Toe PPG sample extension for supervised machine learning approaches to simultaneously predict type 2 diabetes and peripheral neuropathy

•Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension.•The results demonstrated enhanced accuracy in predicting which elderly subjec...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 71; p. 103236
Main Authors Xiao, Ming–Xia, Lu, Chang–Hua, Ta, Na, Wei, Hai–Cheng, Yang, Cheng–Chan, Wu, Hsien–Tsai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
1746-8108
DOI10.1016/j.bspc.2021.103236

Cover

Abstract •Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension.•The results demonstrated enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will and will not develop DPN within six years.•One important future direction of the results is their contribution to the prediction of other diseases through the application of intelligent methods in all areas of biomedical signal processing research. The rapid increase in machine learning prediction algorithms has generated a strong demand for applications that can successfully predict type 2 diabetes and/or peripheral neuropathy in elderly subjects with metabolic disorders; however, the number of samples is a key issue determining accurate prediction. To address this challenge, streaming data of the instantaneous frequency of the maximal energy (fEmax) were calculated from toe photoplethysmography signals, followed by procedures to increase the quality of the machine learning model. Three important machine learning prediction algorithms (Fisher discriminant analysis, multinomial logistics regression, and artificial neural network) were adopted for proof. The correspondence to all parameters was statistically significant using the streaming data of fEmax, whereas only three were significant when there was no sample extension. The prediction rate of Fisher discriminant analysis, multinomial logistics regression, and artificial neural network increased from 75.30% to 85.43%, 80.07% to 86.30%, and 86.85% to 93.07%, respectively, when the streaming fEmax data were used. This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension, demonstrating enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will develop diabetic peripheral neuropathy (DPN) within six years.
AbstractList •Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension.•The results demonstrated enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will and will not develop DPN within six years.•One important future direction of the results is their contribution to the prediction of other diseases through the application of intelligent methods in all areas of biomedical signal processing research. The rapid increase in machine learning prediction algorithms has generated a strong demand for applications that can successfully predict type 2 diabetes and/or peripheral neuropathy in elderly subjects with metabolic disorders; however, the number of samples is a key issue determining accurate prediction. To address this challenge, streaming data of the instantaneous frequency of the maximal energy (fEmax) were calculated from toe photoplethysmography signals, followed by procedures to increase the quality of the machine learning model. Three important machine learning prediction algorithms (Fisher discriminant analysis, multinomial logistics regression, and artificial neural network) were adopted for proof. The correspondence to all parameters was statistically significant using the streaming data of fEmax, whereas only three were significant when there was no sample extension. The prediction rate of Fisher discriminant analysis, multinomial logistics regression, and artificial neural network increased from 75.30% to 85.43%, 80.07% to 86.30%, and 86.85% to 93.07%, respectively, when the streaming fEmax data were used. This study is a novel attempt to establish clinical multi-prediction through the application of toe PPG sample extension, demonstrating enhanced accuracy in predicting which elderly subjects among those with type 2 diabetes will develop diabetic peripheral neuropathy (DPN) within six years.
ArticleNumber 103236
Author Lu, Chang–Hua
Wu, Hsien–Tsai
Yang, Cheng–Chan
Wei, Hai–Cheng
Xiao, Ming–Xia
Ta, Na
Author_xml – sequence: 1
  givenname: Ming–Xia
  surname: Xiao
  fullname: Xiao, Ming–Xia
  email: xiao_mx@nmu.edu.cn
  organization: School of Computer Science and Information Technology, Hefei University of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China
– sequence: 2
  givenname: Chang–Hua
  surname: Lu
  fullname: Lu, Chang–Hua
  email: jsdzlch@hfut.edu.cn
  organization: School of Computer Science and Information Technology, Hefei University of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China
– sequence: 3
  givenname: Na
  surname: Ta
  fullname: Ta, Na
  email: ta_na@nmu.edu.cn
  organization: School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China
– sequence: 4
  givenname: Hai–Cheng
  surname: Wei
  fullname: Wei, Hai–Cheng
  email: wei_hc@nun.edu.cn
  organization: School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China
– sequence: 5
  givenname: Cheng–Chan
  surname: Yang
  fullname: Yang, Cheng–Chan
  email: joseph9204@yahoo.com.tw
  organization: Department of Traditional Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
– sequence: 6
  givenname: Hsien–Tsai
  surname: Wu
  fullname: Wu, Hsien–Tsai
  email: hsientsaiwu@gmail.com
  organization: Department of Electrical Engineering, Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan
BookMark eNqNkM1KAzEUhYMoqNUXcJUXaE0m6XQKbkT8A0EXug53kjs2JU1CklHnCXxtp1Q3LsTVvRzOdxbfMdn3wSMhZ5zNOOP1-XrW5qhnFav4GIhK1HvkiC9kPW04a_Z_fraUh-Q45zVjsllweUQ-nwPSp6dbmmETHVL8KOizDZ52IdHcR0xvNqOhG9Ar65E6hOStf6UQYwpjiJmWQLPd9K6Ax9BnN9CY0FhdaBki0ooaCy2WsQne0HHSxhUmcNRjn0KEshpOyEEHLuPp952Ql5vr56u76cPj7f3V5cNUCynLtF1IqAWICuZNMzdCNJIxBnwpcbFshNGi5noOzDBmOpRL2UqOstaMi6oD3YoJEbvd3kcY3sE5FZPdQBoUZ2rrUq3V1qXaulQ7lyNV7SidQs4Ju_9BzS9I2wJldFsSWPc3erFDcVTxZjGprC16PUpNqIsywf6FfwHJfqUk
CitedBy_id crossref_primary_10_1016_j_imu_2024_101567
crossref_primary_10_1007_s00521_023_09208_2
crossref_primary_10_1016_j_bspc_2023_105367
crossref_primary_10_7717_peerj_cs_2232
Cites_doi 10.2337/diacare.26.11.3153
10.3109/08037051.2012.681853
10.4239/wjd.v6.i3.432
10.3390/e22070754
10.1016/j.bbe.2018.09.007
10.1155/2013/761617
10.1038/s41598-018-34091-6
10.2337/dc19-S002
10.1111/cpf.12095
10.1186/s12938-018-0457-9
10.3390/electronics9010138
10.1109/TPAMI.2005.127
10.1186/s40537-019-0175-6
10.1186/s12859-020-03719-8
10.3390/diagnostics10010032
10.1109/TBME.2011.2159975
10.1016/S0735-1097(19)33778-7
10.1088/0967-3334/28/3/R01
10.1002/aisy.202000063
10.1007/BF00048682
10.5210/ojphi.v12i1.10611
10.3390/w12071885
10.1016/j.bbe.2021.08.001
10.1155/2020/3764653
10.1038/s41598-020-68771-z
10.3390/ijerph120809408
10.3390/diseases6030081
10.14569/IJACSA.2019.0101212
10.1007/978-3-030-21642-9_41
10.3390/e21121229
10.1177/1932296817706375
10.1002/sim.8666
10.1055/s-0043-100018
10.5551/jat.18655
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.bspc.2021.103236
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10.1016/j.bspc.2021.103236
10_1016_j_bspc_2021_103236
S1746809421008338
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c344t-b74a63a32a5885d3384000a194e7983dc361c5a0d00dfe494b41e46c0132facb3
IEDL.DBID .~1
ISSN 1746-8094
1746-8108
IngestDate Tue Aug 19 18:32:28 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Oct 29 21:12:11 EDT 2025
Fri Feb 23 02:42:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Type 2 diabetes
Multinomial logistics regression
Diabetic peripheral neuropathy (DPN)
Machine learning algorithms
Photoplethysmography (PPG)
Artificial neural network (ANN)
Fisher discriminant analysis
Instantaneous frequency of the maximal energy (fEmax)
Sample extension
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-b74a63a32a5885d3384000a194e7983dc361c5a0d00dfe494b41e46c0132facb3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1746809421008338
ParticipantIDs unpaywall_primary_10_1016_j_bspc_2021_103236
crossref_primary_10_1016_j_bspc_2021_103236
crossref_citationtrail_10_1016_j_bspc_2021_103236
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103236
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rosiek, Maciejewska, Leksowski, Rosiek-Kryszewska, Leksowski (b0170) 2015; 12
Kazerouni, Bayani, Asadi, Saeidi, Parvizi, Mansoori (b0070) 2020; 21
Robert Avram, Geoffrey Tison, Peter Kuhar, Gregory Marcus, Mark Pletcher, Jeffrey E. Olgin and Kirstin Aschbacher, Predicting Diabetes from Photoplethysmography Using Deep Learning, Journal of the American College of Cardiology 2019-03-12, Vol. 73 No. 9_Supplement_2.
Zubaidi, Ortega-Martorell, Al-Bugharbee, Olier, Hashim, Gharghan, Kot, Al-Khaddar (b0155) 2020; 12
Dagliati, Marini, Sacchi, Cogni, Teliti, Tibollo, De Cata, Chiovato, Bellazzi (b0200) 2018; 12
Alshammari, Atiyah, Daghistani, Alshammari (b0075) 2020; 12
Harrell (b0120) 2015
Zhang, T.; Lv, C.F.; Li, L.L.; Chen, S.H.; Liu, S.L.; Wang, C.Y.; Su, B. Plasma miR-126 Is a Potential Biomarker for Early Prediction of Type 2 Diabetes Mellitus in Susceptible Individuals. BioMed Research International 2013, Article ID 761617. doi: 10.1155/2013/761617.
Wei, Hu, Ta, Xiao, Tang, Wu (b0050) 2020; 22
Kopitar, Kocbek, Cilar, Sheikh, Stiglic (b0060) 2020; 10
Wu, Hsu, Liu, Chen, Huang, Chen, Tang, Sun (b0150) 2012; 21
Centers for Disease Control and Prevention, National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, 2020.
Wei, Xiao, Chen, Li, Wu, Sun (b0115) 2018; 8
Carlos Lorenzo; Mayor Okoloise; Ken Williams; Stern, M.P.; Haffner, S.M. The metabolic syndrome as predictor of type 2 diabetes. Diabetes Care 2003, 26, 11, 3153-3159.
Qawqzeh (b0100) 2019; 10
Jung, Young Kwon, Han, Park (b0180) 2014; 21
Allen John Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007, 28, 3, R1–39. doi: 10.1088/0967-3334/28/3/R01.
Castaneda, Esparza, Ghamari, Soltanpur, Nazeran (b0215) 2018; 4
Wei, Ta, Hu, Xiao, Tang, Haryadi, Liou, Wu (b0045) 2019; 21
Limberg, Johansson, McBride, Schrage (b0185) 2014; 34
Sneha, Gangil (b0040) 2019; 6
Wei, Li, Wu, Xiao, Tang, Chen, Wu (b0140) 2020; 9
Yousef K. Qawqzeh, Abdullah S. Bajahzar, Mahdi Jemmali, Mohammad Mahmood Otoom, Adel Thaljaoui, “Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling”, BioMed Research International 2020, vol. 2020, Article ID 3764653, 6 pages. https://doi.org/10.1155/2020/3764653.
Birjais, Mourya, Chauhan, Kaur (b0065) 2019; 1
Diabetes Canada Clinical Practice Guidelines Expert Committee (b0030) 2018; 42
Wu, Hsu, Lin, Wang, Sun, Liu, Lo, Tang (b0145) 2011; 58
Hettiarachchi C., Chitraranjan C. A Machine Learning Approach to Predict Diabetes Using Short Recorded Photoplethysmography and Physiological Characteristics. In: Ria?o D., Wilk S., ten Teije A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science, vol. 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_41.
American Diabetes Association (b0005) 2019; 42
Bentham, Stansby, Allen (b0220) 2018; 6
Balaji Krishnapuram, Lawrence Carin, Ma?rio A.T. Figueiredo, and Alexander J. Hartemink Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds, IEEE Trans. on pattern analysis and machine intelligence 2005, 27, 6, 957–968.
Bohning (b0130) 1992; 44
Xiao, Lu, Ta, Wei, Haryadi, Wu (b0110) 2021; 41
Li, Zhao, Gao, Rao, Hao, Jian, Li, Tang, Li (b0015) 2017; 125
Wei, Ta, Hu, Wang, Xiao, Tang, Chen, Wu (b0025) 2020; 10
Schreiber, Nones, Reis, Chichorro, Cunha (b0020) 2015; 6
Petrie, Guzik, Touyz (b0175) 2018; 34
Ha, Xu, Ren, Mitchell, Ou (b0105) 2020; 2
Prosperi, Min, Bian, Modave (b0055) 2018; 18
Wang, Hsu (b0135) 2020; 39
Lee, Han, Kim, Koh, Kim, Nam, Kwon (b0160) 2020; 10
An, Kang, Lee, Ahn, Kwon, Choi (b0190) 2018; 17
Metsker, Magoev, Yanishevskiy, Yakovlev, Kopanitsa, Zvartau (b0195) 2020 Sep; 4
Vuppala, Varier, Khare (b0205) 2021; vol 1353
Nirala, Periyasamy, Singh, Kumar (b0085) 2019; 39
10.1016/j.bspc.2021.103236_b0080
Prosperi (10.1016/j.bspc.2021.103236_b0055) 2018; 18
Qawqzeh (10.1016/j.bspc.2021.103236_b0100) 2019; 10
Diabetes Canada Clinical Practice Guidelines Expert Committee (10.1016/j.bspc.2021.103236_b0030) 2018; 42
10.1016/j.bspc.2021.103236_b0165
Wang (10.1016/j.bspc.2021.103236_b0135) 2020; 39
10.1016/j.bspc.2021.103236_b0125
Jung (10.1016/j.bspc.2021.103236_b0180) 2014; 21
Birjais (10.1016/j.bspc.2021.103236_b0065) 2019; 1
Harrell (10.1016/j.bspc.2021.103236_b0120) 2015
Wei (10.1016/j.bspc.2021.103236_b0045) 2019; 21
Lee (10.1016/j.bspc.2021.103236_b0160) 2020; 10
Ha (10.1016/j.bspc.2021.103236_b0105) 2020; 2
Wei (10.1016/j.bspc.2021.103236_b0115) 2018; 8
An (10.1016/j.bspc.2021.103236_b0190) 2018; 17
Alshammari (10.1016/j.bspc.2021.103236_b0075) 2020; 12
Bohning (10.1016/j.bspc.2021.103236_b0130) 1992; 44
Limberg (10.1016/j.bspc.2021.103236_b0185) 2014; 34
Li (10.1016/j.bspc.2021.103236_b0015) 2017; 125
Wei (10.1016/j.bspc.2021.103236_b0025) 2020; 10
Nirala (10.1016/j.bspc.2021.103236_b0085) 2019; 39
Wu (10.1016/j.bspc.2021.103236_b0145) 2011; 58
Metsker (10.1016/j.bspc.2021.103236_b0195) 2020; 4
Castaneda (10.1016/j.bspc.2021.103236_b0215) 2018; 4
10.1016/j.bspc.2021.103236_b0090
10.1016/j.bspc.2021.103236_b0095
Petrie (10.1016/j.bspc.2021.103236_b0175) 2018; 34
Vuppala (10.1016/j.bspc.2021.103236_b0205) 2021; vol 1353
10.1016/j.bspc.2021.103236_b0010
Xiao (10.1016/j.bspc.2021.103236_b0110) 2021; 41
Dagliati (10.1016/j.bspc.2021.103236_b0200) 2018; 12
Wei (10.1016/j.bspc.2021.103236_b0140) 2020; 9
Rosiek (10.1016/j.bspc.2021.103236_b0170) 2015; 12
10.1016/j.bspc.2021.103236_b0035
Kazerouni (10.1016/j.bspc.2021.103236_b0070) 2020; 21
Kopitar (10.1016/j.bspc.2021.103236_b0060) 2020; 10
10.1016/j.bspc.2021.103236_b0210
Wei (10.1016/j.bspc.2021.103236_b0050) 2020; 22
Zubaidi (10.1016/j.bspc.2021.103236_b0155) 2020; 12
American Diabetes Association (10.1016/j.bspc.2021.103236_b0005) 2019; 42
Schreiber (10.1016/j.bspc.2021.103236_b0020) 2015; 6
Sneha (10.1016/j.bspc.2021.103236_b0040) 2019; 6
Bentham (10.1016/j.bspc.2021.103236_b0220) 2018; 6
Wu (10.1016/j.bspc.2021.103236_b0150) 2012; 21
References_xml – volume: 12
  start-page: 9408
  year: 2015
  end-page: 9426
  ident: b0170
  article-title: ?. Effect of Television on Obesity and Excess of Weight and Consequences of Health
  publication-title: Int. J. Environ. Res. Public Health
– volume: 10
  year: 2020
  ident: b0160
  article-title: Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study
  publication-title: Sci. Rep.
– volume: 34
  start-page: 282
  year: 2014
  end-page: 289
  ident: b0185
  article-title: Increased leg blood flow and improved femoral artery shear patterns in metabolic syndrome after a diet and exercise program
  publication-title: Clin. Physiol. Funct. Imaging
– volume: 10
  start-page: 32
  year: 2020
  ident: b0025
  article-title: Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects
  publication-title: Diagnostics
– volume: 21
  year: 2020
  ident: b0070
  article-title: Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches
  publication-title: BMC Bioinf.
– volume: 2
  start-page: 2000063
  year: 2020
  ident: b0105
  article-title: Machine Learning-Enabled Smart Sensor Systems
  publication-title: Adv. Intell. Syst.
– volume: 34
  start-page: 575
  year: 2018
  end-page: 584
  ident: b0175
  article-title: Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms
  publication-title: Can. J. Cardiol.
– volume: 42
  start-page: S13
  year: 2019
  end-page: S28
  ident: b0005
  article-title: Classification and diagnosis of diabetes
  publication-title: Diabetes Care
– volume: 125
  start-page: 377
  year: 2017
  end-page: 383
  ident: b0015
  article-title: The Diagnostic Value of Whole Blood lncRNA ENST00000550337.1 for Pre-Diabetes and Type 2 Diabetes Mellitus
  publication-title: Exp. Clin. Endocrinol. Diabetes
– volume: 21
  start-page: 1229
  year: 2019
  ident: b0045
  article-title: Digital volume pulse measured at the fingertip as an indicator of diabetic peripheral neuropathy in the aged and diabetic
  publication-title: Entropy
– volume: 10
  start-page: 12
  year: 2019
  ident: b0100
  article-title: Neural Network-based Diabetic Type II High-Risk Prediction using Photoplethysmogram Waveform Analysis
  publication-title: Int. J. Adv. Comput. Sci. Applications
– reference: Robert Avram, Geoffrey Tison, Peter Kuhar, Gregory Marcus, Mark Pletcher, Jeffrey E. Olgin and Kirstin Aschbacher, Predicting Diabetes from Photoplethysmography Using Deep Learning, Journal of the American College of Cardiology 2019-03-12, Vol. 73 No. 9_Supplement_2.
– volume: 4
  start-page: 136
  year: 2020 Sep
  end-page: 141
  ident: b0195
  article-title: Identification of Diabetes Risk Factors in Chronic Cardiovascular Patients
  publication-title: Stud. Health Technol. Inform.
– volume: 8
  start-page: 15771
  year: 2018
  ident: b0115
  article-title: Instantaneous frequency from Hilbert-Huang transformation of digital volume pulse as indicator of diabetes and arterial stiffness in upper-middle-aged subjects
  publication-title: Sci. Rep.
– volume: 6
  start-page: 13
  year: 2019
  ident: b0040
  article-title: Analysis of diabetes mellitus for early prediction using optimal features selection
  publication-title: J. Big Data
– reference: Balaji Krishnapuram, Lawrence Carin, Ma?rio A.T. Figueiredo, and Alexander J. Hartemink Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds, IEEE Trans. on pattern analysis and machine intelligence 2005, 27, 6, 957–968.
– volume: 6
  start-page: 81
  year: 2018
  ident: b0220
  article-title: Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease
  publication-title: Diseases
– volume: 44
  start-page: 197
  year: 1992
  end-page: 200
  ident: b0130
  article-title: Multinomial logistic regression algorithm
  publication-title: Ann. Inst. Stat. Math.
– reference: Carlos Lorenzo; Mayor Okoloise; Ken Williams; Stern, M.P.; Haffner, S.M. The metabolic syndrome as predictor of type 2 diabetes. Diabetes Care 2003, 26, 11, 3153-3159.
– volume: vol 1353
  year: 2021
  ident: b0205
  article-title: Diabetes Prediction Using Machine Learning Techniques
  publication-title: Intelligent Systems, Technologies and Applications. Advances in Intelligent Systems and Computing
– volume: 10
  year: 2020
  ident: b0060
  article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models
  publication-title: Sci. Rep.
– volume: 21
  start-page: 167
  year: 2012
  end-page: 176
  ident: b0150
  article-title: Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness
  publication-title: Blood Press.
– volume: 4
  start-page: 195
  year: 2018
  end-page: 202
  ident: b0215
  article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care
  publication-title: Int. J. Biosens. Bioelectron.
– volume: 39
  start-page: 3299
  year: 2020
  end-page: 3312
  ident: b0135
  article-title: Multinomial logistic regression with missing outcome data: An application to cancer subtypes
  publication-title: Stat. Med.
– volume: 41
  start-page: 1140
  year: 2021
  end-page: 1149
  ident: b0110
  article-title: Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices
  publication-title: Biocybernet. Biomed. Eng.
– volume: 17
  start-page: 25
  year: 2018
  ident: b0190
  article-title: Blood flow characteristics of diabetic patients with complications detected by optical measurement
  publication-title: Biomed. Eng. Online
– volume: 42
  start-page: S1
  year: 2018
  end-page: S325
  ident: b0030
  article-title: Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada
  publication-title: Can. J. Diabetes
– start-page: 103
  year: 2015
  end-page: 126
  ident: b0120
  article-title: Describing, resampling, validating, and simplifying the model
  publication-title: Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis
– volume: 12
  start-page: 1885
  year: 2020
  ident: b0155
  article-title: Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study
  publication-title: Water
– reference: Yousef K. Qawqzeh, Abdullah S. Bajahzar, Mahdi Jemmali, Mohammad Mahmood Otoom, Adel Thaljaoui, “Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling”, BioMed Research International 2020, vol. 2020, Article ID 3764653, 6 pages. https://doi.org/10.1155/2020/3764653.
– reference: Allen John Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007, 28, 3, R1–39. doi: 10.1088/0967-3334/28/3/R01.
– volume: 18
  year: 2018
  ident: b0055
  article-title: Big data hurdles in precision medicine and precision public health
  publication-title: BMC Med. Inf. Decis. Making
– volume: 12
  year: 2020
  ident: b0075
  article-title: Improving Accuracy for Diabetes Mellitus Prediction by Using Deepnet
  publication-title: Online J. Public Health Inform.
– volume: 9
  start-page: 138
  year: 2020
  ident: b0140
  article-title: New application of an instantaneous frequency parameter for assessing far infrared fabric effect in aged subjects
  publication-title: Electronics
– volume: 21
  start-page: 435
  year: 2014
  end-page: 444
  ident: b0180
  article-title: Metabolic Syndrome and Early Carotid Atherosclerosis in the Elderly
  publication-title: J. Atherosclerosis Thrombosis
– volume: 12
  start-page: 295
  year: 2018
  end-page: 302
  ident: b0200
  article-title: Machine Learning Methods to Predict Diabetes Complications
  publication-title: J. Diabetes Sci. Technol.
– volume: 58
  start-page: 2978
  year: 2011
  end-page: 2981
  ident: b0145
  article-title: Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 22
  start-page: 754
  year: 2020
  ident: b0050
  article-title: Prognosis of diabetic peripheral neuropathy via decomposed digital volume pulse from the fingertip
  publication-title: Entropy
– reference: Zhang, T.; Lv, C.F.; Li, L.L.; Chen, S.H.; Liu, S.L.; Wang, C.Y.; Su, B. Plasma miR-126 Is a Potential Biomarker for Early Prediction of Type 2 Diabetes Mellitus in Susceptible Individuals. BioMed Research International 2013, Article ID 761617. doi: 10.1155/2013/761617.
– volume: 1
  year: 2019
  ident: b0065
  article-title: Prediction and diagnosis of future diabetes risk: a machine learning approach.
  publication-title: Appl. Sci.
– reference: Hettiarachchi C., Chitraranjan C. A Machine Learning Approach to Predict Diabetes Using Short Recorded Photoplethysmography and Physiological Characteristics. In: Ria?o D., Wilk S., ten Teije A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science, vol. 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_41.
– volume: 39
  start-page: 38
  year: 2019
  end-page: 51
  ident: b0085
  article-title: Periyasamy, Bikesh Kumar Singh, Awanish Kumar, Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine
  publication-title: Biocybernet. Biomed. Eng.
– reference: Centers for Disease Control and Prevention, National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, 2020.
– volume: 6
  start-page: 432
  year: 2015
  end-page: 444
  ident: b0020
  article-title: Diabetic neuropathic pain: Physiopathology and treatment
  publication-title: World J. Diabetes
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0160
  article-title: Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study
  publication-title: Sci. Rep.
– ident: 10.1016/j.bspc.2021.103236_b0010
– ident: 10.1016/j.bspc.2021.103236_b0165
  doi: 10.2337/diacare.26.11.3153
– volume: 21
  start-page: 167
  year: 2012
  ident: 10.1016/j.bspc.2021.103236_b0150
  article-title: Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness
  publication-title: Blood Press.
  doi: 10.3109/08037051.2012.681853
– volume: 6
  start-page: 432
  year: 2015
  ident: 10.1016/j.bspc.2021.103236_b0020
  article-title: Diabetic neuropathic pain: Physiopathology and treatment
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v6.i3.432
– volume: 4
  start-page: 136
  issue: 273
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0195
  article-title: Identification of Diabetes Risk Factors in Chronic Cardiovascular Patients
  publication-title: Stud. Health Technol. Inform.
– volume: 22
  start-page: 754
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0050
  article-title: Prognosis of diabetic peripheral neuropathy via decomposed digital volume pulse from the fingertip
  publication-title: Entropy
  doi: 10.3390/e22070754
– volume: 39
  start-page: 38
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.103236_b0085
  article-title: Periyasamy, Bikesh Kumar Singh, Awanish Kumar, Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine
  publication-title: Biocybernet. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.09.007
– volume: vol 1353
  year: 2021
  ident: 10.1016/j.bspc.2021.103236_b0205
  article-title: Diabetes Prediction Using Machine Learning Techniques
– volume: 4
  start-page: 195
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0215
  article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care
  publication-title: Int. J. Biosens. Bioelectron.
– ident: 10.1016/j.bspc.2021.103236_b0035
  doi: 10.1155/2013/761617
– volume: 8
  start-page: 15771
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0115
  article-title: Instantaneous frequency from Hilbert-Huang transformation of digital volume pulse as indicator of diabetes and arterial stiffness in upper-middle-aged subjects
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34091-6
– volume: 42
  start-page: S13
  issue: Supplement 1
  year: 2019
  ident: 10.1016/j.bspc.2021.103236_b0005
  article-title: Classification and diagnosis of diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc19-S002
– start-page: 103
  year: 2015
  ident: 10.1016/j.bspc.2021.103236_b0120
  article-title: Describing, resampling, validating, and simplifying the model
– volume: 34
  start-page: 282
  issue: 4
  year: 2014
  ident: 10.1016/j.bspc.2021.103236_b0185
  article-title: Increased leg blood flow and improved femoral artery shear patterns in metabolic syndrome after a diet and exercise program
  publication-title: Clin. Physiol. Funct. Imaging
  doi: 10.1111/cpf.12095
– volume: 34
  start-page: 575
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0175
  article-title: Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms
  publication-title: Can. J. Cardiol.
– volume: 17
  start-page: 25
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0190
  article-title: Blood flow characteristics of diabetic patients with complications detected by optical measurement
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0457-9
– volume: 9
  start-page: 138
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0140
  article-title: New application of an instantaneous frequency parameter for assessing far infrared fabric effect in aged subjects
  publication-title: Electronics
  doi: 10.3390/electronics9010138
– ident: 10.1016/j.bspc.2021.103236_b0125
  doi: 10.1109/TPAMI.2005.127
– volume: 6
  start-page: 13
  year: 2019
  ident: 10.1016/j.bspc.2021.103236_b0040
  article-title: Analysis of diabetes mellitus for early prediction using optimal features selection
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0175-6
– volume: 21
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0070
  article-title: Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-020-03719-8
– volume: 1
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2021.103236_b0065
  article-title: Prediction and diagnosis of future diabetes risk: a machine learning approach. SN
  publication-title: Appl. Sci.
– volume: 10
  start-page: 32
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0025
  article-title: Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10010032
– volume: 58
  start-page: 2978
  year: 2011
  ident: 10.1016/j.bspc.2021.103236_b0145
  article-title: Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2159975
– ident: 10.1016/j.bspc.2021.103236_b0095
  doi: 10.1016/S0735-1097(19)33778-7
– ident: 10.1016/j.bspc.2021.103236_b0210
  doi: 10.1088/0967-3334/28/3/R01
– volume: 2
  start-page: 2000063
  issue: 9
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0105
  article-title: Machine Learning-Enabled Smart Sensor Systems
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202000063
– volume: 44
  start-page: 197
  issue: 1
  year: 1992
  ident: 10.1016/j.bspc.2021.103236_b0130
  article-title: Multinomial logistic regression algorithm
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF00048682
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0075
  article-title: Improving Accuracy for Diabetes Mellitus Prediction by Using Deepnet
  publication-title: Online J. Public Health Inform.
  doi: 10.5210/ojphi.v12i1.10611
– volume: 12
  start-page: 1885
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0155
  article-title: Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study
  publication-title: Water
  doi: 10.3390/w12071885
– volume: 41
  start-page: 1140
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2021.103236_b0110
  article-title: Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices
  publication-title: Biocybernet. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.08.001
– ident: 10.1016/j.bspc.2021.103236_b0090
  doi: 10.1155/2020/3764653
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0060
  article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68771-z
– volume: 12
  start-page: 9408
  issue: 8
  year: 2015
  ident: 10.1016/j.bspc.2021.103236_b0170
  article-title: ?. Effect of Television on Obesity and Excess of Weight and Consequences of Health
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph120809408
– volume: 6
  start-page: 81
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0220
  article-title: Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease
  publication-title: Diseases
  doi: 10.3390/diseases6030081
– volume: 10
  start-page: 12
  year: 2019
  ident: 10.1016/j.bspc.2021.103236_b0100
  article-title: Neural Network-based Diabetic Type II High-Risk Prediction using Photoplethysmogram Waveform Analysis
  publication-title: Int. J. Adv. Comput. Sci. Applications
  doi: 10.14569/IJACSA.2019.0101212
– ident: 10.1016/j.bspc.2021.103236_b0080
  doi: 10.1007/978-3-030-21642-9_41
– volume: 42
  start-page: S1
  issue: Suppl 1
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0030
  article-title: Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada
  publication-title: Can. J. Diabetes
– volume: 21
  start-page: 1229
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2021.103236_b0045
  article-title: Digital volume pulse measured at the fingertip as an indicator of diabetic peripheral neuropathy in the aged and diabetic
  publication-title: Entropy
  doi: 10.3390/e21121229
– volume: 12
  start-page: 295
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0200
  article-title: Machine Learning Methods to Predict Diabetes Complications
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296817706375
– volume: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.103236_b0055
  article-title: Big data hurdles in precision medicine and precision public health
  publication-title: BMC Med. Inf. Decis. Making
– volume: 39
  start-page: 3299
  issue: 24
  year: 2020
  ident: 10.1016/j.bspc.2021.103236_b0135
  article-title: Multinomial logistic regression with missing outcome data: An application to cancer subtypes
  publication-title: Stat. Med.
  doi: 10.1002/sim.8666
– volume: 125
  start-page: 377
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2021.103236_b0015
  article-title: The Diagnostic Value of Whole Blood lncRNA ENST00000550337.1 for Pre-Diabetes and Type 2 Diabetes Mellitus
  publication-title: Exp. Clin. Endocrinol. Diabetes
  doi: 10.1055/s-0043-100018
– volume: 21
  start-page: 435
  issue: 5
  year: 2014
  ident: 10.1016/j.bspc.2021.103236_b0180
  article-title: Metabolic Syndrome and Early Carotid Atherosclerosis in the Elderly
  publication-title: J. Atherosclerosis Thrombosis
  doi: 10.5551/jat.18655
SSID ssj0048714
Score 2.3241422
Snippet •Toe PPG sample extension could increase prediction rate for supervised machine learning algorithms.•This study is a novel attempt to establish clinical...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103236
SubjectTerms Artificial neural network (ANN)
Diabetic peripheral neuropathy (DPN)
Fisher discriminant analysis
Instantaneous frequency of the maximal energy (fEmax)
Machine learning algorithms
Multinomial logistics regression
Photoplethysmography (PPG)
Sample extension
Type 2 diabetes
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeD7h7Eg29RUZmDN-3SR5q2RxEfCMoedkFPJa-KWrvFtsj6BfzaZvqQVVT01kPS0mSa_DuZ-Q0hB8qIEJVo37K5rSwqmLIiIaWF6j5xAm0-MvR3XF2zizG9vPFvWkwO5sJ8Or-v47BEkSNq0HUwP9z12DzpM9_o7h7pj6-Hx7dNxiNSdeuqh821Y4dthsz3N_lpF1qospxPX3iazuwyZ8tNuaKihhNicMnjoCrFQL5-QTf-7QVWyFIrNuG4sY5VMqezNbI4gyBcJ2-jiYbh8BwKjpxgqJ3i6EEDo2ahqHJcSwqt4KmOutTQlpm4g45GrgsoJ1DcY2giz_SkKtIp5M94AFQCenjBhc7DCzxTgGzlGmaQQk3TxKLI0w0yPjsdnVxYbXEGS3qUlpYIKGce91zuh6GvzJ-uWQ1s7kRUB1HoKekxR_rGAGpboBEV1NGUSTzbSbgU3ibpZZNMbxFweUA19QMnkYxKqkItGadCJ2aatR2JbeJ0kxXLllyOBTTSuAtRe4hxkGMc5LgZ5G1y-NEnb7gdv7b2OxuIW-XRKIrYTOev_Y4-DOYPj9n5X_Nd0iufK71nVE8p9ltzfwd-mP8o
  priority: 102
  providerName: Unpaywall
Title Toe PPG sample extension for supervised machine learning approaches to simultaneously predict type 2 diabetes and peripheral neuropathy
URI https://dx.doi.org/10.1016/j.bspc.2021.103236
https://doi.org/10.1016/j.bspc.2021.103236
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBahO7Q9jK1badctvENvnZfYlmX7GMq6rKUh0ATak9EvlxTPNrXNyKXX_dvTk-2QwiijJ4ORkNEnPX1-eu97hJwqQ0JUqgNnzMfKoYIpJxZSOsjuUzfUZpOhv-N6xqZLenkb3A7IeZ8Lg2GVne1vbbq11t2bUTebo3K1Gt0YLs0i83fioT6N-dPCDHYaYhWDb0-bMA_Dx62-NzZ2sHWXONPGeImqRBlDz8Xcc8_KNP_zcNpt8pKvf_Ms2zp8Lt6Rtx1rhEn7Ye_JQOcHZH9LS_AD-bMoNMznP6DiKPgL1ruNrjAwtBSqpkSjUGkFv2z4pIauXsQ99LLiuoK6gGqFMYY810VTZWsoH_EmpwZ01YIHvasWeK4ARZKtKkEGVhYTqxuvP5LlxffF-dTpqiw40qe0dkRIOfO57_EgigJlJtJs6zF3Y6rDOPKV9JkrA4OkBZXGVFBXUybxkiblUviHZCcvcn1EwOMh1TQI3VQyKqmKtGScCp0GMdPjWBwTt5_eRHYS5FgJI0v6WLOHBCFJEJKkheSYnG36lK0Ax4utgx615NkySswJ8WK_rxuI_2OYT68c5oTseZg-YV04n8lO_djoL4bU1GJoV-2QvJn8vJrOzHM5m0_u_gLCIPmW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZge4AeUMtD3ULbOXCDsJvEdpIjQqXb8hASi8Qt8itoUZqNNlmhvXDlb-NxkhVICFW9RrYc-bPHn8cz3xCyry0J0Zlh3lAMtUcl114ilfKQ3Wd-ZOwmQ3_HxSUf3dA_t-x2hZx0uTAYVtna_samO2vdfhm0szkoJ5PBteXSPLa3kwD1aexNa5V8oCyI8AZ29LiM87CE3Al8Y2sPm7eZM02Ql6xK1DEMfEw-D5xO85un09q8KMXiQeT5i9Pn9BPZaGkjHDd_9pmsmGKTfHwhJrhFnsZTA1dXv6ASqPgLzr2NvjCwvBSqeYlWoTIa_rr4SQNtwYg76HTFTQX1FKoJBhmKwkznVb6AcoZPOTWgrxYC6Hy1IAoNqJLsZAlycLqYWN54sU1uTn-OT0ZeW2bBUyGltScjKngowkCwOGbazqTd10PhJ9RESRxqFXJfMQulQ5UmVFLfUK7wlSYTSoY7pFdMC_OFQCAiaiiL_ExxqqiOjeKCSpOxhJthIvvE76Y3Va0GOZbCyNMu2Ow-RUhShCRtIOmTg2WfslHgeLc161BLX62j1B4R7_Y7XEL8D8N8_c9hfpC10fjiPD3_fXm2S9YDzKVw_pw90qtnc_PNMpxafncr-Bm1S_l7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeD7h7Eg29RUZmDN-3SR5q2RxEfCMoedkFPJa-KWrvFtsj6BfzaZvqQVVT01kPS0mSa_DuZ-Q0hB8qIEJVo37K5rSwqmLIiIaWF6j5xAm0-MvR3XF2zizG9vPFvWkwO5sJ8Or-v47BEkSNq0HUwP9z12DzpM9_o7h7pj6-Hx7dNxiNSdeuqh821Y4dthsz3N_lpF1qospxPX3iazuwyZ8tNuaKihhNicMnjoCrFQL5-QTf-7QVWyFIrNuG4sY5VMqezNbI4gyBcJ2-jiYbh8BwKjpxgqJ3i6EEDo2ahqHJcSwqt4KmOutTQlpm4g45GrgsoJ1DcY2giz_SkKtIp5M94AFQCenjBhc7DCzxTgGzlGmaQQk3TxKLI0w0yPjsdnVxYbXEGS3qUlpYIKGce91zuh6GvzJ-uWQ1s7kRUB1HoKekxR_rGAGpboBEV1NGUSTzbSbgU3ibpZZNMbxFweUA19QMnkYxKqkItGadCJ2aatR2JbeJ0kxXLllyOBTTSuAtRe4hxkGMc5LgZ5G1y-NEnb7gdv7b2OxuIW-XRKIrYTOev_Y4-DOYPj9n5X_Nd0iufK71nVE8p9ltzfwd-mP8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toe+PPG+sample+extension+for+supervised+machine+learning+approaches+to+simultaneously+predict+type+2+diabetes+and+peripheral+neuropathy&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Xiao%2C+Ming%E2%80%93Xia&rft.au=Lu%2C+Chang%E2%80%93Hua&rft.au=Ta%2C+Na&rft.au=Wei%2C+Hai%E2%80%93Cheng&rft.date=2022-01-01&rft.issn=1746-8094&rft.volume=71&rft.spage=103236&rft_id=info:doi/10.1016%2Fj.bspc.2021.103236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon