Ranking and tagging bursty features in text streams with context language models
Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the sema...
Saved in:
Published in | Frontiers of Computer Science Vol. 11; no. 5; pp. 852 - 862 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.10.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-2228 2095-2236 |
DOI | 10.1007/s11704-016-5144-z |
Cover
Abstract | Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context.We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging. |
---|---|
AbstractList | Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context.We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging. Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging. |
Author | Wayne Xin ZHAO;Chen LIU;Ji-Rong WEN;Xiaoming LI |
AuthorAffiliation | School of Information, Renmin University of China, Beijing 100872, China;Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China, Beijing 100872, China;Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data, Beijing 100144, China;School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 givenname: Wayne surname: Xin ZHAO fullname: Xin ZHAO, Wayne email: batmanfly@gmail.com organization: Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China, Beijing 100872, China – sequence: 2 givenname: Chen surname: LIU fullname: LIU, Chen organization: Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data, Beijing 100144, China – sequence: 3 givenname: Ji-Rong surname: WEN fullname: WEN, Ji-Rong organization: Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China, Beijing 100872, China – sequence: 4 givenname: Xiaoming surname: LI fullname: LI, Xiaoming organization: School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China |
BookMark | eNp9kM1OwzAQhC0EEqX0AbhZcA7Yjl0nR1TxJ1UCod4tJ10nKa3T2o6gfXpcUpVbT7tazezOflfo3LYWELqh5J4SIh88pZLwhNBxIijnye4MDRjJRcJYOj4_9iy7RCPvF4QQRpgQjA3Qx6e2X42tsLZzHHRV7fuicz5ssQEdOgceNxYH-AnYBwd65fF3E2pctvZvuNS26nQFeNXOYemv0YXRSw-jQx2i2fPTbPKaTN9f3iaP06RMOQ-JEUVJdGnY2KQF4bnkZS6oSTMJpc7AFExDDC-IKaTRRQGikMC1kZoIyvJ0iO76tWvXbjrwQS3aztl4UbGcZjK-TNOoor2qdK33Doxau2al3VZRovboVI9ORXRqj07toof1Hh-1tgL3v_mUKetNdVPV4GC-jty8Mi5CasCdtt4eMtatrTbx5DHkWEYCOaEs_QU3ZZJn |
Cites_doi | 10.1145/1007568.1007586 10.1137/1.9781611972771.50 10.1145/1150402.1150441 10.1023/A:1024940629314 10.1145/1281192.1281227 10.1145/1281192.1281246 10.1145/1281192.1281276 10.1145/1557019.1557075 10.1145/1401890.1402006 10.1145/775152.775233 10.1145/1277741.1277779 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 Higher Education Press and Springer-Verlag Berlin Heidelberg 2016. |
Copyright_xml | – notice: Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2016. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s11704-016-5144-z |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Ranking and tagging bursty features in text streams with context language models |
EISSN | 2095-2236 |
EndPage | 862 |
ExternalDocumentID | 10_1007_s11704_016_5144_z 10.1007/s11704-016-5144-z 673659012 |
GroupedDBID | -EM .VR 06D 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2RA 30V 4.4 406 408 40E 5VS 92L 95- 95. 96X AABHQ AAFGU AAIAL AAJKR AANZL AARHV AARTL AATLR AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD B-. BDATZ BENPR BGLVJ BGNMA CQIGP CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ K7- KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J P4S PF0 PT4 R89 ROL RSV S16 S3B SAP SCL SCO SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VFIZW W48 W92 YLTOR Z7R Z7X Z81 Z83 Z88 ZMTXR ~WA AEMSY AGQEE CCPQU 0R~ AACDK AAJBT AASML AAYZH ABAKF ACDTI ACPIV AEFQL AFBBN AGRTI AIGIU BSONS H13 SJYHP -SI -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEI CITATION PHGZM PHGZT Q-- U1G U5S 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c344t-f5bc0acf26f3b04974c951f387eca8efb2ae23650fb7fabbe5b7e4af7a051293 |
IEDL.DBID | AGYKE |
ISSN | 2095-2228 |
IngestDate | Fri Jul 25 23:31:38 EDT 2025 Tue Jul 01 02:22:06 EDT 2025 Fri Feb 21 02:33:37 EST 2025 Tue Feb 27 04:43:01 EST 2024 Wed Feb 14 09:56:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | bursty features context modeling bursty features ranking bursty feature tagging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-f5bc0acf26f3b04974c951f387eca8efb2ae23650fb7fabbe5b7e4af7a051293 |
Notes | Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to detect bursty features based purely on term frequency changes. Few have taken the semantic contexts of bursty features into consideration, and as a result the detected bursty features may not always be interesting and can be hard to interpret. In this article, we propose to model the contexts of bursty features using a language modeling approach. We propose two methods to estimate the context language models based on sentence-level context and document-level context. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. We also use two example text mining applications to qualitatively demonstrate the usefulness of bursty feature ranking and tagging. 11-5731/TP bursty features, bursty features ranking, bursty feature tagging, context modeling bursty features Document received on :2015-04-14 context modeling bursty features ranking Document accepted on :2015-12-01 bursty feature tagging ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918720913 |
PQPubID | 2044369 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2918720913 crossref_primary_10_1007_s11704_016_5144_z springer_journals_10_1007_s11704_016_5144_z higheredpress_frontiers_10_1007_s11704_016_5144_z chongqing_primary_673659012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationSubtitle | Selected Publications from Chinese Universities |
PublicationTitle | Frontiers of Computer Science |
PublicationTitleAbbrev | Front. Comput. Sci |
PublicationTitleAlternate | Frontiers of Computer Science in China |
PublicationYear | 2017 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Wang, Zhai, Hu, Sproat (CR10) 2007 Vlachos, Meek, Vagena, Gunopulos (CR2) 2004 Lappas, Arai, Platakis, Kotsakos, Gunopulos (CR6) 2009 Blei, Ng, Jordan (CR16) 2003; 3 Kumar, Novak, Raghavan, Tomkins (CR9) 2003 Yao, Cui, Huang, Jin (CR12) 2010 Dempster, Laird, Rubin (CR18) 1917; 39 He, Chang, Lim (CR4) 2007 Fung, Yu, Liu, Yu (CR7) 2007 Jiang, Lin, Mei (CR11) 2010 Mei, Xin, Cheng, Han, Zhai (CR13) 2006 Kleinberg (CR1) 2003; 7 Zhai (CR15) 2008 He, Chang, Lim, Zhang (CR5) 2007 Mei, Shen, Zhai (CR14) 2007 Zhai, Lafferty (CR17) 2001 Fung, Yu, Yu, Lu (CR3) 2005 Parikh, Sundaresan (CR8) 2008 N Parikh (5144_CR8) 2008 C X Zhai (5144_CR15) 2008 Y L Jiang (5144_CR11) 2010 D M Blei (5144_CR16) 2003; 3 R Kumar (5144_CR9) 2003 C Zhai (5144_CR17) 2001 Q He (5144_CR4) 2007 J Kleinberg (5144_CR1) 2003; 7 Q He (5144_CR5) 2007 G P C Fung (5144_CR7) 2007 A P Dempster (5144_CR18) 1917; 39 Q Z Mei (5144_CR14) 2007 T Lappas (5144_CR6) 2009 G P C Fung (5144_CR3) 2005 J J Yao (5144_CR12) 2010 X H Wang (5144_CR10) 2007 M Vlachos (5144_CR2) 2004 Q Z Mei (5144_CR13) 2006 |
References_xml | – start-page: 131 year: 2004 end-page: 142 ident: CR2 article-title: Identifying similarities, periodicities and bursts for online search queries. publication-title: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. doi: 10.1145/1007568.1007586 – start-page: 207 year: 2007 end-page: 214 ident: CR4 article-title: Analyzing feature trajectories for event detection. publication-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. – start-page: 491 year: 2007 end-page: 496 ident: CR5 article-title: Bursty feature representation for clustering text streams. publication-title: Proceedings of the 2007 SIAM Conference on Data Mining. doi: 10.1137/1.9781611972771.50 – start-page: 337 year: 2006 end-page: 346 ident: CR13 article-title: Generating semantic annotations for frequent patterns with context analysis. publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi: 10.1145/1150402.1150441 – start-page: 1077 year: 2010 end-page: 1087 ident: CR11 article-title: Context comparison of bursty events in web search and online media. publication-title: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. – volume: 7 start-page: 373 issue: 4 year: 2003 end-page: 397 ident: CR1 article-title: Bursty and hierarchical structure in streams. publication-title: Data Mining Knowledge Discovery doi: 10.1023/A:1024940629314 – start-page: 568 year: 2003 end-page: 576 ident: CR9 article-title: On the bursty evolution of blogspace. publication-title: Proceedings of the 12th International Conference on World Wide Web. – start-page: 300 year: 2007 end-page: 309 ident: CR7 article-title: Time-dependent event hierarchy construction. publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and DataMining. doi: 10.1145/1281192.1281227 – start-page: 1474 year: 2010 end-page: 1479 ident: CR12 article-title: Temporal and social context based burst detection from folksonomies. publication-title: Proceedings of the 24th AAAI Conference on Artificial Intelligence. – start-page: 490 year: 2007 end-page: 499 ident: CR14 article-title: Automatic labeling of multinomial topic models. publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi: 10.1145/1281192.1281246 – start-page: 181 year: 2005 end-page: 192 ident: CR3 article-title: Parameter free bursty events detection in text streams. publication-title: Proceedings of the 31st International Conference on Very Large Data Bases. – start-page: 784 year: 2007 end-page: 793 ident: CR10 article-title: Mining correlated bursty topic patterns from coordinated text streams. publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi: 10.1145/1281192.1281276 – start-page: 477 year: 2009 end-page: 486 ident: CR6 article-title: On burstiness-aware search for document sequences. publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi: 10.1145/1557019.1557075 – volume: 39 start-page: 1 issue: 1 year: 1917 end-page: 38 ident: CR18 article-title: Maximum likelihood from incomplete data via the EM algorithm. publication-title: Journal of the Royal Statistical Society – start-page: 972 year: 2008 end-page: 980 ident: CR8 article-title: Scalable and near real-time burst detection from ecommerce queries. publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi: 10.1145/1401890.1402006 – year: 2008 ident: CR15 article-title: Statistical language models for information retrieval: a critical review publication-title: Foundations and Trends in Information Retrieval – start-page: 403 year: 2001 end-page: 410 ident: CR17 article-title: Model-based feedback in the language modeling approach to information retrieval. publication-title: Proceedings of the 10th International Conference on Information and Knowledge Management. – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: CR16 article-title: Latent Dirichlet allocation. publication-title: The Journal of Machine Learning Research – start-page: 568 volume-title: Proceedings of the 12th International Conference on World Wide Web. year: 2003 ident: 5144_CR9 doi: 10.1145/775152.775233 – volume-title: Foundations and Trends in Information Retrieval year: 2008 ident: 5144_CR15 – volume: 3 start-page: 993 year: 2003 ident: 5144_CR16 publication-title: The Journal of Machine Learning Research – start-page: 403 volume-title: Proceedings of the 10th International Conference on Information and Knowledge Management. year: 2001 ident: 5144_CR17 – start-page: 207 volume-title: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. year: 2007 ident: 5144_CR4 doi: 10.1145/1277741.1277779 – start-page: 181 volume-title: Proceedings of the 31st International Conference on Very Large Data Bases. year: 2005 ident: 5144_CR3 – start-page: 477 volume-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. year: 2009 ident: 5144_CR6 doi: 10.1145/1557019.1557075 – start-page: 490 volume-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. year: 2007 ident: 5144_CR14 doi: 10.1145/1281192.1281246 – start-page: 1474 volume-title: Proceedings of the 24th AAAI Conference on Artificial Intelligence. year: 2010 ident: 5144_CR12 – start-page: 491 volume-title: Proceedings of the 2007 SIAM Conference on Data Mining. year: 2007 ident: 5144_CR5 doi: 10.1137/1.9781611972771.50 – start-page: 972 volume-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. year: 2008 ident: 5144_CR8 doi: 10.1145/1401890.1402006 – start-page: 1077 volume-title: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. year: 2010 ident: 5144_CR11 – start-page: 131 volume-title: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. year: 2004 ident: 5144_CR2 doi: 10.1145/1007568.1007586 – start-page: 300 volume-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and DataMining. year: 2007 ident: 5144_CR7 doi: 10.1145/1281192.1281227 – start-page: 337 volume-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. year: 2006 ident: 5144_CR13 doi: 10.1145/1150402.1150441 – volume: 7 start-page: 373 issue: 4 year: 2003 ident: 5144_CR1 publication-title: Data Mining Knowledge Discovery doi: 10.1023/A:1024940629314 – volume: 39 start-page: 1 issue: 1 year: 1917 ident: 5144_CR18 publication-title: Journal of the Royal Statistical Society – start-page: 784 volume-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. year: 2007 ident: 5144_CR10 doi: 10.1145/1281192.1281276 |
SSID | ssj0002025522 |
Score | 2.0608208 |
Snippet | Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most... Detecting and using bursty patterns to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most... |
SourceID | proquest crossref springer higheredpress chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 852 |
SubjectTerms | bursty feature tagging bursty features bursty features ranking Computer Science Context context modeling Data mining Language Ranking Research Article Semantics Streams Tags Time series 上下文模型 应用程序 排序 文本挖掘 标记 特征 突发性 语言模型 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qvQjiW6wvcvCkBNtsdrc9iKhYRLCUouBtmWQT9eBW3fWgv95MummpoLdll81h8pgvM9_MB3A0cZNW8Nw9cJlbw1H0Yo6mhxGiQ9w-lH03SG4e5O1j_NiAQaiFIVplOBP9QZ2PNcXIT0Wv000FdbE8f3vnpBpF2dUgoYG1tEJ-5luMLcCiO5LjdhMWL68Hw9E06iIIQvvUghsq5hT-CKlOX0_XST0pI-EOR0j-TQ0XnsfF07tzI3OOa_nZszBM7tmqc-j0V0LV-6n-GqzUAJNdTFbEOjRMsQGrQbyB1Xt5E4Yj9KoJDIucVUiB5yfmLFxWX8wa3-6zZC8FI2YIo4oSfC0ZRW0ZsdvpZQh1Mq-mU27Bff_6_uqG1_IKXEdSVtzGSrdRW5HYSLmLQiq1g1s26qZGY9dYJdCIyCE4q1KLSplYpUaiTbHtUcI2NItxYXao7lvbpOeAFMZSpjrpdrRwFyErhbJaRtiCvakZs7dJFw1PKKPCV9GC42DY6cdZM2WakYxoaDQj2XcLOnOmzyz1eSDV8P_-2Q_Tk9U7tMxm66kFJ2HKZp__HGz3_8H2YEmQ4_d0v31oVh-f5sDBlkod1mvxBycH6X0 priority: 102 providerName: ProQuest |
Title | Ranking and tagging bursty features in text streams with context language models |
URI | http://lib.cqvip.com/qk/71018X/201705/673659012.html https://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-5144-z https://link.springer.com/article/10.1007/s11704-016-5144-z https://www.proquest.com/docview/2918720913 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XATxLa6rkoMnJeKm6WOPq7iKooisoKcyySYqYn20HtxfbybbuKyo4KmlaVOSyePLzDczANvDbdIK3nc3XPat4SjaMUfTxgjRIW6vyj6_SE6u5elNfFP7cZeB7R5Mkn6lHjm7tVLPmEi42-QlH0zCdOzOJ242TneOb89GqhVBONnbD4QDEJx0HMGe-VM9FFXh_rm4e3X_HNudZu891cL0PSV1DIJ-s5r6zag7D73QjCEH5XHvvVJ7evAtwuM_27kAczU4ZZ3haFqECVMswXxI_MDqdWAZLq_QZ1xgWPRZhaS0vmNOOmX1wazxoUJL9lAwYpUw8kbBp5KRxpcRM54eBjUp85l4yhXodY96hye8Ts3AdSRlxW2s9D5qKxIbKXfISKV2UM1GWWo0ZsYqgUZEDv1ZlVpUysQqNRJtivseYazCVPFcmDXyGdc2aTsQhrGUqU6ylhbuEGWlUFbLCBvQ_JJO_jKMwOHJaOQ0KxqwE-T1VTgKxEwdmROFjToyHzSgNSbR3FKMCMo4_tc3G0HqeT27y1y0W1kqKKJqA3aDEEfFv1a2_q-3mzAjCEN45uAGTFVv72bTIaBKbcFk1j3eqse9ux4cXVxefQIiWv9- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6x8rBJE4yxaQU2_AAvIGut4yTtA0LbAJVfFUJF4i06OzbsgRRIEIL_jf8Nnxu3KhK88RbFihXdOXdf7r67A1gbuUkreO4uuMyt4Si6MUfTxQjRIW4fyj7uJ70zeXAen8_AU6iFIVplsIneUOdDTTHy36Lb7qSCulhuX99wmhpF2dUwQgPr0Qr5lm8xVhd2HJqHe_cLV27t7zh9rwuxtzv41-P1lAGuIykrbmOlW6itSGykHF5OpXaow0ad1GjsGKsEGhE5IGNValEpE6vUSLQptryzdNt-gFlJ8ZMGzP7d7Z-cjoM8ghC7z2S4N485RVtCZtWX77VTzwFJuIMtkj9Sf4fLYXFx47zWlJ_8fOlJHyb35NgpMPwif-vd4t4XmKvxLPszOoALMGOKrzAfZkWw2nQswskp-iENDIucVUhx7gvmFFpWD8wa3120ZP8LRkQURgUseFUyChIzItPTzRBZZX54T_kNBu8h5-_QKIaF-UFl5tomXYfbMJYy1UmnrYX777JSKKtlhE1YHosxux417fD8NaqzFU3YCIIdL056N5NGMmK9kUayxya0p0SfWWorQUPK33pmJagnqw1CmU2ObxM2g8omy69utvT2ZqvwsTc4PsqO9vuHy_BJEObwTMMVaFS3d-anQ0yV-lWfSwbZO38Jz5INKAM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRaoqISgtiAVafOBEZdh1nGT3iNoub4QqKsEpjB0bECI8Eg7sr8fjxKwWQaWKW5SHE3vszOeZb2YAVms1aQXP3QGXuTUcRT_maPoYITrE7U3ZB4fJ9l-5exKfNHVOy8B2Dy7JOqaBsjQV1cZtbjdGgW_d1LMnEu4UvuTDCZiUVEKiBZObW6d7IzOLIMzsfQnCgQlO9o7g23ytHcqwcHFTnN-5949pqqkLT7swuaenjsHRFx5Ur5gGM3AWulTzUa7WHyq1rocvsj2-o8-fYboBrWyznmWz8MEUX2AmFIRgzf_hKxz9QV-JgWGRswrJmH3OnNTK6pFZ41OIluyyYMQ2YRSlgtclI0sw85_iTgbzKfMVeso5OB78Pv65zZuSDVxHUlbcxkp3UFuR2Ei5zUcqtYNwNuqlRmPPWCXQiMihQqtSi0qZWKVGok2x45HHPLSKm8IsUCy5tknfgTOMpUx10utq4TZXVgpltYywDUvPkspu68wcnqRGwbSiDWtBds8XRwmaaSAzorbRQGbDNnTHpJtZyh1Blcj_9cxymAFZs-rLTPS7vVRQptU2_AgCHV1-s7HF_7p7BT4e_Rpk-zuHe0vwSRDM8OTCZWhV9w_mmwNJlfreLIQnkKoI2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+and+tagging+bursty+features+in+text+streams+with+context+language+models&rft.jtitle=Frontiers+of+Computer+Science&rft.au=Zhao%2C+Wayne+Xin&rft.au=Liu%2C+Chen&rft.au=Wen%2C+Ji-Rong&rft.au=Li%2C+Xiaoming&rft.date=2017-10-01&rft.issn=2095-2228&rft.eissn=2095-2236&rft.volume=11&rft.issue=5&rft.spage=852&rft.epage=862&rft_id=info:doi/10.1007%2Fs11704-016-5144-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11704_016_5144_z |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71018X%2F71018X.jpg |