Toe PPG sample extension for supervised machine learning approaches to simultaneously predict type 2 diabetes and peripheral neuropathy
•Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension.•The results demonstrated enhanced accuracy in predicting which elderly subjec...
        Saved in:
      
    
          | Published in | Biomedical signal processing and control Vol. 71; p. 103236 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1746-8094 1746-8108 1746-8108  | 
| DOI | 10.1016/j.bspc.2021.103236 | 
Cover
| Abstract | •Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension.•The results demonstrated enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will and will not develop DPN within six years.•One important future direction of the results is their contribution to the prediction of other diseases through the application of intelligent methods in all areas of biomedical signal processing research.
The rapid increase in machine learning prediction algorithms has generated a strong demand for applications that can successfully predict type 2 diabetes and/or peripheral neuropathy in elderly subjects with metabolic disorders; however, the number of samples is a key issue determining accurate prediction. To address this challenge, streaming data of the instantaneous frequency of the maximal energy (fEmax) were calculated from toe photoplethysmography signals, followed by procedures to increase the quality of the machine learning model. Three important machine learning prediction algorithms (Fisher discriminant analysis, multinomial logistics regression, and artificial neural network) were adopted for proof. The correspondence to all parameters was statistically significant using the streaming data of fEmax, whereas only three were significant when there was no sample extension. The prediction rate of Fisher discriminant analysis, multinomial logistics regression, and artificial neural network increased from 75.30% to 85.43%, 80.07% to 86.30%, and 86.85% to 93.07%, respectively, when the streaming fEmax data were used. This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension, demonstrating enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will develop diabetic peripheral neuropathy (DPN) within six years. | 
    
|---|---|
| AbstractList | •Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension.•The results demonstrated enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will and will not develop DPN within six years.•One important future direction of the results is their contribution to the prediction of other diseases through the application of intelligent methods in all areas of biomedical signal processing research.
The rapid increase in machine learning prediction algorithms has generated a strong demand for applications that can successfully predict type 2 diabetes and/or peripheral neuropathy in elderly subjects with metabolic disorders; however, the number of samples is a key issue determining accurate prediction. To address this challenge, streaming data of the instantaneous frequency of the maximal energy (fEmax) were calculated from toe photoplethysmography signals, followed by procedures to increase the quality of the machine learning model. Three important machine learning prediction algorithms (Fisher discriminant analysis, multinomial logistics regression, and artificial neural network) were adopted for proof. The correspondence to all parameters was statistically significant using the streaming data of fEmax, whereas only three were significant when there was no sample extension. The prediction rate of Fisher discriminant analysis, multinomial logistics regression, and artificial neural network increased from 75.30% to 85.43%, 80.07% to 86.30%, and 86.85% to 93.07%, respectively, when the streaming fEmax data were used. This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension, demonstrating enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will develop diabetic peripheral neuropathy (DPN) within six years. | 
    
| ArticleNumber | 103236 | 
    
| Author | Lu, Chang–Hua Wu, Hsien–Tsai Yang, Cheng–Chan Wei, Hai–Cheng Xiao, Ming–Xia Ta, Na  | 
    
| Author_xml | – sequence: 1 givenname: Ming–Xia surname: Xiao fullname: Xiao, Ming–Xia email: xiao_mx@nmu.edu.cn organization: School of Computer Science and Information Technology, Hefei University of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China – sequence: 2 givenname: Chang–Hua surname: Lu fullname: Lu, Chang–Hua email: jsdzlch@hfut.edu.cn organization: School of Computer Science and Information Technology, Hefei University of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China – sequence: 3 givenname: Na surname: Ta fullname: Ta, Na email: ta_na@nmu.edu.cn organization: School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China – sequence: 4 givenname: Hai–Cheng surname: Wei fullname: Wei, Hai–Cheng email: wei_hc@nun.edu.cn organization: School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China – sequence: 5 givenname: Cheng–Chan surname: Yang fullname: Yang, Cheng–Chan email: joseph9204@yahoo.com.tw organization: Department of Traditional Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan – sequence: 6 givenname: Hsien–Tsai surname: Wu fullname: Wu, Hsien–Tsai email: hsientsaiwu@gmail.com organization: Department of Electrical Engineering, Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan  | 
    
| BookMark | eNqNkM1KAzEUhYMoqNUXcJUXaE0m6XQKbkT8A0EXug53kjs2JU1CklHnCXxtp1Q3LsTVvRzOdxbfMdn3wSMhZ5zNOOP1-XrW5qhnFav4GIhK1HvkiC9kPW04a_Z_fraUh-Q45zVjsllweUQ-nwPSp6dbmmETHVL8KOizDZ52IdHcR0xvNqOhG9Ar65E6hOStf6UQYwpjiJmWQLPd9K6Ax9BnN9CY0FhdaBki0ooaCy2WsQne0HHSxhUmcNRjn0KEshpOyEEHLuPp952Ql5vr56u76cPj7f3V5cNUCynLtF1IqAWICuZNMzdCNJIxBnwpcbFshNGi5noOzDBmOpRL2UqOstaMi6oD3YoJEbvd3kcY3sE5FZPdQBoUZ2rrUq3V1qXaulQ7lyNV7SidQs4Ju_9BzS9I2wJldFsSWPc3erFDcVTxZjGprC16PUpNqIsywf6FfwHJfqUk | 
    
| CitedBy_id | crossref_primary_10_1016_j_imu_2024_101567 crossref_primary_10_1007_s00521_023_09208_2 crossref_primary_10_1016_j_bspc_2023_105367 crossref_primary_10_7717_peerj_cs_2232  | 
    
| Cites_doi | 10.2337/diacare.26.11.3153 10.3109/08037051.2012.681853 10.4239/wjd.v6.i3.432 10.3390/e22070754 10.1016/j.bbe.2018.09.007 10.1155/2013/761617 10.1038/s41598-018-34091-6 10.2337/dc19-S002 10.1111/cpf.12095 10.1186/s12938-018-0457-9 10.3390/electronics9010138 10.1109/TPAMI.2005.127 10.1186/s40537-019-0175-6 10.1186/s12859-020-03719-8 10.3390/diagnostics10010032 10.1109/TBME.2011.2159975 10.1016/S0735-1097(19)33778-7 10.1088/0967-3334/28/3/R01 10.1002/aisy.202000063 10.1007/BF00048682 10.5210/ojphi.v12i1.10611 10.3390/w12071885 10.1016/j.bbe.2021.08.001 10.1155/2020/3764653 10.1038/s41598-020-68771-z 10.3390/ijerph120809408 10.3390/diseases6030081 10.14569/IJACSA.2019.0101212 10.1007/978-3-030-21642-9_41 10.3390/e21121229 10.1177/1932296817706375 10.1002/sim.8666 10.1055/s-0043-100018 10.5551/jat.18655  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 The Author(s) | 
    
| Copyright_xml | – notice: 2021 The Author(s) | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.bspc.2021.103236 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1746-8108 | 
    
| ExternalDocumentID | 10.1016/j.bspc.2021.103236 10_1016_j_bspc_2021_103236 S1746809421008338  | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c344t-b74a63a32a5885d3384000a194e7983dc361c5a0d00dfe494b41e46c0132facb3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1746-8094 1746-8108  | 
    
| IngestDate | Tue Aug 19 18:32:28 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Oct 29 21:12:11 EDT 2025 Fri Feb 23 02:42:33 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Type 2 diabetes Multinomial logistics regression Diabetic peripheral neuropathy (DPN) Machine learning algorithms Photoplethysmography (PPG) Artificial neural network (ANN) Fisher discriminant analysis Instantaneous frequency of the maximal energy (fEmax) Sample extension  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c344t-b74a63a32a5885d3384000a194e7983dc361c5a0d00dfe494b41e46c0132facb3 | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1746809421008338 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_bspc_2021_103236 crossref_primary_10_1016_j_bspc_2021_103236 crossref_citationtrail_10_1016_j_bspc_2021_103236 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103236  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2022 2022-01-00  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Biomedical signal processing and control | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Rosiek, Maciejewska, Leksowski, Rosiek-Kryszewska, Leksowski (b0170) 2015; 12 Kazerouni, Bayani, Asadi, Saeidi, Parvizi, Mansoori (b0070) 2020; 21 Robert Avram, Geoffrey Tison, Peter Kuhar, Gregory Marcus, Mark Pletcher, Jeffrey E. Olgin and Kirstin Aschbacher, Predicting Diabetes from Photoplethysmography Using Deep Learning, Journal of the American College of Cardiology 2019-03-12, Vol. 73 No. 9_Supplement_2. Zubaidi, Ortega-Martorell, Al-Bugharbee, Olier, Hashim, Gharghan, Kot, Al-Khaddar (b0155) 2020; 12 Dagliati, Marini, Sacchi, Cogni, Teliti, Tibollo, De Cata, Chiovato, Bellazzi (b0200) 2018; 12 Alshammari, Atiyah, Daghistani, Alshammari (b0075) 2020; 12 Harrell (b0120) 2015 Zhang, T.; Lv, C.F.; Li, L.L.; Chen, S.H.; Liu, S.L.; Wang, C.Y.; Su, B. Plasma miR-126 Is a Potential Biomarker for Early Prediction of Type 2 Diabetes Mellitus in Susceptible Individuals. BioMed Research International 2013, Article ID 761617. doi: 10.1155/2013/761617. Wei, Hu, Ta, Xiao, Tang, Wu (b0050) 2020; 22 Kopitar, Kocbek, Cilar, Sheikh, Stiglic (b0060) 2020; 10 Wu, Hsu, Liu, Chen, Huang, Chen, Tang, Sun (b0150) 2012; 21 Centers for Disease Control and Prevention, National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, 2020. Wei, Xiao, Chen, Li, Wu, Sun (b0115) 2018; 8 Carlos Lorenzo; Mayor Okoloise; Ken Williams; Stern, M.P.; Haffner, S.M. The metabolic syndrome as predictor of type 2 diabetes. Diabetes Care 2003, 26, 11, 3153-3159. Qawqzeh (b0100) 2019; 10 Jung, Young Kwon, Han, Park (b0180) 2014; 21 Allen John Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007, 28, 3, R1–39. doi: 10.1088/0967-3334/28/3/R01. Castaneda, Esparza, Ghamari, Soltanpur, Nazeran (b0215) 2018; 4 Wei, Ta, Hu, Xiao, Tang, Haryadi, Liou, Wu (b0045) 2019; 21 Limberg, Johansson, McBride, Schrage (b0185) 2014; 34 Sneha, Gangil (b0040) 2019; 6 Wei, Li, Wu, Xiao, Tang, Chen, Wu (b0140) 2020; 9 Yousef K. Qawqzeh, Abdullah S. Bajahzar, Mahdi Jemmali, Mohammad Mahmood Otoom, Adel Thaljaoui, “Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling”, BioMed Research International 2020, vol. 2020, Article ID 3764653, 6 pages. https://doi.org/10.1155/2020/3764653. Birjais, Mourya, Chauhan, Kaur (b0065) 2019; 1 Diabetes Canada Clinical Practice Guidelines Expert Committee (b0030) 2018; 42 Wu, Hsu, Lin, Wang, Sun, Liu, Lo, Tang (b0145) 2011; 58 Hettiarachchi C., Chitraranjan C. A Machine Learning Approach to Predict Diabetes Using Short Recorded Photoplethysmography and Physiological Characteristics. In: Ria?o D., Wilk S., ten Teije A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science, vol. 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_41. American Diabetes Association (b0005) 2019; 42 Bentham, Stansby, Allen (b0220) 2018; 6 Balaji Krishnapuram, Lawrence Carin, Ma?rio A.T. Figueiredo, and Alexander J. Hartemink Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds, IEEE Trans. on pattern analysis and machine intelligence 2005, 27, 6, 957–968. Bohning (b0130) 1992; 44 Xiao, Lu, Ta, Wei, Haryadi, Wu (b0110) 2021; 41 Li, Zhao, Gao, Rao, Hao, Jian, Li, Tang, Li (b0015) 2017; 125 Wei, Ta, Hu, Wang, Xiao, Tang, Chen, Wu (b0025) 2020; 10 Schreiber, Nones, Reis, Chichorro, Cunha (b0020) 2015; 6 Petrie, Guzik, Touyz (b0175) 2018; 34 Ha, Xu, Ren, Mitchell, Ou (b0105) 2020; 2 Prosperi, Min, Bian, Modave (b0055) 2018; 18 Wang, Hsu (b0135) 2020; 39 Lee, Han, Kim, Koh, Kim, Nam, Kwon (b0160) 2020; 10 An, Kang, Lee, Ahn, Kwon, Choi (b0190) 2018; 17 Metsker, Magoev, Yanishevskiy, Yakovlev, Kopanitsa, Zvartau (b0195) 2020 Sep; 4 Vuppala, Varier, Khare (b0205) 2021; vol 1353 Nirala, Periyasamy, Singh, Kumar (b0085) 2019; 39 10.1016/j.bspc.2021.103236_b0080 Prosperi (10.1016/j.bspc.2021.103236_b0055) 2018; 18 Qawqzeh (10.1016/j.bspc.2021.103236_b0100) 2019; 10 Diabetes Canada Clinical Practice Guidelines Expert Committee (10.1016/j.bspc.2021.103236_b0030) 2018; 42 10.1016/j.bspc.2021.103236_b0165 Wang (10.1016/j.bspc.2021.103236_b0135) 2020; 39 10.1016/j.bspc.2021.103236_b0125 Jung (10.1016/j.bspc.2021.103236_b0180) 2014; 21 Birjais (10.1016/j.bspc.2021.103236_b0065) 2019; 1 Harrell (10.1016/j.bspc.2021.103236_b0120) 2015 Wei (10.1016/j.bspc.2021.103236_b0045) 2019; 21 Lee (10.1016/j.bspc.2021.103236_b0160) 2020; 10 Ha (10.1016/j.bspc.2021.103236_b0105) 2020; 2 Wei (10.1016/j.bspc.2021.103236_b0115) 2018; 8 An (10.1016/j.bspc.2021.103236_b0190) 2018; 17 Alshammari (10.1016/j.bspc.2021.103236_b0075) 2020; 12 Bohning (10.1016/j.bspc.2021.103236_b0130) 1992; 44 Limberg (10.1016/j.bspc.2021.103236_b0185) 2014; 34 Li (10.1016/j.bspc.2021.103236_b0015) 2017; 125 Wei (10.1016/j.bspc.2021.103236_b0025) 2020; 10 Nirala (10.1016/j.bspc.2021.103236_b0085) 2019; 39 Wu (10.1016/j.bspc.2021.103236_b0145) 2011; 58 Metsker (10.1016/j.bspc.2021.103236_b0195) 2020; 4 Castaneda (10.1016/j.bspc.2021.103236_b0215) 2018; 4 10.1016/j.bspc.2021.103236_b0090 10.1016/j.bspc.2021.103236_b0095 Petrie (10.1016/j.bspc.2021.103236_b0175) 2018; 34 Vuppala (10.1016/j.bspc.2021.103236_b0205) 2021; vol 1353 10.1016/j.bspc.2021.103236_b0010 Xiao (10.1016/j.bspc.2021.103236_b0110) 2021; 41 Dagliati (10.1016/j.bspc.2021.103236_b0200) 2018; 12 Wei (10.1016/j.bspc.2021.103236_b0140) 2020; 9 Rosiek (10.1016/j.bspc.2021.103236_b0170) 2015; 12 10.1016/j.bspc.2021.103236_b0035 Kazerouni (10.1016/j.bspc.2021.103236_b0070) 2020; 21 Kopitar (10.1016/j.bspc.2021.103236_b0060) 2020; 10 10.1016/j.bspc.2021.103236_b0210 Wei (10.1016/j.bspc.2021.103236_b0050) 2020; 22 Zubaidi (10.1016/j.bspc.2021.103236_b0155) 2020; 12 American Diabetes Association (10.1016/j.bspc.2021.103236_b0005) 2019; 42 Schreiber (10.1016/j.bspc.2021.103236_b0020) 2015; 6 Sneha (10.1016/j.bspc.2021.103236_b0040) 2019; 6 Bentham (10.1016/j.bspc.2021.103236_b0220) 2018; 6 Wu (10.1016/j.bspc.2021.103236_b0150) 2012; 21  | 
    
| References_xml | – volume: 12 start-page: 9408 year: 2015 end-page: 9426 ident: b0170 article-title: ?. Effect of Television on Obesity and Excess of Weight and Consequences of Health publication-title: Int. J. Environ. Res. Public Health – volume: 10 year: 2020 ident: b0160 article-title: Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study publication-title: Sci. Rep. – volume: 34 start-page: 282 year: 2014 end-page: 289 ident: b0185 article-title: Increased leg blood flow and improved femoral artery shear patterns in metabolic syndrome after a diet and exercise program publication-title: Clin. Physiol. Funct. Imaging – volume: 10 start-page: 32 year: 2020 ident: b0025 article-title: Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects publication-title: Diagnostics – volume: 21 year: 2020 ident: b0070 article-title: Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches publication-title: BMC Bioinf. – volume: 2 start-page: 2000063 year: 2020 ident: b0105 article-title: Machine Learning-Enabled Smart Sensor Systems publication-title: Adv. Intell. Syst. – volume: 34 start-page: 575 year: 2018 end-page: 584 ident: b0175 article-title: Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms publication-title: Can. J. Cardiol. – volume: 42 start-page: S13 year: 2019 end-page: S28 ident: b0005 article-title: Classification and diagnosis of diabetes publication-title: Diabetes Care – volume: 125 start-page: 377 year: 2017 end-page: 383 ident: b0015 article-title: The Diagnostic Value of Whole Blood lncRNA ENST00000550337.1 for Pre-Diabetes and Type 2 Diabetes Mellitus publication-title: Exp. Clin. Endocrinol. Diabetes – volume: 21 start-page: 1229 year: 2019 ident: b0045 article-title: Digital volume pulse measured at the fingertip as an indicator of diabetic peripheral neuropathy in the aged and diabetic publication-title: Entropy – volume: 10 start-page: 12 year: 2019 ident: b0100 article-title: Neural Network-based Diabetic Type II High-Risk Prediction using Photoplethysmogram Waveform Analysis publication-title: Int. J. Adv. Comput. Sci. Applications – reference: Robert Avram, Geoffrey Tison, Peter Kuhar, Gregory Marcus, Mark Pletcher, Jeffrey E. Olgin and Kirstin Aschbacher, Predicting Diabetes from Photoplethysmography Using Deep Learning, Journal of the American College of Cardiology 2019-03-12, Vol. 73 No. 9_Supplement_2. – volume: 4 start-page: 136 year: 2020 Sep end-page: 141 ident: b0195 article-title: Identification of Diabetes Risk Factors in Chronic Cardiovascular Patients publication-title: Stud. Health Technol. Inform. – volume: 8 start-page: 15771 year: 2018 ident: b0115 article-title: Instantaneous frequency from Hilbert-Huang transformation of digital volume pulse as indicator of diabetes and arterial stiffness in upper-middle-aged subjects publication-title: Sci. Rep. – volume: 6 start-page: 13 year: 2019 ident: b0040 article-title: Analysis of diabetes mellitus for early prediction using optimal features selection publication-title: J. Big Data – reference: Balaji Krishnapuram, Lawrence Carin, Ma?rio A.T. Figueiredo, and Alexander J. Hartemink Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds, IEEE Trans. on pattern analysis and machine intelligence 2005, 27, 6, 957–968. – volume: 6 start-page: 81 year: 2018 ident: b0220 article-title: Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease publication-title: Diseases – volume: 44 start-page: 197 year: 1992 end-page: 200 ident: b0130 article-title: Multinomial logistic regression algorithm publication-title: Ann. Inst. Stat. Math. – reference: Carlos Lorenzo; Mayor Okoloise; Ken Williams; Stern, M.P.; Haffner, S.M. The metabolic syndrome as predictor of type 2 diabetes. Diabetes Care 2003, 26, 11, 3153-3159. – volume: vol 1353 year: 2021 ident: b0205 article-title: Diabetes Prediction Using Machine Learning Techniques publication-title: Intelligent Systems, Technologies and Applications. Advances in Intelligent Systems and Computing – volume: 10 year: 2020 ident: b0060 article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models publication-title: Sci. Rep. – volume: 21 start-page: 167 year: 2012 end-page: 176 ident: b0150 article-title: Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness publication-title: Blood Press. – volume: 4 start-page: 195 year: 2018 end-page: 202 ident: b0215 article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care publication-title: Int. J. Biosens. Bioelectron. – volume: 39 start-page: 3299 year: 2020 end-page: 3312 ident: b0135 article-title: Multinomial logistic regression with missing outcome data: An application to cancer subtypes publication-title: Stat. Med. – volume: 41 start-page: 1140 year: 2021 end-page: 1149 ident: b0110 article-title: Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices publication-title: Biocybernet. Biomed. Eng. – volume: 17 start-page: 25 year: 2018 ident: b0190 article-title: Blood flow characteristics of diabetic patients with complications detected by optical measurement publication-title: Biomed. Eng. Online – volume: 42 start-page: S1 year: 2018 end-page: S325 ident: b0030 article-title: Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada publication-title: Can. J. Diabetes – start-page: 103 year: 2015 end-page: 126 ident: b0120 article-title: Describing, resampling, validating, and simplifying the model publication-title: Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis – volume: 12 start-page: 1885 year: 2020 ident: b0155 article-title: Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study publication-title: Water – reference: Yousef K. Qawqzeh, Abdullah S. Bajahzar, Mahdi Jemmali, Mohammad Mahmood Otoom, Adel Thaljaoui, “Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling”, BioMed Research International 2020, vol. 2020, Article ID 3764653, 6 pages. https://doi.org/10.1155/2020/3764653. – reference: Allen John Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007, 28, 3, R1–39. doi: 10.1088/0967-3334/28/3/R01. – volume: 18 year: 2018 ident: b0055 article-title: Big data hurdles in precision medicine and precision public health publication-title: BMC Med. Inf. Decis. Making – volume: 12 year: 2020 ident: b0075 article-title: Improving Accuracy for Diabetes Mellitus Prediction by Using Deepnet publication-title: Online J. Public Health Inform. – volume: 9 start-page: 138 year: 2020 ident: b0140 article-title: New application of an instantaneous frequency parameter for assessing far infrared fabric effect in aged subjects publication-title: Electronics – volume: 21 start-page: 435 year: 2014 end-page: 444 ident: b0180 article-title: Metabolic Syndrome and Early Carotid Atherosclerosis in the Elderly publication-title: J. Atherosclerosis Thrombosis – volume: 12 start-page: 295 year: 2018 end-page: 302 ident: b0200 article-title: Machine Learning Methods to Predict Diabetes Complications publication-title: J. Diabetes Sci. Technol. – volume: 58 start-page: 2978 year: 2011 end-page: 2981 ident: b0145 article-title: Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic publication-title: IEEE Trans. Biomed. Eng. – volume: 22 start-page: 754 year: 2020 ident: b0050 article-title: Prognosis of diabetic peripheral neuropathy via decomposed digital volume pulse from the fingertip publication-title: Entropy – reference: Zhang, T.; Lv, C.F.; Li, L.L.; Chen, S.H.; Liu, S.L.; Wang, C.Y.; Su, B. Plasma miR-126 Is a Potential Biomarker for Early Prediction of Type 2 Diabetes Mellitus in Susceptible Individuals. BioMed Research International 2013, Article ID 761617. doi: 10.1155/2013/761617. – volume: 1 year: 2019 ident: b0065 article-title: Prediction and diagnosis of future diabetes risk: a machine learning approach. publication-title: Appl. Sci. – reference: Hettiarachchi C., Chitraranjan C. A Machine Learning Approach to Predict Diabetes Using Short Recorded Photoplethysmography and Physiological Characteristics. In: Ria?o D., Wilk S., ten Teije A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science, vol. 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_41. – volume: 39 start-page: 38 year: 2019 end-page: 51 ident: b0085 article-title: Periyasamy, Bikesh Kumar Singh, Awanish Kumar, Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine publication-title: Biocybernet. Biomed. Eng. – reference: Centers for Disease Control and Prevention, National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, 2020. – volume: 6 start-page: 432 year: 2015 end-page: 444 ident: b0020 article-title: Diabetic neuropathic pain: Physiopathology and treatment publication-title: World J. Diabetes – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0160 article-title: Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study publication-title: Sci. Rep. – ident: 10.1016/j.bspc.2021.103236_b0010 – ident: 10.1016/j.bspc.2021.103236_b0165 doi: 10.2337/diacare.26.11.3153 – volume: 21 start-page: 167 year: 2012 ident: 10.1016/j.bspc.2021.103236_b0150 article-title: Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness publication-title: Blood Press. doi: 10.3109/08037051.2012.681853 – volume: 6 start-page: 432 year: 2015 ident: 10.1016/j.bspc.2021.103236_b0020 article-title: Diabetic neuropathic pain: Physiopathology and treatment publication-title: World J. Diabetes doi: 10.4239/wjd.v6.i3.432 – volume: 4 start-page: 136 issue: 273 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0195 article-title: Identification of Diabetes Risk Factors in Chronic Cardiovascular Patients publication-title: Stud. Health Technol. Inform. – volume: 22 start-page: 754 issue: 7 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0050 article-title: Prognosis of diabetic peripheral neuropathy via decomposed digital volume pulse from the fingertip publication-title: Entropy doi: 10.3390/e22070754 – volume: 39 start-page: 38 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.103236_b0085 article-title: Periyasamy, Bikesh Kumar Singh, Awanish Kumar, Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine publication-title: Biocybernet. Biomed. Eng. doi: 10.1016/j.bbe.2018.09.007 – volume: vol 1353 year: 2021 ident: 10.1016/j.bspc.2021.103236_b0205 article-title: Diabetes Prediction Using Machine Learning Techniques – volume: 4 start-page: 195 issue: 4 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0215 article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care publication-title: Int. J. Biosens. Bioelectron. – ident: 10.1016/j.bspc.2021.103236_b0035 doi: 10.1155/2013/761617 – volume: 8 start-page: 15771 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0115 article-title: Instantaneous frequency from Hilbert-Huang transformation of digital volume pulse as indicator of diabetes and arterial stiffness in upper-middle-aged subjects publication-title: Sci. Rep. doi: 10.1038/s41598-018-34091-6 – volume: 42 start-page: S13 issue: Supplement 1 year: 2019 ident: 10.1016/j.bspc.2021.103236_b0005 article-title: Classification and diagnosis of diabetes publication-title: Diabetes Care doi: 10.2337/dc19-S002 – start-page: 103 year: 2015 ident: 10.1016/j.bspc.2021.103236_b0120 article-title: Describing, resampling, validating, and simplifying the model – volume: 34 start-page: 282 issue: 4 year: 2014 ident: 10.1016/j.bspc.2021.103236_b0185 article-title: Increased leg blood flow and improved femoral artery shear patterns in metabolic syndrome after a diet and exercise program publication-title: Clin. Physiol. Funct. Imaging doi: 10.1111/cpf.12095 – volume: 34 start-page: 575 issue: 5 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0175 article-title: Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms publication-title: Can. J. Cardiol. – volume: 17 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0190 article-title: Blood flow characteristics of diabetic patients with complications detected by optical measurement publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0457-9 – volume: 9 start-page: 138 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0140 article-title: New application of an instantaneous frequency parameter for assessing far infrared fabric effect in aged subjects publication-title: Electronics doi: 10.3390/electronics9010138 – ident: 10.1016/j.bspc.2021.103236_b0125 doi: 10.1109/TPAMI.2005.127 – volume: 6 start-page: 13 year: 2019 ident: 10.1016/j.bspc.2021.103236_b0040 article-title: Analysis of diabetes mellitus for early prediction using optimal features selection publication-title: J. Big Data doi: 10.1186/s40537-019-0175-6 – volume: 21 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0070 article-title: Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches publication-title: BMC Bioinf. doi: 10.1186/s12859-020-03719-8 – volume: 1 issue: 9 year: 2019 ident: 10.1016/j.bspc.2021.103236_b0065 article-title: Prediction and diagnosis of future diabetes risk: a machine learning approach. SN publication-title: Appl. Sci. – volume: 10 start-page: 32 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0025 article-title: Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects publication-title: Diagnostics doi: 10.3390/diagnostics10010032 – volume: 58 start-page: 2978 year: 2011 ident: 10.1016/j.bspc.2021.103236_b0145 article-title: Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2159975 – ident: 10.1016/j.bspc.2021.103236_b0095 doi: 10.1016/S0735-1097(19)33778-7 – ident: 10.1016/j.bspc.2021.103236_b0210 doi: 10.1088/0967-3334/28/3/R01 – volume: 2 start-page: 2000063 issue: 9 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0105 article-title: Machine Learning-Enabled Smart Sensor Systems publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000063 – volume: 44 start-page: 197 issue: 1 year: 1992 ident: 10.1016/j.bspc.2021.103236_b0130 article-title: Multinomial logistic regression algorithm publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF00048682 – volume: 12 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0075 article-title: Improving Accuracy for Diabetes Mellitus Prediction by Using Deepnet publication-title: Online J. Public Health Inform. doi: 10.5210/ojphi.v12i1.10611 – volume: 12 start-page: 1885 issue: 7 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0155 article-title: Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study publication-title: Water doi: 10.3390/w12071885 – volume: 41 start-page: 1140 issue: 3 year: 2021 ident: 10.1016/j.bspc.2021.103236_b0110 article-title: Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices publication-title: Biocybernet. Biomed. Eng. doi: 10.1016/j.bbe.2021.08.001 – ident: 10.1016/j.bspc.2021.103236_b0090 doi: 10.1155/2020/3764653 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0060 article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models publication-title: Sci. Rep. doi: 10.1038/s41598-020-68771-z – volume: 12 start-page: 9408 issue: 8 year: 2015 ident: 10.1016/j.bspc.2021.103236_b0170 article-title: ?. Effect of Television on Obesity and Excess of Weight and Consequences of Health publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph120809408 – volume: 6 start-page: 81 issue: 3 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0220 article-title: Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease publication-title: Diseases doi: 10.3390/diseases6030081 – volume: 10 start-page: 12 year: 2019 ident: 10.1016/j.bspc.2021.103236_b0100 article-title: Neural Network-based Diabetic Type II High-Risk Prediction using Photoplethysmogram Waveform Analysis publication-title: Int. J. Adv. Comput. Sci. Applications doi: 10.14569/IJACSA.2019.0101212 – ident: 10.1016/j.bspc.2021.103236_b0080 doi: 10.1007/978-3-030-21642-9_41 – volume: 42 start-page: S1 issue: Suppl 1 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0030 article-title: Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada publication-title: Can. J. Diabetes – volume: 21 start-page: 1229 issue: 12 year: 2019 ident: 10.1016/j.bspc.2021.103236_b0045 article-title: Digital volume pulse measured at the fingertip as an indicator of diabetic peripheral neuropathy in the aged and diabetic publication-title: Entropy doi: 10.3390/e21121229 – volume: 12 start-page: 295 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0200 article-title: Machine Learning Methods to Predict Diabetes Complications publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296817706375 – volume: 18 issue: 1 year: 2018 ident: 10.1016/j.bspc.2021.103236_b0055 article-title: Big data hurdles in precision medicine and precision public health publication-title: BMC Med. Inf. Decis. Making – volume: 39 start-page: 3299 issue: 24 year: 2020 ident: 10.1016/j.bspc.2021.103236_b0135 article-title: Multinomial logistic regression with missing outcome data: An application to cancer subtypes publication-title: Stat. Med. doi: 10.1002/sim.8666 – volume: 125 start-page: 377 issue: 6 year: 2017 ident: 10.1016/j.bspc.2021.103236_b0015 article-title: The Diagnostic Value of Whole Blood lncRNA ENST00000550337.1 for Pre-Diabetes and Type 2 Diabetes Mellitus publication-title: Exp. Clin. Endocrinol. Diabetes doi: 10.1055/s-0043-100018 – volume: 21 start-page: 435 issue: 5 year: 2014 ident: 10.1016/j.bspc.2021.103236_b0180 article-title: Metabolic Syndrome and Early Carotid Atherosclerosis in the Elderly publication-title: J. Atherosclerosis Thrombosis doi: 10.5551/jat.18655  | 
    
| SSID | ssj0048714 | 
    
| Score | 2.3241422 | 
    
| Snippet | •Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 103236 | 
    
| SubjectTerms | Artificial neural network (ANN) Diabetic peripheral neuropathy (DPN) Fisher discriminant analysis Instantaneous frequency of the maximal energy (fEmax) Machine learning algorithms Multinomial logistics regression Photoplethysmography (PPG) Sample extension Type 2 diabetes  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeD7h7Eg29RUZmDN-3SR5q2RxEfCMoedkFPJa-KWrvFtsj6BfzaZvqQVVT01kPS0mSa_DuZ-Q0hB8qIEJVo37K5rSwqmLIiIaWF6j5xAm0-MvR3XF2zizG9vPFvWkwO5sJ8Or-v47BEkSNq0HUwP9z12DzpM9_o7h7pj6-Hx7dNxiNSdeuqh821Y4dthsz3N_lpF1qospxPX3iazuwyZ8tNuaKihhNicMnjoCrFQL5-QTf-7QVWyFIrNuG4sY5VMqezNbI4gyBcJ2-jiYbh8BwKjpxgqJ3i6EEDo2ahqHJcSwqt4KmOutTQlpm4g45GrgsoJ1DcY2giz_SkKtIp5M94AFQCenjBhc7DCzxTgGzlGmaQQk3TxKLI0w0yPjsdnVxYbXEGS3qUlpYIKGce91zuh6GvzJ-uWQ1s7kRUB1HoKekxR_rGAGpboBEV1NGUSTzbSbgU3ibpZZNMbxFweUA19QMnkYxKqkItGadCJ2aatR2JbeJ0kxXLllyOBTTSuAtRe4hxkGMc5LgZ5G1y-NEnb7gdv7b2OxuIW-XRKIrYTOev_Y4-DOYPj9n5X_Nd0iufK71nVE8p9ltzfwd-mP8o priority: 102 providerName: Unpaywall  | 
    
| Title | Toe PPG sample extension for supervised machine learning approaches to simultaneously predict type 2 diabetes and peripheral neuropathy | 
    
| URI | https://dx.doi.org/10.1016/j.bspc.2021.103236 https://doi.org/10.1016/j.bspc.2021.103236  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 71 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBahO7Q9jK1badctvENvnZfYlmX7GMq6rKUh0ATak9EvlxTPNrXNyKXX_dvTk-2QwiijJ4ORkNEnPX1-eu97hJwqQ0JUqgNnzMfKoYIpJxZSOsjuUzfUZpOhv-N6xqZLenkb3A7IeZ8Lg2GVne1vbbq11t2bUTebo3K1Gt0YLs0i83fioT6N-dPCDHYaYhWDb0-bMA_Dx62-NzZ2sHWXONPGeImqRBlDz8Xcc8_KNP_zcNpt8pKvf_Ms2zp8Lt6Rtx1rhEn7Ye_JQOcHZH9LS_AD-bMoNMznP6DiKPgL1ruNrjAwtBSqpkSjUGkFv2z4pIauXsQ99LLiuoK6gGqFMYY810VTZWsoH_EmpwZ01YIHvasWeK4ARZKtKkEGVhYTqxuvP5LlxffF-dTpqiw40qe0dkRIOfO57_EgigJlJtJs6zF3Y6rDOPKV9JkrA4OkBZXGVFBXUybxkiblUviHZCcvcn1EwOMh1TQI3VQyKqmKtGScCp0GMdPjWBwTt5_eRHYS5FgJI0v6WLOHBCFJEJKkheSYnG36lK0Ax4utgx615NkySswJ8WK_rxuI_2OYT68c5oTseZg-YV04n8lO_djoL4bU1GJoV-2QvJn8vJrOzHM5m0_u_gLCIPmW | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZge4AeUMtD3ULbOXCDsJvEdpIjQqXb8hASi8Qt8itoUZqNNlmhvXDlb-NxkhVICFW9RrYc-bPHn8cz3xCyry0J0Zlh3lAMtUcl114ilfKQ3Wd-ZOwmQ3_HxSUf3dA_t-x2hZx0uTAYVtna_samO2vdfhm0szkoJ5PBteXSPLa3kwD1aexNa5V8oCyI8AZ29LiM87CE3Al8Y2sPm7eZM02Ql6xK1DEMfEw-D5xO85un09q8KMXiQeT5i9Pn9BPZaGkjHDd_9pmsmGKTfHwhJrhFnsZTA1dXv6ASqPgLzr2NvjCwvBSqeYlWoTIa_rr4SQNtwYg76HTFTQX1FKoJBhmKwkznVb6AcoZPOTWgrxYC6Hy1IAoNqJLsZAlycLqYWN54sU1uTn-OT0ZeW2bBUyGltScjKngowkCwOGbazqTd10PhJ9RESRxqFXJfMQulQ5UmVFLfUK7wlSYTSoY7pFdMC_OFQCAiaiiL_ExxqqiOjeKCSpOxhJthIvvE76Y3Va0GOZbCyNMu2Ow-RUhShCRtIOmTg2WfslHgeLc161BLX62j1B4R7_Y7XEL8D8N8_c9hfpC10fjiPD3_fXm2S9YDzKVw_pw90qtnc_PNMpxafncr-Bm1S_l7 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeD7h7Eg29RUZmDN-3SR5q2RxEfCMoedkFPJa-KWrvFtsj6BfzaZvqQVVT01kPS0mSa_DuZ-Q0hB8qIEJVo37K5rSwqmLIiIaWF6j5xAm0-MvR3XF2zizG9vPFvWkwO5sJ8Or-v47BEkSNq0HUwP9z12DzpM9_o7h7pj6-Hx7dNxiNSdeuqh821Y4dthsz3N_lpF1qospxPX3iazuwyZ8tNuaKihhNicMnjoCrFQL5-QTf-7QVWyFIrNuG4sY5VMqezNbI4gyBcJ2-jiYbh8BwKjpxgqJ3i6EEDo2ahqHJcSwqt4KmOutTQlpm4g45GrgsoJ1DcY2giz_SkKtIp5M94AFQCenjBhc7DCzxTgGzlGmaQQk3TxKLI0w0yPjsdnVxYbXEGS3qUlpYIKGce91zuh6GvzJ-uWQ1s7kRUB1HoKekxR_rGAGpboBEV1NGUSTzbSbgU3ibpZZNMbxFweUA19QMnkYxKqkItGadCJ2aatR2JbeJ0kxXLllyOBTTSuAtRe4hxkGMc5LgZ5G1y-NEnb7gdv7b2OxuIW-XRKIrYTOev_Y4-DOYPj9n5X_Nd0iufK71nVE8p9ltzfwd-mP8o | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toe+PPG+sample+extension+for+supervised+machine+learning+approaches+to+simultaneously+predict+type+2+diabetes+and+peripheral+neuropathy&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Xiao%2C+Ming%E2%80%93Xia&rft.au=Lu%2C+Chang%E2%80%93Hua&rft.au=Ta%2C+Na&rft.au=Wei%2C+Hai%E2%80%93Cheng&rft.date=2022-01-01&rft.issn=1746-8094&rft.volume=71&rft.spage=103236&rft_id=info:doi/10.1016%2Fj.bspc.2021.103236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103236 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |