A generic energy prediction model of machine tools using deep learning algorithms
•A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep learning.•Supervised deep learning is used to develop energy prediction model of machine tool.•This method is a generalized way for identifying e...
Saved in:
| Published in | Applied energy Vol. 275; p. 115402 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-2619 1872-9118 |
| DOI | 10.1016/j.apenergy.2020.115402 |
Cover
| Abstract | •A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep learning.•Supervised deep learning is used to develop energy prediction model of machine tool.•This method is a generalized way for identifying energy of different machine tools.•The results show that the method could improve the energy prediction performance.
Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization. |
|---|---|
| AbstractList | •A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep learning.•Supervised deep learning is used to develop energy prediction model of machine tool.•This method is a generalized way for identifying energy of different machine tools.•The results show that the method could improve the energy prediction performance.
Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization. Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of big machinery data, data-driven energy prediction models of machine tools have achieved remarkable results in the identification of energy consumption patterns and prediction of energy consumption conditions. However, existing data-driven studies towards the energy consumption of machine tools focus on the utilization of handcrafted-feature learning methods, which are inefficient and exhibit poor generalization. Moreover, considering variations in energy consumption characteristics among different machine tools, it is impractical to identify energy consumption features manually for energy model development. Therefore, this paper proposes a novel data-driven energy prediction approach using deep learning algorithms. Here, deep learning is used in an unsupervised manner to extract sensitive energy consumption features from raw machinery data, and in a supervised manner to develop the prediction model between the extracted features and the energy consumption of machine tools. The experiments conducted on a milling machine and a grinding machine are exploited and compared with those conducted in conventional studies. The results show that the proposed method can improve the energy prediction performance from 19.14% to 74.13% for the grinding machine and from 64.89% to 85.61% for the milling machine, and it achieves a better performance than the conventional methods in terms of effectiveness and generalization. |
| ArticleNumber | 115402 |
| Author | Tao, Fei Wang, Yulin He, Yan Wu, Pengcheng Li, Yufeng Wang, Yan |
| Author_xml | – sequence: 1 givenname: Yan surname: He fullname: He, Yan organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China – sequence: 2 givenname: Pengcheng surname: Wu fullname: Wu, Pengcheng organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China – sequence: 3 givenname: Yufeng surname: Li fullname: Li, Yufeng email: liyufengcqu@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China – sequence: 4 givenname: Yulin surname: Wang fullname: Wang, Yulin organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China – sequence: 5 givenname: Fei surname: Tao fullname: Tao, Fei organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 6 givenname: Yan surname: Wang fullname: Wang, Yan organization: Department of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom |
| BookMark | eNqFkM9LwzAUx4MouE3_BcnRS2eStlkHHhzDXzAQQc_hLXntMtqkJp2w_96W6sXL3uXxHt_P9_CZknPnHRJyw9mcMy7v9nNo0WGojnPBRP_kecbEGZnwYiGSJefFOZmwlMlESL68JNMY94wxwQWbkPcVrQbYajp20Dagsbqz3tHGG6ypL2kDemcd0s77OtJDtK6iBrGlNUJwwwV15YPtdk28Ihcl1BGvf_eMfD49fqxfks3b8-t6tUl0muVdwgER8lLCUmohzVLINIVsAZDmUgiOEnKTGc4znReMadwWoFOjtymUhUn7mZHbsbcN_uuAsVONjRrrGhz6Q1Qiy5gsFgvO-6gcozr4GAOWqg22gXBUnKnBodqrP4dqcKhGhz14_w_UtoPBTRfA1qfxhxHH3sO3xaCituh0Lzig7pTx9lTFDyP-lOg |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_116852 crossref_primary_10_1021_acs_est_1c04048 crossref_primary_10_3390_su15075781 crossref_primary_10_1016_j_energy_2024_131621 crossref_primary_10_1016_j_energy_2023_127046 crossref_primary_10_1016_j_jclepro_2021_129920 crossref_primary_10_1016_j_heliyon_2024_e27343 crossref_primary_10_1016_j_procir_2024_10_080 crossref_primary_10_1016_j_asoc_2021_108127 crossref_primary_10_1016_j_egyai_2021_100104 crossref_primary_10_3390_app15063086 crossref_primary_10_1007_s40684_022_00449_5 crossref_primary_10_1016_j_jmsy_2023_07_009 crossref_primary_10_1007_s00170_021_08297_4 crossref_primary_10_1016_j_ifacol_2023_10_822 crossref_primary_10_3390_su16177259 crossref_primary_10_1007_s00170_021_07787_9 crossref_primary_10_1016_j_powtec_2022_117409 crossref_primary_10_1007_s43684_022_00036_0 crossref_primary_10_1016_j_cirpj_2021_07_014 crossref_primary_10_1016_j_jclepro_2021_129479 crossref_primary_10_1016_j_jksuci_2022_04_016 crossref_primary_10_3390_en14206763 crossref_primary_10_1016_j_apenergy_2021_116808 crossref_primary_10_1109_TRO_2025_3532509 crossref_primary_10_3390_en14040968 crossref_primary_10_1080_00207543_2021_1969462 crossref_primary_10_1080_0951192X_2023_2177741 crossref_primary_10_3390_en16237851 crossref_primary_10_3390_math9060611 crossref_primary_10_3390_su132413918 crossref_primary_10_1016_j_compind_2023_103949 crossref_primary_10_1016_j_energy_2021_122178 crossref_primary_10_1115_1_4055661 crossref_primary_10_1109_TASE_2023_3242198 crossref_primary_10_1016_j_apenergy_2021_116483 crossref_primary_10_1016_j_ecmx_2024_100566 crossref_primary_10_1155_2023_3056688 crossref_primary_10_1007_s40032_024_01118_z crossref_primary_10_3390_s22197152 crossref_primary_10_1016_j_eswa_2025_126903 crossref_primary_10_3390_software3010003 crossref_primary_10_1007_s00170_023_11355_8 crossref_primary_10_1109_TII_2022_3152578 crossref_primary_10_3390_app11188764 crossref_primary_10_1016_j_ijrefrig_2023_11_025 crossref_primary_10_1016_j_smse_2023_100009 crossref_primary_10_1016_j_cosrev_2024_100617 crossref_primary_10_1109_ACCESS_2022_3210525 crossref_primary_10_1016_j_energy_2021_120100 crossref_primary_10_1007_s40436_024_00526_9 crossref_primary_10_1016_j_procir_2023_06_086 crossref_primary_10_1016_j_energy_2023_129239 crossref_primary_10_1016_j_rcim_2024_102824 crossref_primary_10_1016_j_ins_2023_119382 crossref_primary_10_1007_s11465_021_0656_0 crossref_primary_10_1016_j_jmsy_2022_05_016 crossref_primary_10_1016_j_energy_2025_135378 crossref_primary_10_1016_j_heliyon_2024_e34394 crossref_primary_10_1007_s10845_024_02412_4 crossref_primary_10_1007_s10479_023_05280_y crossref_primary_10_1016_j_applthermaleng_2024_124000 crossref_primary_10_1016_j_ijmecsci_2022_107618 crossref_primary_10_3390_su16020847 crossref_primary_10_1007_s11277_021_09431_x crossref_primary_10_32604_csse_2023_039407 crossref_primary_10_1016_j_compeleceng_2023_109063 crossref_primary_10_3390_en16134901 |
| Cites_doi | 10.1016/j.jclepro.2015.01.058 10.1016/j.jclepro.2014.07.073 10.1007/978-981-13-2381-2_13 10.1016/j.patrec.2014.01.008 10.1109/LPT.2016.2522969 10.1007/s11704-015-5116-8 10.1016/j.advengsoft.2017.07.008 10.1007/s40684-019-00063-y 10.1115/1.4034933 10.1016/j.apenergy.2020.114755 10.1016/j.rcim.2018.12.020 10.1787/3a876031-en 10.1016/j.renene.2018.10.047 10.1016/j.neucom.2017.09.069 10.1016/j.apenergy.2017.01.009 10.1016/j.jmsy.2018.01.003 10.1016/j.apenergy.2017.03.064 10.1080/00207543.2017.1404160 10.1016/j.patcog.2017.05.025 10.1016/j.jclepro.2015.07.040 10.2352/ISSN.2470-1173.2016.14.IPMVA-385 10.12783/dtetr/ecar2018/26363 10.1016/j.cirp.2018.03.015 10.1109/TVT.2012.2206064 10.1016/j.apenergy.2019.04.158 10.1016/j.ymssp.2017.11.024 10.1016/j.apenergy.2018.11.032 10.1016/j.apenergy.2019.114074 10.1016/j.jclepro.2010.10.010 10.1016/j.compchemeng.2020.106756 10.1016/j.patrec.2020.02.004 10.1016/j.apenergy.2017.05.180 10.1016/j.jclepro.2015.10.094 10.1016/j.compmedimag.2017.12.001 10.1016/j.jmsy.2018.01.006 10.1115/MSEC2015-9354 10.1016/j.jclepro.2016.12.045 10.1016/j.jclepro.2016.07.092 10.1109/TII.2016.2530404 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.115402 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_115402 S0306261920309144 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-1aeea5f6a96c26d92633a47aa356221e6a5d4d114c5800ceb8ac3dcb3af8d3333 |
| IEDL.DBID | .~1 |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 21:59:37 EDT 2025 Thu Oct 09 00:24:42 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Fri Feb 23 02:48:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Energy consumption Machine tools Data-driven Energy consumption features |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-1aeea5f6a96c26d92633a47aa356221e6a5d4d114c5800ceb8ac3dcb3af8d3333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2440687711 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2440687711 crossref_primary_10_1016_j_apenergy_2020_115402 crossref_citationtrail_10_1016_j_apenergy_2020_115402 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115402 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Papetti, Menghi, Di Domizio, Germani, Marconi (b0015) 2019 Tao, Qi, Liu, Kusiak (b0080) 2018 Cassettari, Bendato, Mosca, Mosca (b0025) 2017 Lv, Tang, Tang, Liu, Zhang, Jia (b0055) 2017 Vrignat, Robles, Avila, Kratz (b0140) 2018 Trianni, Cagno, Bertolotti, Thollander, Andersson (b0020) 2019 Kant, Sangwan (b0205) 2014 Razavian, Azizpour, Sullivan, Carlsson (b0180) 2014 Wang, Ma, Zhang, Gao, Wu (b0165) 2018 Khan, Yairi (b0170) 2018 O’Driscoll, Kelly, O’Donnell (b0200) 2015 Kynčlová P, Upadhyaya S, Nice T. Composite index as a measure on achieving Sustainable Development Goal 9 (SDG-9) industry-related targets: The SDG-9 index. Appl Energy; 2020. Yin, Ding, Xie, Luo (b0095) 2014 Wu P, He Y, Lim MK, Wang Y, Wang Y, Hu L. A configurable on-line monitoring system towards energy consumption of machine tools 2018;925. https://doi.org/10.1007/978-981-13-2381-2_13. Ma MX, Ngan HYT, Liu W. Density-based outlier detection by local outlier factor on largescale traffic data. IS T Int Symp Electron Imaging Sci Technol; 2016. Rachuri S, Park J, Law KH, Dornfeld DA, Helu M, Bhinge R. Toward a generalized energy prediction model for machine tools. J Manuf Sci Eng 2016;139:041013. Imani Asrai, Newman, Nassehi (b0050) 2018 Lv, Tang, Jia, Liu (b0070) 2016 Kumar, Bhattacharya, Flores-Cerrillo (b0090) 2020 Fan, Xiao, Zhao (b0115) 2017; 195 Kolar, Vyroubal, Smolik (b0075) 2016 Abdeljaber, Avci, Kiranyaz, Boashash, Sodano, Inman (b0190) 2018 Chiu, Lee (b0100) 2017 Giampieri, Ling-Chin, Ma, Smallbone, Roskilly (b0035) 2020 Saha, Chakraborty, Racoceanu (b0130) 2018 Yoon, Lee, Kim, Kim, Shin, Kim (b0040) 2020 Liu, Guo (b0110) 2018 IEA. World Energy Balances 2018. Report; 2018. Längkvist, Karlsson, Loutfi (b0175) 2014 Nanni, Ghidoni, Brahnam (b0125) 2017 Mishra, Chawla (b0160) 2019 Zeng, Zeng, Choi, Wang (b0210) 2017 Gadaleta, Pellicciari, Berselli (b0030) 2019 Dar, Winzer (b0215) 2016 Cai, Liu, Zhang, Liu, Tuo (b0045) 2017 Biswas N, Law KH, Rachuri S, Bhinge R, Srinivasan A, Dornfeld DA, et al. A generalized data-driven energy prediction model with uncertainty for a milling machine tool using gaussian process 2015:V002T05A010. Vasudevan, Selvakumar (b0155) 2016 Singh, Rajan, Bhavsar (b0185) 2020 . Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes (b0120) 2019 Grüner, Pfrommer, Palm (b0135) 2016 Avram, Xirouchakis (b0060) 2011 Murphey, Park, Chen, Kuang, Masrur, Phillips (b0085) 2012 Sealy, Liu, Zhang, Guo, Liu (b0065) 2016 10.1016/j.apenergy.2020.115402_b0195 10.1016/j.apenergy.2020.115402_b0010 Avram (10.1016/j.apenergy.2020.115402_b0060) 2011 Tao (10.1016/j.apenergy.2020.115402_b0080) 2018 Grüner (10.1016/j.apenergy.2020.115402_b0135) 2016 Dar (10.1016/j.apenergy.2020.115402_b0215) 2016 10.1016/j.apenergy.2020.115402_b0150 Gadaleta (10.1016/j.apenergy.2020.115402_b0030) 2019 Fan (10.1016/j.apenergy.2020.115402_b0115) 2017; 195 Yin (10.1016/j.apenergy.2020.115402_b0095) 2014 Razavian (10.1016/j.apenergy.2020.115402_b0180) 2014 Cassettari (10.1016/j.apenergy.2020.115402_b0025) 2017 Kumar (10.1016/j.apenergy.2020.115402_b0090) 2020 Mishra (10.1016/j.apenergy.2020.115402_b0160) 2019 10.1016/j.apenergy.2020.115402_b0105 Zeng (10.1016/j.apenergy.2020.115402_b0210) 2017 10.1016/j.apenergy.2020.115402_b0005 Längkvist (10.1016/j.apenergy.2020.115402_b0175) 2014 Yoon (10.1016/j.apenergy.2020.115402_b0040) 2020 Lv (10.1016/j.apenergy.2020.115402_b0055) 2017 10.1016/j.apenergy.2020.115402_b0145 Papetti (10.1016/j.apenergy.2020.115402_b0015) 2019 Lv (10.1016/j.apenergy.2020.115402_b0070) 2016 Liu (10.1016/j.apenergy.2020.115402_b0110) 2018 Sealy (10.1016/j.apenergy.2020.115402_b0065) 2016 Kolar (10.1016/j.apenergy.2020.115402_b0075) 2016 Vasudevan (10.1016/j.apenergy.2020.115402_b0155) 2016 Nanni (10.1016/j.apenergy.2020.115402_b0125) 2017 Khan (10.1016/j.apenergy.2020.115402_b0170) 2018 Vrignat (10.1016/j.apenergy.2020.115402_b0140) 2018 Trianni (10.1016/j.apenergy.2020.115402_b0020) 2019 Murphey (10.1016/j.apenergy.2020.115402_b0085) 2012 Stetco (10.1016/j.apenergy.2020.115402_b0120) 2019 Giampieri (10.1016/j.apenergy.2020.115402_b0035) 2020 Saha (10.1016/j.apenergy.2020.115402_b0130) 2018 Wang (10.1016/j.apenergy.2020.115402_b0165) 2018 O’Driscoll (10.1016/j.apenergy.2020.115402_b0200) 2015 Imani Asrai (10.1016/j.apenergy.2020.115402_b0050) 2018 Singh (10.1016/j.apenergy.2020.115402_b0185) 2020 Abdeljaber (10.1016/j.apenergy.2020.115402_b0190) 2018 Cai (10.1016/j.apenergy.2020.115402_b0045) 2017 Chiu (10.1016/j.apenergy.2020.115402_b0100) 2017 Kant (10.1016/j.apenergy.2020.115402_b0205) 2014 |
| References_xml | – year: 2019 ident: b0020 article-title: Energy management: A practice-based assessment model publication-title: Appl Energy – year: 2017 ident: b0045 article-title: Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement publication-title: Appl Energy – year: 2011 ident: b0060 article-title: Evaluating the use phase energy requirements of a machine tool system publication-title: J Clean Prod – year: 2016 ident: b0215 article-title: On the limits of digital back-propagation in fully loaded WDM systems publication-title: IEEE Photon Technol Lett – year: 2019 ident: b0015 article-title: Resources value mapping: A method to assess the resource efficiency of manufacturing systems publication-title: Appl Energy – year: 2020 ident: b0090 article-title: Data-driven process monitoring and fault analysis of reformer units in hydrogen plants: Industrial application and perspectives publication-title: Comput Chem Eng – reference: Ma MX, Ngan HYT, Liu W. Density-based outlier detection by local outlier factor on largescale traffic data. IS T Int Symp Electron Imaging Sci Technol; 2016. – year: 2017 ident: b0025 article-title: Energy Resources Intelligent Management using on line real-time simulation: A decision support tool for sustainable manufacturing publication-title: Appl Energy – year: 2014 ident: b0180 article-title: CNN features off-the-shelf: An astounding baseline for recognition publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work – reference: Rachuri S, Park J, Law KH, Dornfeld DA, Helu M, Bhinge R. Toward a generalized energy prediction model for machine tools. J Manuf Sci Eng 2016;139:041013. – year: 2019 ident: b0120 article-title: Machine learning methods for wind turbine condition monitoring: A review publication-title: Renew Energy – year: 2018 ident: b0165 article-title: Deep learning for smart manufacturing: Methods and applications publication-title: J Manuf Syst – year: 2020 ident: b0185 article-title: SVD-based redundancy removal in 1-D CNNs for acoustic scene classification publication-title: Pattern Recognit Lett – year: 2016 ident: b0075 article-title: Analytical approach to establishment of predictive models of power consumption of machine tools’ auxiliary units publication-title: J Clean Prod – year: 2018 ident: b0190 article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data publication-title: Neurocomputing – year: 2016 ident: b0135 article-title: RESTful Industrial Communication with OPC UA publication-title: IEEE Trans Ind Inform – year: 2019 ident: b0160 article-title: A comparative study of local outlier factor algorithms for outliers detection in data streams publication-title: Adv. Intell. Syst. Comput. – year: 2018 ident: b0170 article-title: A review on the application of deep learning in system health management publication-title: Mech Syst Signal Process – year: 2018 ident: b0130 article-title: Efficient deep learning model for mitosis detection using breast histopathology images publication-title: Comput Med Imaging Graph – year: 2017 ident: b0210 article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network publication-title: Energy – year: 2018 ident: b0110 article-title: A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy publication-title: CIRP Ann – year: 2018 ident: b0050 article-title: A mechanistic model of energy consumption in milling publication-title: Int J Prod Res – year: 2016 ident: b0070 article-title: Experimental study on energy consumption of computer numerical control machine tools publication-title: J Clean Prod – reference: IEA. World Energy Balances 2018. Report; 2018. – year: 2016 ident: b0155 article-title: Local outlier factor and stronger one class classifier based hierarchical model for detection of attacks in network intrusion detection dataset publication-title: Front Comput Sci – year: 2020 ident: b0040 article-title: Power consumption assessment of machine tool feed drive units publication-title: Int J Precis Eng Manuf - Green Technol – year: 2014 ident: b0205 article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining publication-title: J Clean Prod – year: 2014 ident: b0095 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans Ind Electron – year: 2018 ident: b0140 article-title: OPC UA: examples of digital reporting applications for current industrial processes publication-title: DEStech Trans Eng Technol Res – reference: Wu P, He Y, Lim MK, Wang Y, Wang Y, Hu L. A configurable on-line monitoring system towards energy consumption of machine tools 2018;925. https://doi.org/10.1007/978-981-13-2381-2_13. – year: 2016 ident: b0065 article-title: Energy consumption and modeling in precision hard milling publication-title: J Clean Prod – reference: . – year: 2019 ident: b0030 article-title: Optimization of the energy consumption of industrial robots for automatic code generation publication-title: Robot Comput Integr Manuf – year: 2017 ident: b0055 article-title: An investigation into reducing the spindle acceleration energy consumption of machine tools publication-title: J Clean Prod – volume: 195 start-page: 222 year: 2017 end-page: 233 ident: b0115 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl Energy – year: 2012 ident: b0085 article-title: Intelligent hybrid vehicle power control part I: Machine learning of optimal vehicle power publication-title: IEEE Trans Veh Technol – year: 2015 ident: b0200 article-title: Intelligent energy based status identification as a platform for improvement of machine tool efficiency and effectiveness publication-title: J Clean Prod – reference: Kynčlová P, Upadhyaya S, Nice T. Composite index as a measure on achieving Sustainable Development Goal 9 (SDG-9) industry-related targets: The SDG-9 index. Appl Energy; 2020. – year: 2017 ident: b0125 article-title: Handcrafted vs. non-handcrafted features for computer vision classification publication-title: Pattern Recognit – reference: Biswas N, Law KH, Rachuri S, Bhinge R, Srinivasan A, Dornfeld DA, et al. A generalized data-driven energy prediction model with uncertainty for a milling machine tool using gaussian process 2015:V002T05A010. – year: 2020 ident: b0035 article-title: A review of the current automotive manufacturing practice from an energy perspective publication-title: Appl Energy – year: 2017 ident: b0100 article-title: Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach publication-title: Adv Eng Softw – year: 2018 ident: b0080 article-title: Data-driven smart manufacturing publication-title: J Manuf Syst – year: 2014 ident: b0175 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recognit Lett – year: 2015 ident: 10.1016/j.apenergy.2020.115402_b0200 article-title: Intelligent energy based status identification as a platform for improvement of machine tool efficiency and effectiveness publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.01.058 – year: 2014 ident: 10.1016/j.apenergy.2020.115402_b0205 article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.07.073 – ident: 10.1016/j.apenergy.2020.115402_b0145 doi: 10.1007/978-981-13-2381-2_13 – year: 2014 ident: 10.1016/j.apenergy.2020.115402_b0175 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2014.01.008 – year: 2016 ident: 10.1016/j.apenergy.2020.115402_b0215 article-title: On the limits of digital back-propagation in fully loaded WDM systems publication-title: IEEE Photon Technol Lett doi: 10.1109/LPT.2016.2522969 – year: 2016 ident: 10.1016/j.apenergy.2020.115402_b0155 article-title: Local outlier factor and stronger one class classifier based hierarchical model for detection of attacks in network intrusion detection dataset publication-title: Front Comput Sci doi: 10.1007/s11704-015-5116-8 – year: 2019 ident: 10.1016/j.apenergy.2020.115402_b0160 article-title: A comparative study of local outlier factor algorithms for outliers detection in data streams publication-title: Adv. Intell. Syst. Comput. – year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0100 article-title: Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.008 – year: 2020 ident: 10.1016/j.apenergy.2020.115402_b0040 article-title: Power consumption assessment of machine tool feed drive units publication-title: Int J Precis Eng Manuf - Green Technol doi: 10.1007/s40684-019-00063-y – ident: 10.1016/j.apenergy.2020.115402_b0105 doi: 10.1115/1.4034933 – ident: 10.1016/j.apenergy.2020.115402_b0005 doi: 10.1016/j.apenergy.2020.114755 – year: 2019 ident: 10.1016/j.apenergy.2020.115402_b0030 article-title: Optimization of the energy consumption of industrial robots for automatic code generation publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2018.12.020 – ident: 10.1016/j.apenergy.2020.115402_b0010 doi: 10.1787/3a876031-en – year: 2019 ident: 10.1016/j.apenergy.2020.115402_b0120 article-title: Machine learning methods for wind turbine condition monitoring: A review publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.047 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0190 article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.069 – year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0025 article-title: Energy Resources Intelligent Management using on line real-time simulation: A decision support tool for sustainable manufacturing publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.009 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0165 article-title: Deep learning for smart manufacturing: Methods and applications publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.01.003 – volume: 195 start-page: 222 year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0115 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.064 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0050 article-title: A mechanistic model of energy consumption in milling publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1404160 – year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0125 article-title: Handcrafted vs. non-handcrafted features for computer vision classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.05.025 – year: 2016 ident: 10.1016/j.apenergy.2020.115402_b0070 article-title: Experimental study on energy consumption of computer numerical control machine tools publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.07.040 – ident: 10.1016/j.apenergy.2020.115402_b0150 doi: 10.2352/ISSN.2470-1173.2016.14.IPMVA-385 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0140 article-title: OPC UA: examples of digital reporting applications for current industrial processes publication-title: DEStech Trans Eng Technol Res doi: 10.12783/dtetr/ecar2018/26363 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0110 article-title: A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy publication-title: CIRP Ann doi: 10.1016/j.cirp.2018.03.015 – year: 2014 ident: 10.1016/j.apenergy.2020.115402_b0095 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans Ind Electron – year: 2012 ident: 10.1016/j.apenergy.2020.115402_b0085 article-title: Intelligent hybrid vehicle power control part I: Machine learning of optimal vehicle power publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2012.2206064 – year: 2019 ident: 10.1016/j.apenergy.2020.115402_b0015 article-title: Resources value mapping: A method to assess the resource efficiency of manufacturing systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.158 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0170 article-title: A review on the application of deep learning in system health management publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.024 – year: 2019 ident: 10.1016/j.apenergy.2020.115402_b0020 article-title: Energy management: A practice-based assessment model publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.11.032 – year: 2020 ident: 10.1016/j.apenergy.2020.115402_b0035 article-title: A review of the current automotive manufacturing practice from an energy perspective publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114074 – year: 2011 ident: 10.1016/j.apenergy.2020.115402_b0060 article-title: Evaluating the use phase energy requirements of a machine tool system publication-title: J Clean Prod doi: 10.1016/j.jclepro.2010.10.010 – year: 2020 ident: 10.1016/j.apenergy.2020.115402_b0090 article-title: Data-driven process monitoring and fault analysis of reformer units in hydrogen plants: Industrial application and perspectives publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2020.106756 – year: 2020 ident: 10.1016/j.apenergy.2020.115402_b0185 article-title: SVD-based redundancy removal in 1-D CNNs for acoustic scene classification publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2020.02.004 – year: 2014 ident: 10.1016/j.apenergy.2020.115402_b0180 article-title: CNN features off-the-shelf: An astounding baseline for recognition publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work – year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0210 article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network publication-title: Energy – year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0045 article-title: Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.180 – year: 2016 ident: 10.1016/j.apenergy.2020.115402_b0065 article-title: Energy consumption and modeling in precision hard milling publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.10.094 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0130 article-title: Efficient deep learning model for mitosis detection using breast histopathology images publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2017.12.001 – year: 2018 ident: 10.1016/j.apenergy.2020.115402_b0080 article-title: Data-driven smart manufacturing publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.01.006 – ident: 10.1016/j.apenergy.2020.115402_b0195 doi: 10.1115/MSEC2015-9354 – year: 2017 ident: 10.1016/j.apenergy.2020.115402_b0055 article-title: An investigation into reducing the spindle acceleration energy consumption of machine tools publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.12.045 – year: 2016 ident: 10.1016/j.apenergy.2020.115402_b0075 article-title: Analytical approach to establishment of predictive models of power consumption of machine tools’ auxiliary units publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.07.092 – year: 2016 ident: 10.1016/j.apenergy.2020.115402_b0135 article-title: RESTful Industrial Communication with OPC UA publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2016.2530404 |
| SSID | ssj0002120 |
| Score | 2.607784 |
| Snippet | •A practical and effective method is presented for energy prediction of machine tool.•Energy consumption features are extracted by using unsupervised deep... Energy prediction of machine tools plays an irreplaceable role in energy planning, management, and conservation in the manufacturing industry. In the era of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115402 |
| SubjectTerms | algorithms artificial intelligence Data-driven Deep learning Energy consumption Energy consumption features energy use and consumption equipment performance grinding learning Machine tools manufacturing milling model validation planning prediction |
| Title | A generic energy prediction model of machine tools using deep learning algorithms |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.115402 https://www.proquest.com/docview/2440687711 |
| Volume | 275 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL3oQnYqfI4LXbl2-2h6HbEzFgaiwW0jzMTe2tWz16t9u0qY6BfFgby1JCe8l7_3C-_gBcC0VSqIUh0FqvWlABGFBksY0MCyWSOAkpSV7w8OIDV_I3ZiOt8BNXQvj0iq97a9semmt_ZeOl2Ynn047Tw7tlvjfRQnsvcBVsJPIsRi037_SPJBvzWgHB270RpXwrC1yXVbY2XsictbDwhf0m4P6YapL_zPYB3seOMJetbYDsKWXTbC70U6wCY77X1Vrdqg_tutD8NiDE7eEqYTVSmC-cgEapxRYcuHAzMBFmVepYZFl8zV0CfETqLTOoWeWmEAxn2SrafG6WB-Bl0H_-WYYeC6FQGJCi6ArtBbUMJEwiZhKEMNYkEgIbAEQ6momqCLKXo4ktRBS6jQWEiuZYmFihe1zDBrLbKlPAKTIxCmRRGEdEi3DJBSSGINCZRIipDkFtBYgl77RuOO7mPM6o2zGa8FzJ3heCf4UdD7n5VWrjT9nJLV--LdNw60_-HPuVa1Qbk-UC5OIpc7e1twCnpDFUdTtnv3j_-dgx71VeX8XoFGs3vSlxS9F2io3aAts927vh6MP6mfxhw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HNSDuOJuBK91OtnaHkWUcQVRwVtIs4wj47TM1Ku_3aRN3UA82GObVx4vyXvf420Ah0rjLMlJHOXOmkZUUh5lecoiy1OFJclyVk9vuL7hvQd68cgep-CkrYXxaZVB9zc6vdbW4U0nSLNTDgadO492a_zvowTOL5iGWcpw4j2wo7fPPA8cejO61ZFf_qVM-PlIlqYusXOOIvbqw-EX_JuF-qGrawN0tgSLATmi44a5ZZgyoxVY-NJPcAXWTz_L1tzScG8nq3B7jPqehYFCDSeoHPsIjd8VVA_DQYVFL3VipUFVUQwnyGfE95E2pkRhtEQfyWG_GA-qp5fJGjycnd6f9KIwTCFShLIq6kpjJLNcZlxhrjPMCZE0kZI4BIS7hkumqXbekWIOQyqTp1IRrXIibaqJe9ZhZlSMzAYghm2aU0U1MTE1Ks5iqai1ONY2o1LZTWCtAIUKncb9wIuhaFPKnkUreOEFLxrBb0Lng65sem38SZG1-yO-nRrhDMKftAfthgp3pXycRI5M8ToRDvHEPE2SbnfrH__fh7ne_fWVuDq_udyGef-lSQLcgZlq_Gp2HZip8r36sL4DhEfzHA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generic+energy+prediction+model+of+machine+tools+using+deep+learning+algorithms&rft.jtitle=Applied+energy&rft.au=He%2C+Yan&rft.au=Wu%2C+Pengcheng&rft.au=Li%2C+Yufeng&rft.au=Wang%2C+Yulin&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=275&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115402&rft.externalDocID=S0306261920309144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |