Enriching 3D optical surface scans with prior knowledge: tissue thickness computation by exploiting local neighborhoods
Purpose Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in ad...
Saved in:
Published in | International journal for computer assisted radiology and surgery Vol. 11; no. 4; pp. 569 - 579 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-6410 1861-6429 1861-6429 |
DOI | 10.1007/s11548-015-1246-6 |
Cover
Abstract | Purpose
Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy.
Methods
We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots.
Results
We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary. |
---|---|
AbstractList | Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy.
We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots.
We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary. Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy.PURPOSEPatient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy.We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots.METHODSWe use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots.We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.RESULTSWe confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary. Purpose Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. Methods We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. Results We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary. |
Author | Wissel, Tobias Schweikard, Achim Stüber, Patrick Ernst, Floris Bruder, Ralf Wagner, Benjamin |
Author_xml | – sequence: 1 givenname: Tobias surname: Wissel fullname: Wissel, Tobias email: wissel@rob.uni-luebeck.de organization: Institute for Robotics and Cognitive Systems, University of Lübeck – sequence: 2 givenname: Patrick surname: Stüber fullname: Stüber, Patrick organization: Institute for Robotics and Cognitive Systems, University of Lübeck – sequence: 3 givenname: Benjamin surname: Wagner fullname: Wagner, Benjamin organization: Institute for Robotics and Cognitive Systems, University of Lübeck – sequence: 4 givenname: Ralf surname: Bruder fullname: Bruder, Ralf organization: Institute for Robotics and Cognitive Systems, University of Lübeck – sequence: 5 givenname: Achim surname: Schweikard fullname: Schweikard, Achim organization: Institute for Robotics and Cognitive Systems, University of Lübeck – sequence: 6 givenname: Floris surname: Ernst fullname: Ernst, Floris organization: Institute for Robotics and Cognitive Systems, University of Lübeck |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26122931$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URP_AB-CCfOSS4rGdOOGGSqFIlbjA2fLazsZt1l48jrb99niV0gOHnjyy3u-N5r1zchJT9IS8B3YJjKlPCNDKvmHQNsBl13SvyBn0HTSd5MPJ8wzslJwj3jEmWyXaN-SUd8D5IOCMHK5jDnYKcUvFV5r2JVgzU1zyaKynaE1EeghlovscUqb3MR1m77b-My0BcfG0TMHeR49Ibdrtl2JKSJFuHql_2M8plKPznI6m0YfttEl5SsnhW_J6NDP6d0_vBfn97frX1U1z-_P7j6svt40VUpbGtRxG1XdqVLIdVOvN4JxwYx176AdnwLL6IaTohOMDd4aNMDDJvNzUa5m4IB9X331OfxaPRe8CWj_PJvq0oAalesV6wdsq_fAkXTY773S9eGfyo_4XVhXAKrA5IWY_PkuA6WMhei1E10L0sRDdVUb9x9iwZlSyCfOLJF9JrFvi1md9l5Yca1gvQH8BH1mgHA |
CitedBy_id | crossref_primary_10_1049_iet_bmt_2019_0015 crossref_primary_10_1007_s00542_016_3086_x |
Cites_doi | 10.1109/34.121791 10.4103/0971-6203.62194 10.1118/1.4898103 10.1016/j.prro.2011.04.005 10.1016/j.ijrobp.2011.12.004 10.1186/1748-717X-6-1 10.1016/j.radonc.2004.03.003 10.1364/BOE.4.001176 10.1117/12.2024851 10.1007/11494669_93 10.1016/j.ijrobp.2010.06.022 10.1109/EMBC.2014.6944280 10.7551/mitpress/3206.001.0001 10.1118/1.3483783 10.1118/1.4890093 10.1023/B:STCO.0000035301.49549.88 |
ContentType | Journal Article |
Copyright | CARS 2015 |
Copyright_xml | – notice: CARS 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s11548-015-1246-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1861-6429 |
EndPage | 579 |
ExternalDocumentID | 26122931 10_1007_s11548_015_1246_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 7X8 ABRTQ |
ID | FETCH-LOGICAL-c344t-d521f7867f745975ea9dd3df9758189da1c0dd334363d292da0f19040e4b04503 |
IEDL.DBID | U2A |
ISSN | 1861-6410 1861-6429 |
IngestDate | Fri Sep 05 07:37:19 EDT 2025 Wed Feb 19 01:57:31 EST 2025 Tue Jul 01 00:15:03 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Fri Feb 21 02:42:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Head tracking Laser scanning Statistical learning Tissue thickness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-d521f7867f745975ea9dd3df9758189da1c0dd334363d292da0f19040e4b04503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26122931 |
PQID | 1778708325 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1778708325 pubmed_primary_26122931 crossref_primary_10_1007_s11548_015_1246_6 crossref_citationtrail_10_1007_s11548_015_1246_6 springer_journals_10_1007_s11548_015_1246_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160400 2016-4-00 2016-Apr 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 4 year: 2016 text: 20160400 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
PublicationTitle | International journal for computer assisted radiology and surgery |
PublicationTitleAbbrev | Int J CARS |
PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Gopan, Wu (CR7) 2012; 84 CR3 CR5 Fuss, Salter, Cheek, Sadeghi, Hevezi, Herman (CR1) 2004; 71 CR19 CR18 CR17 CR9 Wissel, Bruder, Schweikard, Ernst (CR12) 2013; 4 Abdel-Aziz, Karara (CR15) 1971 CR14 CR13 Besl, Keil (CR16) 1992; 14 CR11 CR10 Minniti, Clarke, Cavallo, Osti, Esposito, Cantore, Cappabianca, Enrici (CR2) 2011; 6 Kurup (CR4) 2010; 35 Cervino, Detorie, Taylor, Lawson, Harry, Murphy, Mundt, Jiang, Pawlicki (CR6) 2012; 2 Kim, Li, Na, Lee, Xing (CR8) 2014; 41 LI Cervino (1246_CR6) 2012; 2 O Gopan (1246_CR7) 2012; 84 YI Abdel-Aziz (1246_CR15) 1971 1246_CR17 1246_CR18 M Fuss (1246_CR1) 2004; 71 1246_CR19 T Wissel (1246_CR12) 2013; 4 G Kurup (1246_CR4) 2010; 35 1246_CR10 PJ Besl (1246_CR16) 1992; 14 1246_CR11 1246_CR13 1246_CR14 G Minniti (1246_CR2) 2011; 6 1246_CR5 Y Kim (1246_CR8) 2014; 41 1246_CR3 1246_CR9 25570648 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3106-9 20589114 - J Med Phys. 2010 Apr;35(2):63-4 22365627 - Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):547-52 25086557 - Med Phys. 2014 Aug;41(8):082701 21486436 - Radiat Oncol. 2011 Apr 12;6:36 21089778 - Med Phys. 2010 Oct;37(10 ):5421-33 20951506 - Int J Radiat Oncol Biol Phys. 2011 May 1;80(1):281-90 24674037 - Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62 25471948 - Med Phys. 2014 Dec;41(12 ):121701 23847741 - Biomed Opt Express. 2013 Jun 14;4(7):1176-87 15172151 - Radiother Oncol. 2004 Jun;71(3):339-45 |
References_xml | – year: 1971 ident: CR15 publication-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: CR16 article-title: A method for registration of 3-D shapes publication-title: IEEE Trans Pattern Anal doi: 10.1109/34.121791 – ident: CR19 – ident: CR18 – volume: 35 start-page: 63 year: 2010 end-page: 64 ident: CR4 article-title: CyberKnife: a new paradigm in radiotherapy publication-title: J Med Phys doi: 10.4103/0971-6203.62194 – volume: 41 start-page: 121701 year: 2014 ident: CR8 article-title: Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: a simulation study using patient data publication-title: Med Phys doi: 10.1118/1.4898103 – ident: CR3 – ident: CR14 – volume: 2 start-page: 54 year: 2012 end-page: 62 ident: CR6 article-title: Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment publication-title: Pract Radiat Oncol doi: 10.1016/j.prro.2011.04.005 – ident: CR17 – ident: CR13 – ident: CR10 – ident: CR11 – ident: CR9 – volume: 84 start-page: 547 year: 2012 end-page: 552 ident: CR7 article-title: Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy publication-title: Int J Radiat Oncol* Biol* Phys doi: 10.1016/j.ijrobp.2011.12.004 – ident: CR5 – volume: 6 start-page: 1 year: 2011 ident: CR2 article-title: Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas publication-title: Radiat Oncol doi: 10.1186/1748-717X-6-1 – volume: 71 start-page: 339 year: 2004 end-page: 345 ident: CR1 article-title: Repositioning accuracy of a commercially available thermoplastic mask system publication-title: Radiother Oncol doi: 10.1016/j.radonc.2004.03.003 – volume: 4 start-page: 1176 year: 2013 end-page: 1187 ident: CR12 article-title: Estimating soft tissue thickness from light-tissue interactions—a simulation study publication-title: Biomed Opt Express doi: 10.1364/BOE.4.001176 – volume: 84 start-page: 547 year: 2012 ident: 1246_CR7 publication-title: Int J Radiat Oncol* Biol* Phys doi: 10.1016/j.ijrobp.2011.12.004 – volume: 71 start-page: 339 year: 2004 ident: 1246_CR1 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2004.03.003 – volume: 6 start-page: 1 year: 2011 ident: 1246_CR2 publication-title: Radiat Oncol doi: 10.1186/1748-717X-6-1 – ident: 1246_CR9 doi: 10.1117/12.2024851 – ident: 1246_CR19 doi: 10.1007/11494669_93 – volume-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry year: 1971 ident: 1246_CR15 – ident: 1246_CR3 doi: 10.1016/j.ijrobp.2010.06.022 – volume: 35 start-page: 63 year: 2010 ident: 1246_CR4 publication-title: J Med Phys doi: 10.4103/0971-6203.62194 – volume: 41 start-page: 121701 year: 2014 ident: 1246_CR8 publication-title: Med Phys doi: 10.1118/1.4898103 – ident: 1246_CR14 – ident: 1246_CR13 doi: 10.1109/EMBC.2014.6944280 – ident: 1246_CR18 doi: 10.7551/mitpress/3206.001.0001 – volume: 4 start-page: 1176 year: 2013 ident: 1246_CR12 publication-title: Biomed Opt Express doi: 10.1364/BOE.4.001176 – volume: 14 start-page: 239 year: 1992 ident: 1246_CR16 publication-title: IEEE Trans Pattern Anal doi: 10.1109/34.121791 – ident: 1246_CR10 – ident: 1246_CR5 doi: 10.1118/1.3483783 – volume: 2 start-page: 54 year: 2012 ident: 1246_CR6 publication-title: Pract Radiat Oncol doi: 10.1016/j.prro.2011.04.005 – ident: 1246_CR11 doi: 10.1118/1.4890093 – ident: 1246_CR17 doi: 10.1023/B:STCO.0000035301.49549.88 – reference: 24674037 - Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62 – reference: 20951506 - Int J Radiat Oncol Biol Phys. 2011 May 1;80(1):281-90 – reference: 25086557 - Med Phys. 2014 Aug;41(8):082701 – reference: 20589114 - J Med Phys. 2010 Apr;35(2):63-4 – reference: 21089778 - Med Phys. 2010 Oct;37(10 ):5421-33 – reference: 25471948 - Med Phys. 2014 Dec;41(12 ):121701 – reference: 23847741 - Biomed Opt Express. 2013 Jun 14;4(7):1176-87 – reference: 25570648 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3106-9 – reference: 22365627 - Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):547-52 – reference: 21486436 - Radiat Oncol. 2011 Apr 12;6:36 – reference: 15172151 - Radiother Oncol. 2004 Jun;71(3):339-45 |
SSID | ssj0045735 |
Score | 2.0562737 |
Snippet | Purpose
Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate... Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 569 |
SubjectTerms | Algorithms Computer Imaging Computer Science Diagnostic Imaging - instrumentation Equipment Design Health Informatics Humans Imaging Imaging, Three-Dimensional - instrumentation Medicine Medicine & Public Health Models, Theoretical Normal Distribution Optical Devices Original Article Pattern Recognition and Graphics Radiology Surgery Vision |
Title | Enriching 3D optical surface scans with prior knowledge: tissue thickness computation by exploiting local neighborhoods |
URI | https://link.springer.com/article/10.1007/s11548-015-1246-6 https://www.ncbi.nlm.nih.gov/pubmed/26122931 https://www.proquest.com/docview/1778708325 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB88BbkX786Puz1PmQOfTgJtk6atb4uuJx53Ty54T6VpEhClK9tdxP_emWy7In6Ab6WkmZJfMvPLzGQCcJCbyOVVVYvU1EYoVRhhfOKEVqaKZJb5og5Zvv_02VidX6aX3Tnuts9270OSQVM_HnZjdk1b31SQTdJCf4C1lMtJ0SQeJ8Ne_ao0C7dqxrmOSWK8DGW-1MVTY_SMYT6Ljgajc_oZNjq2iMMFvF9gxTWb8Km_iQG7hbkJ63-7EPkW3I0aUm3sV0J5gpPb4KvGdj71Ve2wpZFskZ2vSCInU1z61I5wFjBAToC_ZgWIdZAToENzj47T9a44TRqDBcSG3ao0h7gycrsN49PRxfGZ6G5XELVUaiYsGW6f5TrzmaJdReqqwlppPT2SES9sFdcRvZBKammTIrFV5Ik9qMgpQ6McyR1YbSaN-wZoiHNJbZl8eJXmWW5cbrTTiXVOe50OIOqHuay70uN8A8ZN-Vg0mZEpCZmSkSn1AH4tP7ld1N14q_HPHruSVgeHPKrGTeZtGWeskEhr0T98XYC67I6LpxHZiQdw2KNcdgu4fV3W93e13oWPxLD0ItXnB6zOpnO3RyxmZvZhbfj7_5_Rfpi9D-Gj6qo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aFNpc-kjSZPtIp9BTisC2ZNnuLbQJ2zTJKQu5CcuSIKR4l_Uuof--M1p7Q0lTyM0YWWP0STOfZkYjgM-lTXxZ143IbWOFUpUVNmReaGXrRBZFqJqY5XuhxxN1epVf9ee4uyHbfQhJRk19d9iN2TVtfXNBNkkLvQFPOcrIO65JdjSoX5UX8VbNtNQpSUzXocx_dfG3MbrHMO9FR6PROXkFL3q2iEcreF_DE99uw8vhJgbsF-Y2PDvvQ-Q7cHvckmpjvxLK7zidRV81dst5qBuPHY1kh-x8RRI5nePap_YVFxED5AT4G1aA2EQ5ETq0v9Fzut41p0ljtIDYsluV5hBXRu52YXJyfPltLPrbFUQjlVoIR4Y7FKUuQqFoV5H7unJOukCPZMQrV6dNQi-kklq6rMpcnQRiDyrxytIoJ_INbLbT1u8DWuJcUjsmH0HlZVFaX1rtdea810HnI0iGYTZNX3qcb8D4Ze6KJjMyhpAxjIzRIzhcfzJb1d34X-NPA3aGVgeHPOrWT5edSQtWSKS16B_2VqCuu-PiaUR20hF8GVA2_QLuHpb19lGtP8Lz8eX5mTn7cfHzHWwR29KrtJ_3sLmYL_0HYjQLexBn8B-M_Ov5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSouFAqULa9B4gSymsSOk3CraFflVXFgpd6sOLalqii72mSF-PfMOMlWqIDELYocO_Jnz3yeGc8AvC5t4su6bkRuGyuUqqywIfNCK1snsihC1cQo33N9tlAfL_KLsc5pN0W7Ty7J4U4DZ2lq-6OVC0fXF9-YadMxOBekn7TQt-GOIlXNMV2L7HgSxSovYoXNtNQpjZ5u3Zp_6uJ3xXSDbd7wlEYFNL8P90bmiMcD1A_glm_3YW-qyoDjJt2H3S-ju_wh_DhtScyxjQnlCS5X0W6N3WYd6sZjR7PaIRtikYZcrnFrX3uHfcQDORj-ioUhNnGcCCPan-g5dO-SQ6YxakNs2cRK64mzJHePYDE__fb-TIyVFkQjleqFIyUeilIXoVB0wsh9XTknXaBHUuiVq9MmoRdSSS1dVmWuTgIxCZV4ZWmWE_kYdtpl658AWuJfUjsmIkHlZVFaX1rtdea810HnM0imaTbNmIacq2F8N9cJlBkZQ8gYRsboGbzZfrIacnD8q_GrCTtDO4XdH3Xrl5vOpAULJ5Jg9A8HA6jb7jiRGhGfdAZvJ5TNuJm7v491-F-tX8Lu15O5-fzh_NNTuEvESw8RQM9gp19v_HMiN719ERfwL0ZD8D4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enriching+3D+optical+surface+scans+with+prior+knowledge%3A+tissue+thickness+computation+by+exploiting+local+neighborhoods&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Wissel%2C+Tobias&rft.au=St%C3%BCber%2C+Patrick&rft.au=Wagner%2C+Benjamin&rft.au=Bruder%2C+Ralf&rft.date=2016-04-01&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=11&rft.issue=4&rft.spage=569&rft.epage=579&rft_id=info:doi/10.1007%2Fs11548-015-1246-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11548_015_1246_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |