Pythagorean fuzzy C‐means algorithm for image segmentation
In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised met...
Saved in:
| Published in | International journal of intelligent systems Vol. 36; no. 3; pp. 1223 - 1243 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
John Wiley & Sons, Inc
01.03.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0884-8173 1098-111X |
| DOI | 10.1002/int.22339 |
Cover
| Abstract | In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised method. With the further study of FCM, various different kinds of FCM algorithms are put forward to deal with the specific problems in image segmentation. Because there exist uncertainties in different regions of the image and similarity in the same region, reducing the uncertainty is still the main problem in image segmentation. Considering that Pythagorean fuzzy set (PFS) is a powerful tool to deal with uncertainty, in this paper, we use PFS to describe the uncertainty of image segmentation, including introducing fuzzification and defuzzification process and Pythagorean fuzzy element to describe the membership degree of pixel, combine the neighborhood information with weights and Pythagorean fuzzy distance, and propose Pythagorean fuzzy C‐means (PFCM) algorithm. Finally, we apply PFCM algorithm in image segmentation, such as different size images and Berkeley Segmentation Data Set to illustrate the effectiveness and applicability of our proposed algorithm. Meanwhile, we do comparison analysis between PFCM, fully convolution network and Deep‐image‐Prior networks, these results show that our proposed PFCM has good intuition and effectiveness. |
|---|---|
| AbstractList | In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised method. With the further study of FCM, various different kinds of FCM algorithms are put forward to deal with the specific problems in image segmentation. Because there exist uncertainties in different regions of the image and similarity in the same region, reducing the uncertainty is still the main problem in image segmentation. Considering that Pythagorean fuzzy set (PFS) is a powerful tool to deal with uncertainty, in this paper, we use PFS to describe the uncertainty of image segmentation, including introducing fuzzification and defuzzification process and Pythagorean fuzzy element to describe the membership degree of pixel, combine the neighborhood information with weights and Pythagorean fuzzy distance, and propose Pythagorean fuzzy C‐means (PFCM) algorithm. Finally, we apply PFCM algorithm in image segmentation, such as different size images and Berkeley Segmentation Data Set to illustrate the effectiveness and applicability of our proposed algorithm. Meanwhile, we do comparison analysis between PFCM, fully convolution network and Deep‐image‐Prior networks, these results show that our proposed PFCM has good intuition and effectiveness. In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised method. With the further study of FCM, various different kinds of FCM algorithms are put forward to deal with the specific problems in image segmentation. Because there exist uncertainties in different regions of the image and similarity in the same region, reducing the uncertainty is still the main problem in image segmentation. Considering that Pythagorean fuzzy set (PFS) is a powerful tool to deal with uncertainty, in this paper, we use PFS to describe the uncertainty of image segmentation, including introducing fuzzification and defuzzification process and Pythagorean fuzzy element to describe the membership degree of pixel, combine the neighborhood information with weights and Pythagorean fuzzy distance, and propose Pythagorean fuzzy C‐means (PFCM) algorithm. Finally, we apply PFCM algorithm in image segmentation, such as different size images and Berkeley Segmentation Data Set to illustrate the effectiveness and applicability of our proposed algorithm. Meanwhile, we do comparison analysis between PFCM, fully convolution network and Deep‐image‐Prior networks, these results show that our proposed PFCM has good intuition and effectiveness. |
| Author | Zeng, Wenyi Ma, Rong Song, Guangcheng Yin, Qian Xu, Zeshui |
| Author_xml | – sequence: 1 givenname: Rong surname: Ma fullname: Ma, Rong email: macrosse@163.com organization: Beijing Normal University – sequence: 2 givenname: Wenyi surname: Zeng fullname: Zeng, Wenyi email: zengwy@bnu.edu.cn organization: Beijing Normal University – sequence: 3 givenname: Guangcheng surname: Song fullname: Song, Guangcheng email: gc_song@163.com organization: Beijing Normal University – sequence: 4 givenname: Qian surname: Yin fullname: Yin, Qian email: yinqian@bnu.edu.cn organization: Beijing Normal University – sequence: 5 givenname: Zeshui surname: Xu fullname: Xu, Zeshui organization: Sichuan University |
| BookMark | eNp1kMtKA0EQRRuJYBJd-AcDrlxM0jXTT3AjwUcgqIsI7pqmpzuZMI_YPUEmKz_Bb_RLHJ2sRFdFUefeqrojNKjqyiJ0DngCGCfTvGomSZKm8ggNAUsRA8DLAA2xECQWwNMTNAphgzEAJ3SIrp7aZq1Xtbe6itxuv2-j2ef7R9m1IdJFN8ibdRm52kd5qVc2CnZV2qrRTV5Xp-jY6SLYs0Mdo-fbm-XsPl483s1n14vYpITKmFIjHefOZRgw1TITDAzlkCVEWyYYy0SSMUkYcG6FpEQQTo3RzDjDuJTpGF30vltfv-5saNSm3vmqW6kSIkDwhEDaUdOeMr4OwVunTN7f2XidFwqw-o5IdRGpn4g6xeUvxdZ3X_r2T_bg_pYXtv0fVPOHZa_4Aoisd-4 |
| CitedBy_id | crossref_primary_10_3390_electronics12214446 crossref_primary_10_1016_j_ins_2022_03_063 crossref_primary_10_1002_int_22554 crossref_primary_10_1016_j_engappai_2025_110291 crossref_primary_10_1080_17686733_2021_1974209 crossref_primary_10_1002_ima_23137 crossref_primary_10_1155_2024_6696775 crossref_primary_10_1016_j_eswa_2021_115267 crossref_primary_10_3233_JIFS_213502 crossref_primary_10_1016_j_eswa_2022_119222 crossref_primary_10_3390_app14020644 crossref_primary_10_1007_s11629_022_7638_5 crossref_primary_10_1007_s42452_023_05365_0 crossref_primary_10_4018_IJSSCI_309426 crossref_primary_10_1002_int_22668 crossref_primary_10_1002_int_22822 crossref_primary_10_1002_int_22757 crossref_primary_10_1002_int_22933 crossref_primary_10_1016_j_aej_2023_04_057 crossref_primary_10_1002_int_22804 crossref_primary_10_3390_en16041936 |
| Cites_doi | 10.1002/int.21584 10.1016/0888-613X(87)90015-6 10.1016/j.asoc.2017.06.034 10.1016/j.ins.2015.10.012 10.1109/IFSA-NAFIPS.2013.6608375 10.1002/int.22027 10.1016/j.patcog.2006.07.011 10.1016/S0165-0114(86)80034-3 10.1109/TFUZZ.2013.2278989 10.1016/j.ins.2014.02.013 10.1016/j.fss.2018.01.019 10.1016/S0019-9958(65)90241-X 10.1016/0020-0255(75)90036-5 10.1007/978-3-642-48318-9 10.1002/int.21788 10.1002/int.21738 10.1016/j.asoc.2015.12.020 10.1006/cviu.2001.0951 10.1109/TITB.2005.847500 10.1109/TPAMI.2010.161 10.1080/03081077908547452 10.1080/01969727308546046 10.1002/int.21676 10.1109/42.996338 10.1109/TIP.2010.2040763 10.1002/int.21934 10.1002/int.21809 10.1109/TIP.2012.2219547 10.1109/TSMCB.2004.831165 10.1002/int.20152 10.1109/CIMCA.2005.1631233 10.1016/S0019-9958(80)90156-4 10.1002/int.21823 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC 2021 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/int.22339 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| EndPage | 1243 |
| ExternalDocumentID | 10_1002_int_22339 INT22339 |
| Genre | article |
| GrantInformation_xml | – fundername: Joint Research Fund in Astronomy funderid: U1531242 – fundername: National Natural Science Foundation of China funderid: 61472043; 10971243 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PQGLB PUEGO 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3459-55c9f77ffd0105a9d861c571d24ae6866d82d6946177e89548475cca6cfc67993 |
| IEDL.DBID | DR2 |
| ISSN | 0884-8173 |
| IngestDate | Fri Jul 25 12:17:23 EDT 2025 Wed Oct 01 03:27:33 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Wed Jan 22 16:31:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3459-55c9f77ffd0105a9d861c571d24ae6866d82d6946177e89548475cca6cfc67993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2481872413 |
| PQPubID | 1026350 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2481872413 crossref_citationtrail_10_1002_int_22339 crossref_primary_10_1002_int_22339 wiley_primary_10_1002_int_22339_INT22339 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2018; 340 1987; 1 2015; 39 2013; 28 2017; 60 2010; 19 2015; 30 2016; 31 2011; 33 2005 2014; 29 2008; 3 2002 2001; 84 2014; 22 1979 2014; 277 1981; 22 2015; 28 1986; 20 2006; 21 1965; 8 2005; 9 2002; 21 2004; 34 2016; 42 2019 2016; 330 1983 2007; 40 1981 1980 2013 1975; 8 2018; 33 1979; 44 2012; 22 1973; 3 e_1_2_8_28_1 e_1_2_8_29_1 Zhang DQ (e_1_2_8_10_1) 2002 Bezdek JC (e_1_2_8_3_1) 1981; 22 e_1_2_8_24_1 e_1_2_8_25_1 Dubois D (e_1_2_8_15_1) 1980 e_1_2_8_27_1 e_1_2_8_2_1 Wang PZ. (e_1_2_8_31_1) 1983 Zhang XL (e_1_2_8_34_1) 2015; 28 e_1_2_8_5_1 Peng XD (e_1_2_8_26_1) 2015; 30 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 Long J (e_1_2_8_42_1) 2015; 39 Yossi G (e_1_2_8_44_1) 2019 Pelekis N (e_1_2_8_37_1) 2008; 3 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 8 start-page: 199 year: 1975 end-page: 249 article-title: The concept of a linguistic variable and its application to approximate reasoning, (I), (II), (III) publication-title: Inf Sci – start-page: 57 year: 2013 end-page: 61 – year: 1983 – volume: 34 start-page: 1907 year: 2004 end-page: 1916 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel‐induced distance measure publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) – year: 1981 – volume: 1 start-page: 221 year: 1987 end-page: 242 article-title: Measures of similarity among fuzzy concepts: a comparative analysis publication-title: Int J Approx Reason – volume: 8 start-page: 338 year: 1965 end-page: 353 article-title: Fuzzy sets publication-title: Inf Control – volume: 20 start-page: 87 year: 1986 end-page: 96 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst – volume: 21 start-page: 193 year: 2002 end-page: 199 article-title: A modified fuzzy c‐means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans Med Imaging – volume: 33 start-page: 898 year: 2011 end-page: 916 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 3 start-page: 32 year: 1973 end-page: 57 article-title: A fuzzy relative of the isodata process and its use in detecting compact well‐separated clusters publication-title: J Cybern – start-page: 123 year: 2002 end-page: 127 – volume: 60 start-page: 167 year: 2017 end-page: 179 article-title: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets publication-title: Appl Soft Comput – volume: 21 start-page: 639 year: 2006 end-page: 653 article-title: Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations publication-title: Int J Intell Syst – volume: 30 start-page: 1133 year: 2015 end-page: 1160 article-title: Some results for Pythagorean fuzzy sets publication-title: Int J Intell Syst – start-page: 2 year: 2005 end-page: 7 – volume: 31 start-page: 1198 year: 2016 end-page: 1219 article-title: Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their applications in multicriteria decision making publication-title: Int J Intell Syst – volume: 28 start-page: 2279 year: 2015 end-page: 2296 article-title: Novel distance and similarity measures on hesitant fuzzy sets with applications to clustering analysis publication-title: J Int Fuzzy Syst – volume: 33 start-page: 2236 year: 2018 end-page: 2254 article-title: Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making publication-title: Int J Intell Syst – volume: 84 start-page: 285 year: 2001 end-page: 297 article-title: Spatial models for fuzzy clustering publication-title: Comput Vis Image Understanding – volume: 22 start-page: 573 year: 2012 end-page: 584 article-title: Fuzzy c‐means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans Image Process – volume: 22 start-page: 958 year: 2014 end-page: 965 article-title: Pythagorean membership grades in multicriteria decision making publication-title: IEEE Trans Fuzzy Syst – volume: 22 start-page: 203 year: 1981 end-page: 239 article-title: Pattern recognition with fuzzy objective function algorithms publication-title: Adv Appl Pattern Recognition – volume: 330 start-page: 104 year: 2016 end-page: 124 article-title: Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index‐based ranking methods publication-title: Inf Sci – volume: 30 start-page: 1 year: 2015 end-page: 44 article-title: Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators publication-title: Int J Intell Syst – volume: 28 start-page: 436 year: 2013 end-page: 452 article-title: Pythagorean membership grades, complex numbers and decision making publication-title: Int J Intell Syst – volume: 39 start-page: 640 year: 2015 end-page: 651 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 29 start-page: 1061 year: 2014 end-page: 1078 article-title: Extension of TOPSIS to multi‐criteria decision making with Pythagorean fuzzy sets publication-title: Int J Intell Syst – year: 1980 – volume: 19 start-page: 1328 year: 2010 end-page: 1337 article-title: A robust fuzzy local information c‐means clustering algorithm publication-title: IEEE Trans Image Process – volume: 31 start-page: 401 year: 2016 end-page: 424 article-title: The properties of continuous Pythagorean fuzzy information publication-title: Int J Intell Syst – start-page: 221 year: 1979 end-page: 229 article-title: On the measure of fuzziness and negation, Part I: membership in the unit interval publication-title: Int J Gen Syst – start-page: 11018 year: 2019 end-page: 11027 – volume: 33 start-page: 348 year: 2018 end-page: 361 article-title: Distance measure of Pythagorean fuzzy sets publication-title: Int J Intell Syst – volume: 9 start-page: 459 year: 2005 end-page: 467 article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural‐network optimization publication-title: IEEE Trans Inf Technol Biomed – volume: 31 start-page: 886 year: 2016 end-page: 920 article-title: A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making publication-title: Int J Intell Syst – volume: 44 start-page: 236 year: 1979 end-page: 260 article-title: On the measure of fuzziness and negation, Part II: lattices publication-title: Inf Control – volume: 40 start-page: 825 year: 2007 end-page: 838 article-title: Fast and robust fuzzy c‐means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognition – volume: 277 start-page: 141 year: 2014 end-page: 153 article-title: TOPSIS‐based group decision making methodology in intuitionistic fuzzy setting publication-title: Inf Sci – volume: 42 start-page: 246 year: 2016 end-page: 259 article-title: Pythagorean fuzzy TODIM approach to multi‐criteria decision making publication-title: Appl Soft Comput – volume: 340 start-page: 91 year: 2018 end-page: 108 article-title: Generalised kernel weighted fuzzy c‐means clustering algorithm with local information publication-title: Fuzzy Sets Syst – volume: 3 start-page: 45 year: 2008 end-page: 65 article-title: Fuzzy clustering of intuitionistic fuzzy data publication-title: Int J Bus Intell Data Min – volume: 30 start-page: 1 year: 2015 ident: e_1_2_8_26_1 article-title: Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators publication-title: Int J Intell Syst – ident: e_1_2_8_19_1 doi: 10.1002/int.21584 – ident: e_1_2_8_32_1 doi: 10.1016/0888-613X(87)90015-6 – ident: e_1_2_8_45_1 – volume: 28 start-page: 2279 year: 2015 ident: e_1_2_8_34_1 article-title: Novel distance and similarity measures on hesitant fuzzy sets with applications to clustering analysis publication-title: J Int Fuzzy Syst – ident: e_1_2_8_23_1 doi: 10.1016/j.asoc.2017.06.034 – ident: e_1_2_8_25_1 doi: 10.1016/j.ins.2015.10.012 – ident: e_1_2_8_17_1 doi: 10.1109/IFSA-NAFIPS.2013.6608375 – ident: e_1_2_8_36_1 doi: 10.1002/int.22027 – ident: e_1_2_8_8_1 doi: 10.1016/j.patcog.2006.07.011 – ident: e_1_2_8_14_1 doi: 10.1016/S0165-0114(86)80034-3 – ident: e_1_2_8_18_1 doi: 10.1109/TFUZZ.2013.2278989 – ident: e_1_2_8_21_1 doi: 10.1016/j.ins.2014.02.013 – ident: e_1_2_8_12_1 doi: 10.1016/j.fss.2018.01.019 – ident: e_1_2_8_43_1 – ident: e_1_2_8_13_1 doi: 10.1016/S0019-9958(65)90241-X – volume-title: Fuzzy Sets and Systems: Theory and Applications year: 1980 ident: e_1_2_8_15_1 – ident: e_1_2_8_16_1 doi: 10.1016/0020-0255(75)90036-5 – volume: 3 start-page: 45 year: 2008 ident: e_1_2_8_37_1 article-title: Fuzzy clustering of intuitionistic fuzzy data publication-title: Int J Bus Intell Data Min – ident: e_1_2_8_20_1 doi: 10.1007/978-3-642-48318-9 – ident: e_1_2_8_30_1 doi: 10.1002/int.21788 – ident: e_1_2_8_24_1 doi: 10.1002/int.21738 – start-page: 123 volume-title: Proceedings of the 2002 International Conference on Control and Automation year: 2002 ident: e_1_2_8_10_1 – volume: 39 start-page: 640 year: 2015 ident: e_1_2_8_42_1 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – ident: e_1_2_8_28_1 doi: 10.1016/j.asoc.2015.12.020 – ident: e_1_2_8_4_1 doi: 10.1006/cviu.2001.0951 – ident: e_1_2_8_7_1 doi: 10.1109/TITB.2005.847500 – ident: e_1_2_8_41_1 doi: 10.1109/TPAMI.2010.161 – ident: e_1_2_8_38_1 doi: 10.1080/03081077908547452 – ident: e_1_2_8_2_1 doi: 10.1080/01969727308546046 – ident: e_1_2_8_22_1 doi: 10.1002/int.21676 – volume: 22 start-page: 203 year: 1981 ident: e_1_2_8_3_1 article-title: Pattern recognition with fuzzy objective function algorithms publication-title: Adv Appl Pattern Recognition – ident: e_1_2_8_5_1 doi: 10.1109/42.996338 – ident: e_1_2_8_9_1 doi: 10.1109/TIP.2010.2040763 – ident: e_1_2_8_35_1 doi: 10.1002/int.21934 – ident: e_1_2_8_27_1 doi: 10.1002/int.21809 – volume-title: Fuzzy Sets and Its Applications year: 1983 ident: e_1_2_8_31_1 – start-page: 11018 volume-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2019 ident: e_1_2_8_44_1 – ident: e_1_2_8_11_1 doi: 10.1109/TIP.2012.2219547 – ident: e_1_2_8_6_1 doi: 10.1109/TSMCB.2004.831165 – ident: e_1_2_8_33_1 doi: 10.1002/int.20152 – ident: e_1_2_8_40_1 doi: 10.1109/CIMCA.2005.1631233 – ident: e_1_2_8_39_1 doi: 10.1016/S0019-9958(80)90156-4 – ident: e_1_2_8_29_1 doi: 10.1002/int.21823 |
| SSID | ssj0011745 |
| Score | 2.417901 |
| Snippet | In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1223 |
| SubjectTerms | Algorithms Computer vision Convolution fuzzy C‐means algorithm Fuzzy sets Image segmentation information fusion Intelligent systems Machine learning Object recognition Pattern recognition Pythagorean fuzzy C‐means algorithm Pythagorean fuzzy set Uncertainty |
| Title | Pythagorean fuzzy C‐means algorithm for image segmentation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22339 https://www.proquest.com/docview/2481872413 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: ADMLS dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0884-8173 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF-vGIB68pDbpbEEvRS1VtIgLeBDCZDKpRRPFpof25E_wN_pLfDNJ6oKCeEvIy_aWmW-S976H0LYCL2gobvLCtHaIlrEjYsodGurIMwsQEVq2zy7rXJOTG3pTQXtlLUzODzH54GYiw47XJsBlONj9IA3tp1kd5ramKd5zm8wupy4m1FEuIG2aI0jiCJc3S1ahhrc7OfPrXPQBMD_DVDvPtGfRbfmEeXrJfX2YhXU1_kbe-M9XmEMzBf7Erdxh5lFFpwtotuztgItQX0T756PsTvYeAVOmOB6OxyN88PbymsDuAMsHONDP7hIMkBf3ExiT8ED3kqKOKV1C1-2jq4OOU3RacFSTUN-hVPkx53EcmYaZ0o8Ec8GKbuQRqZlgLBJexHwCcIdrYTjiCKdge6ZixThAnGVUTR9TvYKwVo2Q-kq6XAriKy4bXGsBwDFmprWJW0M7pc4DVdCQm24YD0FOoOwFoJXAaqWGtiaiTzn3xk9C66XhgiL8BoFHAIdw88sQbmct8PsFguPuld1Y_bvoGpr2TG6LzUVbR9Xseag3AJxk4Saaah2enV5uWm98B8um4ak |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHUA5woaxiKWAhDlxSmtRbJC4IUZWtQqhIXFCUOE6poAHR9NCeeASekSdhnKUFBBLilijO5vHEn53xPwB7CltBTQkTF6a1RbUfWTJiwmKBDh0zAJFBqvbZ4s0benbLbqfgsFgLk-lDjCfcjGek32vj4GZC-mCiGtqNkyp2bnV3GmYox3GKQaLrsXiUjazNMoaklrRFvdAVqjkH41O_9kYTxPwMqmlP0yjDXfGMWYDJQ3WQBFU1-ibf-N-XWID5HEHJUdZmFmFKx0tQLtI7kNzbl-Hwapjc-50nxMqYRIPRaEiO31_ferjbJ_4jHugm9z2C1Eu6Pfwskb7u9PKlTPEK3DRO2sdNK0-2YKk6Za7FmHIjIaIoNDkzfTeU3EZD2qFDfc0l56F0Qu5SJB6hpZGJo4Kh-bmKFBdIOatQip9ivQZEq1rAXOXbwpfUVcKvCa0lsmPETXYTex32i0r3VK5EbhJiPHqZhrLjYa14aa2sw-646HMmv_FToUphOS_3wL7nUEQRYf4a4u1SE_x-Ae-01U43Nv5edAdmm-3LC-_itHW-CXOOCXVJQ9MqUEpeBnoLWSUJttMm-QHYe-Q2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cQLy4i7uNePCScZLpLeBF1MGNQUTBi4Sk0z0zaKI4mYNz8hP8Rr_E6izjgoJ4S0hlq6XrdVL9CmBboRfUlbB1YVo7VIfGkYYJh0U69uwEREY522eLH1_T0xt2MwJ71VqYgh9i-MHNRkY-XtsA14-x2f1gDe2mWQ2TW8MfhXHKfGkL-g4vh-RRLmJtVmBI6khXNCpeobq3Ozz1azb6gJifgWqeaZrTcFs9Y1FgclfrZ1FNDb7RN_73JWZgqoSgZL_wmVkY0ekcTFftHUgZ7fOwd_GcdcL2A8LKlJj-YPBMDt5eXhPc7ZHwHg90s05CEPWSboLDEunpdlIuZUoX4Lp5dHVw7JTNFhzVQO05jCnfCGFMbHtmhn4suYuGdGOPhppLzmPpxdyniHiElpYmjgqG5ufKKC4Q5SzCWPqQ6iUgWtUj5qvQFaGkvhJhXWgtETsabrubuMuwUyk9UCUTuW2IcR8UHMpegFoJcq0sw9ZQ9LGg3_hJaK2yXFBGYC_wKEIRYf8a4u1yE_x-geCkdZVvrPxddBMmLg6bwflJ62wVJj1b6ZJXpq3BWPbU1-sIVbJoI_fId6Zp47o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pythagorean+fuzzy+C%E2%80%90means+algorithm+for+image+segmentation&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Ma%2C+Rong&rft.au=Zeng%2C+Wenyi&rft.au=Song%2C+Guangcheng&rft.au=Yin%2C+Qian&rft.date=2021-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=36&rft.issue=3&rft.spage=1223&rft.epage=1243&rft_id=info:doi/10.1002%2Fint.22339&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |