Ranking and tagging bursty features in text streams with context language models

Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the sema...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Computer Science Vol. 11; no. 5; pp. 852 - 862
Main Authors Xin ZHAO, Wayne, LIU, Chen, WEN, Ji-Rong, LI, Xiaoming
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-2228
2095-2236
DOI10.1007/s11704-016-5144-z

Cover

Abstract Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context.We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging.
AbstractList Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context.We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging.
Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging.
Author Wayne Xin ZHAO;Chen LIU;Ji-Rong WEN;Xiaoming LI
AuthorAffiliation School of Information, Renmin University of China, Beijing 100872, China;Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China, Beijing 100872, China;Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data, Beijing 100144, China;School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Author_xml – sequence: 1
  givenname: Wayne
  surname: Xin ZHAO
  fullname: Xin ZHAO, Wayne
  email: batmanfly@gmail.com
  organization: Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China, Beijing 100872, China
– sequence: 2
  givenname: Chen
  surname: LIU
  fullname: LIU, Chen
  organization: Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data, Beijing 100144, China
– sequence: 3
  givenname: Ji-Rong
  surname: WEN
  fullname: WEN, Ji-Rong
  organization: Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China, Beijing 100872, China
– sequence: 4
  givenname: Xiaoming
  surname: LI
  fullname: LI, Xiaoming
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
BookMark eNp9kM1OwzAQhC0EEqX0AbhZcA7Yjl0nR1TxJ1UCod4tJ10nKa3T2o6gfXpcUpVbT7tazezOflfo3LYWELqh5J4SIh88pZLwhNBxIijnye4MDRjJRcJYOj4_9iy7RCPvF4QQRpgQjA3Qx6e2X42tsLZzHHRV7fuicz5ssQEdOgceNxYH-AnYBwd65fF3E2pctvZvuNS26nQFeNXOYemv0YXRSw-jQx2i2fPTbPKaTN9f3iaP06RMOQ-JEUVJdGnY2KQF4bnkZS6oSTMJpc7AFExDDC-IKaTRRQGikMC1kZoIyvJ0iO76tWvXbjrwQS3aztl4UbGcZjK-TNOoor2qdK33Doxau2al3VZRovboVI9ORXRqj07toof1Hh-1tgL3v_mUKetNdVPV4GC-jty8Mi5CasCdtt4eMtatrTbx5DHkWEYCOaEs_QU3ZZJn
Cites_doi 10.1145/1007568.1007586
10.1137/1.9781611972771.50
10.1145/1150402.1150441
10.1023/A:1024940629314
10.1145/1281192.1281227
10.1145/1281192.1281246
10.1145/1281192.1281276
10.1145/1557019.1557075
10.1145/1401890.1402006
10.1145/775152.775233
10.1145/1277741.1277779
ContentType Journal Article
Copyright Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg
Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
Higher Education Press and Springer-Verlag Berlin Heidelberg 2016.
Copyright_xml – notice: Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2016.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11704-016-5144-z
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Ranking and tagging bursty features in text streams with context language models
EISSN 2095-2236
EndPage 862
ExternalDocumentID 10_1007_s11704_016_5144_z
10.1007/s11704-016-5144-z
673659012
GroupedDBID -EM
.VR
06D
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2RA
30V
4.4
406
408
40E
5VS
92L
95-
95.
96X
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
B-.
BDATZ
BENPR
BGLVJ
BGNMA
CQIGP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
P4S
PF0
PT4
R89
ROL
RSV
S16
S3B
SAP
SCL
SCO
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VFIZW
W48
W92
YLTOR
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~WA
AEMSY
AGQEE
CCPQU
0R~
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AFBBN
AGRTI
AIGIU
BSONS
H13
SJYHP
-SI
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEI
CITATION
PHGZM
PHGZT
Q--
U1G
U5S
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c344t-f5bc0acf26f3b04974c951f387eca8efb2ae23650fb7fabbe5b7e4af7a051293
IEDL.DBID AGYKE
ISSN 2095-2228
IngestDate Fri Jul 25 23:31:38 EDT 2025
Tue Jul 01 02:22:06 EDT 2025
Fri Feb 21 02:33:37 EST 2025
Tue Feb 27 04:43:01 EST 2024
Wed Feb 14 09:56:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords bursty features
context modeling
bursty features ranking
bursty feature tagging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-f5bc0acf26f3b04974c951f387eca8efb2ae23650fb7fabbe5b7e4af7a051293
Notes Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging.
11-5731/TP
bursty features, bursty features ranking, bursty feature tagging, context modeling
bursty features
Document received on :2015-04-14
context modeling
bursty features ranking
Document accepted on :2015-12-01
bursty feature tagging
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918720913
PQPubID 2044369
PageCount 11
ParticipantIDs proquest_journals_2918720913
crossref_primary_10_1007_s11704_016_5144_z
springer_journals_10_1007_s11704_016_5144_z
higheredpress_frontiers_10_1007_s11704_016_5144_z
chongqing_primary_673659012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationSubtitle Selected Publications from Chinese Universities
PublicationTitle Frontiers of Computer Science
PublicationTitleAbbrev Front. Comput. Sci
PublicationTitleAlternate Frontiers of Computer Science in China
PublicationYear 2017
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Wang, Zhai, Hu, Sproat (CR10) 2007
Vlachos, Meek, Vagena, Gunopulos (CR2) 2004
Lappas, Arai, Platakis, Kotsakos, Gunopulos (CR6) 2009
Blei, Ng, Jordan (CR16) 2003; 3
Kumar, Novak, Raghavan, Tomkins (CR9) 2003
Yao, Cui, Huang, Jin (CR12) 2010
Dempster, Laird, Rubin (CR18) 1917; 39
He, Chang, Lim (CR4) 2007
Fung, Yu, Liu, Yu (CR7) 2007
Jiang, Lin, Mei (CR11) 2010
Mei, Xin, Cheng, Han, Zhai (CR13) 2006
Kleinberg (CR1) 2003; 7
Zhai (CR15) 2008
He, Chang, Lim, Zhang (CR5) 2007
Mei, Shen, Zhai (CR14) 2007
Zhai, Lafferty (CR17) 2001
Fung, Yu, Yu, Lu (CR3) 2005
Parikh, Sundaresan (CR8) 2008
N Parikh (5144_CR8) 2008
C X Zhai (5144_CR15) 2008
Y L Jiang (5144_CR11) 2010
D M Blei (5144_CR16) 2003; 3
R Kumar (5144_CR9) 2003
C Zhai (5144_CR17) 2001
Q He (5144_CR4) 2007
J Kleinberg (5144_CR1) 2003; 7
Q He (5144_CR5) 2007
G P C Fung (5144_CR7) 2007
A P Dempster (5144_CR18) 1917; 39
Q Z Mei (5144_CR14) 2007
T Lappas (5144_CR6) 2009
G P C Fung (5144_CR3) 2005
J J Yao (5144_CR12) 2010
X H Wang (5144_CR10) 2007
M Vlachos (5144_CR2) 2004
Q Z Mei (5144_CR13) 2006
References_xml – start-page: 131
  year: 2004
  end-page: 142
  ident: CR2
  article-title: Identifying similarities, periodicities and bursts for online search queries.
  publication-title: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data.
  doi: 10.1145/1007568.1007586
– start-page: 207
  year: 2007
  end-page: 214
  ident: CR4
  article-title: Analyzing feature trajectories for event detection.
  publication-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
– start-page: 491
  year: 2007
  end-page: 496
  ident: CR5
  article-title: Bursty feature representation for clustering text streams.
  publication-title: Proceedings of the 2007 SIAM Conference on Data Mining.
  doi: 10.1137/1.9781611972771.50
– start-page: 337
  year: 2006
  end-page: 346
  ident: CR13
  article-title: Generating semantic annotations for frequent patterns with context analysis.
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  doi: 10.1145/1150402.1150441
– start-page: 1077
  year: 2010
  end-page: 1087
  ident: CR11
  article-title: Context comparison of bursty events in web search and online media.
  publication-title: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing.
– volume: 7
  start-page: 373
  issue: 4
  year: 2003
  end-page: 397
  ident: CR1
  article-title: Bursty and hierarchical structure in streams.
  publication-title: Data Mining Knowledge Discovery
  doi: 10.1023/A:1024940629314
– start-page: 568
  year: 2003
  end-page: 576
  ident: CR9
  article-title: On the bursty evolution of blogspace.
  publication-title: Proceedings of the 12th International Conference on World Wide Web.
– start-page: 300
  year: 2007
  end-page: 309
  ident: CR7
  article-title: Time-dependent event hierarchy construction.
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and DataMining.
  doi: 10.1145/1281192.1281227
– start-page: 1474
  year: 2010
  end-page: 1479
  ident: CR12
  article-title: Temporal and social context based burst detection from folksonomies.
  publication-title: Proceedings of the 24th AAAI Conference on Artificial Intelligence.
– start-page: 490
  year: 2007
  end-page: 499
  ident: CR14
  article-title: Automatic labeling of multinomial topic models.
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  doi: 10.1145/1281192.1281246
– start-page: 181
  year: 2005
  end-page: 192
  ident: CR3
  article-title: Parameter free bursty events detection in text streams.
  publication-title: Proceedings of the 31st International Conference on Very Large Data Bases.
– start-page: 784
  year: 2007
  end-page: 793
  ident: CR10
  article-title: Mining correlated bursty topic patterns from coordinated text streams.
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  doi: 10.1145/1281192.1281276
– start-page: 477
  year: 2009
  end-page: 486
  ident: CR6
  article-title: On burstiness-aware search for document sequences.
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  doi: 10.1145/1557019.1557075
– volume: 39
  start-page: 1
  issue: 1
  year: 1917
  end-page: 38
  ident: CR18
  article-title: Maximum likelihood from incomplete data via the EM algorithm.
  publication-title: Journal of the Royal Statistical Society
– start-page: 972
  year: 2008
  end-page: 980
  ident: CR8
  article-title: Scalable and near real-time burst detection from ecommerce queries.
  publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  doi: 10.1145/1401890.1402006
– year: 2008
  ident: CR15
  article-title: Statistical language models for information retrieval: a critical review
  publication-title: Foundations and Trends in Information Retrieval
– start-page: 403
  year: 2001
  end-page: 410
  ident: CR17
  article-title: Model-based feedback in the language modeling approach to information retrieval.
  publication-title: Proceedings of the 10th International Conference on Information and Knowledge Management.
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: CR16
  article-title: Latent Dirichlet allocation.
  publication-title: The Journal of Machine Learning Research
– start-page: 568
  volume-title: Proceedings of the 12th International Conference on World Wide Web.
  year: 2003
  ident: 5144_CR9
  doi: 10.1145/775152.775233
– volume-title: Foundations and Trends in Information Retrieval
  year: 2008
  ident: 5144_CR15
– volume: 3
  start-page: 993
  year: 2003
  ident: 5144_CR16
  publication-title: The Journal of Machine Learning Research
– start-page: 403
  volume-title: Proceedings of the 10th International Conference on Information and Knowledge Management.
  year: 2001
  ident: 5144_CR17
– start-page: 207
  volume-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
  year: 2007
  ident: 5144_CR4
  doi: 10.1145/1277741.1277779
– start-page: 181
  volume-title: Proceedings of the 31st International Conference on Very Large Data Bases.
  year: 2005
  ident: 5144_CR3
– start-page: 477
  volume-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  year: 2009
  ident: 5144_CR6
  doi: 10.1145/1557019.1557075
– start-page: 490
  volume-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  year: 2007
  ident: 5144_CR14
  doi: 10.1145/1281192.1281246
– start-page: 1474
  volume-title: Proceedings of the 24th AAAI Conference on Artificial Intelligence.
  year: 2010
  ident: 5144_CR12
– start-page: 491
  volume-title: Proceedings of the 2007 SIAM Conference on Data Mining.
  year: 2007
  ident: 5144_CR5
  doi: 10.1137/1.9781611972771.50
– start-page: 972
  volume-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  year: 2008
  ident: 5144_CR8
  doi: 10.1145/1401890.1402006
– start-page: 1077
  volume-title: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing.
  year: 2010
  ident: 5144_CR11
– start-page: 131
  volume-title: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data.
  year: 2004
  ident: 5144_CR2
  doi: 10.1145/1007568.1007586
– start-page: 300
  volume-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and DataMining.
  year: 2007
  ident: 5144_CR7
  doi: 10.1145/1281192.1281227
– start-page: 337
  volume-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  year: 2006
  ident: 5144_CR13
  doi: 10.1145/1150402.1150441
– volume: 7
  start-page: 373
  issue: 4
  year: 2003
  ident: 5144_CR1
  publication-title: Data Mining Knowledge Discovery
  doi: 10.1023/A:1024940629314
– volume: 39
  start-page: 1
  issue: 1
  year: 1917
  ident: 5144_CR18
  publication-title: Journal of the Royal Statistical Society
– start-page: 784
  volume-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  year: 2007
  ident: 5144_CR10
  doi: 10.1145/1281192.1281276
SSID ssj0002025522
Score 2.0608208
Snippet Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most...
Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most...
SourceID proquest
crossref
springer
higheredpress
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 852
SubjectTerms bursty feature tagging
bursty features
bursty features ranking
Computer Science
Context
context modeling
Data mining
Language
Ranking
Research Article
Semantics
Streams
Tags
Time series
上下文模型
应用程序
排序
文本挖掘
标记
特征
突发性
语言模型
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qvQjiW6wvcvCkBNtsdrc9iKhYRLCUouBtmWQT9eBW3fWgv95MummpoLdll81h8pgvM9_MB3A0cZNW8Nw9cJlbw1H0Yo6mhxGiQ9w-lH03SG4e5O1j_NiAQaiFIVplOBP9QZ2PNcXIT0Wv000FdbE8f3vnpBpF2dUgoYG1tEJ-5luMLcCiO5LjdhMWL68Hw9E06iIIQvvUghsq5hT-CKlOX0_XST0pI-EOR0j-TQ0XnsfF07tzI3OOa_nZszBM7tmqc-j0V0LV-6n-GqzUAJNdTFbEOjRMsQGrQbyB1Xt5E4Yj9KoJDIucVUiB5yfmLFxWX8wa3-6zZC8FI2YIo4oSfC0ZRW0ZsdvpZQh1Mq-mU27Bff_6_uqG1_IKXEdSVtzGSrdRW5HYSLmLQiq1g1s26qZGY9dYJdCIyCE4q1KLSplYpUaiTbHtUcI2NItxYXao7lvbpOeAFMZSpjrpdrRwFyErhbJaRtiCvakZs7dJFw1PKKPCV9GC42DY6cdZM2WakYxoaDQj2XcLOnOmzyz1eSDV8P_-2Q_Tk9U7tMxm66kFJ2HKZp__HGz3_8H2YEmQ4_d0v31oVh-f5sDBlkod1mvxBycH6X0
  priority: 102
  providerName: ProQuest
Title Ranking and tagging bursty features in text streams with context language models
URI http://lib.cqvip.com/qk/71018X/201705/673659012.html
https://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-5144-z
https://link.springer.com/article/10.1007/s11704-016-5144-z
https://www.proquest.com/docview/2918720913
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XATxLa6rkoMnJeKm6WOPq7iKooisoKcyySYqYn20HtxfbybbuKyo4KmlaVOSyePLzDczANvDbdIK3nc3XPat4SjaMUfTxgjRIW6vyj6_SE6u5elNfFP7cZeB7R5Mkn6lHjm7tVLPmEi42-QlH0zCdOzOJ242TneOb89GqhVBONnbD4QDEJx0HMGe-VM9FFXh_rm4e3X_HNudZu891cL0PSV1DIJ-s5r6zag7D73QjCEH5XHvvVJ7evAtwuM_27kAczU4ZZ3haFqECVMswXxI_MDqdWAZLq_QZ1xgWPRZhaS0vmNOOmX1wazxoUJL9lAwYpUw8kbBp5KRxpcRM54eBjUp85l4yhXodY96hye8Ts3AdSRlxW2s9D5qKxIbKXfISKV2UM1GWWo0ZsYqgUZEDv1ZlVpUysQqNRJtivseYazCVPFcmDXyGdc2aTsQhrGUqU6ylhbuEGWlUFbLCBvQ_JJO_jKMwOHJaOQ0KxqwE-T1VTgKxEwdmROFjToyHzSgNSbR3FKMCMo4_tc3G0HqeT27y1y0W1kqKKJqA3aDEEfFv1a2_q-3mzAjCEN45uAGTFVv72bTIaBKbcFk1j3eqse9ux4cXVxefQIiWv9-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6x8rBJE4yxaQU2_AAvIGut4yTtA0LbAJVfFUJF4i06OzbsgRRIEIL_jf8Nnxu3KhK88RbFihXdOXdf7r67A1gbuUkreO4uuMyt4Si6MUfTxQjRIW4fyj7uJ70zeXAen8_AU6iFIVplsIneUOdDTTHy36Lb7qSCulhuX99wmhpF2dUwQgPr0Qr5lm8xVhd2HJqHe_cLV27t7zh9rwuxtzv41-P1lAGuIykrbmOlW6itSGykHF5OpXaow0ad1GjsGKsEGhE5IGNValEpE6vUSLQptryzdNt-gFlJ8ZMGzP7d7Z-cjoM8ghC7z2S4N485RVtCZtWX77VTzwFJuIMtkj9Sf4fLYXFx47zWlJ_8fOlJHyb35NgpMPwif-vd4t4XmKvxLPszOoALMGOKrzAfZkWw2nQswskp-iENDIucVUhx7gvmFFpWD8wa3120ZP8LRkQURgUseFUyChIzItPTzRBZZX54T_kNBu8h5-_QKIaF-UFl5tomXYfbMJYy1UmnrYX777JSKKtlhE1YHosxux417fD8NaqzFU3YCIIdL056N5NGMmK9kUayxya0p0SfWWorQUPK33pmJagnqw1CmU2ObxM2g8omy69utvT2ZqvwsTc4PsqO9vuHy_BJEObwTMMVaFS3d-anQ0yV-lWfSwbZO38Jz5INKAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRaoqISgtiAVafOBEZdh1nGT3iNoub4QqKsEpjB0bECI8Eg7sr8fjxKwWQaWKW5SHE3vszOeZb2YAVms1aQXP3QGXuTUcRT_maPoYITrE7U3ZB4fJ9l-5exKfNHVOy8B2Dy7JOqaBsjQV1cZtbjdGgW_d1LMnEu4UvuTDCZiUVEKiBZObW6d7IzOLIMzsfQnCgQlO9o7g23ytHcqwcHFTnN-5949pqqkLT7swuaenjsHRFx5Ur5gGM3AWulTzUa7WHyq1rocvsj2-o8-fYboBrWyznmWz8MEUX2AmFIRgzf_hKxz9QV-JgWGRswrJmH3OnNTK6pFZ41OIluyyYMQ2YRSlgtclI0sw85_iTgbzKfMVeso5OB78Pv65zZuSDVxHUlbcxkp3UFuR2Ei5zUcqtYNwNuqlRmPPWCXQiMihQqtSi0qZWKVGok2x45HHPLSKm8IsUCy5tknfgTOMpUx10utq4TZXVgpltYywDUvPkspu68wcnqRGwbSiDWtBds8XRwmaaSAzorbRQGbDNnTHpJtZyh1Blcj_9cxymAFZs-rLTPS7vVRQptU2_AgCHV1-s7HF_7p7BT4e_Rpk-zuHe0vwSRDM8OTCZWhV9w_mmwNJlfreLIQnkKoI2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+and+tagging+bursty+features+in+text+streams+with+context+language+models&rft.jtitle=Frontiers+of+Computer+Science&rft.au=Zhao%2C+Wayne+Xin&rft.au=Liu%2C+Chen&rft.au=Wen%2C+Ji-Rong&rft.au=Li%2C+Xiaoming&rft.date=2017-10-01&rft.issn=2095-2228&rft.eissn=2095-2236&rft.volume=11&rft.issue=5&rft.spage=852&rft.epage=862&rft_id=info:doi/10.1007%2Fs11704-016-5144-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11704_016_5144_z
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71018X%2F71018X.jpg