Enriching 3D optical surface scans with prior knowledge: tissue thickness computation by exploiting local neighborhoods

Purpose Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in ad...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 11; no. 4; pp. 569 - 579
Main Authors Wissel, Tobias, Stüber, Patrick, Wagner, Benjamin, Bruder, Ralf, Schweikard, Achim, Ernst, Floris
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2016
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-015-1246-6

Cover

Abstract Purpose Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. Methods We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. Results We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.
AbstractList Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.
Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy.PURPOSEPatient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy.We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots.METHODSWe use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots.We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.RESULTSWe confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.
Purpose Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. Methods We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. Results We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.
Author Wissel, Tobias
Schweikard, Achim
Stüber, Patrick
Ernst, Floris
Bruder, Ralf
Wagner, Benjamin
Author_xml – sequence: 1
  givenname: Tobias
  surname: Wissel
  fullname: Wissel, Tobias
  email: wissel@rob.uni-luebeck.de
  organization: Institute for Robotics and Cognitive Systems, University of Lübeck
– sequence: 2
  givenname: Patrick
  surname: Stüber
  fullname: Stüber, Patrick
  organization: Institute for Robotics and Cognitive Systems, University of Lübeck
– sequence: 3
  givenname: Benjamin
  surname: Wagner
  fullname: Wagner, Benjamin
  organization: Institute for Robotics and Cognitive Systems, University of Lübeck
– sequence: 4
  givenname: Ralf
  surname: Bruder
  fullname: Bruder, Ralf
  organization: Institute for Robotics and Cognitive Systems, University of Lübeck
– sequence: 5
  givenname: Achim
  surname: Schweikard
  fullname: Schweikard, Achim
  organization: Institute for Robotics and Cognitive Systems, University of Lübeck
– sequence: 6
  givenname: Floris
  surname: Ernst
  fullname: Ernst, Floris
  organization: Institute for Robotics and Cognitive Systems, University of Lübeck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26122931$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URP_AB-CCfOSS4rGdOOGGSqFIlbjA2fLazsZt1l48jrb99niV0gOHnjyy3u-N5r1zchJT9IS8B3YJjKlPCNDKvmHQNsBl13SvyBn0HTSd5MPJ8wzslJwj3jEmWyXaN-SUd8D5IOCMHK5jDnYKcUvFV5r2JVgzU1zyaKynaE1EeghlovscUqb3MR1m77b-My0BcfG0TMHeR49Ibdrtl2JKSJFuHql_2M8plKPznI6m0YfttEl5SsnhW_J6NDP6d0_vBfn97frX1U1z-_P7j6svt40VUpbGtRxG1XdqVLIdVOvN4JxwYx176AdnwLL6IaTohOMDd4aNMDDJvNzUa5m4IB9X331OfxaPRe8CWj_PJvq0oAalesV6wdsq_fAkXTY773S9eGfyo_4XVhXAKrA5IWY_PkuA6WMhei1E10L0sRDdVUb9x9iwZlSyCfOLJF9JrFvi1md9l5Yca1gvQH8BH1mgHA
CitedBy_id crossref_primary_10_1049_iet_bmt_2019_0015
crossref_primary_10_1007_s00542_016_3086_x
Cites_doi 10.1109/34.121791
10.4103/0971-6203.62194
10.1118/1.4898103
10.1016/j.prro.2011.04.005
10.1016/j.ijrobp.2011.12.004
10.1186/1748-717X-6-1
10.1016/j.radonc.2004.03.003
10.1364/BOE.4.001176
10.1117/12.2024851
10.1007/11494669_93
10.1016/j.ijrobp.2010.06.022
10.1109/EMBC.2014.6944280
10.7551/mitpress/3206.001.0001
10.1118/1.3483783
10.1118/1.4890093
10.1023/B:STCO.0000035301.49549.88
ContentType Journal Article
Copyright CARS 2015
Copyright_xml – notice: CARS 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s11548-015-1246-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 579
ExternalDocumentID 26122931
10_1007_s11548_015_1246_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABRTQ
ID FETCH-LOGICAL-c344t-d521f7867f745975ea9dd3df9758189da1c0dd334363d292da0f19040e4b04503
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Fri Sep 05 07:37:19 EDT 2025
Wed Feb 19 01:57:31 EST 2025
Tue Jul 01 00:15:03 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Feb 21 02:42:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Head tracking
Laser scanning
Statistical learning
Tissue thickness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-d521f7867f745975ea9dd3df9758189da1c0dd334363d292da0f19040e4b04503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26122931
PQID 1778708325
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1778708325
pubmed_primary_26122931
crossref_primary_10_1007_s11548_015_1246_6
crossref_citationtrail_10_1007_s11548_015_1246_6
springer_journals_10_1007_s11548_015_1246_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160400
2016-4-00
2016-Apr
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 4
  year: 2016
  text: 20160400
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Gopan, Wu (CR7) 2012; 84
CR3
CR5
Fuss, Salter, Cheek, Sadeghi, Hevezi, Herman (CR1) 2004; 71
CR19
CR18
CR17
CR9
Wissel, Bruder, Schweikard, Ernst (CR12) 2013; 4
Abdel-Aziz, Karara (CR15) 1971
CR14
CR13
Besl, Keil (CR16) 1992; 14
CR11
CR10
Minniti, Clarke, Cavallo, Osti, Esposito, Cantore, Cappabianca, Enrici (CR2) 2011; 6
Kurup (CR4) 2010; 35
Cervino, Detorie, Taylor, Lawson, Harry, Murphy, Mundt, Jiang, Pawlicki (CR6) 2012; 2
Kim, Li, Na, Lee, Xing (CR8) 2014; 41
LI Cervino (1246_CR6) 2012; 2
O Gopan (1246_CR7) 2012; 84
YI Abdel-Aziz (1246_CR15) 1971
1246_CR17
1246_CR18
M Fuss (1246_CR1) 2004; 71
1246_CR19
T Wissel (1246_CR12) 2013; 4
G Kurup (1246_CR4) 2010; 35
1246_CR10
PJ Besl (1246_CR16) 1992; 14
1246_CR11
1246_CR13
1246_CR14
G Minniti (1246_CR2) 2011; 6
1246_CR5
Y Kim (1246_CR8) 2014; 41
1246_CR3
1246_CR9
25570648 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3106-9
20589114 - J Med Phys. 2010 Apr;35(2):63-4
22365627 - Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):547-52
25086557 - Med Phys. 2014 Aug;41(8):082701
21486436 - Radiat Oncol. 2011 Apr 12;6:36
21089778 - Med Phys. 2010 Oct;37(10 ):5421-33
20951506 - Int J Radiat Oncol Biol Phys. 2011 May 1;80(1):281-90
24674037 - Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62
25471948 - Med Phys. 2014 Dec;41(12 ):121701
23847741 - Biomed Opt Express. 2013 Jun 14;4(7):1176-87
15172151 - Radiother Oncol. 2004 Jun;71(3):339-45
References_xml – year: 1971
  ident: CR15
  publication-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: CR16
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/34.121791
– ident: CR19
– ident: CR18
– volume: 35
  start-page: 63
  year: 2010
  end-page: 64
  ident: CR4
  article-title: CyberKnife: a new paradigm in radiotherapy
  publication-title: J Med Phys
  doi: 10.4103/0971-6203.62194
– volume: 41
  start-page: 121701
  year: 2014
  ident: CR8
  article-title: Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: a simulation study using patient data
  publication-title: Med Phys
  doi: 10.1118/1.4898103
– ident: CR3
– ident: CR14
– volume: 2
  start-page: 54
  year: 2012
  end-page: 62
  ident: CR6
  article-title: Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment
  publication-title: Pract Radiat Oncol
  doi: 10.1016/j.prro.2011.04.005
– ident: CR17
– ident: CR13
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 84
  start-page: 547
  year: 2012
  end-page: 552
  ident: CR7
  article-title: Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy
  publication-title: Int J Radiat Oncol* Biol* Phys
  doi: 10.1016/j.ijrobp.2011.12.004
– ident: CR5
– volume: 6
  start-page: 1
  year: 2011
  ident: CR2
  article-title: Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-6-1
– volume: 71
  start-page: 339
  year: 2004
  end-page: 345
  ident: CR1
  article-title: Repositioning accuracy of a commercially available thermoplastic mask system
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2004.03.003
– volume: 4
  start-page: 1176
  year: 2013
  end-page: 1187
  ident: CR12
  article-title: Estimating soft tissue thickness from light-tissue interactions—a simulation study
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.4.001176
– volume: 84
  start-page: 547
  year: 2012
  ident: 1246_CR7
  publication-title: Int J Radiat Oncol* Biol* Phys
  doi: 10.1016/j.ijrobp.2011.12.004
– volume: 71
  start-page: 339
  year: 2004
  ident: 1246_CR1
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2004.03.003
– volume: 6
  start-page: 1
  year: 2011
  ident: 1246_CR2
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-6-1
– ident: 1246_CR9
  doi: 10.1117/12.2024851
– ident: 1246_CR19
  doi: 10.1007/11494669_93
– volume-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry
  year: 1971
  ident: 1246_CR15
– ident: 1246_CR3
  doi: 10.1016/j.ijrobp.2010.06.022
– volume: 35
  start-page: 63
  year: 2010
  ident: 1246_CR4
  publication-title: J Med Phys
  doi: 10.4103/0971-6203.62194
– volume: 41
  start-page: 121701
  year: 2014
  ident: 1246_CR8
  publication-title: Med Phys
  doi: 10.1118/1.4898103
– ident: 1246_CR14
– ident: 1246_CR13
  doi: 10.1109/EMBC.2014.6944280
– ident: 1246_CR18
  doi: 10.7551/mitpress/3206.001.0001
– volume: 4
  start-page: 1176
  year: 2013
  ident: 1246_CR12
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.4.001176
– volume: 14
  start-page: 239
  year: 1992
  ident: 1246_CR16
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/34.121791
– ident: 1246_CR10
– ident: 1246_CR5
  doi: 10.1118/1.3483783
– volume: 2
  start-page: 54
  year: 2012
  ident: 1246_CR6
  publication-title: Pract Radiat Oncol
  doi: 10.1016/j.prro.2011.04.005
– ident: 1246_CR11
  doi: 10.1118/1.4890093
– ident: 1246_CR17
  doi: 10.1023/B:STCO.0000035301.49549.88
– reference: 24674037 - Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62
– reference: 20951506 - Int J Radiat Oncol Biol Phys. 2011 May 1;80(1):281-90
– reference: 25086557 - Med Phys. 2014 Aug;41(8):082701
– reference: 20589114 - J Med Phys. 2010 Apr;35(2):63-4
– reference: 21089778 - Med Phys. 2010 Oct;37(10 ):5421-33
– reference: 25471948 - Med Phys. 2014 Dec;41(12 ):121701
– reference: 23847741 - Biomed Opt Express. 2013 Jun 14;4(7):1176-87
– reference: 25570648 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3106-9
– reference: 22365627 - Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):547-52
– reference: 21486436 - Radiat Oncol. 2011 Apr 12;6:36
– reference: 15172151 - Radiother Oncol. 2004 Jun;71(3):339-45
SSID ssj0045735
Score 2.0562737
Snippet Purpose Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate...
Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 569
SubjectTerms Algorithms
Computer Imaging
Computer Science
Diagnostic Imaging - instrumentation
Equipment Design
Health Informatics
Humans
Imaging
Imaging, Three-Dimensional - instrumentation
Medicine
Medicine & Public Health
Models, Theoretical
Normal Distribution
Optical Devices
Original Article
Pattern Recognition and Graphics
Radiology
Surgery
Vision
Title Enriching 3D optical surface scans with prior knowledge: tissue thickness computation by exploiting local neighborhoods
URI https://link.springer.com/article/10.1007/s11548-015-1246-6
https://www.ncbi.nlm.nih.gov/pubmed/26122931
https://www.proquest.com/docview/1778708325
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB88BbkX786Puz1PmQOfTgJtk6atb4uuJx53Ty54T6VpEhClK9tdxP_emWy7In6Ab6WkmZJfMvPLzGQCcJCbyOVVVYvU1EYoVRhhfOKEVqaKZJb5og5Zvv_02VidX6aX3Tnuts9270OSQVM_HnZjdk1b31SQTdJCf4C1lMtJ0SQeJ8Ne_ao0C7dqxrmOSWK8DGW-1MVTY_SMYT6Ljgajc_oZNjq2iMMFvF9gxTWb8Km_iQG7hbkJ63-7EPkW3I0aUm3sV0J5gpPb4KvGdj71Ve2wpZFskZ2vSCInU1z61I5wFjBAToC_ZgWIdZAToENzj47T9a44TRqDBcSG3ao0h7gycrsN49PRxfGZ6G5XELVUaiYsGW6f5TrzmaJdReqqwlppPT2SES9sFdcRvZBKammTIrFV5Ik9qMgpQ6McyR1YbSaN-wZoiHNJbZl8eJXmWW5cbrTTiXVOe50OIOqHuay70uN8A8ZN-Vg0mZEpCZmSkSn1AH4tP7ld1N14q_HPHruSVgeHPKrGTeZtGWeskEhr0T98XYC67I6LpxHZiQdw2KNcdgu4fV3W93e13oWPxLD0ItXnB6zOpnO3RyxmZvZhbfj7_5_Rfpi9D-Gj6qo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aFNpc-kjSZPtIp9BTisC2ZNnuLbQJ2zTJKQu5CcuSIKR4l_Uuof--M1p7Q0lTyM0YWWP0STOfZkYjgM-lTXxZ143IbWOFUpUVNmReaGXrRBZFqJqY5XuhxxN1epVf9ee4uyHbfQhJRk19d9iN2TVtfXNBNkkLvQFPOcrIO65JdjSoX5UX8VbNtNQpSUzXocx_dfG3MbrHMO9FR6PROXkFL3q2iEcreF_DE99uw8vhJgbsF-Y2PDvvQ-Q7cHvckmpjvxLK7zidRV81dst5qBuPHY1kh-x8RRI5nePap_YVFxED5AT4G1aA2EQ5ETq0v9Fzut41p0ljtIDYsluV5hBXRu52YXJyfPltLPrbFUQjlVoIR4Y7FKUuQqFoV5H7unJOukCPZMQrV6dNQi-kklq6rMpcnQRiDyrxytIoJ_INbLbT1u8DWuJcUjsmH0HlZVFaX1rtdea810HnI0iGYTZNX3qcb8D4Ze6KJjMyhpAxjIzRIzhcfzJb1d34X-NPA3aGVgeHPOrWT5edSQtWSKS16B_2VqCuu-PiaUR20hF8GVA2_QLuHpb19lGtP8Lz8eX5mTn7cfHzHWwR29KrtJ_3sLmYL_0HYjQLexBn8B-M_Ov5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSouFAqULa9B4gSymsSOk3CraFflVXFgpd6sOLalqii72mSF-PfMOMlWqIDELYocO_Jnz3yeGc8AvC5t4su6bkRuGyuUqqywIfNCK1snsihC1cQo33N9tlAfL_KLsc5pN0W7Ty7J4U4DZ2lq-6OVC0fXF9-YadMxOBekn7TQt-GOIlXNMV2L7HgSxSovYoXNtNQpjZ5u3Zp_6uJ3xXSDbd7wlEYFNL8P90bmiMcD1A_glm_3YW-qyoDjJt2H3S-ju_wh_DhtScyxjQnlCS5X0W6N3WYd6sZjR7PaIRtikYZcrnFrX3uHfcQDORj-ioUhNnGcCCPan-g5dO-SQ6YxakNs2cRK64mzJHePYDE__fb-TIyVFkQjleqFIyUeilIXoVB0wsh9XTknXaBHUuiVq9MmoRdSSS1dVmWuTgIxCZV4ZWmWE_kYdtpl658AWuJfUjsmIkHlZVFaX1rtdea810HnM0imaTbNmIacq2F8N9cJlBkZQ8gYRsboGbzZfrIacnD8q_GrCTtDO4XdH3Xrl5vOpAULJ5Jg9A8HA6jb7jiRGhGfdAZvJ5TNuJm7v491-F-tX8Lu15O5-fzh_NNTuEvESw8RQM9gp19v_HMiN719ERfwL0ZD8D4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enriching+3D+optical+surface+scans+with+prior+knowledge%3A+tissue+thickness+computation+by+exploiting+local+neighborhoods&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Wissel%2C+Tobias&rft.au=St%C3%BCber%2C+Patrick&rft.au=Wagner%2C+Benjamin&rft.au=Bruder%2C+Ralf&rft.date=2016-04-01&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=11&rft.issue=4&rft.spage=569&rft.epage=579&rft_id=info:doi/10.1007%2Fs11548-015-1246-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11548_015_1246_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon