Looking beyond appearances: Synthetic training data for deep CNNs in re-identification
•A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates re-id performance increase with other datasets. Re-identification is generally carried out by encoding the appearance of a subject in terms of o...
Saved in:
| Published in | Computer vision and image understanding Vol. 167; pp. 50 - 62 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.02.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1077-3142 1090-235X 1090-235X |
| DOI | 10.1016/j.cviu.2017.12.002 |
Cover
| Abstract | •A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates re-id performance increase with other datasets.
Re-identification is generally carried out by encoding the appearance of a subject in terms of outfit, suggesting scenarios where people do not change their attire. In this paper we overcome this restriction, by proposing a framework based on a deep convolutional neural network, SOMAnet, that additionally models other discriminative aspects, namely, structural attributes of the human figure (e.g. height, obesity, gender). Our method is unique in many respects. First, SOMAnet is based on the Inception architecture, departing from the usual siamese framework. This spares expensive data preparation (pairing images across cameras) and allows the understanding of what the network learned. Second, and most notably, the training data consists of a synthetic 100K instance dataset, SOMAset, created by photorealistic human body generation software. SOMAset will be released with a open source license to enable further developments in re-identification. Synthetic data represents a cost-effective way of acquiring semi-realistic imagery (full realism is usually not required in re-identification since surveillance cameras capture low-resolution silhouettes), while at the same time providing complete control of the samples in terms of ground truth. Thus it is relatively easy to customize the data w.r.t. the surveillance scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on recent re-identification benchmarks, matches subjects even with different apparel. |
|---|---|
| AbstractList | •A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates re-id performance increase with other datasets.
Re-identification is generally carried out by encoding the appearance of a subject in terms of outfit, suggesting scenarios where people do not change their attire. In this paper we overcome this restriction, by proposing a framework based on a deep convolutional neural network, SOMAnet, that additionally models other discriminative aspects, namely, structural attributes of the human figure (e.g. height, obesity, gender). Our method is unique in many respects. First, SOMAnet is based on the Inception architecture, departing from the usual siamese framework. This spares expensive data preparation (pairing images across cameras) and allows the understanding of what the network learned. Second, and most notably, the training data consists of a synthetic 100K instance dataset, SOMAset, created by photorealistic human body generation software. SOMAset will be released with a open source license to enable further developments in re-identification. Synthetic data represents a cost-effective way of acquiring semi-realistic imagery (full realism is usually not required in re-identification since surveillance cameras capture low-resolution silhouettes), while at the same time providing complete control of the samples in terms of ground truth. Thus it is relatively easy to customize the data w.r.t. the surveillance scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on recent re-identification benchmarks, matches subjects even with different apparel. |
| Author | Theoharis, Theoharis Barbosa, Igor Barros Rognhaugen, Aleksander Cristani, Marco Caputo, Barbara |
| Author_xml | – sequence: 1 givenname: Igor Barros surname: Barbosa fullname: Barbosa, Igor Barros email: igor.barbosa@ntnu.no, Igor.barbosa@idi.ntnu.no organization: Norwegian University of Science and Technology, Norway – sequence: 2 givenname: Marco surname: Cristani fullname: Cristani, Marco organization: University of Verona, Italy – sequence: 3 givenname: Barbara surname: Caputo fullname: Caputo, Barbara organization: Sapienza Rome University, Italy – sequence: 4 givenname: Aleksander surname: Rognhaugen fullname: Rognhaugen, Aleksander organization: Norwegian University of Science and Technology, Norway – sequence: 5 givenname: Theoharis surname: Theoharis fullname: Theoharis, Theoharis organization: Norwegian University of Science and Technology, Norway |
| BookMark | eNqN0MtKAzEUgOEgFWyrL-AqLzBjbp2LuJHiDUpdeMFdSJMTTa3JkEkr8_bOWFcuxFXOIt-B80_QyAcPCJ1SklNCi7N1rndumzNCy5yynBB2gMaU1CRjfPYyGuayzDgV7AhN2nZNCKWipmP0vAjh3flXvIIueINV04CKymtoz_FD59MbJKdxisr54ZtRSWEbIjYADZ4vly12HkfInAGfnHVaJRf8MTq0atPCyc87RU_XV4_z22xxf3M3v1xkmguRMltzYbSuwdIZF4UyNS9Ky01Z0ZpBJcRKlwBVSauitrwQhBNTE0UF16TQivAp4vu9W9-o7lNtNrKJ7kPFTlIihzRyLYc0ckgjKZN9ml6xvdIxtG0E-z9U_ULape9jhzibv-nFnkKfYucgylY76BsbF0EnaYL7i38BDoKSmQ |
| CitedBy_id | crossref_primary_10_1145_3665869 crossref_primary_10_1007_s11042_022_13555_y crossref_primary_10_1109_ACCESS_2019_2901599 crossref_primary_10_1007_s41064_021_00144_1 crossref_primary_10_1145_3377352 crossref_primary_10_1016_j_cviu_2021_103172 crossref_primary_10_1016_j_neucom_2020_06_074 crossref_primary_10_1109_TMM_2020_3042068 crossref_primary_10_1155_2022_2267107 crossref_primary_10_1007_s11263_024_02124_5 crossref_primary_10_1109_TNNLS_2022_3214834 crossref_primary_10_1007_s00138_021_01239_w crossref_primary_10_1109_TETCI_2018_2883348 crossref_primary_10_1109_TPAMI_2018_2877588 crossref_primary_10_1016_j_patcog_2023_109669 crossref_primary_10_1142_S0219467825500019 crossref_primary_10_1007_s11263_024_02102_x crossref_primary_10_1109_ACCESS_2019_2903099 crossref_primary_10_1016_j_imavis_2021_104187 crossref_primary_10_1016_j_patrec_2019_02_015 crossref_primary_10_1016_j_jvcir_2024_104287 crossref_primary_10_1109_TSMC_2024_3445117 crossref_primary_10_1016_j_heliyon_2022_e12086 crossref_primary_10_1016_j_patcog_2018_05_007 crossref_primary_10_1016_j_neucom_2020_03_057 crossref_primary_10_1145_3317573 crossref_primary_10_31857_S0005231023050057 crossref_primary_10_3390_biomedinformatics2010010 crossref_primary_10_1109_TASE_2023_3318007 crossref_primary_10_1007_s10617_020_09241_7 crossref_primary_10_1007_s11042_018_6408_4 crossref_primary_10_11834_jig_230022 crossref_primary_10_3233_JIFS_179416 crossref_primary_10_1109_TETCI_2018_2876556 crossref_primary_10_1109_TCSVT_2022_3216769 crossref_primary_10_1109_TBIOM_2024_3459828 crossref_primary_10_1109_ACCESS_2019_2920426 crossref_primary_10_1016_j_media_2021_102223 crossref_primary_10_1145_3663759 crossref_primary_10_1109_TCSVT_2023_3250946 crossref_primary_10_1007_s11042_021_11127_0 crossref_primary_10_1016_j_patcog_2019_106995 crossref_primary_10_1109_ACCESS_2020_2991838 crossref_primary_10_52928_2070_1624_2022_38_4_13_25 crossref_primary_10_1109_TMM_2021_3050082 crossref_primary_10_1007_s11042_018_7071_5 crossref_primary_10_1007_s11263_024_02057_z crossref_primary_10_1109_ACCESS_2019_2960030 crossref_primary_10_3390_s20030583 crossref_primary_10_1016_j_image_2021_116335 crossref_primary_10_1016_j_visinf_2020_01_001 crossref_primary_10_3390_electronics10111276 crossref_primary_10_1007_s00521_022_07179_4 crossref_primary_10_1049_iet_ipr_2019_0334 crossref_primary_10_1109_TCE_2024_3373178 crossref_primary_10_3390_jimaging7090169 crossref_primary_10_1016_j_procs_2021_08_033 crossref_primary_10_3390_s20123419 crossref_primary_10_1109_ACCESS_2019_2898729 crossref_primary_10_3390_electronics10010017 crossref_primary_10_1016_j_dsp_2025_104998 crossref_primary_10_1109_TMM_2020_3023272 crossref_primary_10_1016_j_array_2022_100258 crossref_primary_10_1007_s11042_020_10145_8 crossref_primary_10_1016_j_neucom_2019_12_120 crossref_primary_10_1007_s11633_022_1411_7 crossref_primary_10_1145_3243043 crossref_primary_10_46632_jdaai_2_3_3 crossref_primary_10_1016_j_adhoc_2019_101984 crossref_primary_10_1007_s00530_024_01269_0 crossref_primary_10_1109_TMM_2021_3062497 crossref_primary_10_1145_3588441 crossref_primary_10_1007_s11263_019_01279_w crossref_primary_10_1109_TPAMI_2024_3362821 crossref_primary_10_1134_S0005117923050041 crossref_primary_10_1109_ACCESS_2019_2951164 crossref_primary_10_1007_s11042_024_19768_7 crossref_primary_10_1007_s11760_019_01523_3 crossref_primary_10_1016_j_procs_2024_08_128 crossref_primary_10_32628_CSEIT2410273 |
| Cites_doi | 10.1016/j.cviu.2014.07.005 10.1109/TPAMI.2014.2377748 10.1016/j.imavis.2014.02.001 10.1109/ICCV.2015.168 10.1109/TPAMI.2015.2491922 10.1109/AVSS.2017.8078460 10.1523/JNEUROSCI.1958-14.2015 10.1109/ICMLA.2015.199 10.1007/s11263-015-0816-y 10.1177/1745691610393980 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. |
| Copyright_xml | – notice: 2017 Elsevier Inc. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.cviu.2017.12.002 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1090-235X |
| EndPage | 62 |
| ExternalDocumentID | oai:ntnuopen.ntnu.no:11250/2585066 10_1016_j_cviu_2017_12_002 S1077314217302254 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS SST ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c344t-f934dcc9ef15346ad9367f3d78192e844bc7ee871869f364030d90a143c06ca03 |
| IEDL.DBID | UNPAY |
| ISSN | 1077-3142 1090-235X |
| IngestDate | Wed Aug 20 00:20:25 EDT 2025 Wed Oct 01 05:09:02 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 23 02:26:54 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Training set Re-identification photorealistic dataset Re-identification Automated training dataset generation |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-f934dcc9ef15346ad9367f3d78192e844bc7ee871869f364030d90a143c06ca03 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11250/2585066 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cviu_2017_12_002 crossref_primary_10_1016_j_cviu_2017_12_002 crossref_citationtrail_10_1016_j_cviu_2017_12_002 elsevier_sciencedirect_doi_10_1016_j_cviu_2017_12_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer vision and image understanding |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhseng, Shen, Tian, Wang, Wang, Tian (bib0068) 2015 Varior, Shuai, Lu, Xu, Wang (bib0056) 2016 Yosinski, Clune, Nguyen, Fuchs, Lipson (bib0063) 2015 Hinton, McClelland, Rumelhart (bib0024) 1986 Lampert, Nickisch, Harmeling (bib0030) 2009 Varior, Haloi, Wang (bib0055) 2016 Liao, Hu, Zhu, Li (bib0032) 2015 Erhan, Bengio, Courville, Vincent (bib0016) 2009 Peng, Sun, Ali, Saenko (bib0040) 2015 Köstinger, Hirzer, Wohlhart, Roth, Bischof (bib0028) 2012 Ustinova, E., Ganin, Y., Lempitsky, V.S., 2016. Multiregion bilinear convolutional neural networks for person re-identification. ArXiv preprint. Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualising image classification models and saliency maps. ArXiv preprint. Lin, RoyChowdhury, Maji (bib0034) 2015 Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. ArXiv preprint. Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0015) 2014 Glorot, Bordes, Bengio (bib0021) 2011 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0027) 2014 Farenzena, Bazzani, Perina, Murino, Cristani (bib0017) 2010 Rumelhart, Hinton, Williams (bib0042) 1988 . Valdez, Papesh, Treiman, Smith, Goldinger, Steinmetz (bib0054) 2015; 35 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0051) 2015 Paisitkriangkrai, Shen, van den Hengel (bib0038) 2015 Plate (bib0041) 2006 Liao, Li (bib0033) 2015 Cmu graphics lab motion capture database,. Gray, Tao (bib0023) 2008 Zhang, Xiang, Gong (bib0065) 2016 Zhang, X., Fu, Y., Zang, A., Sigal, L., Agam, G., 2016. Learning classifiers from synthetic data using a multichannel autoencoder. ArXiv preprint. Ahmed, Jones, Marks (bib0001) 2015 Buhrmester, Kwang, Gosling (bib0006) 2011; 6 Zeiler, Fergus (bib0064) 2014 Glorot, Bordes, Bengio (bib0020) 2011 Ioffe, Szegedy (bib0026) 2015 Cheng, Setti, Zeni, Ferrario, Cristani (bib0012) 2015; 131 accessed: 2015-09-30. Zhang, Chen, Saligrama (bib0067) 2015 Huynh, Stanciulescu (bib0025) 2015 Munaro, Fossati, Basso, Menegatti, Gool (bib0037) 2014 Wu, Song, Khosla, Yu, Zhang, Tang, Xiao (bib0058) 2015 Borji, Izadi, Itti (bib0005) 2016 Bak, Brémond (bib0002) 2014 Li, Zhao, Xiao, Wang (bib0031) 2014 Xia, Cao, Wen, Sun (bib0059) 2014 Su, Zhang, Xing, Gao, Tian (bib0047) 2016 Chen, Chen, Zhang, Huang (bib0009) 2017 Sun, Chen, Wang, Tang (bib0049) 2014 Chen, X., Gupta, A., 2015. Webly supervised learning of convolutional networks. ArXiv preprint. Chen, Yuan, Chen, Zheng (bib0008) 2016 Das, Chakraborty, Roy-Chowdhury (bib0013) 2014 McLaughlin, Rincon, Miller (bib0036) 2015 Sun, Saenko (bib0048) 2014 Sutskever, Martens, Dahl, Hinton (bib0050) 2013 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0052) 2016 Chakraborty, Das, Roy-Chowdhury (bib0007) 2016; 38 Gong, Cristani, Yan, Loy (bib0022) 2014; 1 Martinel, Das, Micheloni, Roy-Chowdhury (bib0035) 2015; 37 Bedagkar-Gala, Shah (bib0004) 2014; 32 Glorot, Bengio (bib0019) 2010; 9 Wu, Shen, van den Hengel (bib0057) 2016 Pan, Yang (bib0039) 2010; 22 Sheldon, Stevens, Tucker (bib0044) 1940 Yosinski, Clune, Bengio, Lipson (bib0062) 2014 Xiao, Li, Ouyang, Wang (bib0060) 2016 Barbosa, Cristani, Bue, Bazzani, Murino (bib0003) 2012 Krizhevsky, Sutskever, Hinton (bib0029) 2012 Girshick, Donahue, Darrell, Malik (bib0018) 2014 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0043) 2015; 115 Xiong, Gou, Camps, Sznaier (bib0061) 2014 Cheng, Cristani, Stoppa, Bazzani, Murino (bib0011) 2011 Liao (10.1016/j.cviu.2017.12.002_bib0032) 2015 10.1016/j.cviu.2017.12.002_bib0014 Szegedy (10.1016/j.cviu.2017.12.002_bib0051) 2015 10.1016/j.cviu.2017.12.002_bib0053 10.1016/j.cviu.2017.12.002_bib0010 Wu (10.1016/j.cviu.2017.12.002_sbref0053) 2016 Xia (10.1016/j.cviu.2017.12.002_bib0059) 2014 Xiong (10.1016/j.cviu.2017.12.002_bib0061) 2014 Gong (10.1016/j.cviu.2017.12.002_bib0022) 2014; 1 Li (10.1016/j.cviu.2017.12.002_bib0031) 2014 Farenzena (10.1016/j.cviu.2017.12.002_bib0017) 2010 Sun (10.1016/j.cviu.2017.12.002_bib0049) 2014 Hinton (10.1016/j.cviu.2017.12.002_bib0024) 1986 Buhrmester (10.1016/j.cviu.2017.12.002_bib0006) 2011; 6 Chen (10.1016/j.cviu.2017.12.002_bib0009) 2017 10.1016/j.cviu.2017.12.002_bib0066 Glorot (10.1016/j.cviu.2017.12.002_bib0020) 2011 Russakovsky (10.1016/j.cviu.2017.12.002_bib0043) 2015; 115 Varior (10.1016/j.cviu.2017.12.002_bib0055) 2016 Lampert (10.1016/j.cviu.2017.12.002_bib0030) 2009 Bak (10.1016/j.cviu.2017.12.002_bib0002) 2014 McLaughlin (10.1016/j.cviu.2017.12.002_bib0036) 2015 Zhseng (10.1016/j.cviu.2017.12.002_bib0068) 2015 Cheng (10.1016/j.cviu.2017.12.002_bib0011) 2011 Xiao (10.1016/j.cviu.2017.12.002_bib0060) 2016 Su (10.1016/j.cviu.2017.12.002_bib0047) 2016 Wu (10.1016/j.cviu.2017.12.002_bib0058) 2015 Chen (10.1016/j.cviu.2017.12.002_bib0008) 2016 Zhang (10.1016/j.cviu.2017.12.002_bib0067) 2015 Szegedy (10.1016/j.cviu.2017.12.002_bib0052) 2016 Yosinski (10.1016/j.cviu.2017.12.002_bib0063) 2015 Sun (10.1016/j.cviu.2017.12.002_bib0048) 2014 Rumelhart (10.1016/j.cviu.2017.12.002_sbref0040) 1988 Jia (10.1016/j.cviu.2017.12.002_bib0027) 2014 Das (10.1016/j.cviu.2017.12.002_bib0013) 2014 Sutskever (10.1016/j.cviu.2017.12.002_bib0050) 2013 Chakraborty (10.1016/j.cviu.2017.12.002_bib0007) 2016; 38 Girshick (10.1016/j.cviu.2017.12.002_bib0018) 2014 Paisitkriangkrai (10.1016/j.cviu.2017.12.002_bib0038) 2015 Valdez (10.1016/j.cviu.2017.12.002_bib0054) 2015; 35 Varior (10.1016/j.cviu.2017.12.002_bib0056) 2016 Glorot (10.1016/j.cviu.2017.12.002_bib0021) 2011 Peng (10.1016/j.cviu.2017.12.002_bib0040) 2015 Sheldon (10.1016/j.cviu.2017.12.002_bib0044) 1940 Yosinski (10.1016/j.cviu.2017.12.002_bib0062) 2014 Glorot (10.1016/j.cviu.2017.12.002_bib0019) 2010; 9 Ioffe (10.1016/j.cviu.2017.12.002_bib0026) 2015 Huynh (10.1016/j.cviu.2017.12.002_bib0025) 2015 Borji (10.1016/j.cviu.2017.12.002_bib0005) 2016 Köstinger (10.1016/j.cviu.2017.12.002_bib0028) 2012 Munaro (10.1016/j.cviu.2017.12.002_bib0037) 2014 10.1016/j.cviu.2017.12.002_bib0045 10.1016/j.cviu.2017.12.002_bib0046 Liao (10.1016/j.cviu.2017.12.002_bib0033) 2015 Plate (10.1016/j.cviu.2017.12.002_bib0041) 2006 Martinel (10.1016/j.cviu.2017.12.002_bib0035) 2015; 37 Cheng (10.1016/j.cviu.2017.12.002_bib0012) 2015; 131 Erhan (10.1016/j.cviu.2017.12.002_bib0016) 2009 Barbosa (10.1016/j.cviu.2017.12.002_bib0003) 2012 Donahue (10.1016/j.cviu.2017.12.002_bib0015) 2014 Gray (10.1016/j.cviu.2017.12.002_bib0023) 2008 Lin (10.1016/j.cviu.2017.12.002_bib0034) 2015 Pan (10.1016/j.cviu.2017.12.002_bib0039) 2010; 22 Krizhevsky (10.1016/j.cviu.2017.12.002_bib0029) 2012 Zeiler (10.1016/j.cviu.2017.12.002_bib0064) 2014 Zhang (10.1016/j.cviu.2017.12.002_bib0065) 2016 Ahmed (10.1016/j.cviu.2017.12.002_bib0001) 2015 Bedagkar-Gala (10.1016/j.cviu.2017.12.002_bib0004) 2014; 32 |
| References_xml | – start-page: 675 year: 2014 end-page: 678 ident: bib0027 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the ACM International Conference on Multimedia – reference: Chen, X., Gupta, A., 2015. Webly supervised learning of convolutional networks. ArXiv preprint. – volume: 131 start-page: 56 year: 2015 end-page: 71 ident: bib0012 article-title: Semantically-driven automatic creation of training sets for object recognition publication-title: Comput. Vis. Image Understanding – reference: , accessed: 2015-09-30. – year: 2015 ident: bib0025 article-title: Person re-identification using the silhouette shape described by a point distribution model publication-title: Proc. WACV – reference: Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. ArXiv preprint. – year: 2012 ident: bib0028 article-title: Large scale metric learning from equivalence constraints publication-title: Proc. CVPR – year: 2015 ident: bib0036 article-title: Data-augmentation for reducing dataset bias in person re-identification publication-title: Proc. AVSS – year: 2015 ident: bib0058 article-title: 3dshapenets: a deep representation for volumetric shapes publication-title: Proc. CVPR – year: 2015 ident: bib0038 article-title: Learning to rank in person re-identification with metric ensembles publication-title: Proc. CVPR – year: 2006 ident: bib0041 article-title: Distributed representations publication-title: Encyclopedia of Cognitive Science – year: 2014 ident: bib0059 article-title: Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web publication-title: Proc. ECCV – year: 2015 ident: bib0051 article-title: Going deeper with convolutions publication-title: Proc. CVPR – year: 2014 ident: bib0015 article-title: Decaf: A deep convolutional activation feature for generic visual recognition publication-title: Proceedings of the 31th International Conference on Machine Learning, ICML – volume: 37 start-page: 1656 year: 2015 end-page: 1669 ident: bib0035 article-title: Re-identification in the function space of feature warps publication-title: Trans. PAMI – volume: 38 start-page: 1859 year: 2016 end-page: 1871 ident: bib0007 article-title: Network Consistent Data Association publication-title: Trans. PAMI – reference: Zhang, X., Fu, Y., Zang, A., Sigal, L., Agam, G., 2016. Learning classifiers from synthetic data using a multichannel autoencoder. ArXiv preprint. – year: 2009 ident: bib0030 article-title: Learning to detect unseen object classes by between-class attribute transfer publication-title: Proc. CVPR – start-page: 71 year: 2014 end-page: 91 ident: bib0002 article-title: Re-identification by Covariance Descriptors publication-title: Person Re-Identification – year: 2010 ident: bib0017 article-title: Person re-identification by symmetry-driven accumulation of local features publication-title: Proc. CVPR – year: 2014 ident: bib0031 article-title: Deepreid: Deep filter pairing neural network for person re-identification publication-title: Proc. CVPR – year: 2014 ident: bib0064 article-title: Visualizing and understanding convolutional networks publication-title: Proc. ECCV – year: 2016 ident: bib0060 article-title: Learning deep feature representations with domain guided dropout for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2015 ident: bib0068 article-title: Scalable person re-identification: a benchmark publication-title: Proc. ICCV – year: 2014 ident: bib0018 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proc. CVPR – year: 2011 ident: bib0020 article-title: Deep sparse rectifier neural networks publication-title: Aistats – year: 2016 ident: bib0065 article-title: Learning a discriminative null space for person re-identification publication-title: Proc. CVPR – year: 2016 ident: bib0008 article-title: Similarity learning with spatial constraints for person re-identification publication-title: Proc. CVPR – year: 2016 ident: bib0055 article-title: Gated siamese convolutional neural network architecture for human re-identification publication-title: Proc. ECCV – year: 2016 ident: bib0057 article-title: Personnet: Person re-identification with deep convolutional neural networks publication-title: CoRR – start-page: 1988 year: 2014 end-page: 1996 ident: bib0049 article-title: Deep Learning Face Representation by Joint Identification-verification publication-title: Advances in Neural Information Processing Systems 27 – year: 2016 ident: bib0056 article-title: A siamese long short-term memory architecture for human re-identification publication-title: Proc. ECCV – start-page: 696 year: 1988 end-page: 699 ident: bib0042 article-title: Learning Representations by Back-propagating Errors publication-title: Neurocomputing: Foundations of Research – year: 2015 ident: bib0063 article-title: Understanding neural networks through deep visualization publication-title: Deep Learning Workshop, International Conference on Machine Learning (ICML) – year: 2011 ident: bib0011 article-title: Custom pictorial structures for re-identification publication-title: Proc. BMVC – year: 2015 ident: bib0067 article-title: Group membership prediction publication-title: Proc. ICCV – year: 2016 ident: bib0047 article-title: Deep attributes driven multi-camera person re-identification publication-title: Proc. ECCV – volume: 9 start-page: 249 year: 2010 end-page: 256 ident: bib0019 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Aistats – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0043 article-title: Imagenet large scale visual recognition challenge publication-title: IJCV – year: 2016 ident: bib0052 article-title: Rethinking the inception architecture for computer vision publication-title: Proc. CVPR – year: 2015 ident: bib0032 article-title: Person re-identification by local maximal occurrence representation and metric learning publication-title: Proc. CVPR – volume: 32 start-page: 270 year: 2014 end-page: 286 ident: bib0004 article-title: A survey of approaches and trends in person re-identification publication-title: Image Vis. Comput. – year: 2015 ident: bib0040 article-title: Learning deep object detectors from 3d models publication-title: Proc. ICCV – year: 2013 ident: bib0050 article-title: On the importance of initialization and momentum in deep learning publication-title: Proc. ICML – year: 2014 ident: bib0048 article-title: From virtual to reality: fast adaptation of virtual object detectors to real domains publication-title: Proc. BMVC – year: 2014 ident: bib0013 article-title: Consistent re-identification in a camera network publication-title: Proc. ECCV – year: 2016 ident: bib0005 article-title: ilab-20m: a large-scale controlled object dataset to investigate deep learning publication-title: Proc. CVPR – year: 2009 ident: bib0016 article-title: Visualizing higher-layer features of a deep network publication-title: Tech. Rep. 4323 – start-page: 1097 year: 2012 end-page: 1105 ident: bib0029 article-title: Imagenet Classification with Deep Convolutional Neural Networks publication-title: Advances in Neural Information Processing Systems 25 – year: 2015 ident: bib0026 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc. ICML – volume: 6 start-page: 3 year: 2011 end-page: 5 ident: bib0006 article-title: Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data? publication-title: Perspect. Psychol. Sci. – reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualising image classification models and saliency maps. ArXiv preprint. – year: 2014 ident: bib0061 article-title: Person re-identification using kernel-based metric learning methods publication-title: Proc. ECCV – year: 2011 ident: bib0021 article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach publication-title: Proc. ICML – year: 2008 ident: bib0023 article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features publication-title: Proc. ECCV – year: 2012 ident: bib0003 article-title: Re-identification with rgb-d sensors publication-title: Proc. ECCV - Workshops and Demonstrations – year: 2015 ident: bib0033 article-title: Efficient psd constrained asymmetric metric learning for person re-identification publication-title: Proc. ICCV – year: 2015 ident: bib0034 article-title: Bilinear cnn models for fine-grained visual recognition publication-title: Proc. ICCV – reference: Cmu graphics lab motion capture database,. – year: 2015 ident: bib0001 article-title: An improved deep learning architecture for person re-identification publication-title: Proc. CVPR – reference: . – volume: 35 start-page: 5180 year: 2015 end-page: 5186 ident: bib0054 article-title: Distributed representation of visual objects by single neurons in the human brain publication-title: J. Neurosci. – start-page: 3988 year: 2017 end-page: 3994 ident: bib0009 article-title: A multi-task deep network for person re-identification publication-title: Assoc. Adv. Artif. Intell. (AAAI) – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib0039 article-title: A survey on transfer learning, knowledge and data engineering publication-title: IEEE Trans. – year: 1940 ident: bib0044 article-title: The Varieties of Human Physique – reference: Ustinova, E., Ganin, Y., Lempitsky, V.S., 2016. Multiregion bilinear convolutional neural networks for person re-identification. ArXiv preprint. – year: 1986 ident: bib0024 article-title: Distributed Representations publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition – volume: 1 year: 2014 ident: bib0022 article-title: Person Re-identification – start-page: 161 year: 2014 end-page: 181 ident: bib0037 article-title: One-shot Person Re-identification with a Consumer Depth Camera publication-title: Person Re-Identification – start-page: 3320 year: 2014 end-page: 3328 ident: bib0062 article-title: How Transferable are Features in Deep Neural Networks? publication-title: Advances in Neural Information Processing Systems – year: 2011 ident: 10.1016/j.cviu.2017.12.002_bib0021 article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0055 article-title: Gated siamese convolutional neural network architecture for human re-identification – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0031 article-title: Deepreid: Deep filter pairing neural network for person re-identification – start-page: 3988 year: 2017 ident: 10.1016/j.cviu.2017.12.002_bib0009 article-title: A multi-task deep network for person re-identification publication-title: Assoc. Adv. Artif. Intell. (AAAI) – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0033 article-title: Efficient psd constrained asymmetric metric learning for person re-identification – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0036 article-title: Data-augmentation for reducing dataset bias in person re-identification – year: 2008 ident: 10.1016/j.cviu.2017.12.002_bib0023 article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0001 article-title: An improved deep learning architecture for person re-identification – volume: 131 start-page: 56 year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0012 article-title: Semantically-driven automatic creation of training sets for object recognition publication-title: Comput. Vis. Image Understanding doi: 10.1016/j.cviu.2014.07.005 – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0063 article-title: Understanding neural networks through deep visualization – start-page: 675 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0027 article-title: Caffe: Convolutional architecture for fast feature embedding – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0047 article-title: Deep attributes driven multi-camera person re-identification – year: 2010 ident: 10.1016/j.cviu.2017.12.002_bib0017 article-title: Person re-identification by symmetry-driven accumulation of local features – volume: 37 start-page: 1656 issue: 8 year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0035 article-title: Re-identification in the function space of feature warps publication-title: Trans. PAMI doi: 10.1109/TPAMI.2014.2377748 – ident: 10.1016/j.cviu.2017.12.002_bib0045 – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0005 article-title: ilab-20m: a large-scale controlled object dataset to investigate deep learning – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0065 article-title: Learning a discriminative null space for person re-identification – year: 2009 ident: 10.1016/j.cviu.2017.12.002_bib0030 article-title: Learning to detect unseen object classes by between-class attribute transfer – year: 2012 ident: 10.1016/j.cviu.2017.12.002_bib0003 article-title: Re-identification with rgb-d sensors – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0025 article-title: Person re-identification using the silhouette shape described by a point distribution model – year: 2016 ident: 10.1016/j.cviu.2017.12.002_sbref0053 article-title: Personnet: Person re-identification with deep convolutional neural networks – volume: 32 start-page: 270 issue: 4 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0004 article-title: A survey of approaches and trends in person re-identification publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2014.02.001 – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0038 article-title: Learning to rank in person re-identification with metric ensembles – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0061 article-title: Person re-identification using kernel-based metric learning methods – start-page: 71 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0002 article-title: Re-identification by Covariance Descriptors – ident: 10.1016/j.cviu.2017.12.002_bib0010 doi: 10.1109/ICCV.2015.168 – volume: 38 start-page: 1859 year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0007 article-title: Network Consistent Data Association publication-title: Trans. PAMI doi: 10.1109/TPAMI.2015.2491922 – start-page: 696 year: 1988 ident: 10.1016/j.cviu.2017.12.002_sbref0040 article-title: Learning Representations by Back-propagating Errors – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0060 article-title: Learning deep feature representations with domain guided dropout for person re-identification – year: 2011 ident: 10.1016/j.cviu.2017.12.002_bib0020 article-title: Deep sparse rectifier neural networks publication-title: Aistats – ident: 10.1016/j.cviu.2017.12.002_bib0053 doi: 10.1109/AVSS.2017.8078460 – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0013 article-title: Consistent re-identification in a camera network – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.cviu.2017.12.002_bib0039 article-title: A survey on transfer learning, knowledge and data engineering publication-title: IEEE Trans. – start-page: 161 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0037 article-title: One-shot Person Re-identification with a Consumer Depth Camera – year: 1986 ident: 10.1016/j.cviu.2017.12.002_bib0024 article-title: Distributed Representations – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0026 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – year: 2013 ident: 10.1016/j.cviu.2017.12.002_bib0050 article-title: On the importance of initialization and momentum in deep learning – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0034 article-title: Bilinear cnn models for fine-grained visual recognition – volume: 9 start-page: 249 year: 2010 ident: 10.1016/j.cviu.2017.12.002_bib0019 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Aistats – year: 2012 ident: 10.1016/j.cviu.2017.12.002_bib0028 article-title: Large scale metric learning from equivalence constraints – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0048 article-title: From virtual to reality: fast adaptation of virtual object detectors to real domains – ident: 10.1016/j.cviu.2017.12.002_bib0014 – start-page: 1988 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0049 article-title: Deep Learning Face Representation by Joint Identification-verification – year: 2009 ident: 10.1016/j.cviu.2017.12.002_bib0016 article-title: Visualizing higher-layer features of a deep network – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0056 article-title: A siamese long short-term memory architecture for human re-identification – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0008 article-title: Similarity learning with spatial constraints for person re-identification – start-page: 3320 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0062 article-title: How Transferable are Features in Deep Neural Networks? – year: 1940 ident: 10.1016/j.cviu.2017.12.002_bib0044 – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0032 article-title: Person re-identification by local maximal occurrence representation and metric learning – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0067 article-title: Group membership prediction – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0068 article-title: Scalable person re-identification: a benchmark – ident: 10.1016/j.cviu.2017.12.002_bib0046 – volume: 35 start-page: 5180 issue: 13 year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0054 article-title: Distributed representation of visual objects by single neurons in the human brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1958-14.2015 – year: 2006 ident: 10.1016/j.cviu.2017.12.002_bib0041 article-title: Distributed representations – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0018 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – start-page: 1097 year: 2012 ident: 10.1016/j.cviu.2017.12.002_bib0029 article-title: Imagenet Classification with Deep Convolutional Neural Networks – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0051 article-title: Going deeper with convolutions – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0059 article-title: Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web – ident: 10.1016/j.cviu.2017.12.002_bib0066 doi: 10.1109/ICMLA.2015.199 – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0064 article-title: Visualizing and understanding convolutional networks – year: 2011 ident: 10.1016/j.cviu.2017.12.002_bib0011 article-title: Custom pictorial structures for re-identification – volume: 1 year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0022 – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0040 article-title: Learning deep object detectors from 3d models – year: 2016 ident: 10.1016/j.cviu.2017.12.002_bib0052 article-title: Rethinking the inception architecture for computer vision – year: 2014 ident: 10.1016/j.cviu.2017.12.002_bib0015 article-title: Decaf: A deep convolutional activation feature for generic visual recognition – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0043 article-title: Imagenet large scale visual recognition challenge publication-title: IJCV doi: 10.1007/s11263-015-0816-y – volume: 6 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.cviu.2017.12.002_bib0006 article-title: Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data? publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691610393980 – year: 2015 ident: 10.1016/j.cviu.2017.12.002_bib0058 article-title: 3dshapenets: a deep representation for volumetric shapes |
| SSID | ssj0011491 |
| Score | 2.5816157 |
| Snippet | •A new synthetic dataset for re-identification is presented.•Fine tuning of re-id DNN with synthetic data is proposed.•Synthetic data experiments indicates... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 50 |
| SubjectTerms | Automated training dataset generation Deep learning Re-identification Re-identification photorealistic dataset Training set |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jF_Xgx1ScX-TgTeNWk7apNxmOIbrLnOwW0iSVyqhlH8ou_u2-tOmYIEO8FBoS0uaXvvdL-st7CF1EMecxuGGilYwJC5lPuM8lkZasJjG0KULmP_WD3pA9jPxRDXWqszBWVulsf2nTC2vtSlpuNFt5mrYGsHAJqceAU1NwRL6NCcpYaLMYXH8tZR5A94usebYysbXdwZlS46U-0rmVd4XFlqDbWvnFOW3Ms1wuPuV4vOJ8urto27FGfFc-2B6qmayBdhyDxO77nEJRlaShKmugrZWIg_vo5dHu12avOC5OrmCZ5zDVLfLTWzxYZEAHoQtcJY7AVkCKgddibUyOO_3-FKcZnhiSaiczKpA9QMPu_XOnR1xqBaIoYzOSRJRppSKTgMVjgdQRDcKE6tDGRzOcsViFxsBiigdRQgMGpkBHbQnkSrUDJdv0ENWz98wcIRx4sW__9tLELs6kll4bLsZPPBMlkgdN5FVjKpSLO27fYiwqgdmbsDgIi4PwbgTg0ESXyzZ5GXVjbW2_gkr8mDsC3MLadldLXP_QzfE_uzlBm3DHS6n3KarPJnNzBkxmFp8XU_Ub8XrwFw priority: 102 providerName: Elsevier |
| Title | Looking beyond appearances: Synthetic training data for deep CNNs in re-identification |
| URI | https://dx.doi.org/10.1016/j.cviu.2017.12.002 http://hdl.handle.net/11250/2585066 |
| UnpaywallVersion | submittedVersion |
| Volume | 167 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6C9oB2oIyBAG2VD7uBS9LYTrJbxQ8VNiKkraicIttxUKEKEW1B3WF_-54bB6GBKnbJwYrlRO_Z7_Pz5-8BfI1VFCkMwzTTUlEWMk4jHkkqLVjNFfZZSOZfJKI_YOdDPlyBuuDdP_ICCAa4d9jlVlZNrEJTcATcDWgOksvedcUmtFk2Vp1pxh7tBnzorsZULC79OJpZAle4SPq55Mkb4WdtVpRy_iTH4xfh5bQFx_UlnYpVcteZTVVH_36t2bjsyzdg3cFL0qv84SOsmGITWg5qEjeRJ9hUV3Oo2zbhwwtpwk9w9cMmdosbohZXXIgsS5wT1kUm38jPeYG4EYcgdYUJYpmmBAEwyYwpyVGSTMioIA-GjjLHR1q4wBYMTk9-HfWpq8FAdcDYlOZxwDKtY5Pj0siEzOJAhHmQhVZIzUSMKR0ag7uuSMR5IBiuGVnsSURh2hNaesE2NIr7wuwAEb7i9lg4yO0uTmbS9_BheO6bOJeR2AW_Nk2qnUC5_YtxWjPRblNrztSaM_W7KZpzF_af-5SVPMfSt3lt8dQBjAo4pBg_lvY7eHaPdwyz93-vf4bG9GFmviC4mao2rHb--G1o9s6-95O2c_W_ZcD41w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb8QbD2xg2mDnxYYqqgJtFyhisxzHQUFViGgLYuG3c06cqkgIIZYMF1tOfM7dd87nO4DjMAqCCN0wjZWMKPe5SwM3kFQasJpE2KdImd_re50Bv3l0H2vQqs7CGFqltf2lTS-stZU07Gw28jRt3GHg4jOHI6Zm6IhcPgfz3D33TQR29jnleSDeL8rmmdbUNLcnZ0qSl3pLJ4bf5Rd7gnZv5QfvtDDJcvnxLofDGe_TXoVlCxvJZflka1DT2TqsWAhJ7Ac6QlFVpaGSrcPSTMrBDXjomg3b7IlExdEVIvMc17pR_eiC3H1kiAdxCFJVjiCGQUoQ2JJY65y0-v0RSTPyqmkaW55RodpNGLSv7lsdamsrUMU4H9MkZDxWKtQJmjzuyThknp-w2DcJ0nTAeaR8rTGaCrwwYR5HWxCHTYnoSjU9JZtsC-rZS6a3gXhO5JrfvSwx0ZmMpdPEi3YTR4eJDLwdcKo5FcomHjdvMRQVw-xZGD0IowfhnAvUww6cTPvkZdqNX1u7larEt8Uj0C_82u90qtc_DLP7z2GOYKFz3-uK7nX_dg8W8U5Q8r73oT5-negDhDXj6LBYtl8UqfM6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10PYgHv8UVlRy8abTdJmnrTfxARBdBV9ZTSdJUVpdadreK_non21REZdFLD6EhLTPJvExe3gDsxCqKFIZhmmqpKAsZpxGPJJUWrGYK-4wl86_a4rzDLrq8OwV1wbtv8gIIBrh30OJWVk1Mw4zgCLgbMNNpXx_dV2xCm2Vj1Zlm7NFWwLvuakzF4tIvvdISuMJx0s8lT34JP7NlXsi3V9nvfwkvZwtwUl_SqVglT_vlSO3r95-ajZO-fBHmHbwkR5U_LMGUyZdhwUFN4ibyEJvqag512zLMfZEmXIG7S5vYzR-IGl9xIbIocE5YFxkekpu3HHEjDkHqChPEMk0JAmCSGlOQ43Z7SHo5GRjaSx0faewCq9A5O709PqeuBgPVAWMjmsUBS7WOTYZLIxMyjQMRZkEaWiE1EzGmdGgM7roiEWeBYLhmpLEnEYVpT2jpBWvQyJ9zsw5E-IrbY-Egs7s4mUrfw4fhmW_iTEaiCX5tmkQ7gXL7F_2kZqI9JtaciTVn4rcSNGcTdj_7FJU8x8S3eW3xxAGMCjgkGD8m9tv7dI8_DLPxv9c3oTEalGYLwc1IbTvn_gDgd_ZL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Looking+beyond+appearances%3A+Synthetic+training+data+for+deep+CNNs+in+re-identification&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Barbosa%2C+Igor+Barros&rft.au=Cristani%2C+Marco&rft.au=Caputo%2C+Barbara&rft.au=Rognhaugen%2C+Aleksander&rft.date=2018-02-01&rft.issn=1077-3142&rft.volume=167&rft.spage=50&rft.epage=62&rft_id=info:doi/10.1016%2Fj.cviu.2017.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2017_12_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |