2k-Vertex Kernels for Cluster Deletion and Strong Triadic Closure
Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced path...
Saved in:
| Published in | Journal of computer science and technology Vol. 38; no. 6; pp. 1431 - 1439 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-9000 1860-4749 |
| DOI | 10.1007/s11390-023-1420-1 |
Cover
| Abstract | Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2
k
-vertex kernels. These results represent improvements over previously best-known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure. |
|---|---|
| AbstractList | Cluster deletion and strong triadic closure are two important NP-complete problems that have received sig-nificant attention due to their applications in various areas,including social networks and data analysis.Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices,there are subtle differences be-tween them.In some cases,the solutions of strong triadic closure and cluster deletion are quite different.In this paper,we study the parameterized algorithms for these two problems.More specifically,we focus on the kernels of these two prob-lems.Instead of separating the critical clique and its neighbors for analysis,we consider them as a whole,which allows us to more effectively bound the number of related vertices.In addition,in analyzing the kernel of strong triadic closure,we introduce the concept of edge-disjoint induced path on three vertices,which enables us to obtain the lower bound of weak edge number in a more concise way.Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2k-vertex kernels.These results represent improvements over previously best-known kernels for both problems.Further-more,our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure. Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2A;-vertex kernels. These results represent improvements over previously best- known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure. Keywords cluster deletion, strong triadic closure, kernelization, parameterized complexity, social network Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2 k -vertex kernels. These results represent improvements over previously best-known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure. Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in various areas, including social networks and data analysis. Although cluster deletion and strong triadic closure are closely linked by induced paths on three vertices, there are subtle differences between them. In some cases, the solutions of strong triadic closure and cluster deletion are quite different. In this paper, we study the parameterized algorithms for these two problems. More specifically, we focus on the kernels of these two problems. Instead of separating the critical clique and its neighbors for analysis, we consider them as a whole, which allows us to more effectively bound the number of related vertices. In addition, in analyzing the kernel of strong triadic closure, we introduce the concept of edge-disjoint induced path on three vertices, which enables us to obtain the lower bound of weak edge number in a more concise way. Our analysis demonstrates that cluster deletion and strong triadic closure both admit 2k-vertex kernels. These results represent improvements over previously best-known kernels for both problems. Furthermore, our analysis provides additional insights into the relationship between cluster deletion and strong triadic closure. |
| Audience | Academic |
| Author | Gao, Hang Gao, Wen-Yu |
| Author_xml | – sequence: 1 givenname: Wen-Yu surname: Gao fullname: Gao, Wen-Yu email: gwy@gdufe.edu.cn organization: School of Information, Guangdong University of Finance and Economics – sequence: 2 givenname: Hang surname: Gao fullname: Gao, Hang organization: Department of Computer Science, Rutgers University |
| BookMark | eNp1kctKAzEUhoNU0KoP4G7ArdGTSyeTZalXFFx42YZ05qTMOCY1mWJ9eyMjdCWBJITvOzmcf0omPngk5JTBBQNQl4kxoYECF5RJDpTtkUNWlUClknqS7wBAdd4OyDSlDkAokPKQzPk7fcM44LZ4wOixT4ULsVj0mzRgLK6wx6ENvrC-KZ6HGPyqeImtbdo6MyFtIh6TfWf7hCd_5xF5vbl-WdzRx6fb-8X8kdZCyoEiSlHVopa2FFUjlNMlgFWoSkAhUOOSl0sGjcOmFE01Q6lEaYErdIzLmRRH5Hys-2W9s35lurCJPv9outS9b7u0XRrkeQBQAptl_GzE1zF8bjANO55rzpiWIEWmLkZqZXs0rXdhiLbOq8GPts4jdm1-n6tqprTmXGeBjUIdQ0oRnVnH9sPGb8PA_CZhxiRMbsT8JmFYdvjopMz6FcZdK_9LP3D5irQ |
| Cites_doi | 10.1007/s00453-020-00684-9 10.1089/106652799318274 10.1137/S0097539701389154 10.1016/j.dam.2020.05.035 10.1007/11847250_25 10.1145/2623330.2623664 10.1016/j.dam.2004.01.007 10.1007/3-540-54945-5_49 10.1016/j.tcs.2018.05.012 10.1086/225469 10.1016/j.disc.2013.08.017 10.1007/978-3-319-21275-3 10.1007/s00224-007-9032-7 10.1016/j.jcss.2011.04.001 10.1023/B:MACH.0000033116.57574.95 10.1007/s00453-019-00617-1 10.1007/3-540-28349-8_2 10.1093/acprof:oso/9780198566076.001.0001 10.1016/j.tcs.2008.10.021 |
| ContentType | Journal Article |
| Copyright | Institute of Computing Technology, Chinese Academy of Sciences 2024 COPYRIGHT 2023 Springer Institute of Computing Technology, Chinese Academy of Sciences 2024. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Institute of Computing Technology, Chinese Academy of Sciences 2024 – notice: COPYRIGHT 2023 Springer – notice: Institute of Computing Technology, Chinese Academy of Sciences 2024. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s11390-023-1420-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database - Proquest ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-4749 |
| EndPage | 1439 |
| ExternalDocumentID | jsjkxjsxb_e202306015 A785799229 10_1007_s11390_023_1420_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -SI -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 5XA 5XJ 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CAJEI CCEZO CCPQU CHBEP COF CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q-- Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z7R Z7U Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI Q9U 4A8 PMFND PSX |
| ID | FETCH-LOGICAL-c344t-ee438c3c4a638d37f9600a7e760e33e9eb26b10dfed63d85e4736a027ef124543 |
| IEDL.DBID | U2A |
| ISSN | 1000-9000 |
| IngestDate | Thu May 29 04:00:16 EDT 2025 Fri Jul 25 12:21:22 EDT 2025 Mon Oct 20 17:00:47 EDT 2025 Wed Oct 01 02:32:17 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | social network parameterized complexity strong triadic closure cluster deletion kernelization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-ee438c3c4a638d37f9600a7e760e33e9eb26b10dfed63d85e4736a027ef124543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2921194043 |
| PQPubID | 326258 |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_jsjkxjsxb_e202306015 proquest_journals_2921194043 gale_infotracacademiconefile_A785799229 crossref_primary_10_1007_s11390_023_1420_1 springer_journals_10_1007_s11390_023_1420_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Beijing |
| PublicationTitle | Journal of computer science and technology |
| PublicationTitleAbbrev | J. Comput. Sci. Technol |
| PublicationTitle_FL | Journal of Computer Science & Technology |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V |
| References | GuoJA more effective linear kernelization for cluster editingTheoretical Computer Science20094108/9/10718726249201010.1016/j.tcs.2008.10.021 Berkhin P. A survey of clustering data mining techniques. In Grouping Multidimensional Data: Recent Advances in Clustering, Kogan J, Nicholas C, Teboulle M (eds.), Springer, 2006, pp.25–71. https://doi.org/10.1007/3-540-28349-8_2. ShamirRSharanRTsurDCluster graph modification problemsDiscrete Applied Mathematics20041441/2173182209539210.1016/j.dam.2004.01.007 ProttiFDa SilvaMDSzwarcfiterJLApplying modular decomposition to parameterized cluster editing problemsTheory of Computing Systems200944191104246600710.1007/s00224-007-9032-7 KonstantinidisALPapadopoulosCMaximizing the strong triadic closure in split graphs and proper interval graphsDiscrete Applied Mathematics20202857995411494010.1016/j.dam.2020.05.035 Sintos S, Tsaparas P. Using strong triadic closure to characterize ties in social networks. In Proc. the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2014, pp.1466–1475. https://doi.org/10.1145/2623330.2623664. ChenJEMengJA 2k kernel for the cluster editing problemJournal of Computer and System Sciences2012781211220289635810.1016/j.jcss.2011.04.001 Hsu W L, Ma T H. Substitution decomposition on chordal graphs and applications. In Proc. the 2nd International Symposium on Algorithms, Dec. 1991, pp.52–60. https://doi.org/10.1007/3-540-54945-5_49. GolovachPAHeggernesPKonstantinidisALLimaPTPapadopoulosCParameterized aspects of strong subgraph closureAlgorithmica202082720062038409998010.1007/s00453-020-00684-9 Fellows M R. The lost continent of polynomial time: Preprocessing and kernelization. In Proc. the 2nd International Workshop on Parameterized and Exact Computation, Sept. 2006, pp.276–277. https://doi.org/10.1007/11847250_25. ChenZZJiangTLinGHComputing phylogenetic roots with bounded degrees and errorsSIAM Journal on Computing2003324864879200188710.1137/S0097539701389154 Cygan M, Fomin F V, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S. Parameterized Algorithms. Springer, 2015. https://doi.org/10.1007/978-3-319-21275-3. KonstantinidisALNikolopoulosSDPapadopoulosCStrong triadic closure in cographs and graphs of low maximum degreeTheoretical Computer Science20187407684381169310.1016/j.tcs.2018.05.012 GaoYHareDRNastosJThe cluster deletion problem for cographsDiscrete Mathematics20133132327632771310644910.1016/j.disc.2013.08.017 Ben-DorAShamirRYakhiniZClustering gene expression patternsJournal of Computational Biology199963/428129710.1089/106652799318274 Niedermeier R. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780198566076.001.0001. GranovetterMSThe strength of weak tiesAmerican Journal of Sociology19737861360138010.1086/225469 GrüttemeierNKomusiewiczCOn the relation of strong triadic closure and cluster deletionAlgorithmica2020824853880406880010.1007/s00453-019-00617-1 BansalNBlumAChawlaSCorrelation clusteringMachine Learning2004561/2/389113336342310.1023/B:MACH.0000033116.57574.95 MS Granovetter (1420_CR2) 1973; 78 1420_CR14 N Grüttemeier (1420_CR4) 2020; 82 1420_CR16 1420_CR17 1420_CR1 1420_CR18 1420_CR8 A Ben-Dor (1420_CR13) 1999; 6 ZZ Chen (1420_CR10) 2003; 32 Y Gao (1420_CR12) 2013; 313 N Bansal (1420_CR9) 2004; 56 F Protti (1420_CR19) 2009; 44 JE Chen (1420_CR7) 2012; 78 R Shamir (1420_CR11) 2004; 144 AL Konstantinidis (1420_CR5) 2018; 740 PA Golovach (1420_CR3) 2020; 82 AL Konstantinidis (1420_CR15) 2020; 285 J Guo (1420_CR6) 2009; 410 |
| References_xml | – reference: ProttiFDa SilvaMDSzwarcfiterJLApplying modular decomposition to parameterized cluster editing problemsTheory of Computing Systems200944191104246600710.1007/s00224-007-9032-7 – reference: KonstantinidisALNikolopoulosSDPapadopoulosCStrong triadic closure in cographs and graphs of low maximum degreeTheoretical Computer Science20187407684381169310.1016/j.tcs.2018.05.012 – reference: Sintos S, Tsaparas P. Using strong triadic closure to characterize ties in social networks. In Proc. the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2014, pp.1466–1475. https://doi.org/10.1145/2623330.2623664. – reference: ShamirRSharanRTsurDCluster graph modification problemsDiscrete Applied Mathematics20041441/2173182209539210.1016/j.dam.2004.01.007 – reference: Hsu W L, Ma T H. Substitution decomposition on chordal graphs and applications. In Proc. the 2nd International Symposium on Algorithms, Dec. 1991, pp.52–60. https://doi.org/10.1007/3-540-54945-5_49. – reference: GranovetterMSThe strength of weak tiesAmerican Journal of Sociology19737861360138010.1086/225469 – reference: GuoJA more effective linear kernelization for cluster editingTheoretical Computer Science20094108/9/10718726249201010.1016/j.tcs.2008.10.021 – reference: KonstantinidisALPapadopoulosCMaximizing the strong triadic closure in split graphs and proper interval graphsDiscrete Applied Mathematics20202857995411494010.1016/j.dam.2020.05.035 – reference: Ben-DorAShamirRYakhiniZClustering gene expression patternsJournal of Computational Biology199963/428129710.1089/106652799318274 – reference: BansalNBlumAChawlaSCorrelation clusteringMachine Learning2004561/2/389113336342310.1023/B:MACH.0000033116.57574.95 – reference: Cygan M, Fomin F V, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S. Parameterized Algorithms. Springer, 2015. https://doi.org/10.1007/978-3-319-21275-3. – reference: GrüttemeierNKomusiewiczCOn the relation of strong triadic closure and cluster deletionAlgorithmica2020824853880406880010.1007/s00453-019-00617-1 – reference: ChenJEMengJA 2k kernel for the cluster editing problemJournal of Computer and System Sciences2012781211220289635810.1016/j.jcss.2011.04.001 – reference: Fellows M R. The lost continent of polynomial time: Preprocessing and kernelization. In Proc. the 2nd International Workshop on Parameterized and Exact Computation, Sept. 2006, pp.276–277. https://doi.org/10.1007/11847250_25. – reference: Berkhin P. A survey of clustering data mining techniques. In Grouping Multidimensional Data: Recent Advances in Clustering, Kogan J, Nicholas C, Teboulle M (eds.), Springer, 2006, pp.25–71. https://doi.org/10.1007/3-540-28349-8_2. – reference: ChenZZJiangTLinGHComputing phylogenetic roots with bounded degrees and errorsSIAM Journal on Computing2003324864879200188710.1137/S0097539701389154 – reference: GaoYHareDRNastosJThe cluster deletion problem for cographsDiscrete Mathematics20133132327632771310644910.1016/j.disc.2013.08.017 – reference: GolovachPAHeggernesPKonstantinidisALLimaPTPapadopoulosCParameterized aspects of strong subgraph closureAlgorithmica202082720062038409998010.1007/s00453-020-00684-9 – reference: Niedermeier R. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780198566076.001.0001. – volume: 82 start-page: 2006 issue: 7 year: 2020 ident: 1420_CR3 publication-title: Algorithmica doi: 10.1007/s00453-020-00684-9 – volume: 6 start-page: 281 issue: 3/4 year: 1999 ident: 1420_CR13 publication-title: Journal of Computational Biology doi: 10.1089/106652799318274 – volume: 32 start-page: 864 issue: 4 year: 2003 ident: 1420_CR10 publication-title: SIAM Journal on Computing doi: 10.1137/S0097539701389154 – volume: 285 start-page: 79 year: 2020 ident: 1420_CR15 publication-title: Discrete Applied Mathematics doi: 10.1016/j.dam.2020.05.035 – ident: 1420_CR14 doi: 10.1007/11847250_25 – ident: 1420_CR1 doi: 10.1145/2623330.2623664 – volume: 144 start-page: 173 issue: 1/2 year: 2004 ident: 1420_CR11 publication-title: Discrete Applied Mathematics doi: 10.1016/j.dam.2004.01.007 – ident: 1420_CR16 doi: 10.1007/3-540-54945-5_49 – volume: 740 start-page: 76 year: 2018 ident: 1420_CR5 publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2018.05.012 – volume: 78 start-page: 1360 issue: 6 year: 1973 ident: 1420_CR2 publication-title: American Journal of Sociology doi: 10.1086/225469 – volume: 313 start-page: 2763 issue: 23 year: 2013 ident: 1420_CR12 publication-title: Discrete Mathematics doi: 10.1016/j.disc.2013.08.017 – ident: 1420_CR18 doi: 10.1007/978-3-319-21275-3 – volume: 44 start-page: 91 issue: 1 year: 2009 ident: 1420_CR19 publication-title: Theory of Computing Systems doi: 10.1007/s00224-007-9032-7 – volume: 78 start-page: 211 issue: 1 year: 2012 ident: 1420_CR7 publication-title: Journal of Computer and System Sciences doi: 10.1016/j.jcss.2011.04.001 – volume: 56 start-page: 89 issue: 1/2/3 year: 2004 ident: 1420_CR9 publication-title: Machine Learning doi: 10.1023/B:MACH.0000033116.57574.95 – volume: 82 start-page: 853 issue: 4 year: 2020 ident: 1420_CR4 publication-title: Algorithmica doi: 10.1007/s00453-019-00617-1 – ident: 1420_CR8 doi: 10.1007/3-540-28349-8_2 – ident: 1420_CR17 doi: 10.1093/acprof:oso/9780198566076.001.0001 – volume: 410 start-page: 718 issue: 8/9/10 year: 2009 ident: 1420_CR6 publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2008.10.021 |
| SSID | ssj0037044 |
| Score | 2.3242214 |
| Snippet | Cluster deletion and strong triadic closure are two important NP-complete problems that have received significant attention due to their applications in... Cluster deletion and strong triadic closure are two important NP-complete problems that have received sig-nificant attention due to their applications in... |
| SourceID | wanfang proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1431 |
| SubjectTerms | Algorithms Analysis Apexes Artificial Intelligence Clusters Computer Science Data analysis Data Structures and Information Theory Deletion Editing Graph theory Graphs Information Systems Applications (incl.Internet) Labeling Lower bounds Regular Paper Social networks Software Engineering Theory of Computation Vertex sets |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_q9cUXtX7gaS15UAQluJtkN3sPImc_KIqHaAt9C9nNpPQqe_VuC_fnO7PdcLUPfU5IYL5nkvkNwNuK_GjMsCQOVAyqXUdJTjiXdRnrDLXHouDe4R-z8vjUfDsrzrZglnph-Ftlsom9oQ6Lhmvkn9SEscgYC-bL1V_JU6P4dTWN0PDDaIXwuYcYewDbipGxRrD99XD281eyzdpm_XhXLmpLHpeZ3jn7ZjoKhjJJPkzmhnKq_D9Pddde33o47dt92ujb81ue6egJPBpCSjG9kYEd2ML2KTxO4xrEoL3PYKouuXzX4Vp8x2VLTlFQxCr2_1wzWII4QMbhXrTCt0H85gr5uTgh8QwXDe1ZcCXxOZweHZ7sH8thgoJstDGdRDS6anRjPKlZ0DZSvpJ5i7YkPmicUFpd1nkWIoZSh6pAY3XpKVPFSH6_MPoFjNpFiy9BWBWIBRMsMxNNpUKl6TirVd6o2sR8MoYPiVru6gYow20gkZm0jkjrmLQuH8N7pqdjJeqWvvFDLwBdxXBUbmqrwjJiLh27m0juBu1auY0sjOFjYsNm-Z5r3w2c2myer-aX6_lqXTtUfT5G8dGr-y99DQ9VLyb8qWUXRt3yGt9QaNLVe4O8_QM2QdyB priority: 102 providerName: ProQuest |
| Title | 2k-Vertex Kernels for Cluster Deletion and Strong Triadic Closure |
| URI | https://link.springer.com/article/10.1007/s11390-023-1420-1 https://www.proquest.com/docview/2921194043 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202306015 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1860-4749 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XLz4Fuuj7EERlECyu8mmx6itYrGItlBPSx6zYpVU2gj9-c7EhKqI4CmHhNkwj53H7nzD2FGIftS6EKAEQgLVTqyDTthzksAmLsgYfJ96h297wfVA3Qz9YdXHPa1vu9dHkuVOPW92w2DFddDHOJ7CnAdTnmWf0LxQiQciqrdfqd1ygivVrR2aiFkfZf5G4psz-rklfzkbLTt6chvnT1-cT2edrVZRI48-xbzBFiDfZGv1RAZeGegWi8QLVegKmPEuTHL0exyDUn7x-k54CPwSCGp7nPM4z_gDFcGfeB81MHtO8ZsxFQu32aDT7l9cO9WQBCeVShUOgJJhKlMVoyVlUltMSdxYgw6Q1RJamDkHiedmFrJAZqEPSssgxmQULLp2X8kdtpSPc9hlXItMoKAgcJVVochCieS0FF4qEmW9VoOd1twyb59YGGaOekysNchaQ6w1XoOdED8N2UkxidO4uu6PSxHilIl06GsCxUWyBzXLTWVAU4M_4nktgv5psLNaDPPXfyx7XElq_vFoOnqZjaazxIAoUy4Mgfb-RXWfrYhSa-gaywFbKibvcIjBSJE02WLYuWqy5ejqsdvG53m7d3ffLFXyA7ik1oE |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALlJdYKMUHKiSQRWI7cXKo0PalLduuEGyl3owTTyq2KFt2U7H8OX5bZ1JHWzj01nMsO5oZ-5sZe75h7G2GOFpFkKIGMiLVLiqBIByLIq2KCJSDJKHa4eNROjjRn0-T0xX2t6uFoWeV3ZnYHtR-WlKO_KPMiYuMuGA-XfwS1DWKble7FhoutFbw2y3FWCjsGMKf3xjCzbcP91DfW1Ie7I93ByJ0GRCl0roRAFplpSq1Q1P0ylTo00fOgEnxXxXkGHqmRRz5CnyqfJaANip1GM1BhdiYaIXz3mNrWukcg7-1nf3Rl68dFigTte1kKYkuqD1nd6_aFu-h8xUJxEwRa4zh4n-Q8X98uHFR25YX1ZWrz24g4cE6exhcWN6_trnHbAXqJ-xR1x6Ch9PiKevLc0oXNrDgQ5jVCMIcPWS--_OSyBn4HhDv97Tmrvb8G2Xkz_gYt4P_UeKYKWUun7GTO5Hlc7ZaT2t4wbiRHlWeQxrpSmfSZwqnM0rGpSx0Fec99r6Tlr24JuawSwpmEq1F0VoSrY177B3J09KmbWaudKH2AJci-ivbN1liiKEXp93oRG7Dbp7bpe312IdODcvPtyy7FTS1HDyZT84Xk_misCDb-A_9sZe3L_qG3R-Mj4_s0eFo-Io9kK3J0IOaDbbazC7hNbpFTbEZbI-z73dt7lecGBj4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBejhbGXrts6mjVb9dBSaDG1JdlyHkPb0K4fDJpA3oRtnUKTooTEgfz5vXNs0o0y6LPFydyH7kO63zF2lKIfdSEkKIGUQLVzF6ATjoI8cXkIMoM4pt7h-4fkeqB-D-NhPed00bx2b64k1z0NhNLky_OZdeebxjcMXMIA_U0QKcx_MP3ZVoSTgAo9EN3mKJY6rKa5Ug07oOmYzbXmWyT-ckz_Hs-v7kmr7h7vMj965Yh6u2ynjiB5dy3yL-wD-K_sczOdgdfG-o11xYSqdSWs-C3MPfpAjgEqv3heEjYCvwSC3Z56nnnLH6kgPuJ91Eb7VOCaKRUO99igd9W_uA7qgQlBIZUqAwAl00IWKkOrslI7TE_CTINOkO0SOphFJ3kUWgc2kTaNQWmZZJiYgkM3Hyv5nW35qYd9xrWwAoUGSaicSoVNJZLTUkSFyJWLOi122nDLzNa4GGaDgEysNchaQ6w1UYudED8N2Uw5z4qsfvqPWxH6lOnqNNYEkItk2w3LTW1MC4M_EkUdggFqsbNGDJvP_9n2uJbUZvF4MZ6sxotVbkBU6ReGQz_eRfWQffxz2TN3Nw-3B-yTqBSIXre02VY5X8JPjFHK_Felhy8gbtmV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2k-Vertex+Kernels+for+Cluster+Deletion+and+Strong+Triadic+Closure&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Gao%2C+Wen-Yu&rft.au=Gao%2C+Hang&rft.date=2023-12-01&rft.pub=Springer&rft.issn=1000-9000&rft.volume=38&rft.issue=6&rft.spage=1431&rft_id=info:doi/10.1007%2Fs11390-023-1420-1&rft.externalDocID=A785799229 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |