Microarray Images Contrast Enhancement and Gridding Using Genetic Algorithm

Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels a...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical signals and sensors Vol. 14; no. 2; p. 6
Main Authors Bakhshayesh, Nayyer Mostaghim, Shamsi, Mousa, Golabi, Faegheh
Format Journal Article
LanguageEnglish
Published India Wolters Kluwer - Medknow 01.02.2024
Wolters Kluwer Medknow Publications
Subjects
Online AccessGet full text
ISSN2228-7477
2228-7477
DOI10.4103/jmss.jmss_65_22

Cover

Abstract Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes. In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs. The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively. The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.
AbstractList Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes. In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs. The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively. The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.
Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes.BackgroundMicroarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes.In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs.MethodsIn this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs.The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively.ResultsThe comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively.The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.ConclusionsThe performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.
Background: Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes. Methods: In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs. Results: The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively. Conclusions: The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.
Author Bakhshayesh, Nayyer Mostaghim
Shamsi, Mousa
Golabi, Faegheh
AuthorAffiliation 1 Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
2 Department of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
AuthorAffiliation_xml – name: 2 Department of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
– name: 1 Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
Author_xml – sequence: 1
  givenname: Nayyer Mostaghim
  surname: Bakhshayesh
  fullname: Bakhshayesh, Nayyer Mostaghim
  organization: Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
– sequence: 2
  givenname: Mousa
  surname: Shamsi
  fullname: Shamsi, Mousa
  organization: Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
– sequence: 3
  givenname: Faegheh
  surname: Golabi
  fullname: Golabi, Faegheh
  organization: Department of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38993204$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAQtVARLaVnbihHLtvasWMnJ1StyrKiiAs9W2NnkvUqsRc7C9q_x9ktpT0xlsaWZ-a9pzdvyZkPHgl5z-i1YJTfbMeUruekZaXL8hW5KMuyXiih1Nmz9zm5SmlLc8iKMtq8Iee8bhpeUnFBvn5zNgaIEQ7FeoQeU7EMfoqQpuLOb8BbHNFPBfi2WEXXts73xUOa8wo9Ts4Wt0Mfops24zvyuoMh4dXjfUkePt_9WH5Z3H9frZe39wvLhZgWiGigMSgAFVWVqWQNEqSl1ipqaS4apaqa8S4fwWxrywokl61BMF3F-CVZn3DbAFu9i26EeNABnD5-hNhriFnZgNp0rOpqKYQom8wHTUeB08ZYroAxyzMWPWHt_Q4Ov2EYngAZ1bPN-ujwP5vzyKfTyG5vRmwtznYNL3S8rHi30X34pdkxOM0IHx8RYvi5xzTp0SWLwwAewz5pTlXDFJN81vfhOdkTy98N5oabU0NeY0oRu__q_wM1-7PV
Cites_doi 10.4103/2228-7477.161494
10.1016/j.imu.2019.100264
10.1371/journal.pone.0210075
10.1007/s11760-018-1258-0
10.1109/TPAMI.2006.233
10.1007/978-1-0716-1839-4_6
10.1007/978-1-0716-1839-4_14
10.1016/j.optlastec.2016.07.016
10.1016/j.ejrnm.2015.01.004
10.1002/0471142727.mb2201s101
10.21037/qims.2019.08.19
10.1016/j.asoc.2016.11.046
10.1016/j.dsp.2016.10.013
10.1109/TMI.2005.848358
10.1109/TNB.2008.2000745
ContentType Journal Article
Copyright Copyright: © 2024 Journal of Medical Signals & Sensors.
Copyright: © 2024 Journal of Medical Signals & Sensors 2024
Copyright_xml – notice: Copyright: © 2024 Journal of Medical Signals & Sensors.
– notice: Copyright: © 2024 Journal of Medical Signals & Sensors 2024
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.4103/jmss.jmss_65_22
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2228-7477
EndPage 6
ExternalDocumentID oai_doaj_org_article_bf15f86444294aea9f0a309bc37a11c3
10.4103/jmss.jmss_65_22
PMC11111130
38993204
10_4103_jmss_jmss_65_22
Genre Journal Article
GroupedDBID AAYXX
ABDBF
ACGFS
ACUHS
ADBBV
ADRAZ
AEGXH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EOJEC
ESX
GROUPED_DOAJ
HYE
IAO
IEA
IHR
ITC
KQ8
M48
ML0
OBODZ
OK1
OVD
PGMZT
RPM
TEORI
TUS
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c344t-eeeba9be4ae7075b568a6a6c0cc70c0ebab775813f3f341cdc25a636dbeabf513
IEDL.DBID DOA
ISSN 2228-7477
IngestDate Fri Oct 03 12:47:44 EDT 2025
Sun Oct 26 02:47:04 EDT 2025
Thu Aug 21 18:32:26 EDT 2025
Fri Jul 11 12:18:44 EDT 2025
Thu Apr 03 07:08:12 EDT 2025
Tue Jul 01 04:02:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genetic algorithm
gridding
genomics
mathematical morphology
microarray images
Contrast enhancement
Language English
License Copyright: © 2024 Journal of Medical Signals & Sensors.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-eeeba9be4ae7075b568a6a6c0cc70c0ebab775813f3f341cdc25a636dbeabf513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/bf15f86444294aea9f0a309bc37a11c3
PMID 38993204
PQID 3079171633
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_bf15f86444294aea9f0a309bc37a11c3
unpaywall_primary_10_4103_jmss_jmss_65_22
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11111130
proquest_miscellaneous_3079171633
pubmed_primary_38993204
crossref_primary_10_4103_jmss_jmss_65_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace India
PublicationPlace_xml – name: India
PublicationTitle Journal of medical signals and sensors
PublicationTitleAlternate J Med Signals Sens
PublicationYear 2024
Publisher Wolters Kluwer - Medknow
Wolters Kluwer Medknow Publications
Publisher_xml – name: Wolters Kluwer - Medknow
– name: Wolters Kluwer Medknow Publications
References Saberkari (R22-20240830) 2015; 5
Belean (R4-20240830) 2020
Kaur (R6-20240830) 2017; 51
Li (R12-20240830) 2018; 12
Das (R7-20240830) 2017; 87
Sayed (R5-20240830) 2019; 12
Zhou (R10-20240830) 2019; 9
Sarder (R13-20240830) 2008; 7
Nimkar (R9-20240830) 2013; 4
Baans (R16-20240830) 2019; 27
Sharma (R19-20240830) 2014; 5
Shao (R18-20240830) 2019; 14
Sivalakshmi (R11-20240830) 2016; 4
Blekas (R21-20240830) 2005; 24
Karthik (R15-20240830) 2019; 17
Firoz (R20-20240830) 2016; 4
Zaffino (R1-20240830) 2022; 2401
Hassanpour (R23-20240830) 2015; 46
Bumgarner (R3-20240830) 2013
Harikiran (R17-20240830) 2012; 3
Grady (R14-20240830) 2006; 28
Shakeri (R8-20240830) 2017; 62
Cauteruccio (R2-20240830) 2022; 2401
References_xml – volume: 5
  start-page: 182
  year: 2015
  ident: R22-20240830
  article-title: Fully automated complementary DNA microarray segmentation using a novel fuzzy-based algorithm
  publication-title: J Med Signals Sens
  doi: 10.4103/2228-7477.161494
– volume: 17
  start-page: 100264
  year: 2019
  ident: R15-20240830
  article-title: Automatic gridding of noisy microarray images based on coefficient of variation
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2019.100264
– volume: 4
  start-page: 85
  year: 2013
  ident: R9-20240830
  article-title: Contrast enhancement and brightness preservation using multi-decomposition histogram equalization
  publication-title: Signal Image Process Anal Int J
– volume: 14
  start-page: e0210075
  year: 2019
  ident: R18-20240830
  article-title: Automatic microarray image segmentation with clustering-based algorithms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210075
– volume: 12
  start-page: 1069
  year: 2018
  ident: R12-20240830
  article-title: Contrast enhancement for cDNA microarray image based on fourth-order moment
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-018-1258-0
– start-page: 8
  year: 2020
  ident: R4-20240830
  article-title: Microarray Image Analysis: From Image Processing Methods to Gene Expression Levels Estimation
  publication-title: Digital Object Identifier
– volume: 28
  start-page: 1768
  year: 2006
  ident: R14-20240830
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.233
– volume: 2401
  start-page: 69
  year: 2022
  ident: R1-20240830
  article-title: Algorithms to preprocess microarray image data
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1839-4_6
– volume: 2401
  start-page: 217
  year: 2022
  ident: R2-20240830
  article-title: Alignment of microarray data
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1839-4_14
– volume: 87
  start-page: 51
  year: 2017
  ident: R7-20240830
  article-title: Multi-scale contrast enhancement of oriented features in 2D images using directional morphology
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2016.07.016
– volume: 27
  start-page: 32
  year: 2019
  ident: R16-20240830
  article-title: Background correction method for DNA microarray image processing
  publication-title: Asia Pac J Mol Biol Biotech
– volume: 46
  start-page: 481
  year: 2015
  ident: R23-20240830
  article-title: Using morphological transforms to enhance the contrast of medical images
  publication-title: Egypt J Radiol Nucl Med
  doi: 10.1016/j.ejrnm.2015.01.004
– year: 2013
  ident: R3-20240830
  article-title: Overview of DNA microarrays: Types, applications, and their future
  publication-title: Curr Protoc Mol Biol
  doi: 10.1002/0471142727.mb2201s101
– volume: 9
  start-page: 1528
  year: 2019
  ident: R10-20240830
  article-title: Contrast enhancement of medical images using a new version of the World Cup Optimization algorithm
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2019.08.19
– volume: 4
  start-page: 561
  year: 2016
  ident: R11-20240830
  article-title: Microarray image analysis using genetic algorithm
  publication-title: Indones J Electr Eng Comput Sci
– volume: 51
  start-page: 180
  year: 2017
  ident: R6-20240830
  article-title: Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.11.046
– volume: 12
  start-page: 6
  year: 2019
  ident: R5-20240830
  article-title: Hybrid quantum salp swarm algorithm for contrast enhancement of natural images
  publication-title: Int Eng Syst
– volume: 62
  start-page: 224
  year: 2017
  ident: R8-20240830
  article-title: Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2016.10.013
– volume: 3
  start-page: 172
  year: 2012
  ident: R17-20240830
  article-title: Edge detection using mathematical morphology for gridding of microarray image
  publication-title: Int J Adv Res Comput Sci
– volume: 4
  start-page: 1
  year: 2016
  ident: R20-20240830
  article-title: Medical image enhancement, using morphological transformation
  publication-title: J Data Anal Inform Process
– volume: 24
  start-page: 901
  year: 2005
  ident: R21-20240830
  article-title: Mixture model analysis of DNA microarray images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2005.848358
– volume: 5
  start-page: 7415
  year: 2014
  ident: R19-20240830
  article-title: A Hybrid image contrast enhancement approach using genetic algorithm and neural network
  publication-title: Int J Comput Sci Info Technol
– volume: 7
  start-page: 142
  year: 2008
  ident: R13-20240830
  article-title: Estimating gene signals from noisy microarray images
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2008.2000745
SSID ssj0000650109
Score 2.2481697
Snippet Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study....
Background: Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6
SubjectTerms contrast enhancement
genetic algorithm
genomics
gridding
mathematical morphology
microarray images
Original
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOiPIMLxmJAxyy2HGcxwmVqqWAlhMr9WaNHae71W62JFnB_vvOJOm2K1biQiLlEDuJPWPPfOOMPjP2TqUY3aSZCyHPijDOnQyhjChUUVb7zKOLoHXI8Y_kdBJ_O9NnN9sBDQJsdoZ2tJ_UpJ6P_vxaf8IJj_h1FEuhPl4smmZEF5NoE6E93kc3ldM-DuMB6_dmWdNvoJ7eZ9dzW56pI_DfhTr_Tp68u6ouYf0b5vNbnunkIXswQEp-2I-BA3bHV4_Y_VtEg4_Z9zHl3UFdw5p_XaAJaTjRUtXQtPy4mpLmaZWQQ1XwL_WsIIfGu2wCTrzU-GJ-OD9f1rN2unjCJifHP49Ow2EbhdCpOG5D772F3PoYfIoAweokgwQSJ5xLhRNYaFOMGqQq8YylK1ykIVFJYT3YUkv1lO1Vy8o_Z7wQ0jkJVmcOA0MLWeESl5TOIwp06G4D9v5ahOayZ8swGGWQtE0n6BtpB-wziXhTjWiuuxvL-twMs8bYUuoyQ8iGXhObD3kpQIncOpWClE4F7O21ggxOC_rXAZVfrhqDpisnJiCFdZ71Ctt8iigFVSTigGVbqtxqy3ZJNZt21NuyO5QI2IeN1v_V0xf_o6cv2b0I4VSfL_6K7bX1yr9GONTaN90wvwIuTRCv
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQdwAOMH4HBjISBzikxHHsJMcybRTQJg5UGqfo-cVZC206JanQ-Ot5TtKuhUlAIuUQO4nt9-z3PfvlM2OvZEzeTZygD2mS-1GKwocidK6KNMomlkyEm4c8OdXjSfTxTJ31JEnuX5it9ftIBPLtt0VdD90l0yoLaazd04pA94DtTU4_j766rePC0DFixnFH3HPdUzs2p6Xmvw5P_hkWeXNVXsDlD5jPt2zO8V02Xpe2CzX5Plw1Zog_fyNy_Ifq7LM7Pe7ko05R7rEbtrzPbm-xET5gn05ccB5UFVzyDwsaZ2ruuKsqqBt-VE6deripRA5lzt9Xs9xZPd6GHHBHXk0v5qP5-bKaNdPFQzY5PvpyOPb7vRZ8lFHU-NZaA6mxEdiYUIRROgENGgPEOMCAEk1MroWQBZ2RwBxDBVrq3FgwhRLyERuUy9I-YTwPBKIAoxIk79FAkqNGXaAlqIhkkz32ei2N7KKj1MjIFXHtk7VNc9U-HnvnpLXJ5riw2xvUplnftTJTCFUkhOvItFLxIS0CkEFqUMYgBEqPvVzLOqO-4xZEoLTLVZ3R-JY6uiBJeR53st98yvEOyjCIPJbsaMVOWXZTytm05ecW7SEDj73ZKNDfavr0P_I-Y7dCglZd7PgBGzTVyj4naNSYF323-AUxkROb
  priority: 102
  providerName: Unpaywall
Title Microarray Images Contrast Enhancement and Gridding Using Genetic Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/38993204
https://www.proquest.com/docview/3079171633
https://pubmed.ncbi.nlm.nih.gov/PMC11111130
https://doi.org/10.4103/jmss.jmss_65_22
https://doaj.org/article/bf15f86444294aea9f0a309bc37a11c3
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2228-7477
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650109
  issn: 2228-7477
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2228-7477
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650109
  issn: 2228-7477
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: ASU
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2228-7477
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650109
  issn: 2228-7477
  databaseCode: ABDBF
  dateStart: 20130701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2228-7477
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650109
  issn: 2228-7477
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2228-7477
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650109
  issn: 2228-7477
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2228-7477
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0000650109
  issn: 2228-7477
  databaseCode: M48
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQOACHiW8yxmQkDnAIs2M7cY7tWBmgThyoNE7Ws-PQTm06Jamm_fc8J11pBdIuJJIPtpXY75e8D_vpZ0LeiQyjm0y7GHJdxDJ3PIYyCaGKsMprjyYirEOOz9Ozifx6oS62jvoKOWE9PXAvuGNbclVqtNqoOCV4yEsGguXWiQw4dx3PJ9P5VjDV62AV9nx6Lh_JmTi-XDTNx1CYVJkk2TFDHVv_v1zMvzMlH6yqK7i5hvl8ywyNHpP9tf9IB_24n5B7vnpKHm2xCj4j38YhyQ7qGm7olwXqi4YGDqoampaeVtMAc1gSpFAV9HM9K4L1ol3qAA0k1PhgOpj_Wtazdrp4Tiaj0x8nZ_H6zITYCSnb2HtvIbceRZWhN2BVqiGF1DHnMuYYNtoMQwQuSrwld4VLFKQiLawHWyouXpC9aln5V4QWjDvHwSrtMAq0oAuXurR0Hl0-h7Y1Iu9vRWiuemoMgyFFkLbpBP1H2hEZBhFvugVO664CkTZrpM1dSEfk7S1ABv-BsLEBlV-uGoN6Kg-0PwL7vOwB27wq8AeKhMmI6B0od8ay21LNph3PNu8uwSLyYYP6XTM9-B8zfU0eJug79cnhh2SvrVf-Dfo-rT0i9wfDT8PRUfe5YzmWGusm598HP38D_IYLpQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQdwAOMH4HBjISBzikxHHsJMcybRTQJg5UGqfo-cVZC206JanQ-Ot5TtKuhUlAIuUQO4nt9-z3PfvlM2OvZEzeTZygD2mS-1GKwocidK6KNMomlkyEm4c8OdXjSfTxTJ31JEnuX5it9ftIBPLtt0VdD90l0yoLaazd04pA94DtTU4_j766rePC0DFixnFH3HPdUzs2p6Xmvw5P_hkWeXNVXsDlD5jPt2zO8V02Xpe2CzX5Plw1Zog_fyNy_Ifq7LM7Pe7ko05R7rEbtrzPbm-xET5gn05ccB5UFVzyDwsaZ2ruuKsqqBt-VE6deripRA5lzt9Xs9xZPd6GHHBHXk0v5qP5-bKaNdPFQzY5PvpyOPb7vRZ8lFHU-NZaA6mxEdiYUIRROgENGgPEOMCAEk1MroWQBZ2RwBxDBVrq3FgwhRLyERuUy9I-YTwPBKIAoxIk79FAkqNGXaAlqIhkkz32ei2N7KKj1MjIFXHtk7VNc9U-HnvnpLXJ5riw2xvUplnftTJTCFUkhOvItFLxIS0CkEFqUMYgBEqPvVzLOqO-4xZEoLTLVZ3R-JY6uiBJeR53st98yvEOyjCIPJbsaMVOWXZTytm05ecW7SEDj73ZKNDfavr0P_I-Y7dCglZd7PgBGzTVyj4naNSYF323-AUxkROb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microarray+Images+Contrast+Enhancement+and+Gridding+Using+Genetic+Algorithm&rft.jtitle=Journal+of+medical+signals+and+sensors&rft.au=Nayyer+Mostaghim+Bakhshayesh&rft.au=Mousa+Shamsi&rft.au=Faegheh+Golabi&rft.date=2024-02-01&rft.pub=Wolters+Kluwer+Medknow+Publications&rft.eissn=2228-7477&rft.volume=14&rft.issue=2&rft.spage=6&rft.epage=6&rft_id=info:doi/10.4103%2Fjmss.jmss_65_22&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf15f86444294aea9f0a309bc37a11c3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2228-7477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2228-7477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2228-7477&client=summon