Looking beyond appearances: Synthetic training data for deep CNNs in re-identification

•A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates re-id performance increase with other datasets. Re-identification is generally carried out by encoding the appearance of a subject in terms of o...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 167; pp. 50 - 62
Main Authors Barbosa, Igor Barros, Cristani, Marco, Caputo, Barbara, Rognhaugen, Aleksander, Theoharis, Theoharis
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2018
Subjects
Online AccessGet full text
ISSN1077-3142
1090-235X
1090-235X
DOI10.1016/j.cviu.2017.12.002

Cover

Abstract •A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates re-id performance increase with other datasets. Re-identification is generally carried out by encoding the appearance of a subject in terms of outfit, suggesting scenarios where people do not change their attire. In this paper we overcome this restriction, by proposing a framework based on a deep convolutional neural network, SOMAnet, that additionally models other discriminative aspects, namely, structural attributes of the human figure (e.g. height, obesity, gender). Our method is unique in many respects. First, SOMAnet is based on the Inception architecture, departing from the usual siamese framework. This spares expensive data preparation (pairing images across cameras) and allows the understanding of what the network learned. Second, and most notably, the training data consists of a synthetic 100K instance dataset, SOMAset, created by photorealistic human body generation software. SOMAset will be released with a open source license to enable further developments in re-identification. Synthetic data represents a cost-effective way of acquiring semi-realistic imagery (full realism is usually not required in re-identification since surveillance cameras capture low-resolution silhouettes), while at the same time providing complete control of the samples in terms of ground truth. Thus it is relatively easy to customize the data w.r.t. the surveillance scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on recent re-identification benchmarks, matches subjects even with different apparel.
AbstractList •A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates re-id performance increase with other datasets. Re-identification is generally carried out by encoding the appearance of a subject in terms of outfit, suggesting scenarios where people do not change their attire. In this paper we overcome this restriction, by proposing a framework based on a deep convolutional neural network, SOMAnet, that additionally models other discriminative aspects, namely, structural attributes of the human figure (e.g. height, obesity, gender). Our method is unique in many respects. First, SOMAnet is based on the Inception architecture, departing from the usual siamese framework. This spares expensive data preparation (pairing images across cameras) and allows the understanding of what the network learned. Second, and most notably, the training data consists of a synthetic 100K instance dataset, SOMAset, created by photorealistic human body generation software. SOMAset will be released with a open source license to enable further developments in re-identification. Synthetic data represents a cost-effective way of acquiring semi-realistic imagery (full realism is usually not required in re-identification since surveillance cameras capture low-resolution silhouettes), while at the same time providing complete control of the samples in terms of ground truth. Thus it is relatively easy to customize the data w.r.t. the surveillance scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on recent re-identification benchmarks, matches subjects even with different apparel.
Author Theoharis, Theoharis
Barbosa, Igor Barros
Rognhaugen, Aleksander
Cristani, Marco
Caputo, Barbara
Author_xml – sequence: 1
  givenname: Igor Barros
  surname: Barbosa
  fullname: Barbosa, Igor Barros
  email: igor.barbosa@ntnu.no, Igor.barbosa@idi.ntnu.no
  organization: Norwegian University of Science and Technology, Norway
– sequence: 2
  givenname: Marco
  surname: Cristani
  fullname: Cristani, Marco
  organization: University of Verona, Italy
– sequence: 3
  givenname: Barbara
  surname: Caputo
  fullname: Caputo, Barbara
  organization: Sapienza Rome University, Italy
– sequence: 4
  givenname: Aleksander
  surname: Rognhaugen
  fullname: Rognhaugen, Aleksander
  organization: Norwegian University of Science and Technology, Norway
– sequence: 5
  givenname: Theoharis
  surname: Theoharis
  fullname: Theoharis, Theoharis
  organization: Norwegian University of Science and Technology, Norway
BookMark eNqN0MtKAzEUgOEgFWyrL-AqLzBjbp2LuJHiDUpdeMFdSJMTTa3JkEkr8_bOWFcuxFXOIt-B80_QyAcPCJ1SklNCi7N1rndumzNCy5yynBB2gMaU1CRjfPYyGuayzDgV7AhN2nZNCKWipmP0vAjh3flXvIIueINV04CKymtoz_FD59MbJKdxisr54ZtRSWEbIjYADZ4vly12HkfInAGfnHVaJRf8MTq0atPCyc87RU_XV4_z22xxf3M3v1xkmguRMltzYbSuwdIZF4UyNS9Ky01Z0ZpBJcRKlwBVSauitrwQhBNTE0UF16TQivAp4vu9W9-o7lNtNrKJ7kPFTlIihzRyLYc0ckgjKZN9ml6xvdIxtG0E-z9U_ULape9jhzibv-nFnkKfYucgylY76BsbF0EnaYL7i38BDoKSmQ
CitedBy_id crossref_primary_10_1145_3665869
crossref_primary_10_1007_s11042_022_13555_y
crossref_primary_10_1109_ACCESS_2019_2901599
crossref_primary_10_1007_s41064_021_00144_1
crossref_primary_10_1145_3377352
crossref_primary_10_1016_j_cviu_2021_103172
crossref_primary_10_1016_j_neucom_2020_06_074
crossref_primary_10_1109_TMM_2020_3042068
crossref_primary_10_1155_2022_2267107
crossref_primary_10_1007_s11263_024_02124_5
crossref_primary_10_1109_TNNLS_2022_3214834
crossref_primary_10_1007_s00138_021_01239_w
crossref_primary_10_1109_TETCI_2018_2883348
crossref_primary_10_1109_TPAMI_2018_2877588
crossref_primary_10_1016_j_patcog_2023_109669
crossref_primary_10_1142_S0219467825500019
crossref_primary_10_1007_s11263_024_02102_x
crossref_primary_10_1109_ACCESS_2019_2903099
crossref_primary_10_1016_j_imavis_2021_104187
crossref_primary_10_1016_j_patrec_2019_02_015
crossref_primary_10_1016_j_jvcir_2024_104287
crossref_primary_10_1109_TSMC_2024_3445117
crossref_primary_10_1016_j_heliyon_2022_e12086
crossref_primary_10_1016_j_patcog_2018_05_007
crossref_primary_10_1016_j_neucom_2020_03_057
crossref_primary_10_1145_3317573
crossref_primary_10_31857_S0005231023050057
crossref_primary_10_3390_biomedinformatics2010010
crossref_primary_10_1109_TASE_2023_3318007
crossref_primary_10_1007_s10617_020_09241_7
crossref_primary_10_1007_s11042_018_6408_4
crossref_primary_10_11834_jig_230022
crossref_primary_10_3233_JIFS_179416
crossref_primary_10_1109_TETCI_2018_2876556
crossref_primary_10_1109_TCSVT_2022_3216769
crossref_primary_10_1109_TBIOM_2024_3459828
crossref_primary_10_1109_ACCESS_2019_2920426
crossref_primary_10_1016_j_media_2021_102223
crossref_primary_10_1145_3663759
crossref_primary_10_1109_TCSVT_2023_3250946
crossref_primary_10_1007_s11042_021_11127_0
crossref_primary_10_1016_j_patcog_2019_106995
crossref_primary_10_1109_ACCESS_2020_2991838
crossref_primary_10_52928_2070_1624_2022_38_4_13_25
crossref_primary_10_1109_TMM_2021_3050082
crossref_primary_10_1007_s11042_018_7071_5
crossref_primary_10_1007_s11263_024_02057_z
crossref_primary_10_1109_ACCESS_2019_2960030
crossref_primary_10_3390_s20030583
crossref_primary_10_1016_j_image_2021_116335
crossref_primary_10_1016_j_visinf_2020_01_001
crossref_primary_10_3390_electronics10111276
crossref_primary_10_1007_s00521_022_07179_4
crossref_primary_10_1049_iet_ipr_2019_0334
crossref_primary_10_1109_TCE_2024_3373178
crossref_primary_10_3390_jimaging7090169
crossref_primary_10_1016_j_procs_2021_08_033
crossref_primary_10_3390_s20123419
crossref_primary_10_1109_ACCESS_2019_2898729
crossref_primary_10_3390_electronics10010017
crossref_primary_10_1016_j_dsp_2025_104998
crossref_primary_10_1109_TMM_2020_3023272
crossref_primary_10_1016_j_array_2022_100258
crossref_primary_10_1007_s11042_020_10145_8
crossref_primary_10_1016_j_neucom_2019_12_120
crossref_primary_10_1007_s11633_022_1411_7
crossref_primary_10_1145_3243043
crossref_primary_10_46632_jdaai_2_3_3
crossref_primary_10_1016_j_adhoc_2019_101984
crossref_primary_10_1007_s00530_024_01269_0
crossref_primary_10_1109_TMM_2021_3062497
crossref_primary_10_1145_3588441
crossref_primary_10_1007_s11263_019_01279_w
crossref_primary_10_1109_TPAMI_2024_3362821
crossref_primary_10_1134_S0005117923050041
crossref_primary_10_1109_ACCESS_2019_2951164
crossref_primary_10_1007_s11042_024_19768_7
crossref_primary_10_1007_s11760_019_01523_3
crossref_primary_10_1016_j_procs_2024_08_128
crossref_primary_10_32628_CSEIT2410273
Cites_doi 10.1016/j.cviu.2014.07.005
10.1109/TPAMI.2014.2377748
10.1016/j.imavis.2014.02.001
10.1109/ICCV.2015.168
10.1109/TPAMI.2015.2491922
10.1109/AVSS.2017.8078460
10.1523/JNEUROSCI.1958-14.2015
10.1109/ICMLA.2015.199
10.1007/s11263-015-0816-y
10.1177/1745691610393980
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.cviu.2017.12.002
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 62
ExternalDocumentID oai:ntnuopen.ntnu.no:11250/2585066
10_1016_j_cviu_2017_12_002
S1077314217302254
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c344t-f934dcc9ef15346ad9367f3d78192e844bc7ee871869f364030d90a143c06ca03
IEDL.DBID UNPAY
ISSN 1077-3142
1090-235X
IngestDate Wed Aug 20 00:20:25 EDT 2025
Wed Oct 01 05:09:02 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 23 02:26:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Training set
Re-identification photorealistic dataset
Re-identification
Automated training dataset generation
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-f934dcc9ef15346ad9367f3d78192e844bc7ee871869f364030d90a143c06ca03
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11250/2585066
PageCount 13
ParticipantIDs unpaywall_primary_10_1016_j_cviu_2017_12_002
crossref_primary_10_1016_j_cviu_2017_12_002
crossref_citationtrail_10_1016_j_cviu_2017_12_002
elsevier_sciencedirect_doi_10_1016_j_cviu_2017_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationTitle Computer vision and image understanding
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhseng, Shen, Tian, Wang, Wang, Tian (bib0068) 2015
Varior, Shuai, Lu, Xu, Wang (bib0056) 2016
Yosinski, Clune, Nguyen, Fuchs, Lipson (bib0063) 2015
Hinton, McClelland, Rumelhart (bib0024) 1986
Lampert, Nickisch, Harmeling (bib0030) 2009
Varior, Haloi, Wang (bib0055) 2016
Liao, Hu, Zhu, Li (bib0032) 2015
Erhan, Bengio, Courville, Vincent (bib0016) 2009
Peng, Sun, Ali, Saenko (bib0040) 2015
Köstinger, Hirzer, Wohlhart, Roth, Bischof (bib0028) 2012
Ustinova, E., Ganin, Y., Lempitsky, V.S., 2016. Multiregion bilinear convolutional neural networks for person re-identification. ArXiv preprint.
Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualising image classification models and saliency maps. ArXiv preprint.
Lin, RoyChowdhury, Maji (bib0034) 2015
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. ArXiv preprint.
Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0015) 2014
Glorot, Bordes, Bengio (bib0021) 2011
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0027) 2014
Farenzena, Bazzani, Perina, Murino, Cristani (bib0017) 2010
Rumelhart, Hinton, Williams (bib0042) 1988
.
Valdez, Papesh, Treiman, Smith, Goldinger, Steinmetz (bib0054) 2015; 35
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0051) 2015
Paisitkriangkrai, Shen, van den Hengel (bib0038) 2015
Plate (bib0041) 2006
Liao, Li (bib0033) 2015
Cmu graphics lab motion capture database,.
Gray, Tao (bib0023) 2008
Zhang, Xiang, Gong (bib0065) 2016
Zhang, X., Fu, Y., Zang, A., Sigal, L., Agam, G., 2016. Learning classifiers from synthetic data using a multichannel autoencoder. ArXiv preprint.
Ahmed, Jones, Marks (bib0001) 2015
Buhrmester, Kwang, Gosling (bib0006) 2011; 6
Zeiler, Fergus (bib0064) 2014
Glorot, Bordes, Bengio (bib0020) 2011
Ioffe, Szegedy (bib0026) 2015
Cheng, Setti, Zeni, Ferrario, Cristani (bib0012) 2015; 131
accessed: 2015-09-30.
Zhang, Chen, Saligrama (bib0067) 2015
Huynh, Stanciulescu (bib0025) 2015
Munaro, Fossati, Basso, Menegatti, Gool (bib0037) 2014
Wu, Song, Khosla, Yu, Zhang, Tang, Xiao (bib0058) 2015
Borji, Izadi, Itti (bib0005) 2016
Bak, Brémond (bib0002) 2014
Li, Zhao, Xiao, Wang (bib0031) 2014
Xia, Cao, Wen, Sun (bib0059) 2014
Su, Zhang, Xing, Gao, Tian (bib0047) 2016
Chen, Chen, Zhang, Huang (bib0009) 2017
Sun, Chen, Wang, Tang (bib0049) 2014
Chen, X., Gupta, A., 2015. Webly supervised learning of convolutional networks. ArXiv preprint.
Chen, Yuan, Chen, Zheng (bib0008) 2016
Das, Chakraborty, Roy-Chowdhury (bib0013) 2014
McLaughlin, Rincon, Miller (bib0036) 2015
Sun, Saenko (bib0048) 2014
Sutskever, Martens, Dahl, Hinton (bib0050) 2013
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0052) 2016
Chakraborty, Das, Roy-Chowdhury (bib0007) 2016; 38
Gong, Cristani, Yan, Loy (bib0022) 2014; 1
Martinel, Das, Micheloni, Roy-Chowdhury (bib0035) 2015; 37
Bedagkar-Gala, Shah (bib0004) 2014; 32
Glorot, Bengio (bib0019) 2010; 9
Wu, Shen, van den Hengel (bib0057) 2016
Pan, Yang (bib0039) 2010; 22
Sheldon, Stevens, Tucker (bib0044) 1940
Yosinski, Clune, Bengio, Lipson (bib0062) 2014
Xiao, Li, Ouyang, Wang (bib0060) 2016
Barbosa, Cristani, Bue, Bazzani, Murino (bib0003) 2012
Krizhevsky, Sutskever, Hinton (bib0029) 2012
Girshick, Donahue, Darrell, Malik (bib0018) 2014
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0043) 2015; 115
Xiong, Gou, Camps, Sznaier (bib0061) 2014
Cheng, Cristani, Stoppa, Bazzani, Murino (bib0011) 2011
Liao (10.1016/j.cviu.2017.12.002_bib0032) 2015
10.1016/j.cviu.2017.12.002_bib0014
Szegedy (10.1016/j.cviu.2017.12.002_bib0051) 2015
10.1016/j.cviu.2017.12.002_bib0053
10.1016/j.cviu.2017.12.002_bib0010
Wu (10.1016/j.cviu.2017.12.002_sbref0053) 2016
Xia (10.1016/j.cviu.2017.12.002_bib0059) 2014
Xiong (10.1016/j.cviu.2017.12.002_bib0061) 2014
Gong (10.1016/j.cviu.2017.12.002_bib0022) 2014; 1
Li (10.1016/j.cviu.2017.12.002_bib0031) 2014
Farenzena (10.1016/j.cviu.2017.12.002_bib0017) 2010
Sun (10.1016/j.cviu.2017.12.002_bib0049) 2014
Hinton (10.1016/j.cviu.2017.12.002_bib0024) 1986
Buhrmester (10.1016/j.cviu.2017.12.002_bib0006) 2011; 6
Chen (10.1016/j.cviu.2017.12.002_bib0009) 2017
10.1016/j.cviu.2017.12.002_bib0066
Glorot (10.1016/j.cviu.2017.12.002_bib0020) 2011
Russakovsky (10.1016/j.cviu.2017.12.002_bib0043) 2015; 115
Varior (10.1016/j.cviu.2017.12.002_bib0055) 2016
Lampert (10.1016/j.cviu.2017.12.002_bib0030) 2009
Bak (10.1016/j.cviu.2017.12.002_bib0002) 2014
McLaughlin (10.1016/j.cviu.2017.12.002_bib0036) 2015
Zhseng (10.1016/j.cviu.2017.12.002_bib0068) 2015
Cheng (10.1016/j.cviu.2017.12.002_bib0011) 2011
Xiao (10.1016/j.cviu.2017.12.002_bib0060) 2016
Su (10.1016/j.cviu.2017.12.002_bib0047) 2016
Wu (10.1016/j.cviu.2017.12.002_bib0058) 2015
Chen (10.1016/j.cviu.2017.12.002_bib0008) 2016
Zhang (10.1016/j.cviu.2017.12.002_bib0067) 2015
Szegedy (10.1016/j.cviu.2017.12.002_bib0052) 2016
Yosinski (10.1016/j.cviu.2017.12.002_bib0063) 2015
Sun (10.1016/j.cviu.2017.12.002_bib0048) 2014
Rumelhart (10.1016/j.cviu.2017.12.002_sbref0040) 1988
Jia (10.1016/j.cviu.2017.12.002_bib0027) 2014
Das (10.1016/j.cviu.2017.12.002_bib0013) 2014
Sutskever (10.1016/j.cviu.2017.12.002_bib0050) 2013
Chakraborty (10.1016/j.cviu.2017.12.002_bib0007) 2016; 38
Girshick (10.1016/j.cviu.2017.12.002_bib0018) 2014
Paisitkriangkrai (10.1016/j.cviu.2017.12.002_bib0038) 2015
Valdez (10.1016/j.cviu.2017.12.002_bib0054) 2015; 35
Varior (10.1016/j.cviu.2017.12.002_bib0056) 2016
Glorot (10.1016/j.cviu.2017.12.002_bib0021) 2011
Peng (10.1016/j.cviu.2017.12.002_bib0040) 2015
Sheldon (10.1016/j.cviu.2017.12.002_bib0044) 1940
Yosinski (10.1016/j.cviu.2017.12.002_bib0062) 2014
Glorot (10.1016/j.cviu.2017.12.002_bib0019) 2010; 9
Ioffe (10.1016/j.cviu.2017.12.002_bib0026) 2015
Huynh (10.1016/j.cviu.2017.12.002_bib0025) 2015
Borji (10.1016/j.cviu.2017.12.002_bib0005) 2016
Köstinger (10.1016/j.cviu.2017.12.002_bib0028) 2012
Munaro (10.1016/j.cviu.2017.12.002_bib0037) 2014
10.1016/j.cviu.2017.12.002_bib0045
10.1016/j.cviu.2017.12.002_bib0046
Liao (10.1016/j.cviu.2017.12.002_bib0033) 2015
Plate (10.1016/j.cviu.2017.12.002_bib0041) 2006
Martinel (10.1016/j.cviu.2017.12.002_bib0035) 2015; 37
Cheng (10.1016/j.cviu.2017.12.002_bib0012) 2015; 131
Erhan (10.1016/j.cviu.2017.12.002_bib0016) 2009
Barbosa (10.1016/j.cviu.2017.12.002_bib0003) 2012
Donahue (10.1016/j.cviu.2017.12.002_bib0015) 2014
Gray (10.1016/j.cviu.2017.12.002_bib0023) 2008
Lin (10.1016/j.cviu.2017.12.002_bib0034) 2015
Pan (10.1016/j.cviu.2017.12.002_bib0039) 2010; 22
Krizhevsky (10.1016/j.cviu.2017.12.002_bib0029) 2012
Zeiler (10.1016/j.cviu.2017.12.002_bib0064) 2014
Zhang (10.1016/j.cviu.2017.12.002_bib0065) 2016
Ahmed (10.1016/j.cviu.2017.12.002_bib0001) 2015
Bedagkar-Gala (10.1016/j.cviu.2017.12.002_bib0004) 2014; 32
References_xml – start-page: 675
  year: 2014
  end-page: 678
  ident: bib0027
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the ACM International Conference on Multimedia
– reference: Chen, X., Gupta, A., 2015. Webly supervised learning of convolutional networks. ArXiv preprint.
– volume: 131
  start-page: 56
  year: 2015
  end-page: 71
  ident: bib0012
  article-title: Semantically-driven automatic creation of training sets for object recognition
  publication-title: Comput. Vis. Image Understanding
– reference: , accessed: 2015-09-30.
– year: 2015
  ident: bib0025
  article-title: Person re-identification using the silhouette shape described by a point distribution model
  publication-title: Proc. WACV
– reference: Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. ArXiv preprint.
– year: 2012
  ident: bib0028
  article-title: Large scale metric learning from equivalence constraints
  publication-title: Proc. CVPR
– year: 2015
  ident: bib0036
  article-title: Data-augmentation for reducing dataset bias in person re-identification
  publication-title: Proc. AVSS
– year: 2015
  ident: bib0058
  article-title: 3dshapenets: a deep representation for volumetric shapes
  publication-title: Proc. CVPR
– year: 2015
  ident: bib0038
  article-title: Learning to rank in person re-identification with metric ensembles
  publication-title: Proc. CVPR
– year: 2006
  ident: bib0041
  article-title: Distributed representations
  publication-title: Encyclopedia of Cognitive Science
– year: 2014
  ident: bib0059
  article-title: Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web
  publication-title: Proc. ECCV
– year: 2015
  ident: bib0051
  article-title: Going deeper with convolutions
  publication-title: Proc. CVPR
– year: 2014
  ident: bib0015
  article-title: Decaf: A deep convolutional activation feature for generic visual recognition
  publication-title: Proceedings of the 31th International Conference on Machine Learning, ICML
– volume: 37
  start-page: 1656
  year: 2015
  end-page: 1669
  ident: bib0035
  article-title: Re-identification in the function space of feature warps
  publication-title: Trans. PAMI
– volume: 38
  start-page: 1859
  year: 2016
  end-page: 1871
  ident: bib0007
  article-title: Network Consistent Data Association
  publication-title: Trans. PAMI
– reference: Zhang, X., Fu, Y., Zang, A., Sigal, L., Agam, G., 2016. Learning classifiers from synthetic data using a multichannel autoencoder. ArXiv preprint.
– year: 2009
  ident: bib0030
  article-title: Learning to detect unseen object classes by between-class attribute transfer
  publication-title: Proc. CVPR
– start-page: 71
  year: 2014
  end-page: 91
  ident: bib0002
  article-title: Re-identification by Covariance Descriptors
  publication-title: Person Re-Identification
– year: 2010
  ident: bib0017
  article-title: Person re-identification by symmetry-driven accumulation of local features
  publication-title: Proc. CVPR
– year: 2014
  ident: bib0031
  article-title: Deepreid: Deep filter pairing neural network for person re-identification
  publication-title: Proc. CVPR
– year: 2014
  ident: bib0064
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc. ECCV
– year: 2016
  ident: bib0060
  article-title: Learning deep feature representations with domain guided dropout for person re-identification
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2015
  ident: bib0068
  article-title: Scalable person re-identification: a benchmark
  publication-title: Proc. ICCV
– year: 2014
  ident: bib0018
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proc. CVPR
– year: 2011
  ident: bib0020
  article-title: Deep sparse rectifier neural networks
  publication-title: Aistats
– year: 2016
  ident: bib0065
  article-title: Learning a discriminative null space for person re-identification
  publication-title: Proc. CVPR
– year: 2016
  ident: bib0008
  article-title: Similarity learning with spatial constraints for person re-identification
  publication-title: Proc. CVPR
– year: 2016
  ident: bib0055
  article-title: Gated siamese convolutional neural network architecture for human re-identification
  publication-title: Proc. ECCV
– year: 2016
  ident: bib0057
  article-title: Personnet: Person re-identification with deep convolutional neural networks
  publication-title: CoRR
– start-page: 1988
  year: 2014
  end-page: 1996
  ident: bib0049
  article-title: Deep Learning Face Representation by Joint Identification-verification
  publication-title: Advances in Neural Information Processing Systems 27
– year: 2016
  ident: bib0056
  article-title: A siamese long short-term memory architecture for human re-identification
  publication-title: Proc. ECCV
– start-page: 696
  year: 1988
  end-page: 699
  ident: bib0042
  article-title: Learning Representations by Back-propagating Errors
  publication-title: Neurocomputing: Foundations of Research
– year: 2015
  ident: bib0063
  article-title: Understanding neural networks through deep visualization
  publication-title: Deep Learning Workshop, International Conference on Machine Learning (ICML)
– year: 2011
  ident: bib0011
  article-title: Custom pictorial structures for re-identification
  publication-title: Proc. BMVC
– year: 2015
  ident: bib0067
  article-title: Group membership prediction
  publication-title: Proc. ICCV
– year: 2016
  ident: bib0047
  article-title: Deep attributes driven multi-camera person re-identification
  publication-title: Proc. ECCV
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib0019
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Aistats
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0043
  article-title: Imagenet large scale visual recognition challenge
  publication-title: IJCV
– year: 2016
  ident: bib0052
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proc. CVPR
– year: 2015
  ident: bib0032
  article-title: Person re-identification by local maximal occurrence representation and metric learning
  publication-title: Proc. CVPR
– volume: 32
  start-page: 270
  year: 2014
  end-page: 286
  ident: bib0004
  article-title: A survey of approaches and trends in person re-identification
  publication-title: Image Vis. Comput.
– year: 2015
  ident: bib0040
  article-title: Learning deep object detectors from 3d models
  publication-title: Proc. ICCV
– year: 2013
  ident: bib0050
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proc. ICML
– year: 2014
  ident: bib0048
  article-title: From virtual to reality: fast adaptation of virtual object detectors to real domains
  publication-title: Proc. BMVC
– year: 2014
  ident: bib0013
  article-title: Consistent re-identification in a camera network
  publication-title: Proc. ECCV
– year: 2016
  ident: bib0005
  article-title: ilab-20m: a large-scale controlled object dataset to investigate deep learning
  publication-title: Proc. CVPR
– year: 2009
  ident: bib0016
  article-title: Visualizing higher-layer features of a deep network
  publication-title: Tech. Rep. 4323
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0029
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
  publication-title: Advances in Neural Information Processing Systems 25
– year: 2015
  ident: bib0026
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc. ICML
– volume: 6
  start-page: 3
  year: 2011
  end-page: 5
  ident: bib0006
  article-title: Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data?
  publication-title: Perspect. Psychol. Sci.
– reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualising image classification models and saliency maps. ArXiv preprint.
– year: 2014
  ident: bib0061
  article-title: Person re-identification using kernel-based metric learning methods
  publication-title: Proc. ECCV
– year: 2011
  ident: bib0021
  article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach
  publication-title: Proc. ICML
– year: 2008
  ident: bib0023
  article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features
  publication-title: Proc. ECCV
– year: 2012
  ident: bib0003
  article-title: Re-identification with rgb-d sensors
  publication-title: Proc. ECCV - Workshops and Demonstrations
– year: 2015
  ident: bib0033
  article-title: Efficient psd constrained asymmetric metric learning for person re-identification
  publication-title: Proc. ICCV
– year: 2015
  ident: bib0034
  article-title: Bilinear cnn models for fine-grained visual recognition
  publication-title: Proc. ICCV
– reference: Cmu graphics lab motion capture database,.
– year: 2015
  ident: bib0001
  article-title: An improved deep learning architecture for person re-identification
  publication-title: Proc. CVPR
– reference: .
– volume: 35
  start-page: 5180
  year: 2015
  end-page: 5186
  ident: bib0054
  article-title: Distributed representation of visual objects by single neurons in the human brain
  publication-title: J. Neurosci.
– start-page: 3988
  year: 2017
  end-page: 3994
  ident: bib0009
  article-title: A multi-task deep network for person re-identification
  publication-title: Assoc. Adv. Artif. Intell. (AAAI)
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib0039
  article-title: A survey on transfer learning, knowledge and data engineering
  publication-title: IEEE Trans.
– year: 1940
  ident: bib0044
  article-title: The Varieties of Human Physique
– reference: Ustinova, E., Ganin, Y., Lempitsky, V.S., 2016. Multiregion bilinear convolutional neural networks for person re-identification. ArXiv preprint.
– year: 1986
  ident: bib0024
  article-title: Distributed Representations
  publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition
– volume: 1
  year: 2014
  ident: bib0022
  article-title: Person Re-identification
– start-page: 161
  year: 2014
  end-page: 181
  ident: bib0037
  article-title: One-shot Person Re-identification with a Consumer Depth Camera
  publication-title: Person Re-Identification
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: bib0062
  article-title: How Transferable are Features in Deep Neural Networks?
  publication-title: Advances in Neural Information Processing Systems
– year: 2011
  ident: 10.1016/j.cviu.2017.12.002_bib0021
  article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0055
  article-title: Gated siamese convolutional neural network architecture for human re-identification
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0031
  article-title: Deepreid: Deep filter pairing neural network for person re-identification
– start-page: 3988
  year: 2017
  ident: 10.1016/j.cviu.2017.12.002_bib0009
  article-title: A multi-task deep network for person re-identification
  publication-title: Assoc. Adv. Artif. Intell. (AAAI)
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0033
  article-title: Efficient psd constrained asymmetric metric learning for person re-identification
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0036
  article-title: Data-augmentation for reducing dataset bias in person re-identification
– year: 2008
  ident: 10.1016/j.cviu.2017.12.002_bib0023
  article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0001
  article-title: An improved deep learning architecture for person re-identification
– volume: 131
  start-page: 56
  year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0012
  article-title: Semantically-driven automatic creation of training sets for object recognition
  publication-title: Comput. Vis. Image Understanding
  doi: 10.1016/j.cviu.2014.07.005
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0063
  article-title: Understanding neural networks through deep visualization
– start-page: 675
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0027
  article-title: Caffe: Convolutional architecture for fast feature embedding
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0047
  article-title: Deep attributes driven multi-camera person re-identification
– year: 2010
  ident: 10.1016/j.cviu.2017.12.002_bib0017
  article-title: Person re-identification by symmetry-driven accumulation of local features
– volume: 37
  start-page: 1656
  issue: 8
  year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0035
  article-title: Re-identification in the function space of feature warps
  publication-title: Trans. PAMI
  doi: 10.1109/TPAMI.2014.2377748
– ident: 10.1016/j.cviu.2017.12.002_bib0045
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0005
  article-title: ilab-20m: a large-scale controlled object dataset to investigate deep learning
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0065
  article-title: Learning a discriminative null space for person re-identification
– year: 2009
  ident: 10.1016/j.cviu.2017.12.002_bib0030
  article-title: Learning to detect unseen object classes by between-class attribute transfer
– year: 2012
  ident: 10.1016/j.cviu.2017.12.002_bib0003
  article-title: Re-identification with rgb-d sensors
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0025
  article-title: Person re-identification using the silhouette shape described by a point distribution model
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_sbref0053
  article-title: Personnet: Person re-identification with deep convolutional neural networks
– volume: 32
  start-page: 270
  issue: 4
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0004
  article-title: A survey of approaches and trends in person re-identification
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2014.02.001
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0038
  article-title: Learning to rank in person re-identification with metric ensembles
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0061
  article-title: Person re-identification using kernel-based metric learning methods
– start-page: 71
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0002
  article-title: Re-identification by Covariance Descriptors
– ident: 10.1016/j.cviu.2017.12.002_bib0010
  doi: 10.1109/ICCV.2015.168
– volume: 38
  start-page: 1859
  year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0007
  article-title: Network Consistent Data Association
  publication-title: Trans. PAMI
  doi: 10.1109/TPAMI.2015.2491922
– start-page: 696
  year: 1988
  ident: 10.1016/j.cviu.2017.12.002_sbref0040
  article-title: Learning Representations by Back-propagating Errors
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0060
  article-title: Learning deep feature representations with domain guided dropout for person re-identification
– year: 2011
  ident: 10.1016/j.cviu.2017.12.002_bib0020
  article-title: Deep sparse rectifier neural networks
  publication-title: Aistats
– ident: 10.1016/j.cviu.2017.12.002_bib0053
  doi: 10.1109/AVSS.2017.8078460
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0013
  article-title: Consistent re-identification in a camera network
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.cviu.2017.12.002_bib0039
  article-title: A survey on transfer learning, knowledge and data engineering
  publication-title: IEEE Trans.
– start-page: 161
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0037
  article-title: One-shot Person Re-identification with a Consumer Depth Camera
– year: 1986
  ident: 10.1016/j.cviu.2017.12.002_bib0024
  article-title: Distributed Representations
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0026
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– year: 2013
  ident: 10.1016/j.cviu.2017.12.002_bib0050
  article-title: On the importance of initialization and momentum in deep learning
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0034
  article-title: Bilinear cnn models for fine-grained visual recognition
– volume: 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.cviu.2017.12.002_bib0019
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Aistats
– year: 2012
  ident: 10.1016/j.cviu.2017.12.002_bib0028
  article-title: Large scale metric learning from equivalence constraints
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0048
  article-title: From virtual to reality: fast adaptation of virtual object detectors to real domains
– ident: 10.1016/j.cviu.2017.12.002_bib0014
– start-page: 1988
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0049
  article-title: Deep Learning Face Representation by Joint Identification-verification
– year: 2009
  ident: 10.1016/j.cviu.2017.12.002_bib0016
  article-title: Visualizing higher-layer features of a deep network
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0056
  article-title: A siamese long short-term memory architecture for human re-identification
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0008
  article-title: Similarity learning with spatial constraints for person re-identification
– start-page: 3320
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0062
  article-title: How Transferable are Features in Deep Neural Networks?
– year: 1940
  ident: 10.1016/j.cviu.2017.12.002_bib0044
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0032
  article-title: Person re-identification by local maximal occurrence representation and metric learning
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0067
  article-title: Group membership prediction
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0068
  article-title: Scalable person re-identification: a benchmark
– ident: 10.1016/j.cviu.2017.12.002_bib0046
– volume: 35
  start-page: 5180
  issue: 13
  year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0054
  article-title: Distributed representation of visual objects by single neurons in the human brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1958-14.2015
– year: 2006
  ident: 10.1016/j.cviu.2017.12.002_bib0041
  article-title: Distributed representations
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0018
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– start-page: 1097
  year: 2012
  ident: 10.1016/j.cviu.2017.12.002_bib0029
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0051
  article-title: Going deeper with convolutions
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0059
  article-title: Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web
– ident: 10.1016/j.cviu.2017.12.002_bib0066
  doi: 10.1109/ICMLA.2015.199
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0064
  article-title: Visualizing and understanding convolutional networks
– year: 2011
  ident: 10.1016/j.cviu.2017.12.002_bib0011
  article-title: Custom pictorial structures for re-identification
– volume: 1
  year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0022
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0040
  article-title: Learning deep object detectors from 3d models
– year: 2016
  ident: 10.1016/j.cviu.2017.12.002_bib0052
  article-title: Rethinking the inception architecture for computer vision
– year: 2014
  ident: 10.1016/j.cviu.2017.12.002_bib0015
  article-title: Decaf: A deep convolutional activation feature for generic visual recognition
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0043
  article-title: Imagenet large scale visual recognition challenge
  publication-title: IJCV
  doi: 10.1007/s11263-015-0816-y
– volume: 6
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.cviu.2017.12.002_bib0006
  article-title: Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data?
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691610393980
– year: 2015
  ident: 10.1016/j.cviu.2017.12.002_bib0058
  article-title: 3dshapenets: a deep representation for volumetric shapes
SSID ssj0011491
Score 2.5816157
Snippet •A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Automated training dataset generation
Deep learning
Re-identification
Re-identification photorealistic dataset
Training set
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jF_Xgx1ScX-TgTeNWk7apNxmOIbrLnOwW0iSVyqhlH8ou_u2-tOmYIEO8FBoS0uaXvvdL-st7CF1EMecxuGGilYwJC5lPuM8lkZasJjG0KULmP_WD3pA9jPxRDXWqszBWVulsf2nTC2vtSlpuNFt5mrYGsHAJqceAU1NwRL6NCcpYaLMYXH8tZR5A94usebYysbXdwZlS46U-0rmVd4XFlqDbWvnFOW3Ms1wuPuV4vOJ8urto27FGfFc-2B6qmayBdhyDxO77nEJRlaShKmugrZWIg_vo5dHu12avOC5OrmCZ5zDVLfLTWzxYZEAHoQtcJY7AVkCKgddibUyOO_3-FKcZnhiSaiczKpA9QMPu_XOnR1xqBaIoYzOSRJRppSKTgMVjgdQRDcKE6tDGRzOcsViFxsBiigdRQgMGpkBHbQnkSrUDJdv0ENWz98wcIRx4sW__9tLELs6kll4bLsZPPBMlkgdN5FVjKpSLO27fYiwqgdmbsDgIi4PwbgTg0ESXyzZ5GXVjbW2_gkr8mDsC3MLadldLXP_QzfE_uzlBm3DHS6n3KarPJnNzBkxmFp8XU_Ub8XrwFw
  priority: 102
  providerName: Elsevier
Title Looking beyond appearances: Synthetic training data for deep CNNs in re-identification
URI https://dx.doi.org/10.1016/j.cviu.2017.12.002
http://hdl.handle.net/11250/2585066
UnpaywallVersion submittedVersion
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6C9oB2oIyBAG2VD7uBS9LYTrJbxQ8VNiKkraicIttxUKEKEW1B3WF_-54bB6GBKnbJwYrlRO_Z7_Pz5-8BfI1VFCkMwzTTUlEWMk4jHkkqLVjNFfZZSOZfJKI_YOdDPlyBuuDdP_ICCAa4d9jlVlZNrEJTcATcDWgOksvedcUmtFk2Vp1pxh7tBnzorsZULC79OJpZAle4SPq55Mkb4WdtVpRy_iTH4xfh5bQFx_UlnYpVcteZTVVH_36t2bjsyzdg3cFL0qv84SOsmGITWg5qEjeRJ9hUV3Oo2zbhwwtpwk9w9cMmdosbohZXXIgsS5wT1kUm38jPeYG4EYcgdYUJYpmmBAEwyYwpyVGSTMioIA-GjjLHR1q4wBYMTk9-HfWpq8FAdcDYlOZxwDKtY5Pj0siEzOJAhHmQhVZIzUSMKR0ag7uuSMR5IBiuGVnsSURh2hNaesE2NIr7wuwAEb7i9lg4yO0uTmbS9_BheO6bOJeR2AW_Nk2qnUC5_YtxWjPRblNrztSaM_W7KZpzF_af-5SVPMfSt3lt8dQBjAo4pBg_lvY7eHaPdwyz93-vf4bG9GFmviC4mao2rHb--G1o9s6-95O2c_W_ZcD41w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb8QbD2xg2mDnxYYqqgJtFyhisxzHQUFViGgLYuG3c06cqkgIIZYMF1tOfM7dd87nO4DjMAqCCN0wjZWMKPe5SwM3kFQasJpE2KdImd_re50Bv3l0H2vQqs7CGFqltf2lTS-stZU07Gw28jRt3GHg4jOHI6Zm6IhcPgfz3D33TQR29jnleSDeL8rmmdbUNLcnZ0qSl3pLJ4bf5Rd7gnZv5QfvtDDJcvnxLofDGe_TXoVlCxvJZflka1DT2TqsWAhJ7Ac6QlFVpaGSrcPSTMrBDXjomg3b7IlExdEVIvMc17pR_eiC3H1kiAdxCFJVjiCGQUoQ2JJY65y0-v0RSTPyqmkaW55RodpNGLSv7lsdamsrUMU4H9MkZDxWKtQJmjzuyThknp-w2DcJ0nTAeaR8rTGaCrwwYR5HWxCHTYnoSjU9JZtsC-rZS6a3gXhO5JrfvSwx0ZmMpdPEi3YTR4eJDLwdcKo5FcomHjdvMRQVw-xZGD0IowfhnAvUww6cTPvkZdqNX1u7larEt8Uj0C_82u90qtc_DLP7z2GOYKFz3-uK7nX_dg8W8U5Q8r73oT5-negDhDXj6LBYtl8UqfM6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10PYgHv8UVlRy8abTdJmnrTfxARBdBV9ZTSdJUVpdadreK_non21REZdFLD6EhLTPJvExe3gDsxCqKFIZhmmqpKAsZpxGPJJUWrGYK-4wl86_a4rzDLrq8OwV1wbtv8gIIBrh30OJWVk1Mw4zgCLgbMNNpXx_dV2xCm2Vj1Zlm7NFWwLvuakzF4tIvvdISuMJx0s8lT34JP7NlXsi3V9nvfwkvZwtwUl_SqVglT_vlSO3r95-ajZO-fBHmHbwkR5U_LMGUyZdhwUFN4ibyEJvqag512zLMfZEmXIG7S5vYzR-IGl9xIbIocE5YFxkekpu3HHEjDkHqChPEMk0JAmCSGlOQ43Z7SHo5GRjaSx0faewCq9A5O709PqeuBgPVAWMjmsUBS7WOTYZLIxMyjQMRZkEaWiE1EzGmdGgM7roiEWeBYLhmpLEnEYVpT2jpBWvQyJ9zsw5E-IrbY-Egs7s4mUrfw4fhmW_iTEaiCX5tmkQ7gXL7F_2kZqI9JtaciTVn4rcSNGcTdj_7FJU8x8S3eW3xxAGMCjgkGD8m9tv7dI8_DLPxv9c3oTEalGYLwc1IbTvn_gDgd_ZL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Looking+beyond+appearances%3A+Synthetic+training+data+for+deep+CNNs+in+re-identification&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Barbosa%2C+Igor+Barros&rft.au=Cristani%2C+Marco&rft.au=Caputo%2C+Barbara&rft.au=Rognhaugen%2C+Aleksander&rft.date=2018-02-01&rft.issn=1077-3142&rft.volume=167&rft.spage=50&rft.epage=62&rft_id=info:doi/10.1016%2Fj.cviu.2017.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2017_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon