 ident: bb0155 article-title: Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications publication-title: Energy Convers Manag – volume: 649 year: 2023 ident: bb0160 article-title: Toward explicit control between exploration and exploitation in evolutionary algorithms: a case study of differential evolution publication-title: Inf Sci – volume: 95 start-page: 266 year: 2016 end-page: 273 ident: bb0125 article-title: Afram Keivani, Shahaboddin Shamshirband, Ali Mostafaeipour, por lip Yee, Dalibor Petković, and Sudheer Ch, publication-title: Energy – volume: 161 start-page: 132 year: 2020 end-page: 141 ident: bb0195 article-title: Luo Zhong, Xiao Zhang, and Jiaxu Xing, publication-title: Comput Commun – volume: 47 start-page: 7932 year: 2022 end-page: 7948 ident: bb0085 article-title: Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm publication-title: Int J Hydrog Energy – volume: 35 year: 2023 ident: bb0190 article-title: And Weaam abo Shdeed, publication-title: J King Saud Univers - Comput Inform Sci – volume: 83 year: 2023 ident: bb0165 article-title: A novel hybrid particle swarm optimization with marine predators publication-title: Swarm and Evolutionary Comput – volume: 73 year: 2023 ident: bb0005 article-title: A review of distributed energy system optimization for building decarbonization publication-title: J Building Engin – volume: 4 year: 2023 ident: bb0025 article-title: E-prime - advances in electrical engineering publication-title: Electronics and Energy – volume: 147 start-page: 569 year: 2015 end-page: 581 ident: bb0060 article-title: Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications publication-title: Appl Energy – volume: 257 year: 2020 ident: bb0020 article-title: Atmospheric air quality in Beijing improved by application of air source heat pump (ASHP) systems publication-title: J Clean Prod – volume: 555 year: 2023 ident: bb0035 article-title: Performance analysis and multi-objective optimization of a poly-generation system based on PEMFC publication-title: Desalination – volume: 250 year: 2021 ident: bb0075 article-title: Optimization of operation strategy for a grid interactive regional energy system publication-title: Energ Buildings – volume: 10 start-page: 1299 year: 2023 end-page: 1312 ident: bb0105 article-title: Suganya E, Sountharrajan S, and Durga Prasad Bavirisetti, publication-title: Energy Rep – volume: 47 start-page: 35790 year: 2022 end-page: 35809 ident: bb0145 article-title: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance publication-title: Int J Hydrog Energy – volume: 248 year: 2022 ident: bb0130 article-title: Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem publication-title: Knowl-Based Syst – volume: 4 year: 2023 ident: bb0175 article-title: Chun Lin Kuo, and Wai kin victor Chan, publication-title: Franklin Open – volume: 262 year: 2023 ident: bb0115 article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms publication-title: Energy – volume: 47 start-page: 35068 year: 2022 end-page: 35080 ident: bb0055 article-title: Domina and Frano Barbir, publication-title: Int J Hydrog Energy – volume: 348 year: 2023 ident: bb0065 article-title: A fuel cell range extender integrating with heat pump for cabin heat and power generation publication-title: Appl Energy – volume: 190 start-page: 356 year: 2009 end-page: 361 ident: bb0140 article-title: Experimental and thermodynamic approach on proton exchange membrane fuel cell performance publication-title: J Power Sources – year: 2023 ident: bb0110 article-title: Comparison of various metaheuristic algorithms to extract the optimal PEMFC modeling parameters publication-title: Int J Hydrog Energy – volume: 47 start-page: 16597 year: 2022 end-page: 16609 ident: bb0080 article-title: Multi-stack coupled energy management strategy of a PEMFC based-CCHP system applied to data centers publication-title: Int J Hydrog Energy – volume: 145 year: 2021 ident: bb0095 article-title: Metaheuristic search in smart grid: a review with emphasis on planning, scheduling and power flow optimization applications publication-title: Renew Sust Energ Rev – volume: 160 year: 2019 ident: 10.1016/j.apenergy.2024.123778_bb0040 article-title: Xiaofeng Wu, and Qinghe Yao, performance comparison of several heat pump technologies for fuel cell micro-CHP integration using a multi-objective optimisation approach publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114002 – volume: 262 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0115 article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms publication-title: Energy doi: 10.1016/j.energy.2022.125530 – volume: 229 year: 2021 ident: 10.1016/j.apenergy.2024.123778_bb0210 article-title: Precise PEM fuel cell parameter extraction based on a self-consistent model and SCCSA optimization algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113777 – volume: 250 year: 2021 ident: 10.1016/j.apenergy.2024.123778_bb0075 article-title: Optimization of operation strategy for a grid interactive regional energy system publication-title: Energ Buildings doi: 10.1016/j.enbuild.2021.111294 – volume: 613 start-page: 469 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0120 article-title: Zhongbo Hu, and Qinghua Su, neighborhood-based differential evolution algorithm with direction induced strategy for the large-scale combined heat and power economic dispatch problem publication-title: Inf Sci doi: 10.1016/j.ins.2022.09.025 – year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0110 article-title: Comparison of various metaheuristic algorithms to extract the optimal PEMFC modeling parameters publication-title: Int J Hydrog Energy – volume: 5 start-page: 2178 issue: 49 year: 2020 ident: 10.1016/j.apenergy.2024.123778_bb0135 article-title: TESPy: thermal engineering Systems in Python publication-title: The Journal of Open Source Software doi: 10.21105/joss.02178 – year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0015 article-title: Hydrogen-based combined heat and power systems: a review of technologies and challenges publication-title: Int J Hydrog Energy – volume: 257 year: 2020 ident: 10.1016/j.apenergy.2024.123778_bb0020 article-title: Atmospheric air quality in Beijing improved by application of air source heat pump (ASHP) systems publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120582 – volume: 4 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0025 article-title: Analysis and comparison of innovative PEMFC systems coupled with an ASHP for space heating in cold climates. E-prime - advances in electrical engineering publication-title: Electronics and Energy – volume: 134 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0200 article-title: Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution publication-title: Appl Soft Comput – volume: 63 start-page: 464 year: 2018 ident: 10.1016/j.apenergy.2024.123778_bb0180 article-title: Mi Xiao, Liang Gao, and Quanke Pan, queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems publication-title: Appl Math Model doi: 10.1016/j.apm.2018.06.036 – volume: 95 start-page: 266 year: 2016 ident: 10.1016/j.apenergy.2024.123778_bb0125 article-title: Afram Keivani, Shahaboddin Shamshirband, Ali Mostafaeipour, por lip Yee, Dalibor Petković, and Sudheer Ch, prediction of heat load in district heating systems by support vector machine with firefly searching algorithm publication-title: Energy doi: 10.1016/j.energy.2015.11.079 – volume: 10 start-page: 1299 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0105 article-title: Suganya E, Sountharrajan S, and Durga Prasad Bavirisetti, AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids publication-title: Energy Rep doi: 10.1016/j.egyr.2023.08.005 – volume: 500 start-page: 662 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0170 article-title: A survey on firefly algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.100 – volume: 152 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0185 article-title: Methodology for integrating flexibility into realistic large-scale distribution network planning using Tabu search publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2023.109201 – volume: 47 start-page: 7932 issue: 12 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0085 article-title: Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.12.121 – start-page: 97 year: 2008 ident: 10.1016/j.apenergy.2024.123778_bb0150 article-title: Chapter 5 - fuel cell mass transport – volume: 45 start-page: 24093 issue: 45 year: 2020 ident: 10.1016/j.apenergy.2024.123778_bb0205 article-title: Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.08.246 – volume: 83 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0165 article-title: A novel hybrid particle swarm optimization with marine predators publication-title: Swarm and Evolutionary Comput doi: 10.1016/j.swevo.2023.101375 – volume: 147 start-page: 569 year: 2015 ident: 10.1016/j.apenergy.2024.123778_bb0060 article-title: Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.031 – volume: 73 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0005 article-title: A review of distributed energy system optimization for building decarbonization publication-title: J Building Engin doi: 10.1016/j.jobe.2023.106735 – volume: 47 start-page: 35068 issue: 82 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0055 article-title: Domina and Frano Barbir, stand-alone micro-trigeneration system coupling electrolyzer, fuel cell, and heat pump with renewables publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.08.090 – volume: 248 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0130 article-title: Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108902 – volume: 235 year: 2021 ident: 10.1016/j.apenergy.2024.123778_bb0090 article-title: A novel distributed energy system using high-temperature proton exchange membrane fuel cell integrated with hybrid-energy heat pump publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113990 – volume: 277 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0100 article-title: Changjun Xie, Yang Li, WenChao Zhu, Lamei Xu, and Hoay Beng Gooi, an improved metaheuristic-based MPPT for centralized thermoelectric generation systems under dynamic temperature conditions publication-title: Energy doi: 10.1016/j.energy.2023.127485 – volume: 162 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0010 article-title: A review on the integration and optimization of distributed energy systems publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2022.112440 – volume: 649 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0160 article-title: Toward explicit control between exploration and exploitation in evolutionary algorithms: a case study of differential evolution publication-title: Inf Sci doi: 10.1016/j.ins.2023.119656 – volume: 204 year: 2020 ident: 10.1016/j.apenergy.2024.123778_bb0155 article-title: Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112328 – volume: 231 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0045 article-title: Design and analysis of a hybrid space heating system based on HT-PEM fuel cell and an air source heat pump with a novel heat recovery strategy publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2023.120947 – volume: 161 start-page: 132 year: 2020 ident: 10.1016/j.apenergy.2024.123778_bb0195 article-title: Luo Zhong, Xiao Zhang, and Jiaxu Xing, a staged adaptive firefly algorithm for UAV charging planning in wireless sensor networks publication-title: Comput Commun doi: 10.1016/j.comcom.2020.07.019 – volume: 145 year: 2021 ident: 10.1016/j.apenergy.2024.123778_bb0095 article-title: Metaheuristic search in smart grid: a review with emphasis on planning, scheduling and power flow optimization applications publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2021.111072 – volume: 35 issue: 9 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0190 article-title: And Weaam abo Shdeed, adaptive mean center of mass particle swarm optimizer for auto-localization in 3D wireless sensor networks publication-title: J King Saud Univers - Comput Inform Sci – volume: 40 start-page: 14746 issue: 42 year: 2015 ident: 10.1016/j.apenergy.2024.123778_bb0050 article-title: Analysis of different heat pumping technologies integrating small scale solid oxide fuel cell system for more efficient building heating systems publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2015.08.003 – volume: 310 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0070 article-title: Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118415 – volume: 348 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0065 article-title: A fuel cell range extender integrating with heat pump for cabin heat and power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121600 – volume: 47 start-page: 35790 issue: 84 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0145 article-title: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.08.154 – volume: 190 start-page: 356 issue: 2 year: 2009 ident: 10.1016/j.apenergy.2024.123778_bb0140 article-title: Experimental and thermodynamic approach on proton exchange membrane fuel cell performance publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.01.082 – volume: 4 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0175 article-title: Chun Lin Kuo, and Wai kin victor Chan, sparse neural network optimization by simulated annealing publication-title: Franklin Open doi: 10.1016/j.fraope.2023.100037 – volume: 152 year: 2021 ident: 10.1016/j.apenergy.2024.123778_bb0030 article-title: Performance comparison of different heat pumps in low-temperature waste heat recovery publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2021.111634 – volume: 47 start-page: 16597 issue: 37 year: 2022 ident: 10.1016/j.apenergy.2024.123778_bb0080 article-title: Multi-stack coupled energy management strategy of a PEMFC based-CCHP system applied to data centers publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.03.159 – volume: 555 year: 2023 ident: 10.1016/j.apenergy.2024.123778_bb0035 article-title: Performance analysis and multi-objective optimization of a poly-generation system based on PEMFC publication-title: DCMD and heat pump Desalination  | 
    
| SSID | ssj0002120 | 
    
| Score | 2.4716182 | 
    
| Snippet | The evolution of distributed building energy systems fuels the growing demand for sustainable energy solutions. In this paper, Proton Exchange Membrane Fuel... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 123778 | 
    
| SubjectTerms | air Air source heat pump algorithms CHP system Distributed building supply system energy energy use and consumption evolution fuel cells heat heat pumps hydrogen Metaheuristic algorithms Proton exchange membrane fuel cell renewable energy sources supply balance  | 
    
| Title | Innovative heat management method and metaheuristic algorithm optimized power supply-demand balance for PEMFC-ASHP-CHP system | 
    
| URI | https://dx.doi.org/10.1016/j.apenergy.2024.123778 https://www.proquest.com/docview/3153641121  | 
    
| Volume | 371 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002120 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002120 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002120 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002120 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBYlfdkextotrF1bVOir8sOWXOcxhAS3oyWQBvomZOm8pjROaJLBBuvf3jtL7i8GfdiDwTaSMTrpu0_o7jvGTorIFnnsjIigawSinxLoZ6xIZI58AySuL8odvrhMsqk8v1bXW2xQ58JQWGXAfo_pFVqHN-0wmu3lbNaeENv1Gwg6TKikP6U8pSoGrYfnMI8oSDNiY0GtX2QJ37bMEqoMO9wnRrKFIH5K5db-7aDeQHXlf0af2adAHHnf_9sO24Jyl318ISe4y5rD56w1bBqW7eoL-3sWap_-Ak7gy-dPQS_cl5DmpnR0a25g47Wbubn7ubifrW_mfIGwMp_9AceXVFONr6gS6G_hYE69cgqOtMCR_fLx8GI0EP1JNhaDbMy9TPRXNh0NrwaZCHUXhI2lWouusxArl_ZSpUwBiSki42SeOOR2ndwp2gaZIkU0wKuSfAPkTa5jkToWJHTcZI1yUcI3xgvXgxwxIkGzS2njFFKQnUKmPWPztKP2mKoHW9sgSk61Me50HX12q2sjaTKS9kbaY-2nfksvy_Fuj15tS_1qgmn0He_2Pa6Nr3H10ZGKKWGxWekYHUYikbN29__j-9_ZB3ryMYIHrLG-38Ahcp11flRN5iO23T_7kV0-AhlXAJk | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEA-iD949HOqdnN6pEe41-9Emtfsoyy71Y2VBBd9CmkzPFbe7uLsHJ3h_uzNN6sch-OBDobRJKZnkN7-Qmd8w9quIbJHHzogI2kYg-imBfsaKRObIN0Di-qLc4cFZkl3K4yt1tcS6dS4MhVUG7PeYXqF1eNIMo9mcjkbNc2K7fgNBhwkk_bkiVXRAO7DGv-c4jyhoM2JrQc1fpAnfNMwUqhQ73ChGsoEofkD11t72UP9hdeWA-mvsS2CO_ND_3DpbgnKDfX6hJ7jBNnvPaWvYNKzb2Vf2cBSKn_4BTujLx09RL9zXkOamdHRrrmHhxZu5uf09uRvNr8d8grgyHt2D41MqqsZnVAr0r3Awpl45RUda4Eh_-bA36HfF4Xk2FN1syL1O9Dd22e9ddDMRCi8IG0s1F21nIVYu7aRKmQISU0TGyTxxSO5auVO0DzJFinCAV6X5BkicXMsidyxI6XiTLZeTEr4zXrgO5AgSCdpdShunkIJsFTLtGJunLbXFVD3Y2gZVciqOcavr8LMbXRtJk5G0N9IWaz71m3pdjnd7dGpb6lczTKPzeLfvfm18jcuPzlRMCZPFTMfoMRKJpLW9_YHv77HV7GJwqk-Pzk5-sE_0xgcM_mTL87sF7CDxmee71cR-BPkiAi4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+heat+management+method+and+metaheuristic+algorithm+optimized+power+supply-demand+balance+for+PEMFC-ASHP-CHP+system&rft.jtitle=Applied+energy&rft.au=Yu%2C+Sen&rft.au=Fan%2C+Yi&rft.au=Shi%2C+Zhengrong&rft.au=Zhang%2C+Jingkui&rft.date=2024-10-01&rft.issn=0306-2619&rft.volume=371+p.123778-&rft_id=info:doi/10.1016%2Fj.apenergy.2024.123778&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |