Pythagorean fuzzy C‐means algorithm for image segmentation

In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised met...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 36; no. 3; pp. 1223 - 1243
Main Authors Ma, Rong, Zeng, Wenyi, Song, Guangcheng, Yin, Qian, Xu, Zeshui
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.03.2021
Subjects
Online AccessGet full text
ISSN0884-8173
1098-111X
DOI10.1002/int.22339

Cover

Abstract In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised method. With the further study of FCM, various different kinds of FCM algorithms are put forward to deal with the specific problems in image segmentation. Because there exist uncertainties in different regions of the image and similarity in the same region, reducing the uncertainty is still the main problem in image segmentation. Considering that Pythagorean fuzzy set (PFS) is a powerful tool to deal with uncertainty, in this paper, we use PFS to describe the uncertainty of image segmentation, including introducing fuzzification and defuzzification process and Pythagorean fuzzy element to describe the membership degree of pixel, combine the neighborhood information with weights and Pythagorean fuzzy distance, and propose Pythagorean fuzzy C‐means (PFCM) algorithm. Finally, we apply PFCM algorithm in image segmentation, such as different size images and Berkeley Segmentation Data Set to illustrate the effectiveness and applicability of our proposed algorithm. Meanwhile, we do comparison analysis between PFCM, fully convolution network and Deep‐image‐Prior networks, these results show that our proposed PFCM has good intuition and effectiveness.
AbstractList In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised method. With the further study of FCM, various different kinds of FCM algorithms are put forward to deal with the specific problems in image segmentation. Because there exist uncertainties in different regions of the image and similarity in the same region, reducing the uncertainty is still the main problem in image segmentation. Considering that Pythagorean fuzzy set (PFS) is a powerful tool to deal with uncertainty, in this paper, we use PFS to describe the uncertainty of image segmentation, including introducing fuzzification and defuzzification process and Pythagorean fuzzy element to describe the membership degree of pixel, combine the neighborhood information with weights and Pythagorean fuzzy distance, and propose Pythagorean fuzzy C‐means (PFCM) algorithm. Finally, we apply PFCM algorithm in image segmentation, such as different size images and Berkeley Segmentation Data Set to illustrate the effectiveness and applicability of our proposed algorithm. Meanwhile, we do comparison analysis between PFCM, fully convolution network and Deep‐image‐Prior networks, these results show that our proposed PFCM has good intuition and effectiveness.
In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern recognition, and computer vision. Among many methods of image segmentation, fuzzy C‐means (FCM) algorithm is undoubtedly a milestone in unsupervised method. With the further study of FCM, various different kinds of FCM algorithms are put forward to deal with the specific problems in image segmentation. Because there exist uncertainties in different regions of the image and similarity in the same region, reducing the uncertainty is still the main problem in image segmentation. Considering that Pythagorean fuzzy set (PFS) is a powerful tool to deal with uncertainty, in this paper, we use PFS to describe the uncertainty of image segmentation, including introducing fuzzification and defuzzification process and Pythagorean fuzzy element to describe the membership degree of pixel, combine the neighborhood information with weights and Pythagorean fuzzy distance, and propose Pythagorean fuzzy C‐means (PFCM) algorithm. Finally, we apply PFCM algorithm in image segmentation, such as different size images and Berkeley Segmentation Data Set to illustrate the effectiveness and applicability of our proposed algorithm. Meanwhile, we do comparison analysis between PFCM, fully convolution network and Deep‐image‐Prior networks, these results show that our proposed PFCM has good intuition and effectiveness.
Author Zeng, Wenyi
Ma, Rong
Song, Guangcheng
Yin, Qian
Xu, Zeshui
Author_xml – sequence: 1
  givenname: Rong
  surname: Ma
  fullname: Ma, Rong
  email: macrosse@163.com
  organization: Beijing Normal University
– sequence: 2
  givenname: Wenyi
  surname: Zeng
  fullname: Zeng, Wenyi
  email: zengwy@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 3
  givenname: Guangcheng
  surname: Song
  fullname: Song, Guangcheng
  email: gc_song@163.com
  organization: Beijing Normal University
– sequence: 4
  givenname: Qian
  surname: Yin
  fullname: Yin, Qian
  email: yinqian@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 5
  givenname: Zeshui
  surname: Xu
  fullname: Xu, Zeshui
  organization: Sichuan University
BookMark eNp1kMtKA0EQRRuJYBJd-AcDrlxM0jXTT3AjwUcgqIsI7pqmpzuZMI_YPUEmKz_Bb_RLHJ2sRFdFUefeqrojNKjqyiJ0DngCGCfTvGomSZKm8ggNAUsRA8DLAA2xECQWwNMTNAphgzEAJ3SIrp7aZq1Xtbe6itxuv2-j2ef7R9m1IdJFN8ibdRm52kd5qVc2CnZV2qrRTV5Xp-jY6SLYs0Mdo-fbm-XsPl483s1n14vYpITKmFIjHefOZRgw1TITDAzlkCVEWyYYy0SSMUkYcG6FpEQQTo3RzDjDuJTpGF30vltfv-5saNSm3vmqW6kSIkDwhEDaUdOeMr4OwVunTN7f2XidFwqw-o5IdRGpn4g6xeUvxdZ3X_r2T_bg_pYXtv0fVPOHZa_4Aoisd-4
CitedBy_id crossref_primary_10_3390_electronics12214446
crossref_primary_10_1016_j_ins_2022_03_063
crossref_primary_10_1002_int_22554
crossref_primary_10_1016_j_engappai_2025_110291
crossref_primary_10_1080_17686733_2021_1974209
crossref_primary_10_1002_ima_23137
crossref_primary_10_1155_2024_6696775
crossref_primary_10_1016_j_eswa_2021_115267
crossref_primary_10_3233_JIFS_213502
crossref_primary_10_1016_j_eswa_2022_119222
crossref_primary_10_3390_app14020644
crossref_primary_10_1007_s11629_022_7638_5
crossref_primary_10_1007_s42452_023_05365_0
crossref_primary_10_4018_IJSSCI_309426
crossref_primary_10_1002_int_22668
crossref_primary_10_1002_int_22822
crossref_primary_10_1002_int_22757
crossref_primary_10_1002_int_22933
crossref_primary_10_1016_j_aej_2023_04_057
crossref_primary_10_1002_int_22804
crossref_primary_10_3390_en16041936
Cites_doi 10.1002/int.21584
10.1016/0888-613X(87)90015-6
10.1016/j.asoc.2017.06.034
10.1016/j.ins.2015.10.012
10.1109/IFSA-NAFIPS.2013.6608375
10.1002/int.22027
10.1016/j.patcog.2006.07.011
10.1016/S0165-0114(86)80034-3
10.1109/TFUZZ.2013.2278989
10.1016/j.ins.2014.02.013
10.1016/j.fss.2018.01.019
10.1016/S0019-9958(65)90241-X
10.1016/0020-0255(75)90036-5
10.1007/978-3-642-48318-9
10.1002/int.21788
10.1002/int.21738
10.1016/j.asoc.2015.12.020
10.1006/cviu.2001.0951
10.1109/TITB.2005.847500
10.1109/TPAMI.2010.161
10.1080/03081077908547452
10.1080/01969727308546046
10.1002/int.21676
10.1109/42.996338
10.1109/TIP.2010.2040763
10.1002/int.21934
10.1002/int.21809
10.1109/TIP.2012.2219547
10.1109/TSMCB.2004.831165
10.1002/int.20152
10.1109/CIMCA.2005.1631233
10.1016/S0019-9958(80)90156-4
10.1002/int.21823
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.22339
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
EndPage 1243
ExternalDocumentID 10_1002_int_22339
INT22339
Genre article
GrantInformation_xml – fundername: Joint Research Fund in Astronomy
  funderid: U1531242
– fundername: National Natural Science Foundation of China
  funderid: 61472043; 10971243
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3459-55c9f77ffd0105a9d861c571d24ae6866d82d6946177e89548475cca6cfc67993
IEDL.DBID DR2
ISSN 0884-8173
IngestDate Fri Jul 25 12:17:23 EDT 2025
Wed Oct 01 03:27:33 EDT 2025
Thu Apr 24 23:10:50 EDT 2025
Wed Jan 22 16:31:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3459-55c9f77ffd0105a9d861c571d24ae6866d82d6946177e89548475cca6cfc67993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2481872413
PQPubID 1026350
PageCount 21
ParticipantIDs proquest_journals_2481872413
crossref_citationtrail_10_1002_int_22339
crossref_primary_10_1002_int_22339
wiley_primary_10_1002_int_22339_INT22339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 340
1987; 1
2015; 39
2013; 28
2017; 60
2010; 19
2015; 30
2016; 31
2011; 33
2005
2014; 29
2008; 3
2002
2001; 84
2014; 22
1979
2014; 277
1981; 22
2015; 28
1986; 20
2006; 21
1965; 8
2005; 9
2002; 21
2004; 34
2016; 42
2019
2016; 330
1983
2007; 40
1981
1980
2013
1975; 8
2018; 33
1979; 44
2012; 22
1973; 3
e_1_2_8_28_1
e_1_2_8_29_1
Zhang DQ (e_1_2_8_10_1) 2002
Bezdek JC (e_1_2_8_3_1) 1981; 22
e_1_2_8_24_1
e_1_2_8_25_1
Dubois D (e_1_2_8_15_1) 1980
e_1_2_8_27_1
e_1_2_8_2_1
Wang PZ. (e_1_2_8_31_1) 1983
Zhang XL (e_1_2_8_34_1) 2015; 28
e_1_2_8_5_1
Peng XD (e_1_2_8_26_1) 2015; 30
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
Long J (e_1_2_8_42_1) 2015; 39
Yossi G (e_1_2_8_44_1) 2019
Pelekis N (e_1_2_8_37_1) 2008; 3
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 8
  start-page: 199
  year: 1975
  end-page: 249
  article-title: The concept of a linguistic variable and its application to approximate reasoning, (I), (II), (III)
  publication-title: Inf Sci
– start-page: 57
  year: 2013
  end-page: 61
– year: 1983
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel‐induced distance measure
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
– year: 1981
– volume: 1
  start-page: 221
  year: 1987
  end-page: 242
  article-title: Measures of similarity among fuzzy concepts: a comparative analysis
  publication-title: Int J Approx Reason
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  article-title: Fuzzy sets
  publication-title: Inf Control
– volume: 20
  start-page: 87
  year: 1986
  end-page: 96
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  article-title: A modified fuzzy c‐means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  article-title: A fuzzy relative of the isodata process and its use in detecting compact well‐separated clusters
  publication-title: J Cybern
– start-page: 123
  year: 2002
  end-page: 127
– volume: 60
  start-page: 167
  year: 2017
  end-page: 179
  article-title: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets
  publication-title: Appl Soft Comput
– volume: 21
  start-page: 639
  year: 2006
  end-page: 653
  article-title: Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations
  publication-title: Int J Intell Syst
– volume: 30
  start-page: 1133
  year: 2015
  end-page: 1160
  article-title: Some results for Pythagorean fuzzy sets
  publication-title: Int J Intell Syst
– start-page: 2
  year: 2005
  end-page: 7
– volume: 31
  start-page: 1198
  year: 2016
  end-page: 1219
  article-title: Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their applications in multicriteria decision making
  publication-title: Int J Intell Syst
– volume: 28
  start-page: 2279
  year: 2015
  end-page: 2296
  article-title: Novel distance and similarity measures on hesitant fuzzy sets with applications to clustering analysis
  publication-title: J Int Fuzzy Syst
– volume: 33
  start-page: 2236
  year: 2018
  end-page: 2254
  article-title: Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making
  publication-title: Int J Intell Syst
– volume: 84
  start-page: 285
  year: 2001
  end-page: 297
  article-title: Spatial models for fuzzy clustering
  publication-title: Comput Vis Image Understanding
– volume: 22
  start-page: 573
  year: 2012
  end-page: 584
  article-title: Fuzzy c‐means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans Image Process
– volume: 22
  start-page: 958
  year: 2014
  end-page: 965
  article-title: Pythagorean membership grades in multicriteria decision making
  publication-title: IEEE Trans Fuzzy Syst
– volume: 22
  start-page: 203
  year: 1981
  end-page: 239
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Adv Appl Pattern Recognition
– volume: 330
  start-page: 104
  year: 2016
  end-page: 124
  article-title: Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index‐based ranking methods
  publication-title: Inf Sci
– volume: 30
  start-page: 1
  year: 2015
  end-page: 44
  article-title: Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators
  publication-title: Int J Intell Syst
– volume: 28
  start-page: 436
  year: 2013
  end-page: 452
  article-title: Pythagorean membership grades, complex numbers and decision making
  publication-title: Int J Intell Syst
– volume: 39
  start-page: 640
  year: 2015
  end-page: 651
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 29
  start-page: 1061
  year: 2014
  end-page: 1078
  article-title: Extension of TOPSIS to multi‐criteria decision making with Pythagorean fuzzy sets
  publication-title: Int J Intell Syst
– year: 1980
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  article-title: A robust fuzzy local information c‐means clustering algorithm
  publication-title: IEEE Trans Image Process
– volume: 31
  start-page: 401
  year: 2016
  end-page: 424
  article-title: The properties of continuous Pythagorean fuzzy information
  publication-title: Int J Intell Syst
– start-page: 221
  year: 1979
  end-page: 229
  article-title: On the measure of fuzziness and negation, Part I: membership in the unit interval
  publication-title: Int J Gen Syst
– start-page: 11018
  year: 2019
  end-page: 11027
– volume: 33
  start-page: 348
  year: 2018
  end-page: 361
  article-title: Distance measure of Pythagorean fuzzy sets
  publication-title: Int J Intell Syst
– volume: 9
  start-page: 459
  year: 2005
  end-page: 467
  article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural‐network optimization
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 31
  start-page: 886
  year: 2016
  end-page: 920
  article-title: A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making
  publication-title: Int J Intell Syst
– volume: 44
  start-page: 236
  year: 1979
  end-page: 260
  article-title: On the measure of fuzziness and negation, Part II: lattices
  publication-title: Inf Control
– volume: 40
  start-page: 825
  year: 2007
  end-page: 838
  article-title: Fast and robust fuzzy c‐means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognition
– volume: 277
  start-page: 141
  year: 2014
  end-page: 153
  article-title: TOPSIS‐based group decision making methodology in intuitionistic fuzzy setting
  publication-title: Inf Sci
– volume: 42
  start-page: 246
  year: 2016
  end-page: 259
  article-title: Pythagorean fuzzy TODIM approach to multi‐criteria decision making
  publication-title: Appl Soft Comput
– volume: 340
  start-page: 91
  year: 2018
  end-page: 108
  article-title: Generalised kernel weighted fuzzy c‐means clustering algorithm with local information
  publication-title: Fuzzy Sets Syst
– volume: 3
  start-page: 45
  year: 2008
  end-page: 65
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int J Bus Intell Data Min
– volume: 30
  start-page: 1
  year: 2015
  ident: e_1_2_8_26_1
  article-title: Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators
  publication-title: Int J Intell Syst
– ident: e_1_2_8_19_1
  doi: 10.1002/int.21584
– ident: e_1_2_8_32_1
  doi: 10.1016/0888-613X(87)90015-6
– ident: e_1_2_8_45_1
– volume: 28
  start-page: 2279
  year: 2015
  ident: e_1_2_8_34_1
  article-title: Novel distance and similarity measures on hesitant fuzzy sets with applications to clustering analysis
  publication-title: J Int Fuzzy Syst
– ident: e_1_2_8_23_1
  doi: 10.1016/j.asoc.2017.06.034
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ins.2015.10.012
– ident: e_1_2_8_17_1
  doi: 10.1109/IFSA-NAFIPS.2013.6608375
– ident: e_1_2_8_36_1
  doi: 10.1002/int.22027
– ident: e_1_2_8_8_1
  doi: 10.1016/j.patcog.2006.07.011
– ident: e_1_2_8_14_1
  doi: 10.1016/S0165-0114(86)80034-3
– ident: e_1_2_8_18_1
  doi: 10.1109/TFUZZ.2013.2278989
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ins.2014.02.013
– ident: e_1_2_8_12_1
  doi: 10.1016/j.fss.2018.01.019
– ident: e_1_2_8_43_1
– ident: e_1_2_8_13_1
  doi: 10.1016/S0019-9958(65)90241-X
– volume-title: Fuzzy Sets and Systems: Theory and Applications
  year: 1980
  ident: e_1_2_8_15_1
– ident: e_1_2_8_16_1
  doi: 10.1016/0020-0255(75)90036-5
– volume: 3
  start-page: 45
  year: 2008
  ident: e_1_2_8_37_1
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int J Bus Intell Data Min
– ident: e_1_2_8_20_1
  doi: 10.1007/978-3-642-48318-9
– ident: e_1_2_8_30_1
  doi: 10.1002/int.21788
– ident: e_1_2_8_24_1
  doi: 10.1002/int.21738
– start-page: 123
  volume-title: Proceedings of the 2002 International Conference on Control and Automation
  year: 2002
  ident: e_1_2_8_10_1
– volume: 39
  start-page: 640
  year: 2015
  ident: e_1_2_8_42_1
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: e_1_2_8_28_1
  doi: 10.1016/j.asoc.2015.12.020
– ident: e_1_2_8_4_1
  doi: 10.1006/cviu.2001.0951
– ident: e_1_2_8_7_1
  doi: 10.1109/TITB.2005.847500
– ident: e_1_2_8_41_1
  doi: 10.1109/TPAMI.2010.161
– ident: e_1_2_8_38_1
  doi: 10.1080/03081077908547452
– ident: e_1_2_8_2_1
  doi: 10.1080/01969727308546046
– ident: e_1_2_8_22_1
  doi: 10.1002/int.21676
– volume: 22
  start-page: 203
  year: 1981
  ident: e_1_2_8_3_1
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Adv Appl Pattern Recognition
– ident: e_1_2_8_5_1
  doi: 10.1109/42.996338
– ident: e_1_2_8_9_1
  doi: 10.1109/TIP.2010.2040763
– ident: e_1_2_8_35_1
  doi: 10.1002/int.21934
– ident: e_1_2_8_27_1
  doi: 10.1002/int.21809
– volume-title: Fuzzy Sets and Its Applications
  year: 1983
  ident: e_1_2_8_31_1
– start-page: 11018
  volume-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2019
  ident: e_1_2_8_44_1
– ident: e_1_2_8_11_1
  doi: 10.1109/TIP.2012.2219547
– ident: e_1_2_8_6_1
  doi: 10.1109/TSMCB.2004.831165
– ident: e_1_2_8_33_1
  doi: 10.1002/int.20152
– ident: e_1_2_8_40_1
  doi: 10.1109/CIMCA.2005.1631233
– ident: e_1_2_8_39_1
  doi: 10.1016/S0019-9958(80)90156-4
– ident: e_1_2_8_29_1
  doi: 10.1002/int.21823
SSID ssj0011745
Score 2.417901
Snippet In recent decades, image segmentation has aroused great interest of many researchers, and has become an important part of machine learning, pattern...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1223
SubjectTerms Algorithms
Computer vision
Convolution
fuzzy C‐means algorithm
Fuzzy sets
Image segmentation
information fusion
Intelligent systems
Machine learning
Object recognition
Pattern recognition
Pythagorean fuzzy C‐means algorithm
Pythagorean fuzzy set
Uncertainty
Title Pythagorean fuzzy C‐means algorithm for image segmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22339
https://www.proquest.com/docview/2481872413
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 0884-8173
  databaseCode: ADMLS
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0884-8173
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF-vGIB68pDbpbEEvRS1VtIgLeBDCZDKpRRPFpof25E_wN_pLfDNJ6oKCeEvIy_aWmW-S976H0LYCL2gobvLCtHaIlrEjYsodGurIMwsQEVq2zy7rXJOTG3pTQXtlLUzODzH54GYiw47XJsBlONj9IA3tp1kd5ramKd5zm8wupy4m1FEuIG2aI0jiCJc3S1ahhrc7OfPrXPQBMD_DVDvPtGfRbfmEeXrJfX2YhXU1_kbe-M9XmEMzBf7Erdxh5lFFpwtotuztgItQX0T756PsTvYeAVOmOB6OxyN88PbymsDuAMsHONDP7hIMkBf3ExiT8ED3kqKOKV1C1-2jq4OOU3RacFSTUN-hVPkx53EcmYaZ0o8Ec8GKbuQRqZlgLBJexHwCcIdrYTjiCKdge6ZixThAnGVUTR9TvYKwVo2Q-kq6XAriKy4bXGsBwDFmprWJW0M7pc4DVdCQm24YD0FOoOwFoJXAaqWGtiaiTzn3xk9C66XhgiL8BoFHAIdw88sQbmct8PsFguPuld1Y_bvoGpr2TG6LzUVbR9Xseag3AJxk4Saaah2enV5uWm98B8um4ak
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHUA5woaxiKWAhDlxSmtRbJC4IUZWtQqhIXFCUOE6poAHR9NCeeASekSdhnKUFBBLilijO5vHEn53xPwB7CltBTQkTF6a1RbUfWTJiwmKBDh0zAJFBqvbZ4s0benbLbqfgsFgLk-lDjCfcjGek32vj4GZC-mCiGtqNkyp2bnV3GmYox3GKQaLrsXiUjazNMoaklrRFvdAVqjkH41O_9kYTxPwMqmlP0yjDXfGMWYDJQ3WQBFU1-ibf-N-XWID5HEHJUdZmFmFKx0tQLtI7kNzbl-Hwapjc-50nxMqYRIPRaEiO31_ferjbJ_4jHugm9z2C1Eu6Pfwskb7u9PKlTPEK3DRO2sdNK0-2YKk6Za7FmHIjIaIoNDkzfTeU3EZD2qFDfc0l56F0Qu5SJB6hpZGJo4Kh-bmKFBdIOatQip9ivQZEq1rAXOXbwpfUVcKvCa0lsmPETXYTex32i0r3VK5EbhJiPHqZhrLjYa14aa2sw-646HMmv_FToUphOS_3wL7nUEQRYf4a4u1SE_x-Ae-01U43Nv5edAdmm-3LC-_itHW-CXOOCXVJQ9MqUEpeBnoLWSUJttMm-QHYe-Q2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cQLy4i7uNePCScZLpLeBF1MGNQUTBi4Sk0z0zaKI4mYNz8hP8Rr_E6izjgoJ4S0hlq6XrdVL9CmBboRfUlbB1YVo7VIfGkYYJh0U69uwEREY522eLH1_T0xt2MwJ71VqYgh9i-MHNRkY-XtsA14-x2f1gDe2mWQ2TW8MfhXHKfGkL-g4vh-RRLmJtVmBI6khXNCpeobq3Ozz1azb6gJifgWqeaZrTcFs9Y1FgclfrZ1FNDb7RN_73JWZgqoSgZL_wmVkY0ekcTFftHUgZ7fOwd_GcdcL2A8LKlJj-YPBMDt5eXhPc7ZHwHg90s05CEPWSboLDEunpdlIuZUoX4Lp5dHVw7JTNFhzVQO05jCnfCGFMbHtmhn4suYuGdGOPhppLzmPpxdyniHiElpYmjgqG5ufKKC4Q5SzCWPqQ6iUgWtUj5qvQFaGkvhJhXWgtETsabrubuMuwUyk9UCUTuW2IcR8UHMpegFoJcq0sw9ZQ9LGg3_hJaK2yXFBGYC_wKEIRYf8a4u1yE_x-geCkdZVvrPxddBMmLg6bwflJ62wVJj1b6ZJXpq3BWPbU1-sIVbJoI_fId6Zp47o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pythagorean+fuzzy+C%E2%80%90means+algorithm+for+image+segmentation&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Ma%2C+Rong&rft.au=Zeng%2C+Wenyi&rft.au=Song%2C+Guangcheng&rft.au=Yin%2C+Qian&rft.date=2021-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=36&rft.issue=3&rft.spage=1223&rft.epage=1243&rft_id=info:doi/10.1002%2Fint.22339&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon