Algebraic multigrid methods based on element preconditioning

This paper presents a new algebraic multigrid (AMG) solution strategy for large linear systems with a sparse matrix arising from a finite element discretization of some self-adjoint, second order, scalar, elliptic partial differential equation. The AMG solver is based on Ruge/Stübens method. Ruge/St...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer mathematics Vol. 78; no. 4; pp. 575 - 598
Main Authors Haase, G, Langer, U., Reitzinger, S., Schöberl, J.
Format Journal Article
LanguageEnglish
Published Gordon and Breach Science Publishers 01.01.2001
Subjects
Online AccessGet full text
ISSN0020-7160
1029-0265
DOI10.1080/00207160108805133

Cover

Abstract This paper presents a new algebraic multigrid (AMG) solution strategy for large linear systems with a sparse matrix arising from a finite element discretization of some self-adjoint, second order, scalar, elliptic partial differential equation. The AMG solver is based on Ruge/Stübens method. Ruge/Stübens algorithm is robust for M-matrices, but unfortunately the "region of robustness" between symmetric positive definite M-matrices and general symmetric positive definite matrices is very fuzzy. For this reason the so-called element preconditioning technique is introduced in this paper. This technique aims at the construction of an M-matrix that is spectrally equivalent to the original stiffness matrix. This is done by solving small restricted optimization problems. AMG applied to the spectrally equivalent M-matrix instead of the original stiffness matrix is then used as a preconditioner in the conjugate gradient method for solving the original problem. The numerical experiments show the efficiency and the robustness of the new preconditioning method for a wide class of problems including problems with anisotropic elements.
AbstractList This paper presents a new algebraic multigrid (AMG) solution strategy for large linear systems with a sparse matrix arising from a finite element discretization of some self-adjoint, second order, scalar, elliptic partial differential equation. The AMG solver is based on Ruge/Stübens method. Ruge/Stübens algorithm is robust for M-matrices, but unfortunately the "region of robustness" between symmetric positive definite M-matrices and general symmetric positive definite matrices is very fuzzy. For this reason the so-called element preconditioning technique is introduced in this paper. This technique aims at the construction of an M-matrix that is spectrally equivalent to the original stiffness matrix. This is done by solving small restricted optimization problems. AMG applied to the spectrally equivalent M-matrix instead of the original stiffness matrix is then used as a preconditioner in the conjugate gradient method for solving the original problem. The numerical experiments show the efficiency and the robustness of the new preconditioning method for a wide class of problems including problems with anisotropic elements.
Author Reitzinger, S.
Schöberl, J.
Haase, G
Langer, U.
Author_xml – sequence: 1
  givenname: G
  surname: Haase
  fullname: Haase, G
  organization: Department of Computational Mathematics and Optimization , Institute for Analysis and Computational Mathematics
– sequence: 2
  givenname: U.
  surname: Langer
  fullname: Langer, U.
  email: ulanger@numa.uni-linz.ac.at
  organization: Department of Computational Mathematics and Optimization , Institute for Analysis and Computational Mathematics
– sequence: 3
  givenname: S.
  surname: Reitzinger
  fullname: Reitzinger, S.
  organization: Special Research Program , Numerical and Symbolic Scientific Computing
– sequence: 4
  givenname: J.
  surname: Schöberl
  fullname: Schöberl, J.
  organization: Special Research Program , Numerical and Symbolic Scientific Computing
BookMark eNqFkM1KAzEUhYMo2FYfwN28wOhNMp1JoZtS_IOCm-6HTHJTI5mkJBHt2zuDXVnU1eX-fPcczpSc--CRkBsKtxQE3AEwaGgNQyNgTjk_IxMKbFECq-fnZDLuy_HgkkxTegMAsWjqCVmu3A67KK0q-neX7S5aXfSYX4NORScT6iL4Ah326HOxj6iC1zbb4K3fXZELI13C62Odke3D_Xb9VG5eHp_Xq02peFXlUhrKgAM1ogLGG8EM7YTgWkvB62HIEA1XlCmlaINzxSrd1ZTXiB0VleAz0ny_VTGkFNG0ymY5esiDcddSaMcM2pMMBpL-IPfR9jIe_mSOatabEHv5EaLTbZYHF6KJ0iubTqk2f-aBXP5L8t-FvwDAVYRy
CitedBy_id crossref_primary_10_1142_S0218202503002519
crossref_primary_10_1007_s00607_005_0147_x
crossref_primary_10_1137_050641156
crossref_primary_10_1137_S1064827501386237
crossref_primary_10_1080_17445760601122084
crossref_primary_10_1137_060675940
crossref_primary_10_1002_nla_2408
crossref_primary_10_1002_nme_2853
crossref_primary_10_1016_j_pbiomolbio_2007_07_012
crossref_primary_10_1137_S1064827502405112
crossref_primary_10_1137_070679673
crossref_primary_10_1016_j_advengsoft_2006_08_006
Cites_doi 10.1007/978-3-663-01354-9
10.1007/978-3-642-58734-4_9
10.1007/BF02238511
10.1007/978-3-662-02427-0
10.1016/B978-008043568-8/50015-8
10.1080/00207169208804106
10.1007/BF01395810
10.1007/978-3-642-58312-4_17
10.1016/0096-3003(86)90095-0
10.1007/BF02238488
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2001
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2001
DBID AAYXX
CITATION
DOI 10.1080/00207160108805133
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 598
ExternalDocumentID 10_1080_00207160108805133
8805133
GroupedDBID -~X
.7F
.QJ
0BK
0R~
1TA
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
.4S
.DC
07G
29J
AAGDL
AAHIA
AAIKQ
AAKBW
AAYJJ
AAYXX
ABDBF
ABEFU
ACGEE
ACTCW
ACTIO
ACUHS
AEUMN
AFFNX
AFRVT
AGCQS
AGLEN
AIYEW
AMVHM
AMXXU
AQRUH
ARCSS
BCCOT
BPLKW
C06
CITATION
DWIFK
EAP
EDO
EMK
EPL
EST
HF~
H~9
IPNFZ
IVXBP
LJTGL
MK~
NUSFT
RIG
TAQ
TASJS
TFMCV
TUS
UB9
UU8
V3K
V4Q
ZY4
ID FETCH-LOGICAL-c344t-af120301f84023782f1b883dda836f842eef3c12ccc17e5c24db6136eeb18483
ISSN 0020-7160
IngestDate Thu Apr 24 23:02:55 EDT 2025
Wed Oct 01 01:48:27 EDT 2025
Wed Dec 25 09:00:53 EST 2024
Mon May 13 12:10:04 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-af120301f84023782f1b883dda836f842eef3c12ccc17e5c24db6136eeb18483
PageCount 24
ParticipantIDs crossref_primary_10_1080_00207160108805133
crossref_citationtrail_10_1080_00207160108805133
informaworld_taylorfrancis_310_1080_00207160108805133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/1/2001
2001-01-00
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: 1/1/2001
  day: 01
PublicationDecade 2000
PublicationTitle International journal of computer mathematics
PublicationYear 2001
Publisher Gordon and Breach Science Publishers
Publisher_xml – name: Gordon and Breach Science Publishers
References Hackbusch W. (CIT0009) 1985
CIT0012
CIT0023
Brandt A. (CIT0005) 1984
CIT0022
Jung M. (CIT0011) 1991; 1
Ruge J.W. (CIT0020) 1985; 3
Hackbusch W. (CIT0010) 1991
Grauschopf T. (CIT0006) 1996
Haase G. (CIT0007) 2000; 10
Bank R.E. (CIT0001) 1980
Kaltenbacher M. (CIT0014) 2000
CIT0003
Brandt A. (CIT0004) 1982
Meurant G. (CIT0018) 1990; 28
Ruge J.W. (CIT0021) 1986; 5
CIT0002
CIT0013
CIT0016
CIT0015
CIT0008
References_xml – volume: 5
  start-page: 73
  volume-title: Frontiers in Applied Mathematics
  year: 1986
  ident: CIT0021
– volume-title: Iterative Lösung groβer schwachbesetzter Gleichungssysteme
  year: 1991
  ident: CIT0010
  doi: 10.1007/978-3-663-01354-9
– ident: CIT0015
  doi: 10.1007/978-3-642-58734-4_9
– ident: CIT0023
  doi: 10.1007/BF02238511
– volume-title: Algebraic Multigrid (AMG) for automatic multigrid solution with application to geodetic computations
  year: 1982
  ident: CIT0004
– volume-title: Multigrid methods and application
  year: 1985
  ident: CIT0009
  doi: 10.1007/978-3-662-02427-0
– ident: CIT0012
– ident: CIT0016
  doi: 10.1016/B978-008043568-8/50015-8
– volume: 28
  volume-title: Studies in Mathematics and its Applications
  year: 1990
  ident: CIT0018
– year: 2000
  ident: CIT0014
  publication-title: Algebraic multigrid for static nonlinear 3D electromagnetic field compuations
– start-page: 257
  volume-title: Sparsity and its Application
  year: 1984
  ident: CIT0005
– volume: 3
  start-page: 169
  volume-title: Multigrid Methods for integral and differential equations
  year: 1985
  ident: CIT0020
– ident: CIT0008
  doi: 10.1080/00207169208804106
– volume: 10
  start-page: 41
  year: 2000
  ident: CIT0007
  publication-title: Electronic Transactions on Numerical Analysis {ETNA)
– ident: CIT0022
  doi: 10.1007/BF01395810
– ident: CIT0013
  doi: 10.1007/978-3-642-58312-4_17
– ident: CIT0003
  doi: 10.1016/0096-3003(86)90095-0
– volume: 1
  start-page: 217
  year: 1991
  ident: CIT0011
  publication-title: Surveys Math. Indust
– ident: CIT0002
  doi: 10.1007/BF02238488
– volume-title: Analysis of a two-level scheme for solving finite element equations
  year: 1980
  ident: CIT0001
– volume-title: Additive Multilevel Preconditioners based on Bilinear Interpolation, matrix dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs
  year: 1996
  ident: CIT0006
SSID ssj0008976
Score 1.5990329
Snippet This paper presents a new algebraic multigrid (AMG) solution strategy for large linear systems with a sparse matrix arising from a finite element...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 575
SubjectTerms Algebraic Multigrid
Element Preconditioning Technique
Finite Element Equations
G1.3
G1.8
Preconditioned Conjugate Gradient Method
Title Algebraic multigrid methods based on element preconditioning
URI https://www.tandfonline.com/doi/abs/10.1080/00207160108805133
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdKuezCgA3RDZAPO4FSJXacuhKXwj6qCbhQNMSlsh2nRIKCSiYhbvznPNeO6xaGBpeofY2Tyu_Z79Pvh9A3UNoyJxzcVKFZlHIpo66gnchY35opJrQ0Gd3jk6x_lv4-Z-eNxmN4uqSSbfXw4rmS93AVaMBXc0r2DZz1DwUCfAb-whU4DNf_4nHvamTyvqWrCxxNytxBQt_tGfWUm1SAtgXiphsA-L556SKwoVU6HxYMmkkoh_mwd-27u97N9ixhQRk9OtfR9AyxIZ21fSJHl9VDWdNPPf1UXZoc_UEm9cRGodtzAYhkIQDxC5xkVzh9MDEVoH5XmhX2hzswuKvgo9lcjLabrinBAV-QhbtyhwfSlwZbLLNIK05bM4th_UwR1JWTJDYvg688Nkg2M63naxHdL0tomXSyjDTRcq___eKPV-e8O0Uo9H-8To2bBu2Lj58zbuZa3wZGy2AVrThvA_es6Kyhhh6vo481kgd2U_gJ7XtJwl6SsJMkPJUkfDPGTpLwgiR9RoOfPwaH_cjhakSKpmkViSIhZi0W4NwTCiZikUjOaZ4LTjMgEq0LqhKilEo6sGBJmkuw-jINep2nnG6g5vhmrDcRllxmipJCSQnDRNZVIqZCx0yAVZ2IvIXiej6GyvWcN9AnV8PEt6ZdmMIW2vVDbm3DlddujsNJHlbTKFdhIWme3z6s7qsWYq8Mof981Zd3jvuKPswWzRZqVpO_ehvs2EruOEl7AhgfmDU
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja8JAFH609tBealdq1zn0VIgkmSSO0IuUim3VkwVvYbaIVFQ0Qumv77xMImqXg5BTeC_LbG-ZN98HcG-MtlA-M2Eq16ETMCGcOqc1B71vHcqQa4E7up1u1HoPXvthP0-4zfOySoyhEwsUka3VOLkxGV2UxOERbmMZMZQwow8JSnZhL0SUETzC4XaXKzGrZ-RyKO6gfLGr-dsj1uzSGmrpir1pliEuvtSWmXxUF6moyq8NEMftf-UIDnNXlDTs2DmGHT0-gXJB80DyWX8Kj43RALeXh5Jk5YeD2VARyzw9J2gFFZmMibZ16GSahdhqmCd6z6DXfO49tZycdMGRNAhShyeejx2VmMjPp8Z_SDzBGFWKMxqZm77WCZWeL6X0aqY3_UAJ4xJE2iz6LGD0HErjyVhfABFMRJL6iRTCqPGoLrlLuXZDblwuj6sKuEWLxzIHJEdejFHsLXFLNxqnAg9LlalF4_hP2F3txjjNUiCJ5Sv5KR6nn2kFwn9U6J-vutxS7w72W71OO26_dN-u4MDWt-F1DaV0ttA3xuFJxW02qr8BoQfyPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB5aC6WX2ie1zz30VIgk2SSu0Iu0FfuSHix4C_sUqUTRCKW_vjtJlGpbD0JOYSYhu5udmd1vvw_g2gZtoXxmy1SuQydgQjh1TmsOZt86lCHXAnd0X9tR6z146obdApszKWCVWEObnCgim6vx5x4pM0PE4QluGxixkrCDD_VJNmErwjOmeILDbc8nYlbPtOXQ3EH72abmX49YCEsLpKU_wk2znGuqTjKWQkSZfFSnqajKryUOx7W_ZA92i0SUNPKRsw8bOjmA8kzkgRT__CHcNgY93FzuS5KBD3vjviK57vSEYAxUZJgQnaPQySgrsFW_WOY9gk7zoXPXcgrJBUfSIEgdbjwfu8nYus-nNnswnmCMKsUZjexNX2tDpedLKb2a7Us_UMImBJG2Uz4LGD2GUjJM9AkQwUQkqW-kENaNR3XJXcq1G3KbcHlcVcCdNXgsCzpyVMUYxN6ctXSpcSpwM3cZ5Vwcq4zdn70Yp9kCiMnVSn6bx-lnWoFwhQv991Wna_pdwfbbfTN-eWw_n8FODm7D6xxK6XiqL2y2k4rLbEx_A77a8Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+multigrid+methods+based+on+element+preconditioning&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Haase%2C+G&rft.au=Langer%2C+U.&rft.au=Reitzinger%2C+S.&rft.au=Sch%C3%B6berl%2C+J.&rft.date=2001-01-01&rft.pub=Gordon+and+Breach+Science+Publishers&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=78&rft.issue=4&rft.spage=575&rft.epage=598&rft_id=info:doi/10.1080%2F00207160108805133&rft.externalDocID=8805133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon