2k-Vertex Kernels for Cluster Deletion and Strong Triadic Closure

Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced path...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 38; no. 6; pp. 1431 - 1439
Main Authors Gao, Wen-Yu, Gao, Hang
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-023-1420-1

Cover

Abstract Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2 k -vertex kernels. These results represent improvements over previously best-known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure.
AbstractList Cluster deletion and strong triadic closure are two important NP-complete problems that have received sig-nificant attention due to their applications in various areas,including social networks and data analysis.Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices,there are subtle differences be-tween them.In some cases,the solutions of strong triadic closure and cluster deletion are quite different.In this paper,we study the parameterized algorithms for these two problems.More specifically,we focus on the kernels of these two prob-lems.Instead of separating the critical clique and its neighbors for analysis,we consider them as a whole,which allows us to more effectively bound the number of related vertices.In addition,in analyzing the kernel of strong triadic closure,we introduce the concept of edge-disjoint induced path on three vertices,which enables us to obtain the lower bound of weak edge number in a more concise way.Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2k-vertex kernels.These results represent improvements over previously best-known kernels for both problems.Further-more,our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure.
Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2A;-vertex kernels. These results represent improvements over previously best- known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure. Keywords cluster deletion, strong triadic closure, kernelization, parameterized complexity, social network
Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2 k -vertex kernels. These results represent improvements over previously best-known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure.
Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2k-vertex kernels. These results represent improvements over previously best-known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure.
Audience Academic
Author Gao, Hang
Gao, Wen-Yu
Author_xml – sequence: 1
  givenname: Wen-Yu
  surname: Gao
  fullname: Gao, Wen-Yu
  email: gwy@gdufe.edu.cn
  organization: School of Information, Guangdong University of Finance and Economics
– sequence: 2
  givenname: Hang
  surname: Gao
  fullname: Gao, Hang
  organization: Department of Computer Science, Rutgers University
BookMark eNp1kctKAzEUhoNU0KoP4G7ArdGTSyeTZalXFFx42YZ05qTMOCY1mWJ9eyMjdCWBJITvOzmcf0omPngk5JTBBQNQl4kxoYECF5RJDpTtkUNWlUClknqS7wBAdd4OyDSlDkAokPKQzPk7fcM44LZ4wOixT4ULsVj0mzRgLK6wx6ENvrC-KZ6HGPyqeImtbdo6MyFtIh6TfWf7hCd_5xF5vbl-WdzRx6fb-8X8kdZCyoEiSlHVopa2FFUjlNMlgFWoSkAhUOOSl0sGjcOmFE01Q6lEaYErdIzLmRRH5Hys-2W9s35lurCJPv9outS9b7u0XRrkeQBQAptl_GzE1zF8bjANO55rzpiWIEWmLkZqZXs0rXdhiLbOq8GPts4jdm1-n6tqprTmXGeBjUIdQ0oRnVnH9sPGb8PA_CZhxiRMbsT8JmFYdvjopMz6FcZdK_9LP3D5irQ
Cites_doi 10.1007/s00453-020-00684-9
10.1089/106652799318274
10.1137/S0097539701389154
10.1016/j.dam.2020.05.035
10.1007/11847250_25
10.1145/2623330.2623664
10.1016/j.dam.2004.01.007
10.1007/3-540-54945-5_49
10.1016/j.tcs.2018.05.012
10.1086/225469
10.1016/j.disc.2013.08.017
10.1007/978-3-319-21275-3
10.1007/s00224-007-9032-7
10.1016/j.jcss.2011.04.001
10.1023/B:MACH.0000033116.57574.95
10.1007/s00453-019-00617-1
10.1007/3-540-28349-8_2
10.1093/acprof:oso/9780198566076.001.0001
10.1016/j.tcs.2008.10.021
ContentType Journal Article
Copyright Institute of Computing Technology, Chinese Academy of Sciences 2024
COPYRIGHT 2023 Springer
Institute of Computing Technology, Chinese Academy of Sciences 2024.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Computing Technology, Chinese Academy of Sciences 2024
– notice: COPYRIGHT 2023 Springer
– notice: Institute of Computing Technology, Chinese Academy of Sciences 2024.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-023-1420-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database - Proquest
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 1439
ExternalDocumentID jsjkxjsxb_e202306015
A785799229
10_1007_s11390_023_1420_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c344t-ee438c3c4a638d37f9600a7e760e33e9eb26b10dfed63d85e4736a027ef124543
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:16 EDT 2025
Fri Jul 25 12:21:22 EDT 2025
Mon Oct 20 17:00:47 EDT 2025
Wed Oct 01 02:32:17 EDT 2025
Fri Feb 21 02:40:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords social network
parameterized complexity
strong triadic closure
cluster deletion
kernelization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-ee438c3c4a638d37f9600a7e760e33e9eb26b10dfed63d85e4736a027ef124543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921194043
PQPubID 326258
PageCount 9
ParticipantIDs wanfang_journals_jsjkxjsxb_e202306015
proquest_journals_2921194043
gale_infotracacademiconefile_A785799229
crossref_primary_10_1007_s11390_023_1420_1
springer_journals_10_1007_s11390_023_1420_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2023
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
References GuoJA more effective linear kernelization for cluster editingTheoretical Computer Science20094108/9/10718726249201010.1016/j.tcs.2008.10.021
Berkhin P. A survey of clustering data mining techniques. In Grouping Multidimensional Data: Recent Advances in Clustering, Kogan J, Nicholas C, Teboulle M (eds.), Springer, 2006, pp.25–71. https://doi.org/10.1007/3-540-28349-8_2.
ShamirRSharanRTsurDCluster graph modification problemsDiscrete Applied Mathematics20041441/2173182209539210.1016/j.dam.2004.01.007
ProttiFDa SilvaMDSzwarcfiterJLApplying modular decomposition to parameterized cluster editing problemsTheory of Computing Systems200944191104246600710.1007/s00224-007-9032-7
KonstantinidisALPapadopoulosCMaximizing the strong triadic closure in split graphs and proper interval graphsDiscrete Applied Mathematics20202857995411494010.1016/j.dam.2020.05.035
Sintos S, Tsaparas P. Using strong triadic closure to characterize ties in social networks. In Proc. the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2014, pp.1466–1475. https://doi.org/10.1145/2623330.2623664.
ChenJEMengJA 2k kernel for the cluster editing problemJournal of Computer and System Sciences2012781211220289635810.1016/j.jcss.2011.04.001
Hsu W L, Ma T H. Substitution decomposition on chordal graphs and applications. In Proc. the 2nd International Symposium on Algorithms, Dec. 1991, pp.52–60. https://doi.org/10.1007/3-540-54945-5_49.
GolovachPAHeggernesPKonstantinidisALLimaPTPapadopoulosCParameterized aspects of strong subgraph closureAlgorithmica202082720062038409998010.1007/s00453-020-00684-9
Fellows M R. The lost continent of polynomial time: Preprocessing and kernelization. In Proc. the 2nd International Workshop on Parameterized and Exact Computation, Sept. 2006, pp.276–277. https://doi.org/10.1007/11847250_25.
ChenZZJiangTLinGHComputing phylogenetic roots with bounded degrees and errorsSIAM Journal on Computing2003324864879200188710.1137/S0097539701389154
Cygan M, Fomin F V, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S. Parameterized Algorithms. Springer, 2015. https://doi.org/10.1007/978-3-319-21275-3.
KonstantinidisALNikolopoulosSDPapadopoulosCStrong triadic closure in cographs and graphs of low maximum degreeTheoretical Computer Science20187407684381169310.1016/j.tcs.2018.05.012
GaoYHareDRNastosJThe cluster deletion problem for cographsDiscrete Mathematics20133132327632771310644910.1016/j.disc.2013.08.017
Ben-DorAShamirRYakhiniZClustering gene expression patternsJournal of Computational Biology199963/428129710.1089/106652799318274
Niedermeier R. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780198566076.001.0001.
GranovetterMSThe strength of weak tiesAmerican Journal of Sociology19737861360138010.1086/225469
GrüttemeierNKomusiewiczCOn the relation of strong triadic closure and cluster deletionAlgorithmica2020824853880406880010.1007/s00453-019-00617-1
BansalNBlumAChawlaSCorrelation clusteringMachine Learning2004561/2/389113336342310.1023/B:MACH.0000033116.57574.95
MS Granovetter (1420_CR2) 1973; 78
1420_CR14
N Grüttemeier (1420_CR4) 2020; 82
1420_CR16
1420_CR17
1420_CR1
1420_CR18
1420_CR8
A Ben-Dor (1420_CR13) 1999; 6
ZZ Chen (1420_CR10) 2003; 32
Y Gao (1420_CR12) 2013; 313
N Bansal (1420_CR9) 2004; 56
F Protti (1420_CR19) 2009; 44
JE Chen (1420_CR7) 2012; 78
R Shamir (1420_CR11) 2004; 144
AL Konstantinidis (1420_CR5) 2018; 740
PA Golovach (1420_CR3) 2020; 82
AL Konstantinidis (1420_CR15) 2020; 285
J Guo (1420_CR6) 2009; 410
References_xml – reference: ProttiFDa SilvaMDSzwarcfiterJLApplying modular decomposition to parameterized cluster editing problemsTheory of Computing Systems200944191104246600710.1007/s00224-007-9032-7
– reference: KonstantinidisALNikolopoulosSDPapadopoulosCStrong triadic closure in cographs and graphs of low maximum degreeTheoretical Computer Science20187407684381169310.1016/j.tcs.2018.05.012
– reference: Sintos S, Tsaparas P. Using strong triadic closure to characterize ties in social networks. In Proc. the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2014, pp.1466–1475. https://doi.org/10.1145/2623330.2623664.
– reference: ShamirRSharanRTsurDCluster graph modification problemsDiscrete Applied Mathematics20041441/2173182209539210.1016/j.dam.2004.01.007
– reference: Hsu W L, Ma T H. Substitution decomposition on chordal graphs and applications. In Proc. the 2nd International Symposium on Algorithms, Dec. 1991, pp.52–60. https://doi.org/10.1007/3-540-54945-5_49.
– reference: GranovetterMSThe strength of weak tiesAmerican Journal of Sociology19737861360138010.1086/225469
– reference: GuoJA more effective linear kernelization for cluster editingTheoretical Computer Science20094108/9/10718726249201010.1016/j.tcs.2008.10.021
– reference: KonstantinidisALPapadopoulosCMaximizing the strong triadic closure in split graphs and proper interval graphsDiscrete Applied Mathematics20202857995411494010.1016/j.dam.2020.05.035
– reference: Ben-DorAShamirRYakhiniZClustering gene expression patternsJournal of Computational Biology199963/428129710.1089/106652799318274
– reference: BansalNBlumAChawlaSCorrelation clusteringMachine Learning2004561/2/389113336342310.1023/B:MACH.0000033116.57574.95
– reference: Cygan M, Fomin F V, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S. Parameterized Algorithms. Springer, 2015. https://doi.org/10.1007/978-3-319-21275-3.
– reference: GrüttemeierNKomusiewiczCOn the relation of strong triadic closure and cluster deletionAlgorithmica2020824853880406880010.1007/s00453-019-00617-1
– reference: ChenJEMengJA 2k kernel for the cluster editing problemJournal of Computer and System Sciences2012781211220289635810.1016/j.jcss.2011.04.001
– reference: Fellows M R. The lost continent of polynomial time: Preprocessing and kernelization. In Proc. the 2nd International Workshop on Parameterized and Exact Computation, Sept. 2006, pp.276–277. https://doi.org/10.1007/11847250_25.
– reference: Berkhin P. A survey of clustering data mining techniques. In Grouping Multidimensional Data: Recent Advances in Clustering, Kogan J, Nicholas C, Teboulle M (eds.), Springer, 2006, pp.25–71. https://doi.org/10.1007/3-540-28349-8_2.
– reference: ChenZZJiangTLinGHComputing phylogenetic roots with bounded degrees and errorsSIAM Journal on Computing2003324864879200188710.1137/S0097539701389154
– reference: GaoYHareDRNastosJThe cluster deletion problem for cographsDiscrete Mathematics20133132327632771310644910.1016/j.disc.2013.08.017
– reference: GolovachPAHeggernesPKonstantinidisALLimaPTPapadopoulosCParameterized aspects of strong subgraph closureAlgorithmica202082720062038409998010.1007/s00453-020-00684-9
– reference: Niedermeier R. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780198566076.001.0001.
– volume: 82
  start-page: 2006
  issue: 7
  year: 2020
  ident: 1420_CR3
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00684-9
– volume: 6
  start-page: 281
  issue: 3/4
  year: 1999
  ident: 1420_CR13
  publication-title: Journal of Computational Biology
  doi: 10.1089/106652799318274
– volume: 32
  start-page: 864
  issue: 4
  year: 2003
  ident: 1420_CR10
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539701389154
– volume: 285
  start-page: 79
  year: 2020
  ident: 1420_CR15
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2020.05.035
– ident: 1420_CR14
  doi: 10.1007/11847250_25
– ident: 1420_CR1
  doi: 10.1145/2623330.2623664
– volume: 144
  start-page: 173
  issue: 1/2
  year: 2004
  ident: 1420_CR11
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2004.01.007
– ident: 1420_CR16
  doi: 10.1007/3-540-54945-5_49
– volume: 740
  start-page: 76
  year: 2018
  ident: 1420_CR5
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2018.05.012
– volume: 78
  start-page: 1360
  issue: 6
  year: 1973
  ident: 1420_CR2
  publication-title: American Journal of Sociology
  doi: 10.1086/225469
– volume: 313
  start-page: 2763
  issue: 23
  year: 2013
  ident: 1420_CR12
  publication-title: Discrete Mathematics
  doi: 10.1016/j.disc.2013.08.017
– ident: 1420_CR18
  doi: 10.1007/978-3-319-21275-3
– volume: 44
  start-page: 91
  issue: 1
  year: 2009
  ident: 1420_CR19
  publication-title: Theory of Computing Systems
  doi: 10.1007/s00224-007-9032-7
– volume: 78
  start-page: 211
  issue: 1
  year: 2012
  ident: 1420_CR7
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/j.jcss.2011.04.001
– volume: 56
  start-page: 89
  issue: 1/2/3
  year: 2004
  ident: 1420_CR9
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000033116.57574.95
– volume: 82
  start-page: 853
  issue: 4
  year: 2020
  ident: 1420_CR4
  publication-title: Algorithmica
  doi: 10.1007/s00453-019-00617-1
– ident: 1420_CR8
  doi: 10.1007/3-540-28349-8_2
– ident: 1420_CR17
  doi: 10.1093/acprof:oso/9780198566076.001.0001
– volume: 410
  start-page: 718
  issue: 8/9/10
  year: 2009
  ident: 1420_CR6
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2008.10.021
SSID ssj0037044
Score 2.3242214
Snippet Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in...
Cluster deletion and strong triadic closure are two important NP-complete problems that have received sig-nificant attention due to their applications in...
SourceID wanfang
proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1431
SubjectTerms Algorithms
Analysis
Apexes
Artificial Intelligence
Clusters
Computer Science
Data analysis
Data Structures and Information Theory
Deletion
Editing
Graph theory
Graphs
Information Systems Applications (incl.Internet)
Labeling
Lower bounds
Regular Paper
Social networks
Software Engineering
Theory of Computation
Vertex sets
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_q9cUXtX7gaS15UAQluJtkN3sPImc_KIqHaAt9C9nNpPQqe_VuC_fnO7PdcLUPfU5IYL5nkvkNwNuK_GjMsCQOVAyqXUdJTjiXdRnrDLXHouDe4R-z8vjUfDsrzrZglnph-Ftlsom9oQ6Lhmvkn9SEscgYC-bL1V_JU6P4dTWN0PDDaIXwuYcYewDbipGxRrD99XD281eyzdpm_XhXLmpLHpeZ3jn7ZjoKhjJJPkzmhnKq_D9Pddde33o47dt92ujb81ue6egJPBpCSjG9kYEd2ML2KTxO4xrEoL3PYKouuXzX4Vp8x2VLTlFQxCr2_1wzWII4QMbhXrTCt0H85gr5uTgh8QwXDe1ZcCXxOZweHZ7sH8thgoJstDGdRDS6anRjPKlZ0DZSvpJ5i7YkPmicUFpd1nkWIoZSh6pAY3XpKVPFSH6_MPoFjNpFiy9BWBWIBRMsMxNNpUKl6TirVd6o2sR8MoYPiVru6gYow20gkZm0jkjrmLQuH8N7pqdjJeqWvvFDLwBdxXBUbmqrwjJiLh27m0juBu1auY0sjOFjYsNm-Z5r3w2c2myer-aX6_lqXTtUfT5G8dGr-y99DQ9VLyb8qWUXRt3yGt9QaNLVe4O8_QM2QdyB
  priority: 102
  providerName: ProQuest
Title 2k-Vertex Kernels for Cluster Deletion and Strong Triadic Closure
URI https://link.springer.com/article/10.1007/s11390-023-1420-1
https://www.proquest.com/docview/2921194043
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202306015
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XLz4Fuuj7EERlECyu8mmx6itYrGItlBPSx6zYpVU2gj9-c7EhKqI4CmHhNkwj53H7nzD2FGIftS6EKAEQgLVTqyDTthzksAmLsgYfJ96h297wfVA3Qz9YdXHPa1vu9dHkuVOPW92w2DFddDHOJ7CnAdTnmWf0LxQiQciqrdfqd1ygivVrR2aiFkfZf5G4psz-rklfzkbLTt6chvnT1-cT2edrVZRI48-xbzBFiDfZGv1RAZeGegWi8QLVegKmPEuTHL0exyDUn7x-k54CPwSCGp7nPM4z_gDFcGfeB81MHtO8ZsxFQu32aDT7l9cO9WQBCeVShUOgJJhKlMVoyVlUltMSdxYgw6Q1RJamDkHiedmFrJAZqEPSssgxmQULLp2X8kdtpSPc9hlXItMoKAgcJVVochCieS0FF4qEmW9VoOd1twyb59YGGaOekysNchaQ6w1XoOdED8N2UkxidO4uu6PSxHilIl06GsCxUWyBzXLTWVAU4M_4nktgv5psLNaDPPXfyx7XElq_vFoOnqZjaazxIAoUy4Mgfb-RXWfrYhSa-gaywFbKibvcIjBSJE02WLYuWqy5ejqsdvG53m7d3ffLFXyA7ik1oE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALlJdYKMUHKiSQRWI7cXKo0PalLduuEGyl3owTTyq2KFt2U7H8OX5bZ1JHWzj01nMsO5oZ-5sZe75h7G2GOFpFkKIGMiLVLiqBIByLIq2KCJSDJKHa4eNROjjRn0-T0xX2t6uFoWeV3ZnYHtR-WlKO_KPMiYuMuGA-XfwS1DWKble7FhoutFbw2y3FWCjsGMKf3xjCzbcP91DfW1Ie7I93ByJ0GRCl0roRAFplpSq1Q1P0ylTo00fOgEnxXxXkGHqmRRz5CnyqfJaANip1GM1BhdiYaIXz3mNrWukcg7-1nf3Rl68dFigTte1kKYkuqD1nd6_aFu-h8xUJxEwRa4zh4n-Q8X98uHFR25YX1ZWrz24g4cE6exhcWN6_trnHbAXqJ-xR1x6Ch9PiKevLc0oXNrDgQ5jVCMIcPWS--_OSyBn4HhDv97Tmrvb8G2Xkz_gYt4P_UeKYKWUun7GTO5Hlc7ZaT2t4wbiRHlWeQxrpSmfSZwqnM0rGpSx0Fec99r6Tlr24JuawSwpmEq1F0VoSrY177B3J09KmbWaudKH2AJci-ivbN1liiKEXp93oRG7Dbp7bpe312IdODcvPtyy7FTS1HDyZT84Xk_misCDb-A_9sZe3L_qG3R-Mj4_s0eFo-Io9kK3J0IOaDbbazC7hNbpFTbEZbI-z73dt7lecGBj4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBejhbGXrts6mjVb9dBSaDG1JdlyHkPb0K4fDJpA3oRtnUKTooTEgfz5vXNs0o0y6LPFydyH7kO63zF2lKIfdSEkKIGUQLVzF6ATjoI8cXkIMoM4pt7h-4fkeqB-D-NhPed00bx2b64k1z0NhNLky_OZdeebxjcMXMIA_U0QKcx_MP3ZVoSTgAo9EN3mKJY6rKa5Ug07oOmYzbXmWyT-ckz_Hs-v7kmr7h7vMj965Yh6u2ynjiB5dy3yL-wD-K_sczOdgdfG-o11xYSqdSWs-C3MPfpAjgEqv3heEjYCvwSC3Z56nnnLH6kgPuJ91Eb7VOCaKRUO99igd9W_uA7qgQlBIZUqAwAl00IWKkOrslI7TE_CTINOkO0SOphFJ3kUWgc2kTaNQWmZZJiYgkM3Hyv5nW35qYd9xrWwAoUGSaicSoVNJZLTUkSFyJWLOi122nDLzNa4GGaDgEysNchaQ6w1UYudED8N2Uw5z4qsfvqPWxH6lOnqNNYEkItk2w3LTW1MC4M_EkUdggFqsbNGDJvP_9n2uJbUZvF4MZ6sxotVbkBU6ReGQz_eRfWQffxz2TN3Nw-3B-yTqBSIXre02VY5X8JPjFHK_Felhy8gbtmV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2k-Vertex+Kernels+for+Cluster+Deletion+and+Strong+Triadic+Closure&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Gao%2C+Wen-Yu&rft.au=Gao%2C+Hang&rft.date=2023-12-01&rft.pub=Springer&rft.issn=1000-9000&rft.volume=38&rft.issue=6&rft.spage=1431&rft_id=info:doi/10.1007%2Fs11390-023-1420-1&rft.externalDocID=A785799229
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg