A generic energy prediction model of machine tools using deep learning algorithms

•A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep learning.•Supervised deep learning is used to develop energy prediction model of machine tool.•This method is a generalized way for identifying e...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 275; p. 115402
Main Authors He, Yan, Wu, Pengcheng, Li, Yufeng, Wang, Yulin, Tao, Fei, Wang, Yan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2020.115402

Cover

Abstract •A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep learning.•Supervised deep learning is used to develop energy prediction model of machine tool.•This method is a generalized way for identifying energy of different machine tools.•The results show that the method could improve the energy prediction performance. Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization.
AbstractList •A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep learning.•Supervised deep learning is used to develop energy prediction model of machine tool.•This method is a generalized way for identifying energy of different machine tools.•The results show that the method could improve the energy prediction performance. Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization.
Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization.
ArticleNumber 115402
Author Tao, Fei
Wang, Yulin
He, Yan
Wu, Pengcheng
Li, Yufeng
Wang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: He
  fullname: He, Yan
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 2
  givenname: Pengcheng
  surname: Wu
  fullname: Wu, Pengcheng
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 3
  givenname: Yufeng
  surname: Li
  fullname: Li, Yufeng
  email: liyufengcqu@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
– sequence: 4
  givenname: Yulin
  surname: Wang
  fullname: Wang, Yulin
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 5
  givenname: Fei
  surname: Tao
  fullname: Tao, Fei
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
– sequence: 6
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Department of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
BookMark eNqFkM9LwzAUx4MouE3_BcnRS2eStlkHHhzDXzAQQc_hLXntMtqkJp2w_96W6sXL3uXxHt_P9_CZknPnHRJyw9mcMy7v9nNo0WGojnPBRP_kecbEGZnwYiGSJefFOZmwlMlESL68JNMY94wxwQWbkPcVrQbYajp20Dagsbqz3tHGG6ypL2kDemcd0s77OtJDtK6iBrGlNUJwwwV15YPtdk28Ihcl1BGvf_eMfD49fqxfks3b8-t6tUl0muVdwgER8lLCUmohzVLINIVsAZDmUgiOEnKTGc4znReMadwWoFOjtymUhUn7mZHbsbcN_uuAsVONjRrrGhz6Q1Qiy5gsFgvO-6gcozr4GAOWqg22gXBUnKnBodqrP4dqcKhGhz14_w_UtoPBTRfA1qfxhxHH3sO3xaCituh0Lzig7pTx9lTFDyP-lOg
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_116852
crossref_primary_10_1021_acs_est_1c04048
crossref_primary_10_3390_su15075781
crossref_primary_10_1016_j_energy_2024_131621
crossref_primary_10_1016_j_energy_2023_127046
crossref_primary_10_1016_j_jclepro_2021_129920
crossref_primary_10_1016_j_heliyon_2024_e27343
crossref_primary_10_1016_j_procir_2024_10_080
crossref_primary_10_1016_j_asoc_2021_108127
crossref_primary_10_1016_j_egyai_2021_100104
crossref_primary_10_3390_app15063086
crossref_primary_10_1007_s40684_022_00449_5
crossref_primary_10_1016_j_jmsy_2023_07_009
crossref_primary_10_1007_s00170_021_08297_4
crossref_primary_10_1016_j_ifacol_2023_10_822
crossref_primary_10_3390_su16177259
crossref_primary_10_1007_s00170_021_07787_9
crossref_primary_10_1016_j_powtec_2022_117409
crossref_primary_10_1007_s43684_022_00036_0
crossref_primary_10_1016_j_cirpj_2021_07_014
crossref_primary_10_1016_j_jclepro_2021_129479
crossref_primary_10_1016_j_jksuci_2022_04_016
crossref_primary_10_3390_en14206763
crossref_primary_10_1016_j_apenergy_2021_116808
crossref_primary_10_1109_TRO_2025_3532509
crossref_primary_10_3390_en14040968
crossref_primary_10_1080_00207543_2021_1969462
crossref_primary_10_1080_0951192X_2023_2177741
crossref_primary_10_3390_en16237851
crossref_primary_10_3390_math9060611
crossref_primary_10_3390_su132413918
crossref_primary_10_1016_j_compind_2023_103949
crossref_primary_10_1016_j_energy_2021_122178
crossref_primary_10_1115_1_4055661
crossref_primary_10_1109_TASE_2023_3242198
crossref_primary_10_1016_j_apenergy_2021_116483
crossref_primary_10_1016_j_ecmx_2024_100566
crossref_primary_10_1155_2023_3056688
crossref_primary_10_1007_s40032_024_01118_z
crossref_primary_10_3390_s22197152
crossref_primary_10_1016_j_eswa_2025_126903
crossref_primary_10_3390_software3010003
crossref_primary_10_1007_s00170_023_11355_8
crossref_primary_10_1109_TII_2022_3152578
crossref_primary_10_3390_app11188764
crossref_primary_10_1016_j_ijrefrig_2023_11_025
crossref_primary_10_1016_j_smse_2023_100009
crossref_primary_10_1016_j_cosrev_2024_100617
crossref_primary_10_1109_ACCESS_2022_3210525
crossref_primary_10_1016_j_energy_2021_120100
crossref_primary_10_1007_s40436_024_00526_9
crossref_primary_10_1016_j_procir_2023_06_086
crossref_primary_10_1016_j_energy_2023_129239
crossref_primary_10_1016_j_rcim_2024_102824
crossref_primary_10_1016_j_ins_2023_119382
crossref_primary_10_1007_s11465_021_0656_0
crossref_primary_10_1016_j_jmsy_2022_05_016
crossref_primary_10_1016_j_energy_2025_135378
crossref_primary_10_1016_j_heliyon_2024_e34394
crossref_primary_10_1007_s10845_024_02412_4
crossref_primary_10_1007_s10479_023_05280_y
crossref_primary_10_1016_j_applthermaleng_2024_124000
crossref_primary_10_1016_j_ijmecsci_2022_107618
crossref_primary_10_3390_su16020847
crossref_primary_10_1007_s11277_021_09431_x
crossref_primary_10_32604_csse_2023_039407
crossref_primary_10_1016_j_compeleceng_2023_109063
crossref_primary_10_3390_en16134901
Cites_doi 10.1016/j.jclepro.2015.01.058
10.1016/j.jclepro.2014.07.073
10.1007/978-981-13-2381-2_13
10.1016/j.patrec.2014.01.008
10.1109/LPT.2016.2522969
10.1007/s11704-015-5116-8
10.1016/j.advengsoft.2017.07.008
10.1007/s40684-019-00063-y
10.1115/1.4034933
10.1016/j.apenergy.2020.114755
10.1016/j.rcim.2018.12.020
10.1787/3a876031-en
10.1016/j.renene.2018.10.047
10.1016/j.neucom.2017.09.069
10.1016/j.apenergy.2017.01.009
10.1016/j.jmsy.2018.01.003
10.1016/j.apenergy.2017.03.064
10.1080/00207543.2017.1404160
10.1016/j.patcog.2017.05.025
10.1016/j.jclepro.2015.07.040
10.2352/ISSN.2470-1173.2016.14.IPMVA-385
10.12783/dtetr/ecar2018/26363
10.1016/j.cirp.2018.03.015
10.1109/TVT.2012.2206064
10.1016/j.apenergy.2019.04.158
10.1016/j.ymssp.2017.11.024
10.1016/j.apenergy.2018.11.032
10.1016/j.apenergy.2019.114074
10.1016/j.jclepro.2010.10.010
10.1016/j.compchemeng.2020.106756
10.1016/j.patrec.2020.02.004
10.1016/j.apenergy.2017.05.180
10.1016/j.jclepro.2015.10.094
10.1016/j.compmedimag.2017.12.001
10.1016/j.jmsy.2018.01.006
10.1115/MSEC2015-9354
10.1016/j.jclepro.2016.12.045
10.1016/j.jclepro.2016.07.092
10.1109/TII.2016.2530404
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.115402
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_115402
S0306261920309144
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-1aeea5f6a96c26d92633a47aa356221e6a5d4d114c5800ceb8ac3dcb3af8d3333
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sat Sep 27 21:59:37 EDT 2025
Thu Oct 09 00:24:42 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Fri Feb 23 02:48:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Energy consumption
Machine tools
Data-driven
Energy consumption features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-1aeea5f6a96c26d92633a47aa356221e6a5d4d114c5800ceb8ac3dcb3af8d3333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2440687711
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2440687711
crossref_primary_10_1016_j_apenergy_2020_115402
crossref_citationtrail_10_1016_j_apenergy_2020_115402
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115402
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Papetti, Menghi, Di Domizio, Germani, Marconi (b0015) 2019
Tao, Qi, Liu, Kusiak (b0080) 2018
Cassettari, Bendato, Mosca, Mosca (b0025) 2017
Lv, Tang, Tang, Liu, Zhang, Jia (b0055) 2017
Vrignat, Robles, Avila, Kratz (b0140) 2018
Trianni, Cagno, Bertolotti, Thollander, Andersson (b0020) 2019
Kant, Sangwan (b0205) 2014
Razavian, Azizpour, Sullivan, Carlsson (b0180) 2014
Wang, Ma, Zhang, Gao, Wu (b0165) 2018
Khan, Yairi (b0170) 2018
O’Driscoll, Kelly, O’Donnell (b0200) 2015
Kynčlová P, Upadhyaya S, Nice T. Composite index as a measure on achieving Sustainable Development Goal 9 (SDG-9) industry-related targets: The SDG-9 index. Appl Energy; 2020.
Yin, Ding, Xie, Luo (b0095) 2014
Wu P, He Y, Lim MK, Wang Y, Wang Y, Hu L. A configurable on-line monitoring system towards energy consumption of machine tools 2018;925. https://doi.org/10.1007/978-981-13-2381-2_13.
Ma MX, Ngan HYT, Liu W. Density-based outlier detection by local outlier factor on largescale traffic data. IS T Int Symp Electron Imaging Sci Technol; 2016.
Rachuri S, Park J, Law KH, Dornfeld DA, Helu M, Bhinge R. Toward a generalized energy prediction model for machine tools. J Manuf Sci Eng 2016;139:041013.
Imani Asrai, Newman, Nassehi (b0050) 2018
Lv, Tang, Jia, Liu (b0070) 2016
Kumar, Bhattacharya, Flores-Cerrillo (b0090) 2020
Fan, Xiao, Zhao (b0115) 2017; 195
Kolar, Vyroubal, Smolik (b0075) 2016
Abdeljaber, Avci, Kiranyaz, Boashash, Sodano, Inman (b0190) 2018
Chiu, Lee (b0100) 2017
Giampieri, Ling-Chin, Ma, Smallbone, Roskilly (b0035) 2020
Saha, Chakraborty, Racoceanu (b0130) 2018
Yoon, Lee, Kim, Kim, Shin, Kim (b0040) 2020
Liu, Guo (b0110) 2018
IEA. World Energy Balances 2018. Report; 2018.
Längkvist, Karlsson, Loutfi (b0175) 2014
Nanni, Ghidoni, Brahnam (b0125) 2017
Mishra, Chawla (b0160) 2019
Zeng, Zeng, Choi, Wang (b0210) 2017
Gadaleta, Pellicciari, Berselli (b0030) 2019
Dar, Winzer (b0215) 2016
Cai, Liu, Zhang, Liu, Tuo (b0045) 2017
Biswas N, Law KH, Rachuri S, Bhinge R, Srinivasan A, Dornfeld DA, et al. A generalized data-driven energy prediction model with uncertainty for a milling machine tool using gaussian process 2015:V002T05A010.
Vasudevan, Selvakumar (b0155) 2016
Singh, Rajan, Bhavsar (b0185) 2020
.
Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes (b0120) 2019
Grüner, Pfrommer, Palm (b0135) 2016
Avram, Xirouchakis (b0060) 2011
Murphey, Park, Chen, Kuang, Masrur, Phillips (b0085) 2012
Sealy, Liu, Zhang, Guo, Liu (b0065) 2016
10.1016/j.apenergy.2020.115402_b0195
10.1016/j.apenergy.2020.115402_b0010
Avram (10.1016/j.apenergy.2020.115402_b0060) 2011
Tao (10.1016/j.apenergy.2020.115402_b0080) 2018
Grüner (10.1016/j.apenergy.2020.115402_b0135) 2016
Dar (10.1016/j.apenergy.2020.115402_b0215) 2016
10.1016/j.apenergy.2020.115402_b0150
Gadaleta (10.1016/j.apenergy.2020.115402_b0030) 2019
Fan (10.1016/j.apenergy.2020.115402_b0115) 2017; 195
Yin (10.1016/j.apenergy.2020.115402_b0095) 2014
Razavian (10.1016/j.apenergy.2020.115402_b0180) 2014
Cassettari (10.1016/j.apenergy.2020.115402_b0025) 2017
Kumar (10.1016/j.apenergy.2020.115402_b0090) 2020
Mishra (10.1016/j.apenergy.2020.115402_b0160) 2019
10.1016/j.apenergy.2020.115402_b0105
Zeng (10.1016/j.apenergy.2020.115402_b0210) 2017
10.1016/j.apenergy.2020.115402_b0005
Längkvist (10.1016/j.apenergy.2020.115402_b0175) 2014
Yoon (10.1016/j.apenergy.2020.115402_b0040) 2020
Lv (10.1016/j.apenergy.2020.115402_b0055) 2017
10.1016/j.apenergy.2020.115402_b0145
Papetti (10.1016/j.apenergy.2020.115402_b0015) 2019
Lv (10.1016/j.apenergy.2020.115402_b0070) 2016
Liu (10.1016/j.apenergy.2020.115402_b0110) 2018
Sealy (10.1016/j.apenergy.2020.115402_b0065) 2016
Kolar (10.1016/j.apenergy.2020.115402_b0075) 2016
Vasudevan (10.1016/j.apenergy.2020.115402_b0155) 2016
Nanni (10.1016/j.apenergy.2020.115402_b0125) 2017
Khan (10.1016/j.apenergy.2020.115402_b0170) 2018
Vrignat (10.1016/j.apenergy.2020.115402_b0140) 2018
Trianni (10.1016/j.apenergy.2020.115402_b0020) 2019
Murphey (10.1016/j.apenergy.2020.115402_b0085) 2012
Stetco (10.1016/j.apenergy.2020.115402_b0120) 2019
Giampieri (10.1016/j.apenergy.2020.115402_b0035) 2020
Saha (10.1016/j.apenergy.2020.115402_b0130) 2018
Wang (10.1016/j.apenergy.2020.115402_b0165) 2018
O’Driscoll (10.1016/j.apenergy.2020.115402_b0200) 2015
Imani Asrai (10.1016/j.apenergy.2020.115402_b0050) 2018
Singh (10.1016/j.apenergy.2020.115402_b0185) 2020
Abdeljaber (10.1016/j.apenergy.2020.115402_b0190) 2018
Cai (10.1016/j.apenergy.2020.115402_b0045) 2017
Chiu (10.1016/j.apenergy.2020.115402_b0100) 2017
Kant (10.1016/j.apenergy.2020.115402_b0205) 2014
References_xml – year: 2019
  ident: b0020
  article-title: Energy management: A practice-based assessment model
  publication-title: Appl Energy
– year: 2017
  ident: b0045
  article-title: Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement
  publication-title: Appl Energy
– year: 2011
  ident: b0060
  article-title: Evaluating the use phase energy requirements of a machine tool system
  publication-title: J Clean Prod
– year: 2016
  ident: b0215
  article-title: On the limits of digital back-propagation in fully loaded WDM systems
  publication-title: IEEE Photon Technol Lett
– year: 2019
  ident: b0015
  article-title: Resources value mapping: A method to assess the resource efficiency of manufacturing systems
  publication-title: Appl Energy
– year: 2020
  ident: b0090
  article-title: Data-driven process monitoring and fault analysis of reformer units in hydrogen plants: Industrial application and perspectives
  publication-title: Comput Chem Eng
– reference: Ma MX, Ngan HYT, Liu W. Density-based outlier detection by local outlier factor on largescale traffic data. IS T Int Symp Electron Imaging Sci Technol; 2016.
– year: 2017
  ident: b0025
  article-title: Energy Resources Intelligent Management using on line real-time simulation: A decision support tool for sustainable manufacturing
  publication-title: Appl Energy
– year: 2014
  ident: b0180
  article-title: CNN features off-the-shelf: An astounding baseline for recognition
  publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work
– reference: Rachuri S, Park J, Law KH, Dornfeld DA, Helu M, Bhinge R. Toward a generalized energy prediction model for machine tools. J Manuf Sci Eng 2016;139:041013.
– year: 2019
  ident: b0120
  article-title: Machine learning methods for wind turbine condition monitoring: A review
  publication-title: Renew Energy
– year: 2018
  ident: b0165
  article-title: Deep learning for smart manufacturing: Methods and applications
  publication-title: J Manuf Syst
– year: 2020
  ident: b0185
  article-title: SVD-based redundancy removal in 1-D CNNs for acoustic scene classification
  publication-title: Pattern Recognit Lett
– year: 2016
  ident: b0075
  article-title: Analytical approach to establishment of predictive models of power consumption of machine tools’ auxiliary units
  publication-title: J Clean Prod
– year: 2018
  ident: b0190
  article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
– year: 2016
  ident: b0135
  article-title: RESTful Industrial Communication with OPC UA
  publication-title: IEEE Trans Ind Inform
– year: 2019
  ident: b0160
  article-title: A comparative study of local outlier factor algorithms for outliers detection in data streams
  publication-title: Adv. Intell. Syst. Comput.
– year: 2018
  ident: b0170
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech Syst Signal Process
– year: 2018
  ident: b0130
  article-title: Efficient deep learning model for mitosis detection using breast histopathology images
  publication-title: Comput Med Imaging Graph
– year: 2017
  ident: b0210
  article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network
  publication-title: Energy
– year: 2018
  ident: b0110
  article-title: A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy
  publication-title: CIRP Ann
– year: 2018
  ident: b0050
  article-title: A mechanistic model of energy consumption in milling
  publication-title: Int J Prod Res
– year: 2016
  ident: b0070
  article-title: Experimental study on energy consumption of computer numerical control machine tools
  publication-title: J Clean Prod
– reference: IEA. World Energy Balances 2018. Report; 2018.
– year: 2016
  ident: b0155
  article-title: Local outlier factor and stronger one class classifier based hierarchical model for detection of attacks in network intrusion detection dataset
  publication-title: Front Comput Sci
– year: 2020
  ident: b0040
  article-title: Power consumption assessment of machine tool feed drive units
  publication-title: Int J Precis Eng Manuf - Green Technol
– year: 2014
  ident: b0205
  article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining
  publication-title: J Clean Prod
– year: 2014
  ident: b0095
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
– year: 2018
  ident: b0140
  article-title: OPC UA: examples of digital reporting applications for current industrial processes
  publication-title: DEStech Trans Eng Technol Res
– reference: Wu P, He Y, Lim MK, Wang Y, Wang Y, Hu L. A configurable on-line monitoring system towards energy consumption of machine tools 2018;925. https://doi.org/10.1007/978-981-13-2381-2_13.
– year: 2016
  ident: b0065
  article-title: Energy consumption and modeling in precision hard milling
  publication-title: J Clean Prod
– reference: .
– year: 2019
  ident: b0030
  article-title: Optimization of the energy consumption of industrial robots for automatic code generation
  publication-title: Robot Comput Integr Manuf
– year: 2017
  ident: b0055
  article-title: An investigation into reducing the spindle acceleration energy consumption of machine tools
  publication-title: J Clean Prod
– volume: 195
  start-page: 222
  year: 2017
  end-page: 233
  ident: b0115
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
– year: 2012
  ident: b0085
  article-title: Intelligent hybrid vehicle power control part I: Machine learning of optimal vehicle power
  publication-title: IEEE Trans Veh Technol
– year: 2015
  ident: b0200
  article-title: Intelligent energy based status identification as a platform for improvement of machine tool efficiency and effectiveness
  publication-title: J Clean Prod
– reference: Kynčlová P, Upadhyaya S, Nice T. Composite index as a measure on achieving Sustainable Development Goal 9 (SDG-9) industry-related targets: The SDG-9 index. Appl Energy; 2020.
– year: 2017
  ident: b0125
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit
– reference: Biswas N, Law KH, Rachuri S, Bhinge R, Srinivasan A, Dornfeld DA, et al. A generalized data-driven energy prediction model with uncertainty for a milling machine tool using gaussian process 2015:V002T05A010.
– year: 2020
  ident: b0035
  article-title: A review of the current automotive manufacturing practice from an energy perspective
  publication-title: Appl Energy
– year: 2017
  ident: b0100
  article-title: Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach
  publication-title: Adv Eng Softw
– year: 2018
  ident: b0080
  article-title: Data-driven smart manufacturing
  publication-title: J Manuf Syst
– year: 2014
  ident: b0175
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit Lett
– year: 2015
  ident: 10.1016/j.apenergy.2020.115402_b0200
  article-title: Intelligent energy based status identification as a platform for improvement of machine tool efficiency and effectiveness
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.01.058
– year: 2014
  ident: 10.1016/j.apenergy.2020.115402_b0205
  article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2014.07.073
– ident: 10.1016/j.apenergy.2020.115402_b0145
  doi: 10.1007/978-981-13-2381-2_13
– year: 2014
  ident: 10.1016/j.apenergy.2020.115402_b0175
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.01.008
– year: 2016
  ident: 10.1016/j.apenergy.2020.115402_b0215
  article-title: On the limits of digital back-propagation in fully loaded WDM systems
  publication-title: IEEE Photon Technol Lett
  doi: 10.1109/LPT.2016.2522969
– year: 2016
  ident: 10.1016/j.apenergy.2020.115402_b0155
  article-title: Local outlier factor and stronger one class classifier based hierarchical model for detection of attacks in network intrusion detection dataset
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-015-5116-8
– year: 2019
  ident: 10.1016/j.apenergy.2020.115402_b0160
  article-title: A comparative study of local outlier factor algorithms for outliers detection in data streams
  publication-title: Adv. Intell. Syst. Comput.
– year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0100
  article-title: Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.008
– year: 2020
  ident: 10.1016/j.apenergy.2020.115402_b0040
  article-title: Power consumption assessment of machine tool feed drive units
  publication-title: Int J Precis Eng Manuf - Green Technol
  doi: 10.1007/s40684-019-00063-y
– ident: 10.1016/j.apenergy.2020.115402_b0105
  doi: 10.1115/1.4034933
– ident: 10.1016/j.apenergy.2020.115402_b0005
  doi: 10.1016/j.apenergy.2020.114755
– year: 2019
  ident: 10.1016/j.apenergy.2020.115402_b0030
  article-title: Optimization of the energy consumption of industrial robots for automatic code generation
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.12.020
– ident: 10.1016/j.apenergy.2020.115402_b0010
  doi: 10.1787/3a876031-en
– year: 2019
  ident: 10.1016/j.apenergy.2020.115402_b0120
  article-title: Machine learning methods for wind turbine condition monitoring: A review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.047
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0190
  article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
– year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0025
  article-title: Energy Resources Intelligent Management using on line real-time simulation: A decision support tool for sustainable manufacturing
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.009
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0165
  article-title: Deep learning for smart manufacturing: Methods and applications
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 195
  start-page: 222
  year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0115
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.064
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0050
  article-title: A mechanistic model of energy consumption in milling
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2017.1404160
– year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0125
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.05.025
– year: 2016
  ident: 10.1016/j.apenergy.2020.115402_b0070
  article-title: Experimental study on energy consumption of computer numerical control machine tools
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.07.040
– ident: 10.1016/j.apenergy.2020.115402_b0150
  doi: 10.2352/ISSN.2470-1173.2016.14.IPMVA-385
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0140
  article-title: OPC UA: examples of digital reporting applications for current industrial processes
  publication-title: DEStech Trans Eng Technol Res
  doi: 10.12783/dtetr/ecar2018/26363
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0110
  article-title: A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2018.03.015
– year: 2014
  ident: 10.1016/j.apenergy.2020.115402_b0095
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
– year: 2012
  ident: 10.1016/j.apenergy.2020.115402_b0085
  article-title: Intelligent hybrid vehicle power control part I: Machine learning of optimal vehicle power
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2012.2206064
– year: 2019
  ident: 10.1016/j.apenergy.2020.115402_b0015
  article-title: Resources value mapping: A method to assess the resource efficiency of manufacturing systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.158
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0170
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.024
– year: 2019
  ident: 10.1016/j.apenergy.2020.115402_b0020
  article-title: Energy management: A practice-based assessment model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.032
– year: 2020
  ident: 10.1016/j.apenergy.2020.115402_b0035
  article-title: A review of the current automotive manufacturing practice from an energy perspective
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114074
– year: 2011
  ident: 10.1016/j.apenergy.2020.115402_b0060
  article-title: Evaluating the use phase energy requirements of a machine tool system
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2010.10.010
– year: 2020
  ident: 10.1016/j.apenergy.2020.115402_b0090
  article-title: Data-driven process monitoring and fault analysis of reformer units in hydrogen plants: Industrial application and perspectives
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2020.106756
– year: 2020
  ident: 10.1016/j.apenergy.2020.115402_b0185
  article-title: SVD-based redundancy removal in 1-D CNNs for acoustic scene classification
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.02.004
– year: 2014
  ident: 10.1016/j.apenergy.2020.115402_b0180
  article-title: CNN features off-the-shelf: An astounding baseline for recognition
  publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work
– year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0210
  article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network
  publication-title: Energy
– year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0045
  article-title: Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.180
– year: 2016
  ident: 10.1016/j.apenergy.2020.115402_b0065
  article-title: Energy consumption and modeling in precision hard milling
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.10.094
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0130
  article-title: Efficient deep learning model for mitosis detection using breast histopathology images
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2017.12.001
– year: 2018
  ident: 10.1016/j.apenergy.2020.115402_b0080
  article-title: Data-driven smart manufacturing
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.01.006
– ident: 10.1016/j.apenergy.2020.115402_b0195
  doi: 10.1115/MSEC2015-9354
– year: 2017
  ident: 10.1016/j.apenergy.2020.115402_b0055
  article-title: An investigation into reducing the spindle acceleration energy consumption of machine tools
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.12.045
– year: 2016
  ident: 10.1016/j.apenergy.2020.115402_b0075
  article-title: Analytical approach to establishment of predictive models of power consumption of machine tools’ auxiliary units
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.07.092
– year: 2016
  ident: 10.1016/j.apenergy.2020.115402_b0135
  article-title: RESTful Industrial Communication with OPC UA
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2016.2530404
SSID ssj0002120
Score 2.607784
Snippet •A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep...
Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115402
SubjectTerms algorithms
artificial intelligence
Data-driven
Deep learning
Energy consumption
Energy consumption features
energy use and consumption
equipment performance
grinding
learning
Machine tools
manufacturing
milling
model validation
planning
prediction
Title A generic energy prediction model of machine tools using deep learning algorithms
URI https://dx.doi.org/10.1016/j.apenergy.2020.115402
https://www.proquest.com/docview/2440687711
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL3oQnYqfI4LXbl2-2h6HbEzFgaiwW0jzMTe2tWz16t9u0qY6BfFgby1JCe8l7_3C-_gBcC0VSqIUh0FqvWlABGFBksY0MCyWSOAkpSV7w8OIDV_I3ZiOt8BNXQvj0iq97a9semmt_ZeOl2Ynn047Tw7tlvjfRQnsvcBVsJPIsRi037_SPJBvzWgHB270RpXwrC1yXVbY2XsictbDwhf0m4P6YapL_zPYB3seOMJetbYDsKWXTbC70U6wCY77X1Vrdqg_tutD8NiDE7eEqYTVSmC-cgEapxRYcuHAzMBFmVepYZFl8zV0CfETqLTOoWeWmEAxn2SrafG6WB-Bl0H_-WYYeC6FQGJCi6ArtBbUMJEwiZhKEMNYkEgIbAEQ6momqCLKXo4ktRBS6jQWEiuZYmFihe1zDBrLbKlPAKTIxCmRRGEdEi3DJBSSGINCZRIipDkFtBYgl77RuOO7mPM6o2zGa8FzJ3heCf4UdD7n5VWrjT9nJLV--LdNw60_-HPuVa1Qbk-UC5OIpc7e1twCnpDFUdTtnv3j_-dgx71VeX8XoFGs3vSlxS9F2io3aAts927vh6MP6mfxhw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HNSDuOJuBK91OtnaHkWUcQVRwVtIs4wj47TM1Ku_3aRN3UA82GObVx4vyXvf420Ah0rjLMlJHOXOmkZUUh5lecoiy1OFJclyVk9vuL7hvQd68cgep-CkrYXxaZVB9zc6vdbW4U0nSLNTDgadO492a_zvowTOL5iGWcpw4j2wo7fPPA8cejO61ZFf_qVM-PlIlqYusXOOIvbqw-EX_JuF-qGrawN0tgSLATmi44a5ZZgyoxVY-NJPcAXWTz_L1tzScG8nq3B7jPqehYFCDSeoHPsIjd8VVA_DQYVFL3VipUFVUQwnyGfE95E2pkRhtEQfyWG_GA-qp5fJGjycnd6f9KIwTCFShLIq6kpjJLNcZlxhrjPMCZE0kZI4BIS7hkumqXbekWIOQyqTp1IRrXIibaqJe9ZhZlSMzAYghm2aU0U1MTE1Ks5iqai1ONY2o1LZTWCtAIUKncb9wIuhaFPKnkUreOEFLxrBb0Lng65sem38SZG1-yO-nRrhDMKftAfthgp3pXycRI5M8ToRDvHEPE2SbnfrH__fh7ne_fWVuDq_udyGef-lSQLcgZlq_Gp2HZip8r36sL4DhEfzHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generic+energy+prediction+model+of+machine+tools+using+deep+learning+algorithms&rft.jtitle=Applied+energy&rft.au=He%2C+Yan&rft.au=Wu%2C+Pengcheng&rft.au=Li%2C+Yufeng&rft.au=Wang%2C+Yulin&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=275&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115402&rft.externalDocID=S0306261920309144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon