Characterization of the intracellular polyphosphate granules of the phototrophic green sulfur bacterium Chlorobaculum tepidum

The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic ba...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 12; p. 130718
Main Authors Lyratzakis, Alexandros, Kalogerakis, Michail, Polymerou, Katerina, Spyros, Apostolos, Tsiotis, Georgios
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2024.130718

Cover

Abstract The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism. •Existence of polyphosphate granules in Chlorobaculum tepidum an ancestral photoautotrophic bacterium.•The biogenesis of polyphosphate granules in the cells of Chlorobaculum tepidum was monitored over time by TEM.•Elemental analysis (EDS) of the granules showed the presence of phosphorus and oxygen.•The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates.•The biogenesis of the phosphorus granules correlates with an abundance of proteins related to polyphosphate metabolism.
AbstractList The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism.The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism.
The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by ³¹P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism.
The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism. •Existence of polyphosphate granules in Chlorobaculum tepidum an ancestral photoautotrophic bacterium.•The biogenesis of polyphosphate granules in the cells of Chlorobaculum tepidum was monitored over time by TEM.•Elemental analysis (EDS) of the granules showed the presence of phosphorus and oxygen.•The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates.•The biogenesis of the phosphorus granules correlates with an abundance of proteins related to polyphosphate metabolism.
The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism.
ArticleNumber 130718
Author Lyratzakis, Alexandros
Kalogerakis, Michail
Polymerou, Katerina
Spyros, Apostolos
Tsiotis, Georgios
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Lyratzakis
  fullname: Lyratzakis, Alexandros
– sequence: 2
  givenname: Michail
  surname: Kalogerakis
  fullname: Kalogerakis, Michail
– sequence: 3
  givenname: Katerina
  surname: Polymerou
  fullname: Polymerou, Katerina
– sequence: 4
  givenname: Apostolos
  surname: Spyros
  fullname: Spyros, Apostolos
– sequence: 5
  givenname: Georgios
  surname: Tsiotis
  fullname: Tsiotis, Georgios
  email: tsiotis@uoc.gr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39374847$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3TAQhUVIaG7S_oNQvOzGt3r6sSmUS9oGAt2kayFb41gXWXL1KCTQ_15dnHRZOpthNN8c0DlX6Nx5BwjdELwnmDQfj_thUI_g9hRTvicMt6Q7QzvStbTuMG7O0Q4zzGtOGnGJrmI84lKiF2_QJetZyzve7tDvw6yCGhME86yS8a7yU5VmqIxL5R2szVaFavX2aZ19XGeVoHoMymUL8ZUtm-RT8OtsxrIEcFXMdsqhGjbpvFSH2frgy5xtmRKsRuflLbqYlI3w7qVfox9fbh8O3-r771_vDp_v65Fxnmo9cMADUNKKBrRmmlFCewUM00mxRinoRc_bbiCT1g1VkwAuJk4Gwlsl2oFdow-b7hr8zwwxycXE0-eUA5-jZEQUm2jPyH-ghBOB2wYX9P0LmocFtFyDWVR4kq_uFoBvwBh8jAGmvwjB8hSiPMotRHkKUW4hlrNP2xkUS34ZCDKOBtwI2gQYk9Te_FvgD1U1qUo
Cites_doi 10.1073/pnas.132181499
10.2136/sssaj2013.05.0187dgs
10.1093/nar/gkac1000
10.1074/jbc.M115.674473
10.1021/acs.analchem.9b05144
10.1099/00221287-38-1-65
10.1016/S0065-2911(08)00002-7
10.1007/BF00290978
10.1016/S0021-9258(18)54198-3
10.1146/annurev.biochem.68.1.89
10.1016/0006-3002(57)90008-2
10.1128/jb.178.5.1394-1400.1996
10.1002/pmic.202200138
10.1021/jacs.0c06335
10.1007/BF00454955
10.1016/j.algal.2019.101631
10.1016/j.geoderma.2014.12.016
10.3389/fmicb.2019.02432
10.1073/pnas.262655299
10.3389/fpls.2020.00938
10.1016/S0003-2670(00)88444-5
10.1186/1471-2164-3-33
10.1128/jb.85.3.577-584.1963
10.1038/nmeth.2089
10.1073/pnas.1615575114
10.1128/JB.05932-11
10.1007/s11120-005-3647-9
10.1128/JB.180.7.1841-1847.1998
10.26508/lsa.201900385
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2024.130718
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 39374847
10_1016_j_bbagen_2024_130718
S0304416524001612
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c344t-db4e0be21756edd3d32129ae302fa36aae959478b1fdd62af5e45f41b147a57b3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Thu Sep 04 17:07:49 EDT 2025
Sat Sep 27 22:37:06 EDT 2025
Fri May 30 10:59:46 EDT 2025
Tue Jul 01 00:22:20 EDT 2025
Sat Nov 09 16:00:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Anoxygenic photosynthesis
SEM
Polyphosphate
TEM
31P NMR
Chlorobi
P NMR
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-db4e0be21756edd3d32129ae302fa36aae959478b1fdd62af5e45f41b147a57b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39374847
PQID 3114150760
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154162931
proquest_miscellaneous_3114150760
pubmed_primary_39374847
crossref_primary_10_1016_j_bbagen_2024_130718
elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ault-Riché, Fraley, Tzeng, Kornberg (bb0025) 1998; 180
Murphy, Riley (bb0120) 1962; 27
Rao, Kornberg (bb0020) 1996; 178
Cade-Menun, Liu (bb0140) 2014; 78
Akiyama, Crooke, Kornberg (bb0090) 1993; 268
Frigaard, Dahl (bb0045) 2008; 54
Cade-Menun (bb0150) 2015; 257–258
Hohmann-Marriott, Blankenship, Roberson (bb0070) 2005; 86
Overmann (bb0035) 2006
Sianoudis, Küsel, Mayer, Grimme, Leibfritz (bb0145) 1986; 144
Jasso-Chávez, Lira-Silva, González-Sánchez, Larios-Serrato, Mendoza-Monzoy, Pérez-Villatoro, Morett, Vega-Segura, Torres-Márquez, Zepeda-Rodríguez, Moreno-Sánchez (bb0030) 2019; 10
Cole, Hughes (bb0060) 1965; 38
Eisen, Nelson, Paulsen, Heidelberg, Wu, Dodson, Deboy, Gwinn, Nelson, Haft, Hickey, Peterson, Durkin, Kolonay, Yang, Holt, Umayam, Mason, Brenner, Shea, Parksey, Nierman, Feldblyum, Hansen, Craven, Radune, Vamathevan, Khouri, White, Gruber, Ketchum, Venter, Tettelin, Bryant, Fraser (bb0040) 2002; 99
Hughes, Conti, Fuller (bb0055) 1963; 85
Martinez, Truffault, Hothorn (bb0095) 2015; 290
Ishige, Zhang, Kornberg (bb0085) 2002; 99
Mandala, Loh, Shepard, Geeson, Sergeyev, Nocera, Cummins, Hong (bb0160) 2020; 142
Szklarczyk, Kirsch, Koutrouli, Nastou, Mehryary, Hachilif, Gable, Fang, Doncheva, Pyysalo, Bork, Jensen, von Mering (bb0170) 2023; 51
Lyratzakis, Meier-Credo, Langer, Tsiotis (bb0110) 2023
Kornberg, Rao, Ault-Riché (bb0005) 1999; 68
Kudryashev, Aktoudianaki, Dedoglou, Stahlberg, Tsiotis (bb0065) 1837; 2014
Christ, Willbold, Blank (bb0155) 2020; 92
Kulaev, Vagabov (bb0175) 1983
Kornberg (bb0080) 1957; 26
Iyer, Aravind (bb0100) 2002; 3
Wang, Kuchendorf, Willbold (bb0165) 2019; 43
Sanz-Luque, Bhaya, Grossman (bb0010) 2020; 11
Schneider, Rasband, Eliceiri (bb0125) 2012; 9
Robertson (bb0135) 1978
Eisen, Nelson, Paulsen, Heidelberg, Wu, Dodson, Deboy, Gwinn, Nelson, Haft, Hickey, Peterson, Durkin, Kolonay, Yang, Holt, Umayam, Mason, Brenner, Shea, Parksey, Nierman, Feldblyum, Hansen, Craven, Radune, Vamathevan, Khouri, White, Gruber, Ketchum, Venter, Tettelin, Bryant, Fraser (bb0075) 2002; 99
Racki, Tocheva, Dieterle, Sullivan, Jensen, Newman (bb0130) 2017; 114
Mandala, Loh, Shepard, Geeson, Sergeyev, Nocera, Cummins, Hong (bb0115) 2020; 142
Wahlund, Woese, Castenholz, Madigan (bb0050) 1991; 156
Boutte, Henry, Crosson (bb0015) 2012; 194
Lorenzo-Orts, Hohmann, Zhu, Hothorn (bb0105) 2019; 2
Sanz-Luque (10.1016/j.bbagen.2024.130718_bb0010) 2020; 11
Lyratzakis (10.1016/j.bbagen.2024.130718_bb0110) 2023
Ishige (10.1016/j.bbagen.2024.130718_bb0085) 2002; 99
Wahlund (10.1016/j.bbagen.2024.130718_bb0050) 1991; 156
Hughes (10.1016/j.bbagen.2024.130718_bb0055) 1963; 85
Cole (10.1016/j.bbagen.2024.130718_bb0060) 1965; 38
Akiyama (10.1016/j.bbagen.2024.130718_bb0090) 1993; 268
Murphy (10.1016/j.bbagen.2024.130718_bb0120) 1962; 27
Schneider (10.1016/j.bbagen.2024.130718_bb0125) 2012; 9
Jasso-Chávez (10.1016/j.bbagen.2024.130718_bb0030) 2019; 10
Ault-Riché (10.1016/j.bbagen.2024.130718_bb0025) 1998; 180
Kudryashev (10.1016/j.bbagen.2024.130718_bb0065) 1837; 2014
Cade-Menun (10.1016/j.bbagen.2024.130718_bb0140) 2014; 78
Overmann (10.1016/j.bbagen.2024.130718_bb0035) 2006
Wang (10.1016/j.bbagen.2024.130718_bb0165) 2019; 43
Boutte (10.1016/j.bbagen.2024.130718_bb0015) 2012; 194
Hohmann-Marriott (10.1016/j.bbagen.2024.130718_bb0070) 2005; 86
Kornberg (10.1016/j.bbagen.2024.130718_bb0005) 1999; 68
Iyer (10.1016/j.bbagen.2024.130718_bb0100) 2002; 3
Frigaard (10.1016/j.bbagen.2024.130718_bb0045) 2008; 54
Eisen (10.1016/j.bbagen.2024.130718_bb0040) 2002; 99
Rao (10.1016/j.bbagen.2024.130718_bb0020) 1996; 178
Cade-Menun (10.1016/j.bbagen.2024.130718_bb0150) 2015; 257–258
Kulaev (10.1016/j.bbagen.2024.130718_bb0175) 1983
Racki (10.1016/j.bbagen.2024.130718_bb0130) 2017; 114
Lorenzo-Orts (10.1016/j.bbagen.2024.130718_bb0105) 2019; 2
Mandala (10.1016/j.bbagen.2024.130718_bb0115) 2020; 142
Robertson (10.1016/j.bbagen.2024.130718_bb0135) 1978
Mandala (10.1016/j.bbagen.2024.130718_bb0160) 2020; 142
Eisen (10.1016/j.bbagen.2024.130718_bb0075) 2002; 99
Sianoudis (10.1016/j.bbagen.2024.130718_bb0145) 1986; 144
Christ (10.1016/j.bbagen.2024.130718_bb0155) 2020; 92
Martinez (10.1016/j.bbagen.2024.130718_bb0095) 2015; 290
Kornberg (10.1016/j.bbagen.2024.130718_bb0080) 1957; 26
Szklarczyk (10.1016/j.bbagen.2024.130718_bb0170) 2023; 51
References_xml – volume: 10
  year: 2019
  ident: bb0030
  article-title: Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress
  publication-title: Front. Microbiol.
– volume: 99
  start-page: 9509
  year: 2002
  end-page: 9514
  ident: bb0075
  article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium
  publication-title: Proc. Natl. Acad. Sci.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bb0125
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 68
  start-page: 89
  year: 1999
  end-page: 125
  ident: bb0005
  article-title: Inorganic polyphosphate: a molecule of many functions
  publication-title: Annu. Rev. Biochem.
– volume: 86
  start-page: 145
  year: 2005
  end-page: 154
  ident: bb0070
  article-title: The ultrastructure of Chlorobium tepidum Chlorosomes revealed by Electron microscopy
  publication-title: Photosynth. Res.
– volume: 142
  start-page: 18407
  year: 2020
  end-page: 18421
  ident: bb0160
  article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: bb0120
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
– volume: 51
  start-page: D638
  year: 2023
  end-page: D646
  ident: bb0170
  article-title: The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest
  publication-title: Nucleic Acids Res.
– volume: 54
  start-page: 103
  year: 2008
  end-page: 200
  ident: bb0045
  article-title: Sulfur metabolism in phototrophic sulfur Bacteria
  publication-title: Adv. Microb. Physiol.
– volume: 99
  start-page: 9509
  year: 2002
  end-page: 9514
  ident: bb0040
  article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 83
  year: 1983
  end-page: 171
  ident: bb0175
  article-title: Polyphosphate Metabolism in Micro-Organisms
– volume: 156
  start-page: 81
  year: 1991
  end-page: 90
  ident: bb0050
  article-title: A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov
  publication-title: Arch. Microbiol.
– volume: 38
  start-page: 65
  year: 1965
  end-page: 72
  ident: bb0060
  article-title: The metabolism of polyphosphates in Chlorobium thiosulfatophilum
  publication-title: J. Gen. Microbiol.
– start-page: 61
  year: 1978
  end-page: 93
  ident: bb0135
  article-title: The nature and limitations of Electron microscopic methods in biology
  publication-title: Physiology of Membrane Disorders
– start-page: 2200138
  year: 2023
  ident: bb0110
  article-title: Insights into the sulfur metabolism of Chlorobaculum tepidum by label-free quantitative proteomics
  publication-title: Proteomics
– volume: 78
  start-page: 19
  year: 2014
  end-page: 37
  ident: bb0140
  article-title: Solution Phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters
  publication-title: Soil Sci. Soc. Am. J.
– volume: 26
  start-page: 294
  year: 1957
  end-page: 300
  ident: bb0080
  article-title: Adenosine triphosphate synthesis from polyphosphate by an enzyme from
  publication-title: Biochim. Biophys. Acta
– volume: 2
  year: 2019
  ident: bb0105
  article-title: Molecular characterization of CHAD domains as inorganic polyphosphate-binding modules
  publication-title: Life Sci Alliance
– volume: 92
  start-page: 4167
  year: 2020
  end-page: 4176
  ident: bb0155
  article-title: Methods for the analysis of polyphosphate in the life sciences
  publication-title: Anal. Chem.
– volume: 194
  start-page: 28
  year: 2012
  end-page: 35
  ident: bb0015
  article-title: ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus
  publication-title: J. Bacteriol.
– volume: 85
  start-page: 577
  year: 1963
  end-page: 584
  ident: bb0055
  article-title: Inorganic polyphosphate metabolism in Chlorobium thiosulfatophilum
  publication-title: J. Bacteriol.
– volume: 99
  start-page: 16684
  year: 2002
  end-page: 16688
  ident: bb0085
  article-title: Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP
  publication-title: Proc. Natl. Acad. Sci.
– volume: 43
  year: 2019
  ident: bb0165
  article-title: Determination of individual chain length and chain-length distribution of polyphosphates in microalgae by 31P-DOSY-NMR
  publication-title: Algal Res.
– volume: 3
  start-page: 33
  year: 2002
  ident: bb0100
  article-title: The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates
  publication-title: BMC Genomics
– volume: 11
  year: 2020
  ident: bb0010
  article-title: Polyphosphate: a multifunctional metabolite in Cyanobacteria and algae
  publication-title: Front. Plant Sci.
– volume: 180
  start-page: 1841
  year: 1998
  end-page: 1847
  ident: bb0025
  article-title: Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli
  publication-title: J. Bacteriol.
– start-page: 359
  year: 2006
  end-page: 378
  ident: bb0035
  article-title: The Family Chlorobiaceae, in: The Prokaryotes
– volume: 114
  year: 2017
  ident: bb0130
  article-title: Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa
  publication-title: Proc. Natl. Acad. Sci.
– volume: 144
  start-page: 48
  year: 1986
  end-page: 54
  ident: bb0145
  article-title: Distribution of polyphosphates in cell-compartments of Chlorella fusca as measured by 31P-NMR-spectroscopy
  publication-title: Arch. Microbiol.
– volume: 268
  start-page: 633
  year: 1993
  end-page: 639
  ident: bb0090
  article-title: An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon
  publication-title: J. Biol. Chem.
– volume: 257–258
  start-page: 102
  year: 2015
  end-page: 114
  ident: bb0150
  article-title: Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library
  publication-title: Geoderma
– volume: 178
  start-page: 1394
  year: 1996
  end-page: 1400
  ident: bb0020
  article-title: Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli
  publication-title: J. Bacteriol.
– volume: 2014
  start-page: 1635
  year: 1837
  end-page: 1642
  ident: bb0065
  article-title: The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 290
  start-page: 23348
  year: 2015
  end-page: 23360
  ident: bb0095
  article-title: Structural determinants for substrate binding and catalysis in triphosphate tunnel Metalloenzymes
  publication-title: J. Biol. Chem.
– volume: 142
  start-page: 18407
  year: 2020
  end-page: 18421
  ident: bb0115
  article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 9509
  year: 2002
  ident: 10.1016/j.bbagen.2024.130718_bb0040
  article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.132181499
– volume: 78
  start-page: 19
  year: 2014
  ident: 10.1016/j.bbagen.2024.130718_bb0140
  article-title: Solution Phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.05.0187dgs
– volume: 51
  start-page: D638
  year: 2023
  ident: 10.1016/j.bbagen.2024.130718_bb0170
  article-title: The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac1000
– volume: 290
  start-page: 23348
  year: 2015
  ident: 10.1016/j.bbagen.2024.130718_bb0095
  article-title: Structural determinants for substrate binding and catalysis in triphosphate tunnel Metalloenzymes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.674473
– volume: 92
  start-page: 4167
  year: 2020
  ident: 10.1016/j.bbagen.2024.130718_bb0155
  article-title: Methods for the analysis of polyphosphate in the life sciences
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05144
– start-page: 83
  year: 1983
  ident: 10.1016/j.bbagen.2024.130718_bb0175
– volume: 38
  start-page: 65
  year: 1965
  ident: 10.1016/j.bbagen.2024.130718_bb0060
  article-title: The metabolism of polyphosphates in Chlorobium thiosulfatophilum
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-38-1-65
– volume: 54
  start-page: 103
  year: 2008
  ident: 10.1016/j.bbagen.2024.130718_bb0045
  article-title: Sulfur metabolism in phototrophic sulfur Bacteria
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/S0065-2911(08)00002-7
– start-page: 61
  year: 1978
  ident: 10.1016/j.bbagen.2024.130718_bb0135
  article-title: The nature and limitations of Electron microscopic methods in biology
– volume: 156
  start-page: 81
  year: 1991
  ident: 10.1016/j.bbagen.2024.130718_bb0050
  article-title: A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00290978
– volume: 268
  start-page: 633
  year: 1993
  ident: 10.1016/j.bbagen.2024.130718_bb0090
  article-title: An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54198-3
– volume: 68
  start-page: 89
  year: 1999
  ident: 10.1016/j.bbagen.2024.130718_bb0005
  article-title: Inorganic polyphosphate: a molecule of many functions
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.68.1.89
– volume: 26
  start-page: 294
  year: 1957
  ident: 10.1016/j.bbagen.2024.130718_bb0080
  article-title: Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coliiyer LM, Aravind L (2002) The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phospha
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0006-3002(57)90008-2
– volume: 178
  start-page: 1394
  year: 1996
  ident: 10.1016/j.bbagen.2024.130718_bb0020
  article-title: Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.178.5.1394-1400.1996
– start-page: 2200138
  year: 2023
  ident: 10.1016/j.bbagen.2024.130718_bb0110
  article-title: Insights into the sulfur metabolism of Chlorobaculum tepidum by label-free quantitative proteomics
  publication-title: Proteomics
  doi: 10.1002/pmic.202200138
– volume: 142
  start-page: 18407
  year: 2020
  ident: 10.1016/j.bbagen.2024.130718_bb0160
  article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06335
– volume: 144
  start-page: 48
  year: 1986
  ident: 10.1016/j.bbagen.2024.130718_bb0145
  article-title: Distribution of polyphosphates in cell-compartments of Chlorella fusca as measured by 31P-NMR-spectroscopy
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00454955
– volume: 43
  year: 2019
  ident: 10.1016/j.bbagen.2024.130718_bb0165
  article-title: Determination of individual chain length and chain-length distribution of polyphosphates in microalgae by 31P-DOSY-NMR
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2019.101631
– volume: 257–258
  start-page: 102
  year: 2015
  ident: 10.1016/j.bbagen.2024.130718_bb0150
  article-title: Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.016
– volume: 10
  year: 2019
  ident: 10.1016/j.bbagen.2024.130718_bb0030
  article-title: Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02432
– volume: 99
  start-page: 16684
  year: 2002
  ident: 10.1016/j.bbagen.2024.130718_bb0085
  article-title: Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.262655299
– volume: 11
  year: 2020
  ident: 10.1016/j.bbagen.2024.130718_bb0010
  article-title: Polyphosphate: a multifunctional metabolite in Cyanobacteria and algae
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00938
– volume: 2014
  start-page: 1635
  year: 1837
  ident: 10.1016/j.bbagen.2024.130718_bb0065
  article-title: The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 27
  start-page: 31
  year: 1962
  ident: 10.1016/j.bbagen.2024.130718_bb0120
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 3
  start-page: 33
  year: 2002
  ident: 10.1016/j.bbagen.2024.130718_bb0100
  article-title: The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-3-33
– start-page: 359
  year: 2006
  ident: 10.1016/j.bbagen.2024.130718_bb0035
– volume: 85
  start-page: 577
  year: 1963
  ident: 10.1016/j.bbagen.2024.130718_bb0055
  article-title: Inorganic polyphosphate metabolism in Chlorobium thiosulfatophilum
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.85.3.577-584.1963
– volume: 142
  start-page: 18407
  year: 2020
  ident: 10.1016/j.bbagen.2024.130718_bb0115
  article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06335
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.bbagen.2024.130718_bb0125
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 99
  start-page: 9509
  year: 2002
  ident: 10.1016/j.bbagen.2024.130718_bb0075
  article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.132181499
– volume: 114
  year: 2017
  ident: 10.1016/j.bbagen.2024.130718_bb0130
  article-title: Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1615575114
– volume: 194
  start-page: 28
  year: 2012
  ident: 10.1016/j.bbagen.2024.130718_bb0015
  article-title: ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.05932-11
– volume: 86
  start-page: 145
  year: 2005
  ident: 10.1016/j.bbagen.2024.130718_bb0070
  article-title: The ultrastructure of Chlorobium tepidum Chlorosomes revealed by Electron microscopy
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-005-3647-9
– volume: 180
  start-page: 1841
  year: 1998
  ident: 10.1016/j.bbagen.2024.130718_bb0025
  article-title: Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.7.1841-1847.1998
– volume: 2
  year: 2019
  ident: 10.1016/j.bbagen.2024.130718_bb0105
  article-title: Molecular characterization of CHAD domains as inorganic polyphosphate-binding modules
  publication-title: Life Sci Alliance
  doi: 10.26508/lsa.201900385
SSID ssj0000595
Score 2.4578853
Snippet The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 130718
SubjectTerms 31P NMR
Anoxygenic photosynthesis
Bacterial Proteins - metabolism
biogenesis
Chlorobi
Chlorobi - metabolism
Chlorobium tepidum
Cytoplasmic Granules - metabolism
Magnetic Resonance Spectroscopy
metabolism
nuclear magnetic resonance spectroscopy
oxygen
phosphates
phosphorus
Phosphorus - metabolism
photosynthetic bacteria
Polyphosphate
Polyphosphates - metabolism
SEM
sulfur
TEM
Title Characterization of the intracellular polyphosphate granules of the phototrophic green sulfur bacterium Chlorobaculum tepidum
URI https://dx.doi.org/10.1016/j.bbagen.2024.130718
https://www.ncbi.nlm.nih.gov/pubmed/39374847
https://www.proquest.com/docview/3114150760
https://www.proquest.com/docview/3154162931
Volume 1868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AIKHN
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: ACRLP
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AKRWK
  dateStart: 19640113
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBOXRbUtlJK5mN8nYaY5V1GoBqReo1JtlxzYbtN1Eu8mhB_jtzMRJERIPiVsSO5E148x8Y3-eYewthNSlylYitz4IMMELe1YEkTgFSVDkMwaC7JVaXsOHG3mzx8rpLAzRKkfbH236YK3HJ_NRmvO2ruefaFMP4YQkFiTiFrLDlP0L5_S77z9pHggfZNxJAEG9p-NzA8fLWvxpKQtqClQWOafSH793T3-Cn4MbunzKnoz4kZ_HIT5je35zwB7GipJ3B-xRORVwe86-lffJmONZS94EjniP17SgSyv2REHlbbO-a1fNrl0h7ORf0Hf1a7-b-mJL13Tbpl3VFTZi1Mt3_Tr0W27jp_tbXq4w6Ee7MKwk8s63tetvX7Dry4vP5VKM1RZElQF0wlnwC-sxRJHKO5e5DL1aYXy2SIPJlDG-kAXkZzYJzqnUBOlBBkhsArmRuc1esv1Ns_GHjBeVLRbGVGAhB1MNl4VKQ556VZi0mjExCVm3MamGnthmX3VUiial6KiUGcsnTehfJodGu_-PN99MitMofRKt2fim3-kMA0ECw2rxtz4SpwwComTGXkWt34-XEgkCuvaj_x7bMXtMd5Ebc8L2u23vXyPC6ezpMIVP2YPz9x-XVz8ALuj-Aw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2hRYheqpZ-bSngSr1au0lshxxRVLQU2AsgcbPs2O4GLZtoNzlw6H9nHCegSqWVeotiO7JmnDdv7PEMwDfmYhMLXdBUW0eZcpbq48zRyAgWOeFtRhcgOxezG_bjlt9uQT7chfFhlT32B0zv0Lp_M-mlOanLcnLlD_WQTnAfBYm8BXF4m3HE5BFsn5ydz-bPgMy74iu-P_UDhht0XZiX1vjf-kSoMfOVkVNf_ePPFuolBtpZotM38LqnkOQkzPItbNnVHuyEopIPe7CbDzXc3sGv_Ckfc7huSSpHkPKR0u_p-k17H4VK6mr5UC-qTb1A5kl-ovlql3Yz9MWWpmrWVb0oC2xEx5ds2qVr10SHT7f3JF-g34_Q0G0mksbWpWnv38PN6ffrfEb7ggu0SBhrqNHMTrVFL4ULa0xiEjRsmbLJNHYqEUrZjGcsPdaRM0bEynHLuGORjliqeKqTDzBaVSv7CUhW6GyqVME0S5kqusdMxC6NrchUXIyBDkKWdcirIYeAszsZlCK9UmRQyhjSQRPyt_UhEfr_MfLroDiJ0veiVStbtRuZoC_o-bCY_q0PLimBnCgaw8eg9af5-lyCDK375_-e2xHszq4vL-TF2fx8H175lhAq8wVGzbq1B0h4Gn3YL-hHx5UAvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+intracellular+polyphosphate+granules+of+the+phototrophic+green+sulfur+bacterium+Chlorobaculum+tepidum&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lyratzakis%2C+Alexandros&rft.au=Kalogerakis%2C+Michail&rft.au=Polymerou%2C+Katerina&rft.au=Spyros%2C+Apostolos&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.volume=1868&rft.issue=12&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130718&rft.externalDocID=S0304416524001612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon