Characterization of the intracellular polyphosphate granules of the phototrophic green sulfur bacterium Chlorobaculum tepidum
The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic ba...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1868; no. 12; p. 130718 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2024.130718 |
Cover
Abstract | The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism.
•Existence of polyphosphate granules in Chlorobaculum tepidum an ancestral photoautotrophic bacterium.•The biogenesis of polyphosphate granules in the cells of Chlorobaculum tepidum was monitored over time by TEM.•Elemental analysis (EDS) of the granules showed the presence of phosphorus and oxygen.•The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates.•The biogenesis of the phosphorus granules correlates with an abundance of proteins related to polyphosphate metabolism. |
---|---|
AbstractList | The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism.The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism. The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by ³¹P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism. The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism. •Existence of polyphosphate granules in Chlorobaculum tepidum an ancestral photoautotrophic bacterium.•The biogenesis of polyphosphate granules in the cells of Chlorobaculum tepidum was monitored over time by TEM.•Elemental analysis (EDS) of the granules showed the presence of phosphorus and oxygen.•The existence of polyphosphate was demonstrated by 31P NMR spectroscopy of cell lysates.•The biogenesis of the phosphorus granules correlates with an abundance of proteins related to polyphosphate metabolism. The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the genesis of polyP granules is poorly understood. Chlorobaculum tepidum (Cba tepidum) is a thermophilic green sulfur anoxygenic phototrophic bacterium which uses reduced sulfur compounds as electron donors. The presence of electron rich granules inside the Cba tepidum was reported, but no further information was provided. In this work we used cell thin sections at three different time points of cultivation to observe the biogenesis of the inclusions over time, and the in cell total phosphate concentration was monitored over time as well. Furthermore, the elemental analysis (EDS) of the electron rich inclusions showed the presence of phosphorus and oxygen. The existence of polyphosphate was demonstrated by P NMR spectroscopy of cell lysates. Finally, we show that the biogenesis of the phosphorus granules correlates with an abundance of proteins that are closely related to polyphosphate metabolism. |
ArticleNumber | 130718 |
Author | Lyratzakis, Alexandros Kalogerakis, Michail Polymerou, Katerina Spyros, Apostolos Tsiotis, Georgios |
Author_xml | – sequence: 1 givenname: Alexandros surname: Lyratzakis fullname: Lyratzakis, Alexandros – sequence: 2 givenname: Michail surname: Kalogerakis fullname: Kalogerakis, Michail – sequence: 3 givenname: Katerina surname: Polymerou fullname: Polymerou, Katerina – sequence: 4 givenname: Apostolos surname: Spyros fullname: Spyros, Apostolos – sequence: 5 givenname: Georgios surname: Tsiotis fullname: Tsiotis, Georgios email: tsiotis@uoc.gr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39374847$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3TAQhUVIaG7S_oNQvOzGt3r6sSmUS9oGAt2kayFb41gXWXL1KCTQ_15dnHRZOpthNN8c0DlX6Nx5BwjdELwnmDQfj_thUI_g9hRTvicMt6Q7QzvStbTuMG7O0Q4zzGtOGnGJrmI84lKiF2_QJetZyzve7tDvw6yCGhME86yS8a7yU5VmqIxL5R2szVaFavX2aZ19XGeVoHoMymUL8ZUtm-RT8OtsxrIEcFXMdsqhGjbpvFSH2frgy5xtmRKsRuflLbqYlI3w7qVfox9fbh8O3-r771_vDp_v65Fxnmo9cMADUNKKBrRmmlFCewUM00mxRinoRc_bbiCT1g1VkwAuJk4Gwlsl2oFdow-b7hr8zwwxycXE0-eUA5-jZEQUm2jPyH-ghBOB2wYX9P0LmocFtFyDWVR4kq_uFoBvwBh8jAGmvwjB8hSiPMotRHkKUW4hlrNP2xkUS34ZCDKOBtwI2gQYk9Te_FvgD1U1qUo |
Cites_doi | 10.1073/pnas.132181499 10.2136/sssaj2013.05.0187dgs 10.1093/nar/gkac1000 10.1074/jbc.M115.674473 10.1021/acs.analchem.9b05144 10.1099/00221287-38-1-65 10.1016/S0065-2911(08)00002-7 10.1007/BF00290978 10.1016/S0021-9258(18)54198-3 10.1146/annurev.biochem.68.1.89 10.1016/0006-3002(57)90008-2 10.1128/jb.178.5.1394-1400.1996 10.1002/pmic.202200138 10.1021/jacs.0c06335 10.1007/BF00454955 10.1016/j.algal.2019.101631 10.1016/j.geoderma.2014.12.016 10.3389/fmicb.2019.02432 10.1073/pnas.262655299 10.3389/fpls.2020.00938 10.1016/S0003-2670(00)88444-5 10.1186/1471-2164-3-33 10.1128/jb.85.3.577-584.1963 10.1038/nmeth.2089 10.1073/pnas.1615575114 10.1128/JB.05932-11 10.1007/s11120-005-3647-9 10.1128/JB.180.7.1841-1847.1998 10.26508/lsa.201900385 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2024.130718 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 39374847 10_1016_j_bbagen_2024_130718 S0304416524001612 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS EFLBG ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c344t-db4e0be21756edd3d32129ae302fa36aae959478b1fdd62af5e45f41b147a57b3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Sep 04 17:07:49 EDT 2025 Sat Sep 27 22:37:06 EDT 2025 Fri May 30 10:59:46 EDT 2025 Tue Jul 01 00:22:20 EDT 2025 Sat Nov 09 16:00:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Anoxygenic photosynthesis SEM Polyphosphate TEM 31P NMR Chlorobi P NMR |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-db4e0be21756edd3d32129ae302fa36aae959478b1fdd62af5e45f41b147a57b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39374847 |
PQID | 3114150760 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154162931 proquest_miscellaneous_3114150760 pubmed_primary_39374847 crossref_primary_10_1016_j_bbagen_2024_130718 elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ault-Riché, Fraley, Tzeng, Kornberg (bb0025) 1998; 180 Murphy, Riley (bb0120) 1962; 27 Rao, Kornberg (bb0020) 1996; 178 Cade-Menun, Liu (bb0140) 2014; 78 Akiyama, Crooke, Kornberg (bb0090) 1993; 268 Frigaard, Dahl (bb0045) 2008; 54 Cade-Menun (bb0150) 2015; 257–258 Hohmann-Marriott, Blankenship, Roberson (bb0070) 2005; 86 Overmann (bb0035) 2006 Sianoudis, Küsel, Mayer, Grimme, Leibfritz (bb0145) 1986; 144 Jasso-Chávez, Lira-Silva, González-Sánchez, Larios-Serrato, Mendoza-Monzoy, Pérez-Villatoro, Morett, Vega-Segura, Torres-Márquez, Zepeda-Rodríguez, Moreno-Sánchez (bb0030) 2019; 10 Cole, Hughes (bb0060) 1965; 38 Eisen, Nelson, Paulsen, Heidelberg, Wu, Dodson, Deboy, Gwinn, Nelson, Haft, Hickey, Peterson, Durkin, Kolonay, Yang, Holt, Umayam, Mason, Brenner, Shea, Parksey, Nierman, Feldblyum, Hansen, Craven, Radune, Vamathevan, Khouri, White, Gruber, Ketchum, Venter, Tettelin, Bryant, Fraser (bb0040) 2002; 99 Hughes, Conti, Fuller (bb0055) 1963; 85 Martinez, Truffault, Hothorn (bb0095) 2015; 290 Ishige, Zhang, Kornberg (bb0085) 2002; 99 Mandala, Loh, Shepard, Geeson, Sergeyev, Nocera, Cummins, Hong (bb0160) 2020; 142 Szklarczyk, Kirsch, Koutrouli, Nastou, Mehryary, Hachilif, Gable, Fang, Doncheva, Pyysalo, Bork, Jensen, von Mering (bb0170) 2023; 51 Lyratzakis, Meier-Credo, Langer, Tsiotis (bb0110) 2023 Kornberg, Rao, Ault-Riché (bb0005) 1999; 68 Kudryashev, Aktoudianaki, Dedoglou, Stahlberg, Tsiotis (bb0065) 1837; 2014 Christ, Willbold, Blank (bb0155) 2020; 92 Kulaev, Vagabov (bb0175) 1983 Kornberg (bb0080) 1957; 26 Iyer, Aravind (bb0100) 2002; 3 Wang, Kuchendorf, Willbold (bb0165) 2019; 43 Sanz-Luque, Bhaya, Grossman (bb0010) 2020; 11 Schneider, Rasband, Eliceiri (bb0125) 2012; 9 Robertson (bb0135) 1978 Eisen, Nelson, Paulsen, Heidelberg, Wu, Dodson, Deboy, Gwinn, Nelson, Haft, Hickey, Peterson, Durkin, Kolonay, Yang, Holt, Umayam, Mason, Brenner, Shea, Parksey, Nierman, Feldblyum, Hansen, Craven, Radune, Vamathevan, Khouri, White, Gruber, Ketchum, Venter, Tettelin, Bryant, Fraser (bb0075) 2002; 99 Racki, Tocheva, Dieterle, Sullivan, Jensen, Newman (bb0130) 2017; 114 Mandala, Loh, Shepard, Geeson, Sergeyev, Nocera, Cummins, Hong (bb0115) 2020; 142 Wahlund, Woese, Castenholz, Madigan (bb0050) 1991; 156 Boutte, Henry, Crosson (bb0015) 2012; 194 Lorenzo-Orts, Hohmann, Zhu, Hothorn (bb0105) 2019; 2 Sanz-Luque (10.1016/j.bbagen.2024.130718_bb0010) 2020; 11 Lyratzakis (10.1016/j.bbagen.2024.130718_bb0110) 2023 Ishige (10.1016/j.bbagen.2024.130718_bb0085) 2002; 99 Wahlund (10.1016/j.bbagen.2024.130718_bb0050) 1991; 156 Hughes (10.1016/j.bbagen.2024.130718_bb0055) 1963; 85 Cole (10.1016/j.bbagen.2024.130718_bb0060) 1965; 38 Akiyama (10.1016/j.bbagen.2024.130718_bb0090) 1993; 268 Murphy (10.1016/j.bbagen.2024.130718_bb0120) 1962; 27 Schneider (10.1016/j.bbagen.2024.130718_bb0125) 2012; 9 Jasso-Chávez (10.1016/j.bbagen.2024.130718_bb0030) 2019; 10 Ault-Riché (10.1016/j.bbagen.2024.130718_bb0025) 1998; 180 Kudryashev (10.1016/j.bbagen.2024.130718_bb0065) 1837; 2014 Cade-Menun (10.1016/j.bbagen.2024.130718_bb0140) 2014; 78 Overmann (10.1016/j.bbagen.2024.130718_bb0035) 2006 Wang (10.1016/j.bbagen.2024.130718_bb0165) 2019; 43 Boutte (10.1016/j.bbagen.2024.130718_bb0015) 2012; 194 Hohmann-Marriott (10.1016/j.bbagen.2024.130718_bb0070) 2005; 86 Kornberg (10.1016/j.bbagen.2024.130718_bb0005) 1999; 68 Iyer (10.1016/j.bbagen.2024.130718_bb0100) 2002; 3 Frigaard (10.1016/j.bbagen.2024.130718_bb0045) 2008; 54 Eisen (10.1016/j.bbagen.2024.130718_bb0040) 2002; 99 Rao (10.1016/j.bbagen.2024.130718_bb0020) 1996; 178 Cade-Menun (10.1016/j.bbagen.2024.130718_bb0150) 2015; 257–258 Kulaev (10.1016/j.bbagen.2024.130718_bb0175) 1983 Racki (10.1016/j.bbagen.2024.130718_bb0130) 2017; 114 Lorenzo-Orts (10.1016/j.bbagen.2024.130718_bb0105) 2019; 2 Mandala (10.1016/j.bbagen.2024.130718_bb0115) 2020; 142 Robertson (10.1016/j.bbagen.2024.130718_bb0135) 1978 Mandala (10.1016/j.bbagen.2024.130718_bb0160) 2020; 142 Eisen (10.1016/j.bbagen.2024.130718_bb0075) 2002; 99 Sianoudis (10.1016/j.bbagen.2024.130718_bb0145) 1986; 144 Christ (10.1016/j.bbagen.2024.130718_bb0155) 2020; 92 Martinez (10.1016/j.bbagen.2024.130718_bb0095) 2015; 290 Kornberg (10.1016/j.bbagen.2024.130718_bb0080) 1957; 26 Szklarczyk (10.1016/j.bbagen.2024.130718_bb0170) 2023; 51 |
References_xml | – volume: 10 year: 2019 ident: bb0030 article-title: Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress publication-title: Front. Microbiol. – volume: 99 start-page: 9509 year: 2002 end-page: 9514 ident: bb0075 article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bb0125 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 68 start-page: 89 year: 1999 end-page: 125 ident: bb0005 article-title: Inorganic polyphosphate: a molecule of many functions publication-title: Annu. Rev. Biochem. – volume: 86 start-page: 145 year: 2005 end-page: 154 ident: bb0070 article-title: The ultrastructure of Chlorobium tepidum Chlorosomes revealed by Electron microscopy publication-title: Photosynth. Res. – volume: 142 start-page: 18407 year: 2020 end-page: 18421 ident: bb0160 article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: bb0120 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta – volume: 51 start-page: D638 year: 2023 end-page: D646 ident: bb0170 article-title: The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest publication-title: Nucleic Acids Res. – volume: 54 start-page: 103 year: 2008 end-page: 200 ident: bb0045 article-title: Sulfur metabolism in phototrophic sulfur Bacteria publication-title: Adv. Microb. Physiol. – volume: 99 start-page: 9509 year: 2002 end-page: 9514 ident: bb0040 article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium publication-title: Proc. Natl. Acad. Sci. – start-page: 83 year: 1983 end-page: 171 ident: bb0175 article-title: Polyphosphate Metabolism in Micro-Organisms – volume: 156 start-page: 81 year: 1991 end-page: 90 ident: bb0050 article-title: A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov publication-title: Arch. Microbiol. – volume: 38 start-page: 65 year: 1965 end-page: 72 ident: bb0060 article-title: The metabolism of polyphosphates in Chlorobium thiosulfatophilum publication-title: J. Gen. Microbiol. – start-page: 61 year: 1978 end-page: 93 ident: bb0135 article-title: The nature and limitations of Electron microscopic methods in biology publication-title: Physiology of Membrane Disorders – start-page: 2200138 year: 2023 ident: bb0110 article-title: Insights into the sulfur metabolism of Chlorobaculum tepidum by label-free quantitative proteomics publication-title: Proteomics – volume: 78 start-page: 19 year: 2014 end-page: 37 ident: bb0140 article-title: Solution Phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters publication-title: Soil Sci. Soc. Am. J. – volume: 26 start-page: 294 year: 1957 end-page: 300 ident: bb0080 article-title: Adenosine triphosphate synthesis from polyphosphate by an enzyme from publication-title: Biochim. Biophys. Acta – volume: 2 year: 2019 ident: bb0105 article-title: Molecular characterization of CHAD domains as inorganic polyphosphate-binding modules publication-title: Life Sci Alliance – volume: 92 start-page: 4167 year: 2020 end-page: 4176 ident: bb0155 article-title: Methods for the analysis of polyphosphate in the life sciences publication-title: Anal. Chem. – volume: 194 start-page: 28 year: 2012 end-page: 35 ident: bb0015 article-title: ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus publication-title: J. Bacteriol. – volume: 85 start-page: 577 year: 1963 end-page: 584 ident: bb0055 article-title: Inorganic polyphosphate metabolism in Chlorobium thiosulfatophilum publication-title: J. Bacteriol. – volume: 99 start-page: 16684 year: 2002 end-page: 16688 ident: bb0085 article-title: Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP publication-title: Proc. Natl. Acad. Sci. – volume: 43 year: 2019 ident: bb0165 article-title: Determination of individual chain length and chain-length distribution of polyphosphates in microalgae by 31P-DOSY-NMR publication-title: Algal Res. – volume: 3 start-page: 33 year: 2002 ident: bb0100 article-title: The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates publication-title: BMC Genomics – volume: 11 year: 2020 ident: bb0010 article-title: Polyphosphate: a multifunctional metabolite in Cyanobacteria and algae publication-title: Front. Plant Sci. – volume: 180 start-page: 1841 year: 1998 end-page: 1847 ident: bb0025 article-title: Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli publication-title: J. Bacteriol. – start-page: 359 year: 2006 end-page: 378 ident: bb0035 article-title: The Family Chlorobiaceae, in: The Prokaryotes – volume: 114 year: 2017 ident: bb0130 article-title: Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa publication-title: Proc. Natl. Acad. Sci. – volume: 144 start-page: 48 year: 1986 end-page: 54 ident: bb0145 article-title: Distribution of polyphosphates in cell-compartments of Chlorella fusca as measured by 31P-NMR-spectroscopy publication-title: Arch. Microbiol. – volume: 268 start-page: 633 year: 1993 end-page: 639 ident: bb0090 article-title: An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon publication-title: J. Biol. Chem. – volume: 257–258 start-page: 102 year: 2015 end-page: 114 ident: bb0150 article-title: Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library publication-title: Geoderma – volume: 178 start-page: 1394 year: 1996 end-page: 1400 ident: bb0020 article-title: Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli publication-title: J. Bacteriol. – volume: 2014 start-page: 1635 year: 1837 end-page: 1642 ident: bb0065 article-title: The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 290 start-page: 23348 year: 2015 end-page: 23360 ident: bb0095 article-title: Structural determinants for substrate binding and catalysis in triphosphate tunnel Metalloenzymes publication-title: J. Biol. Chem. – volume: 142 start-page: 18407 year: 2020 end-page: 18421 ident: bb0115 article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 9509 year: 2002 ident: 10.1016/j.bbagen.2024.130718_bb0040 article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.132181499 – volume: 78 start-page: 19 year: 2014 ident: 10.1016/j.bbagen.2024.130718_bb0140 article-title: Solution Phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.05.0187dgs – volume: 51 start-page: D638 year: 2023 ident: 10.1016/j.bbagen.2024.130718_bb0170 article-title: The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1000 – volume: 290 start-page: 23348 year: 2015 ident: 10.1016/j.bbagen.2024.130718_bb0095 article-title: Structural determinants for substrate binding and catalysis in triphosphate tunnel Metalloenzymes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.674473 – volume: 92 start-page: 4167 year: 2020 ident: 10.1016/j.bbagen.2024.130718_bb0155 article-title: Methods for the analysis of polyphosphate in the life sciences publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05144 – start-page: 83 year: 1983 ident: 10.1016/j.bbagen.2024.130718_bb0175 – volume: 38 start-page: 65 year: 1965 ident: 10.1016/j.bbagen.2024.130718_bb0060 article-title: The metabolism of polyphosphates in Chlorobium thiosulfatophilum publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-38-1-65 – volume: 54 start-page: 103 year: 2008 ident: 10.1016/j.bbagen.2024.130718_bb0045 article-title: Sulfur metabolism in phototrophic sulfur Bacteria publication-title: Adv. Microb. Physiol. doi: 10.1016/S0065-2911(08)00002-7 – start-page: 61 year: 1978 ident: 10.1016/j.bbagen.2024.130718_bb0135 article-title: The nature and limitations of Electron microscopic methods in biology – volume: 156 start-page: 81 year: 1991 ident: 10.1016/j.bbagen.2024.130718_bb0050 article-title: A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov publication-title: Arch. Microbiol. doi: 10.1007/BF00290978 – volume: 268 start-page: 633 year: 1993 ident: 10.1016/j.bbagen.2024.130718_bb0090 article-title: An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54198-3 – volume: 68 start-page: 89 year: 1999 ident: 10.1016/j.bbagen.2024.130718_bb0005 article-title: Inorganic polyphosphate: a molecule of many functions publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.68.1.89 – volume: 26 start-page: 294 year: 1957 ident: 10.1016/j.bbagen.2024.130718_bb0080 article-title: Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coliiyer LM, Aravind L (2002) The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phospha publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(57)90008-2 – volume: 178 start-page: 1394 year: 1996 ident: 10.1016/j.bbagen.2024.130718_bb0020 article-title: Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/jb.178.5.1394-1400.1996 – start-page: 2200138 year: 2023 ident: 10.1016/j.bbagen.2024.130718_bb0110 article-title: Insights into the sulfur metabolism of Chlorobaculum tepidum by label-free quantitative proteomics publication-title: Proteomics doi: 10.1002/pmic.202200138 – volume: 142 start-page: 18407 year: 2020 ident: 10.1016/j.bbagen.2024.130718_bb0160 article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06335 – volume: 144 start-page: 48 year: 1986 ident: 10.1016/j.bbagen.2024.130718_bb0145 article-title: Distribution of polyphosphates in cell-compartments of Chlorella fusca as measured by 31P-NMR-spectroscopy publication-title: Arch. Microbiol. doi: 10.1007/BF00454955 – volume: 43 year: 2019 ident: 10.1016/j.bbagen.2024.130718_bb0165 article-title: Determination of individual chain length and chain-length distribution of polyphosphates in microalgae by 31P-DOSY-NMR publication-title: Algal Res. doi: 10.1016/j.algal.2019.101631 – volume: 257–258 start-page: 102 year: 2015 ident: 10.1016/j.bbagen.2024.130718_bb0150 article-title: Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.016 – volume: 10 year: 2019 ident: 10.1016/j.bbagen.2024.130718_bb0030 article-title: Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02432 – volume: 99 start-page: 16684 year: 2002 ident: 10.1016/j.bbagen.2024.130718_bb0085 article-title: Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.262655299 – volume: 11 year: 2020 ident: 10.1016/j.bbagen.2024.130718_bb0010 article-title: Polyphosphate: a multifunctional metabolite in Cyanobacteria and algae publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00938 – volume: 2014 start-page: 1635 year: 1837 ident: 10.1016/j.bbagen.2024.130718_bb0065 article-title: The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 27 start-page: 31 year: 1962 ident: 10.1016/j.bbagen.2024.130718_bb0120 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 3 start-page: 33 year: 2002 ident: 10.1016/j.bbagen.2024.130718_bb0100 article-title: The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates publication-title: BMC Genomics doi: 10.1186/1471-2164-3-33 – start-page: 359 year: 2006 ident: 10.1016/j.bbagen.2024.130718_bb0035 – volume: 85 start-page: 577 year: 1963 ident: 10.1016/j.bbagen.2024.130718_bb0055 article-title: Inorganic polyphosphate metabolism in Chlorobium thiosulfatophilum publication-title: J. Bacteriol. doi: 10.1128/jb.85.3.577-584.1963 – volume: 142 start-page: 18407 year: 2020 ident: 10.1016/j.bbagen.2024.130718_bb0115 article-title: Bacterial phosphate granules contain cyclic polyphosphates: evidence from 31 P solid-state NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06335 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.bbagen.2024.130718_bb0125 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 99 start-page: 9509 year: 2002 ident: 10.1016/j.bbagen.2024.130718_bb0075 article-title: The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.132181499 – volume: 114 year: 2017 ident: 10.1016/j.bbagen.2024.130718_bb0130 article-title: Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1615575114 – volume: 194 start-page: 28 year: 2012 ident: 10.1016/j.bbagen.2024.130718_bb0015 article-title: ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus publication-title: J. Bacteriol. doi: 10.1128/JB.05932-11 – volume: 86 start-page: 145 year: 2005 ident: 10.1016/j.bbagen.2024.130718_bb0070 article-title: The ultrastructure of Chlorobium tepidum Chlorosomes revealed by Electron microscopy publication-title: Photosynth. Res. doi: 10.1007/s11120-005-3647-9 – volume: 180 start-page: 1841 year: 1998 ident: 10.1016/j.bbagen.2024.130718_bb0025 article-title: Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.180.7.1841-1847.1998 – volume: 2 year: 2019 ident: 10.1016/j.bbagen.2024.130718_bb0105 article-title: Molecular characterization of CHAD domains as inorganic polyphosphate-binding modules publication-title: Life Sci Alliance doi: 10.26508/lsa.201900385 |
SSID | ssj0000595 |
Score | 2.4578853 |
Snippet | The ability to generate polyphosphate (polyP) granules is important for survival for bacteria during resistance to diverse environmental stresses, however the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 130718 |
SubjectTerms | 31P NMR Anoxygenic photosynthesis Bacterial Proteins - metabolism biogenesis Chlorobi Chlorobi - metabolism Chlorobium tepidum Cytoplasmic Granules - metabolism Magnetic Resonance Spectroscopy metabolism nuclear magnetic resonance spectroscopy oxygen phosphates phosphorus Phosphorus - metabolism photosynthetic bacteria Polyphosphate Polyphosphates - metabolism SEM sulfur TEM |
Title | Characterization of the intracellular polyphosphate granules of the phototrophic green sulfur bacterium Chlorobaculum tepidum |
URI | https://dx.doi.org/10.1016/j.bbagen.2024.130718 https://www.ncbi.nlm.nih.gov/pubmed/39374847 https://www.proquest.com/docview/3114150760 https://www.proquest.com/docview/3154162931 |
Volume | 1868 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AIKHN dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: ACRLP dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AKRWK dateStart: 19640113 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBOXRbUtlJK5mN8nYaY5V1GoBqReo1JtlxzYbtN1Eu8mhB_jtzMRJERIPiVsSO5E148x8Y3-eYewthNSlylYitz4IMMELe1YEkTgFSVDkMwaC7JVaXsOHG3mzx8rpLAzRKkfbH236YK3HJ_NRmvO2ruefaFMP4YQkFiTiFrLDlP0L5_S77z9pHggfZNxJAEG9p-NzA8fLWvxpKQtqClQWOafSH793T3-Cn4MbunzKnoz4kZ_HIT5je35zwB7GipJ3B-xRORVwe86-lffJmONZS94EjniP17SgSyv2REHlbbO-a1fNrl0h7ORf0Hf1a7-b-mJL13Tbpl3VFTZi1Mt3_Tr0W27jp_tbXq4w6Ee7MKwk8s63tetvX7Dry4vP5VKM1RZElQF0wlnwC-sxRJHKO5e5DL1aYXy2SIPJlDG-kAXkZzYJzqnUBOlBBkhsArmRuc1esv1Ns_GHjBeVLRbGVGAhB1MNl4VKQ556VZi0mjExCVm3MamGnthmX3VUiial6KiUGcsnTehfJodGu_-PN99MitMofRKt2fim3-kMA0ECw2rxtz4SpwwComTGXkWt34-XEgkCuvaj_x7bMXtMd5Ebc8L2u23vXyPC6ezpMIVP2YPz9x-XVz8ALuj-Aw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2hRYheqpZ-bSngSr1au0lshxxRVLQU2AsgcbPs2O4GLZtoNzlw6H9nHCegSqWVeotiO7JmnDdv7PEMwDfmYhMLXdBUW0eZcpbq48zRyAgWOeFtRhcgOxezG_bjlt9uQT7chfFhlT32B0zv0Lp_M-mlOanLcnLlD_WQTnAfBYm8BXF4m3HE5BFsn5ydz-bPgMy74iu-P_UDhht0XZiX1vjf-kSoMfOVkVNf_ePPFuolBtpZotM38LqnkOQkzPItbNnVHuyEopIPe7CbDzXc3sGv_Ckfc7huSSpHkPKR0u_p-k17H4VK6mr5UC-qTb1A5kl-ovlql3Yz9MWWpmrWVb0oC2xEx5ds2qVr10SHT7f3JF-g34_Q0G0mksbWpWnv38PN6ffrfEb7ggu0SBhrqNHMTrVFL4ULa0xiEjRsmbLJNHYqEUrZjGcsPdaRM0bEynHLuGORjliqeKqTDzBaVSv7CUhW6GyqVME0S5kqusdMxC6NrchUXIyBDkKWdcirIYeAszsZlCK9UmRQyhjSQRPyt_UhEfr_MfLroDiJ0veiVStbtRuZoC_o-bCY_q0PLimBnCgaw8eg9af5-lyCDK375_-e2xHszq4vL-TF2fx8H175lhAq8wVGzbq1B0h4Gn3YL-hHx5UAvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+intracellular+polyphosphate+granules+of+the+phototrophic+green+sulfur+bacterium+Chlorobaculum+tepidum&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lyratzakis%2C+Alexandros&rft.au=Kalogerakis%2C+Michail&rft.au=Polymerou%2C+Katerina&rft.au=Spyros%2C+Apostolos&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.volume=1868&rft.issue=12&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130718&rft.externalDocID=S0304416524001612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |