Analyzing modularity maximization in approximation, heuristic, and graph neural network algorithms for community detection
Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of...
Saved in:
| Published in | Journal of computational science Vol. 78; p. 102283 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-7503 1877-7511 |
| DOI | 10.1016/j.jocs.2024.102283 |
Cover
| Abstract | Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of various modularity-based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network algorithm, and nine variations of the Bayan approximation algorithm.
Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on 68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on networks with modular structures. If modularity is to be used for detecting communities, we recommend approximate optimization algorithms for a methodologically sound usage of modularity within its applicability limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023). |
|---|---|
| AbstractList | Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of various modularity-based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network algorithm, and nine variations of the Bayan approximation algorithm.
Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on 68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on networks with modular structures. If modularity is to be used for detecting communities, we recommend approximate optimization algorithms for a methodologically sound usage of modularity within its applicability limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023). |
| ArticleNumber | 102283 |
| Author | Aref, Samin Mostajabdaveh, Mahdi |
| Author_xml | – sequence: 1 givenname: Samin orcidid: 0000-0002-5870-9253 surname: Aref fullname: Aref, Samin email: aref@mie.utoronto.ca organization: Department of Mechanical and Industrial Engineering, University of Toronto, M5S3G8, Canada – sequence: 2 givenname: Mahdi orcidid: 0000-0002-2816-909X surname: Mostajabdaveh fullname: Mostajabdaveh, Mahdi organization: Department of Mathematical and Industrial Engineering, Polytechnique Montreal, H3T1J4, Canada |
| BookMark | eNqNkMtuwjAQRb2gUinlB7ryBwCN47yQukGoLwmpm3ZtDfYETBM7skNp-Po60FUXqLMZ6UrnjubckIGxBgm5Y9GMRSy73812VvpZHMVJCOK44AMyZEWeT_M04tdk7P0uCsOLYs74kBwXBqruqM2G1lbtK3C67WgN37rWR2i1NVQbCk3jbIhOwYRuce-0b7WcUDCKbhw0W2pCCFVY7cG6TwrVxoaube1paR2Vtq73pu9W2KLse27JVQmVx_HvHpGPp8f35ct09fb8ulysppInSTuFGFNkGeOI2TpnqYI0KeI8ytYJ4xJLWUgGuWI5MAkFzmGeMigThFJhpGTGR4Sfe_emge4AVSUaF35xnWCR6K2Jneitid6aOFsLVHGmpLPeOyyF1O3p_9aBri6j8R_0X_cezhAGFV8anfBSo5GotAu-hLL6Ev4D462hqQ |
| CitedBy_id | crossref_primary_10_1016_j_jocs_2024_102518 crossref_primary_10_1103_PhysRevE_110_044315 crossref_primary_10_33298_2226_8553_2023_2_38_09 |
| Cites_doi | 10.1103/PhysRevE.101.042304 10.1140/epjb/e2008-00425-1 10.1145/3292500.3330882 10.1103/PhysRevE.99.010301 10.1017/nws.2020.45 10.1038/s42005-022-00890-7 10.1073/pnas.1409770111 10.1103/PhysRevE.96.042307 10.1103/PhysRevE.78.046110 10.1038/s41598-019-41695-z 10.1073/pnas.0601602103 10.1103/PhysRevE.92.022816 10.1007/s41109-019-0165-9 10.1103/PhysRevE.74.016110 10.1002/j.1538-7305.1970.tb01770.x 10.1103/PhysRevE.70.066111 10.1103/PhysRevE.70.025101 10.1016/j.jocs.2022.101634 10.3758/s13428-022-01975-5 10.1103/PhysRevE.94.052315 10.1103/PhysRevE.84.066122 10.1016/j.jcss.2020.11.005 10.1007/s00453-019-00649-7 10.1103/PhysRevE.81.046106 10.1103/PhysRevLett.100.118703 10.1103/PhysRevE.89.012804 10.1038/s41598-019-44892-y 10.1016/j.jocs.2018.01.004 10.1038/s41567-022-01716-7 10.1016/j.physrep.2016.09.002 10.1016/j.jocs.2017.07.002 10.1073/pnas.0706851105 10.1103/PhysRevE.101.052306 10.1103/PhysRevE.83.016107 10.1016/j.jocs.2023.101962 10.1103/PhysRevE.90.012811 10.1088/1742-5468/aabfc8 10.1080/15427951.2014.950875 10.1073/pnas.0611034104 10.1007/s41109-022-00500-z 10.1109/TKDE.2007.190689 10.1073/pnas.0605965104 10.1007/s10479-012-1286-z 10.1016/j.ins.2020.10.057 10.1016/j.physrep.2009.11.002 10.1371/journal.pone.0205284 10.1016/j.jocs.2017.10.009 10.1007/s41109-017-0023-6 10.1103/PhysRevE.82.046112 10.1016/j.jocs.2012.03.006 10.1088/1742-5468/2008/10/P10008 10.1371/journal.pone.0024195 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.jocs.2024.102283 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Business |
| ExternalDocumentID | 10.1016/j.jocs.2024.102283 10_1016_j_jocs_2024_102283 S1877750324000760 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c344t-a2e5e1613ee6b715da5482706b413cefc8c1a7d17a1ca8e9a951af4eafde0dc63 |
| IEDL.DBID | .~1 |
| ISSN | 1877-7503 1877-7511 |
| IngestDate | Tue Aug 19 14:23:04 EDT 2025 Wed Oct 01 04:25:12 EDT 2025 Thu Apr 24 23:16:05 EDT 2025 Tue Dec 03 03:45:04 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Integer programming Approximation Modularity maximization Network science Graph neural network Graph optimization |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-a2e5e1613ee6b715da5482706b413cefc8c1a7d17a1ca8e9a951af4eafde0dc63 |
| ORCID | 0000-0002-5870-9253 0000-0002-2816-909X |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877750324000760 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jocs_2024_102283 crossref_citationtrail_10_1016_j_jocs_2024_102283 crossref_primary_10_1016_j_jocs_2024_102283 elsevier_sciencedirect_doi_10_1016_j_jocs_2024_102283 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational science |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fortunato, Hric (b8) 2016; 659 Riolo, Newman (b59) 2020; 101 Serrano, Vidal (b18) 2021 Schumm, Scoglio (b13) 2012; 3 Zhang, Moore (b33) 2014; 111 P.Z. Li, L. Huang, C.D. Wang, J.H. Lai, EdMot: An edge enhancement approach for motif-aware community detection, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 479–487. Kawase, Matsui, Miyauchi (b62) 2021; 117 Zhao, Liang, Wang (b58) 2021; 551 Aloise, Cafieri, Caporossi, Hansen, Perron, Liberti (b63) 2010; 82 Guimerà, Sales-Pardo, Amaral (b9) 2004; 70 Fortunato, Barthélemy (b12) 2007; 104 Newman (b5) 2016; 94 Sobolevsky, Campari, Belyi, Ratti (b25) 2014; 90 Kernighan, Lin (b37) 1970; 49 Agarwal, Kempe (b41) 2008; 66 Khomami, Rezvanian, Meybodi (b14) 2018; 24 Sobolevsky, Belyi (b27) 2022; 7 Newman, Cantwell, Young (b45) 2020; 101 Aref, Mostajabdaveh, Chheda (b50) 2023 Rosvall, Bergstrom (b20) 2008; 105 Hamid, Wu, Nawaz, Zhao (b23) 2018; 25 Clauset, Newman, Moore (b29) 2004; 70 Newman (b3) 2006; 103 Marchese, Caldarelli, Squartini (b24) 2022; 5 Good, De Montjoye, Clauset (b26) 2010; 81 Peixoto (b16) 2014; 89 Lancichinetti, Fortunato (b55) 2011; 84 Gates, Wood, Hetrick, Ahn (b49) 2019; 9 Brusco, Steinley, Watts (b64) 2023; 55 Peixoto (b11) 2023 Traag, Aldecoa, Delvenne (b21) 2015; 92 Meeks, Skerman (b7) 2020; 82 Rossetti, Milli, Cazabet (b39) 2019; 4 Aref, Chheda, Mostajabdaveh (b28) 2022 Singh, Nandi, Chakraborty, Choudhury (b47) 2022; 61 Fortunato (b10) 2010; 486 Aref, Mostajabdaveh (b65) 2023 Leicht, Newman (b32) 2008; 100 Kawamoto, Kabashima (b6) 2019; 99 Chen, Wang, Tang, Tang, Gao, Li, Xiang, Zhang (b57) 2018; 13 Miasnikof, Shestopaloff, Bonner, Lawryshyn, Pardalos (b60) 2020; 8 Schaub, Delvenne, Rosvall, Lambiotte (b1) 2017; 2 Kosowski, Saulpic, Mallmann-Trenn, Cohen-Addad (b4) 2020 Vinh, Epps, Bailey (b44) 2010; 11 Dinh, Li, Thai (b54) 2015 Liu, Yang, Chen, Musial, Chen, Li, Zuo (b17) 2021; 15 Cafieri, Costa, Hansen (b61) 2014; 222 Karrer, Newman (b15) 2011; 83 Rosvall, Bergstrom (b19) 2007; 104 Reichardt, Bornholdt (b31) 2006; 74 Brandes, Delling, Gaertler, Gorke, Hoefer, Nikoloski, Wagner (b40) 2007; 20 Roozbahani, Rezaeenour, Katanforoush (b46) 2023; 67 Jerdee, Kirkley, Newman (b43) 2023 Fortunato, Newman (b2) 2022; 18 Maier, Brockmann (b53) 2017; 96 Blondel, Guillaume, Lambiotte, Lefebvre (b30) 2008; 2008 Dinh, Thai (b38) 2015; 11 Traag, Waltman, van Eck (b35) 2019; 9 Kamiński, Prałat, Théberge (b52) 2021; 9 T. Bonald, B. Charpentier, A. Galland, A. Hollocou, Hierarchical graph clustering using node pair sampling, in: MLG 2018-14th International Workshop on Mining and Learning with Graphs. London, UK, 2018. Sattari, Zamanifar (b48) 2018; 25 Chen, Singh, Bassler (b56) 2018; 2018 Aldecoa, Marín (b22) 2011; 6 Lancichinetti, Fortunato, Radicchi (b51) 2008; 78 (b42) 2023 Aldecoa (10.1016/j.jocs.2024.102283_b22) 2011; 6 Riolo (10.1016/j.jocs.2024.102283_b59) 2020; 101 Aref (10.1016/j.jocs.2024.102283_b65) 2023 Newman (10.1016/j.jocs.2024.102283_b5) 2016; 94 Fortunato (10.1016/j.jocs.2024.102283_b12) 2007; 104 Agarwal (10.1016/j.jocs.2024.102283_b41) 2008; 66 Kawamoto (10.1016/j.jocs.2024.102283_b6) 2019; 99 Newman (10.1016/j.jocs.2024.102283_b3) 2006; 103 Serrano (10.1016/j.jocs.2024.102283_b18) 2021 Khomami (10.1016/j.jocs.2024.102283_b14) 2018; 24 Peixoto (10.1016/j.jocs.2024.102283_b11) 2023 Kamiński (10.1016/j.jocs.2024.102283_b52) 2021; 9 Fortunato (10.1016/j.jocs.2024.102283_b2) 2022; 18 Maier (10.1016/j.jocs.2024.102283_b53) 2017; 96 Cafieri (10.1016/j.jocs.2024.102283_b61) 2014; 222 Kosowski (10.1016/j.jocs.2024.102283_b4) 2020 Rosvall (10.1016/j.jocs.2024.102283_b20) 2008; 105 Lancichinetti (10.1016/j.jocs.2024.102283_b51) 2008; 78 Peixoto (10.1016/j.jocs.2024.102283_b16) 2014; 89 Marchese (10.1016/j.jocs.2024.102283_b24) 2022; 5 Sobolevsky (10.1016/j.jocs.2024.102283_b27) 2022; 7 Clauset (10.1016/j.jocs.2024.102283_b29) 2004; 70 (10.1016/j.jocs.2024.102283_b42) 2023 Sobolevsky (10.1016/j.jocs.2024.102283_b25) 2014; 90 Liu (10.1016/j.jocs.2024.102283_b17) 2021; 15 Aref (10.1016/j.jocs.2024.102283_b28) 2022 Traag (10.1016/j.jocs.2024.102283_b35) 2019; 9 Lancichinetti (10.1016/j.jocs.2024.102283_b55) 2011; 84 Hamid (10.1016/j.jocs.2024.102283_b23) 2018; 25 Singh (10.1016/j.jocs.2024.102283_b47) 2022; 61 Schumm (10.1016/j.jocs.2024.102283_b13) 2012; 3 Aref (10.1016/j.jocs.2024.102283_b50) 2023 Zhang (10.1016/j.jocs.2024.102283_b33) 2014; 111 Blondel (10.1016/j.jocs.2024.102283_b30) 2008; 2008 Leicht (10.1016/j.jocs.2024.102283_b32) 2008; 100 Meeks (10.1016/j.jocs.2024.102283_b7) 2020; 82 Reichardt (10.1016/j.jocs.2024.102283_b31) 2006; 74 Rossetti (10.1016/j.jocs.2024.102283_b39) 2019; 4 Jerdee (10.1016/j.jocs.2024.102283_b43) 2023 Good (10.1016/j.jocs.2024.102283_b26) 2010; 81 Sattari (10.1016/j.jocs.2024.102283_b48) 2018; 25 Rosvall (10.1016/j.jocs.2024.102283_b19) 2007; 104 Vinh (10.1016/j.jocs.2024.102283_b44) 2010; 11 Aloise (10.1016/j.jocs.2024.102283_b63) 2010; 82 Chen (10.1016/j.jocs.2024.102283_b57) 2018; 13 Brusco (10.1016/j.jocs.2024.102283_b64) 2023; 55 Guimerà (10.1016/j.jocs.2024.102283_b9) 2004; 70 Karrer (10.1016/j.jocs.2024.102283_b15) 2011; 83 Kernighan (10.1016/j.jocs.2024.102283_b37) 1970; 49 Newman (10.1016/j.jocs.2024.102283_b45) 2020; 101 Miasnikof (10.1016/j.jocs.2024.102283_b60) 2020; 8 Dinh (10.1016/j.jocs.2024.102283_b54) 2015 Kawase (10.1016/j.jocs.2024.102283_b62) 2021; 117 Dinh (10.1016/j.jocs.2024.102283_b38) 2015; 11 Gates (10.1016/j.jocs.2024.102283_b49) 2019; 9 Schaub (10.1016/j.jocs.2024.102283_b1) 2017; 2 Chen (10.1016/j.jocs.2024.102283_b56) 2018; 2018 Brandes (10.1016/j.jocs.2024.102283_b40) 2007; 20 Fortunato (10.1016/j.jocs.2024.102283_b8) 2016; 659 Zhao (10.1016/j.jocs.2024.102283_b58) 2021; 551 10.1016/j.jocs.2024.102283_b36 Traag (10.1016/j.jocs.2024.102283_b21) 2015; 92 Fortunato (10.1016/j.jocs.2024.102283_b10) 2010; 486 Roozbahani (10.1016/j.jocs.2024.102283_b46) 2023; 67 10.1016/j.jocs.2024.102283_b34 |
| References_xml | – start-page: 612 year: 2023 end-page: 626 ident: b50 article-title: Heuristic modularity maximization algorithms for community detection rarely return an optimal partition or anything similar publication-title: Computational Science – ICCS 2023 – volume: 101 year: 2020 ident: b45 article-title: Improved mutual information measure for clustering, classification, and community detection publication-title: Phys. Rev. E – volume: 96 year: 2017 ident: b53 article-title: Cover time for random walks on arbitrary complex networks publication-title: Phys. Rev. E – volume: 8 start-page: 1 year: 2020 end-page: 33 ident: b60 article-title: A density-based statistical analysis of graph clustering algorithm performance publication-title: J. Complex Netw. – volume: 92 year: 2015 ident: b21 article-title: Detecting communities using asymptotical surprise publication-title: Phys. Rev. E – volume: 82 year: 2010 ident: b63 article-title: Column generation algorithms for exact modularity maximization in networks publication-title: Phys. Rev. E – reference: P.Z. Li, L. Huang, C.D. Wang, J.H. Lai, EdMot: An edge enhancement approach for motif-aware community detection, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 479–487. – year: 2020 ident: b4 article-title: On the power of Louvain for graph clustering publication-title: Advances in Neural Information Processing Systems 33 – volume: 100 year: 2008 ident: b32 article-title: Community structure in directed networks publication-title: Phys. Rev. Lett. – volume: 90 year: 2014 ident: b25 article-title: General optimization technique for high-quality community detection in complex networks publication-title: Phys. Rev. E – volume: 4 start-page: 1 year: 2019 end-page: 26 ident: b39 article-title: CDlib: a Python library to extract, compare and evaluate communities from complex networks publication-title: Appl. Netw. Sci. – year: 2023 ident: b42 article-title: Gurobi Optimizer Reference Manual – volume: 3 start-page: 356 year: 2012 end-page: 366 ident: b13 article-title: Bloom: a stochastic growth-based fast method of community detection in networks publication-title: J. Comput. Sci. – volume: 55 start-page: 3549 year: 2023 end-page: 3565 ident: b64 article-title: On maximization of the modularity index in network psychometrics publication-title: Behav. Res. Methods – volume: 9 year: 2019 ident: b35 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep. – volume: 20 start-page: 172 year: 2007 end-page: 188 ident: b40 article-title: On modularity clustering publication-title: IEEE Trans. Knowl. Data Eng. – year: 2021 ident: b18 article-title: Community detection in the stochastic block model by mixed integer programming – volume: 81 year: 2010 ident: b26 article-title: Performance of modularity maximization in practical contexts publication-title: Phys. Rev. E – volume: 2 start-page: 1 year: 2017 end-page: 13 ident: b1 article-title: The many facets of community detection in complex networks publication-title: Appl. Netw. Sci. – volume: 103 start-page: 8577 year: 2006 end-page: 8582 ident: b3 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. – volume: 67 year: 2023 ident: b46 article-title: Community detection in multi-relational directional networks publication-title: J. Comput. Sci. – volume: 89 year: 2014 ident: b16 article-title: Efficient Monte Carlo and Greedy heuristic for the inference of stochastic block models publication-title: Phys. Rev. E – volume: 111 start-page: 18144 year: 2014 end-page: 18149 ident: b33 article-title: Scalable detection of statistically significant communities and hierarchies, using message passing for modularity publication-title: Proc. Natl. Acad. Sci. – volume: 551 start-page: 358 year: 2021 end-page: 372 ident: b58 article-title: A community detection algorithm based on graph compression for large-scale social networks publication-title: Inform. Sci. – volume: 117 start-page: 182 year: 2021 end-page: 201 ident: b62 article-title: Additive approximation algorithms for modularity maximization publication-title: J. Comput. System Sci. – volume: 49 start-page: 291 year: 1970 end-page: 307 ident: b37 article-title: An efficient heuristic procedure for partitioning graphs publication-title: Bell Syst. Tech. J. – volume: 11 start-page: 181 year: 2015 end-page: 200 ident: b38 article-title: Toward optimal community detection: From trees to general weighted networks publication-title: Internet Math. – volume: 659 start-page: 1 year: 2016 end-page: 44 ident: b8 article-title: Community detection in networks: A user guide publication-title: Phys. Rep. – year: 2023 ident: b65 article-title: Dataset of synthetic modular graphs from LFR and ABCD benchmark models for community detection – volume: 83 year: 2011 ident: b15 article-title: Stochastic blockmodels and community structure in networks publication-title: Phys. Rev. E – volume: 101 year: 2020 ident: b59 article-title: Consistency of community structure in complex networks publication-title: Phys. Rev. E – volume: 70 year: 2004 ident: b9 article-title: Modularity from fluctuations in random graphs and complex networks publication-title: Phys. Rev. E – volume: 5 start-page: 1 year: 2022 end-page: 16 ident: b24 article-title: Detecting mesoscale structures by surprise publication-title: Commun. Phys. – volume: 99 year: 2019 ident: b6 article-title: Counting the number of metastable states in the modularity landscape: Algorithmic detectability limit of greedy algorithms in community detection publication-title: Phys. Rev. E – year: 2023 ident: b43 article-title: Normalized mutual information is a biased measure for classification and community detection – volume: 82 start-page: 2174 year: 2020 end-page: 2199 ident: b7 article-title: The parameterised complexity of computing the maximum modularity of a graph publication-title: Algorithmica – volume: 25 start-page: 280 year: 2018 end-page: 288 ident: b23 article-title: A fast heuristic detection algorithm for visualizing structure of large community publication-title: J. Comput. Sci. – volume: 7 start-page: 1 year: 2022 end-page: 19 ident: b27 article-title: Graph neural network inspired algorithm for unsupervised network community detection publication-title: Appl. Netw. Sci. – volume: 222 start-page: 213 year: 2014 end-page: 226 ident: b61 article-title: Reformulation of a model for hierarchical divisive graph modularity maximization publication-title: Ann. Oper. Res. – reference: T. Bonald, B. Charpentier, A. Galland, A. Hollocou, Hierarchical graph clustering using node pair sampling, in: MLG 2018-14th International Workshop on Mining and Learning with Graphs. London, UK, 2018. – volume: 70 year: 2004 ident: b29 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E – volume: 2008 year: 2008 ident: b30 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. – volume: 61 year: 2022 ident: b47 article-title: Disintegrating constant communities in complex networks publication-title: J. Comput. Sci. – volume: 105 start-page: 1118 year: 2008 end-page: 1123 ident: b20 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proc. Natl. Acad. Sci. – volume: 2018 year: 2018 ident: b56 article-title: Network community detection using modularity density measures publication-title: J. Stat. Mech. Theory Exp. – volume: 94 year: 2016 ident: b5 article-title: Equivalence between modularity optimization and maximum likelihood methods for community detection publication-title: Phys. Rev. E – volume: 9 start-page: 8574 year: 2019 ident: b49 article-title: Element-centric clustering comparison unifies overlaps and hierarchy publication-title: Sci. Rep. – year: 2023 ident: b11 article-title: Descriptive vs. inferential community detection in networks: Pitfalls, myths and half-truths publication-title: Elements in the Structure and Dynamics of Complex Networks – volume: 84 year: 2011 ident: b55 article-title: Limits of modularity maximization in community detection publication-title: Phys. Rev. E – volume: 18 start-page: 848 year: 2022 end-page: 850 ident: b2 article-title: 20 Years of network community detection publication-title: Nat. Phys. – volume: 486 start-page: 75 year: 2010 end-page: 174 ident: b10 article-title: Community detection in graphs publication-title: Phys. Rep. – volume: 78 year: 2008 ident: b51 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E – volume: 25 start-page: 122 year: 2018 end-page: 133 ident: b48 article-title: A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks publication-title: J. Comput. Sci. – volume: 15 start-page: 1 year: 2021 end-page: 28 ident: b17 article-title: A scalable redefined stochastic blockmodel publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – volume: 11 start-page: 2837 year: 2010 end-page: 2854 ident: b44 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – volume: 74 year: 2006 ident: b31 article-title: Statistical mechanics of community detection publication-title: Phys. Rev. E – volume: 24 start-page: 413 year: 2018 end-page: 426 ident: b14 article-title: A new cellular learning automata-based algorithm for community detection in complex social networks publication-title: J. Comput. Sci. – year: 2022 ident: b28 article-title: The Bayan algorithm: Detecting communities in networks through exact and approximate optimization of modularity – volume: 66 start-page: 409 year: 2008 end-page: 418 ident: b41 article-title: Modularity-maximizing graph communities via mathematical programming publication-title: Eur. Phys. J. B – start-page: 101 year: 2015 end-page: 110 ident: b54 article-title: Network clustering via maximizing modularity: Approximation algorithms and theoretical limits publication-title: 2015 IEEE International Conference on Data Mining – volume: 13 start-page: 1 year: 2018 end-page: 21 ident: b57 article-title: Global vs local modularity for network community detection publication-title: PLoS One – volume: 104 start-page: 36 year: 2007 end-page: 41 ident: b12 article-title: Resolution limit in community detection publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 153 year: 2021 end-page: 178 ident: b52 article-title: Artificial benchmark for community detection (ABCD)—Fast random graph model with community structure publication-title: Netw. Sci. – volume: 104 start-page: 7327 year: 2007 end-page: 7331 ident: b19 article-title: An information-theoretic framework for resolving community structure in complex networks publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 1 year: 2011 end-page: 8 ident: b22 article-title: Deciphering network community structure by surprise publication-title: PLoS One – volume: 101 issue: 4 year: 2020 ident: 10.1016/j.jocs.2024.102283_b45 article-title: Improved mutual information measure for clustering, classification, and community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.042304 – volume: 15 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.jocs.2024.102283_b17 article-title: A scalable redefined stochastic blockmodel publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – year: 2023 ident: 10.1016/j.jocs.2024.102283_b42 – volume: 66 start-page: 409 issue: 3 year: 2008 ident: 10.1016/j.jocs.2024.102283_b41 article-title: Modularity-maximizing graph communities via mathematical programming publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2008-00425-1 – ident: 10.1016/j.jocs.2024.102283_b36 doi: 10.1145/3292500.3330882 – volume: 99 issue: 1 year: 2019 ident: 10.1016/j.jocs.2024.102283_b6 article-title: Counting the number of metastable states in the modularity landscape: Algorithmic detectability limit of greedy algorithms in community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.010301 – volume: 9 start-page: 153 issue: 2 year: 2021 ident: 10.1016/j.jocs.2024.102283_b52 article-title: Artificial benchmark for community detection (ABCD)—Fast random graph model with community structure publication-title: Netw. Sci. doi: 10.1017/nws.2020.45 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.jocs.2024.102283_b24 article-title: Detecting mesoscale structures by surprise publication-title: Commun. Phys. doi: 10.1038/s42005-022-00890-7 – volume: 111 start-page: 18144 issue: 51 year: 2014 ident: 10.1016/j.jocs.2024.102283_b33 article-title: Scalable detection of statistically significant communities and hierarchies, using message passing for modularity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1409770111 – volume: 96 issue: 4 year: 2017 ident: 10.1016/j.jocs.2024.102283_b53 article-title: Cover time for random walks on arbitrary complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.042307 – volume: 78 issue: 4 year: 2008 ident: 10.1016/j.jocs.2024.102283_b51 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.046110 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.jocs.2024.102283_b35 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep. doi: 10.1038/s41598-019-41695-z – volume: 103 start-page: 8577 issue: 23 year: 2006 ident: 10.1016/j.jocs.2024.102283_b3 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0601602103 – volume: 92 issue: 2 year: 2015 ident: 10.1016/j.jocs.2024.102283_b21 article-title: Detecting communities using asymptotical surprise publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.022816 – volume: 4 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jocs.2024.102283_b39 article-title: CDlib: a Python library to extract, compare and evaluate communities from complex networks publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-019-0165-9 – volume: 74 issue: 1 year: 2006 ident: 10.1016/j.jocs.2024.102283_b31 article-title: Statistical mechanics of community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.016110 – volume: 11 start-page: 2837 issue: 95 year: 2010 ident: 10.1016/j.jocs.2024.102283_b44 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 291 issue: 2 year: 1970 ident: 10.1016/j.jocs.2024.102283_b37 article-title: An efficient heuristic procedure for partitioning graphs publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1970.tb01770.x – volume: 70 issue: 6 year: 2004 ident: 10.1016/j.jocs.2024.102283_b29 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066111 – start-page: 612 year: 2023 ident: 10.1016/j.jocs.2024.102283_b50 article-title: Heuristic modularity maximization algorithms for community detection rarely return an optimal partition or anything similar – volume: 70 year: 2004 ident: 10.1016/j.jocs.2024.102283_b9 article-title: Modularity from fluctuations in random graphs and complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.025101 – volume: 61 year: 2022 ident: 10.1016/j.jocs.2024.102283_b47 article-title: Disintegrating constant communities in complex networks publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2022.101634 – volume: 55 start-page: 3549 issue: 7 year: 2023 ident: 10.1016/j.jocs.2024.102283_b64 article-title: On maximization of the modularity index in network psychometrics publication-title: Behav. Res. Methods doi: 10.3758/s13428-022-01975-5 – volume: 94 issue: 5 year: 2016 ident: 10.1016/j.jocs.2024.102283_b5 article-title: Equivalence between modularity optimization and maximum likelihood methods for community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.052315 – volume: 84 issue: 6 year: 2011 ident: 10.1016/j.jocs.2024.102283_b55 article-title: Limits of modularity maximization in community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.066122 – volume: 8 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.jocs.2024.102283_b60 article-title: A density-based statistical analysis of graph clustering algorithm performance publication-title: J. Complex Netw. – volume: 117 start-page: 182 year: 2021 ident: 10.1016/j.jocs.2024.102283_b62 article-title: Additive approximation algorithms for modularity maximization publication-title: J. Comput. System Sci. doi: 10.1016/j.jcss.2020.11.005 – volume: 82 start-page: 2174 issue: 8 year: 2020 ident: 10.1016/j.jocs.2024.102283_b7 article-title: The parameterised complexity of computing the maximum modularity of a graph publication-title: Algorithmica doi: 10.1007/s00453-019-00649-7 – volume: 81 issue: 4 year: 2010 ident: 10.1016/j.jocs.2024.102283_b26 article-title: Performance of modularity maximization in practical contexts publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.046106 – volume: 100 issue: 11 year: 2008 ident: 10.1016/j.jocs.2024.102283_b32 article-title: Community structure in directed networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.118703 – volume: 89 issue: 1 year: 2014 ident: 10.1016/j.jocs.2024.102283_b16 article-title: Efficient Monte Carlo and Greedy heuristic for the inference of stochastic block models publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.012804 – volume: 9 start-page: 8574 issue: 1 year: 2019 ident: 10.1016/j.jocs.2024.102283_b49 article-title: Element-centric clustering comparison unifies overlaps and hierarchy publication-title: Sci. Rep. doi: 10.1038/s41598-019-44892-y – volume: 25 start-page: 122 year: 2018 ident: 10.1016/j.jocs.2024.102283_b48 article-title: A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.01.004 – volume: 18 start-page: 848 year: 2022 ident: 10.1016/j.jocs.2024.102283_b2 article-title: 20 Years of network community detection publication-title: Nat. Phys. doi: 10.1038/s41567-022-01716-7 – volume: 659 start-page: 1 year: 2016 ident: 10.1016/j.jocs.2024.102283_b8 article-title: Community detection in networks: A user guide publication-title: Phys. Rep. doi: 10.1016/j.physrep.2016.09.002 – year: 2023 ident: 10.1016/j.jocs.2024.102283_b65 – volume: 25 start-page: 280 year: 2018 ident: 10.1016/j.jocs.2024.102283_b23 article-title: A fast heuristic detection algorithm for visualizing structure of large community publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.002 – volume: 105 start-page: 1118 issue: 4 year: 2008 ident: 10.1016/j.jocs.2024.102283_b20 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706851105 – volume: 101 year: 2020 ident: 10.1016/j.jocs.2024.102283_b59 article-title: Consistency of community structure in complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.052306 – volume: 83 year: 2011 ident: 10.1016/j.jocs.2024.102283_b15 article-title: Stochastic blockmodels and community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.016107 – volume: 67 year: 2023 ident: 10.1016/j.jocs.2024.102283_b46 article-title: Community detection in multi-relational directional networks publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2023.101962 – year: 2023 ident: 10.1016/j.jocs.2024.102283_b43 – volume: 90 issue: 1 year: 2014 ident: 10.1016/j.jocs.2024.102283_b25 article-title: General optimization technique for high-quality community detection in complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.012811 – volume: 2018 issue: 5 year: 2018 ident: 10.1016/j.jocs.2024.102283_b56 article-title: Network community detection using modularity density measures publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/aabfc8 – year: 2020 ident: 10.1016/j.jocs.2024.102283_b4 article-title: On the power of Louvain for graph clustering – year: 2022 ident: 10.1016/j.jocs.2024.102283_b28 – volume: 11 start-page: 181 issue: 3 year: 2015 ident: 10.1016/j.jocs.2024.102283_b38 article-title: Toward optimal community detection: From trees to general weighted networks publication-title: Internet Math. doi: 10.1080/15427951.2014.950875 – volume: 104 start-page: 7327 issue: 18 year: 2007 ident: 10.1016/j.jocs.2024.102283_b19 article-title: An information-theoretic framework for resolving community structure in complex networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0611034104 – volume: 7 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.jocs.2024.102283_b27 article-title: Graph neural network inspired algorithm for unsupervised network community detection publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-022-00500-z – start-page: 101 year: 2015 ident: 10.1016/j.jocs.2024.102283_b54 article-title: Network clustering via maximizing modularity: Approximation algorithms and theoretical limits – ident: 10.1016/j.jocs.2024.102283_b34 – volume: 20 start-page: 172 issue: 2 year: 2007 ident: 10.1016/j.jocs.2024.102283_b40 article-title: On modularity clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.190689 – volume: 104 start-page: 36 issue: 1 year: 2007 ident: 10.1016/j.jocs.2024.102283_b12 article-title: Resolution limit in community detection publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0605965104 – volume: 222 start-page: 213 year: 2014 ident: 10.1016/j.jocs.2024.102283_b61 article-title: Reformulation of a model for hierarchical divisive graph modularity maximization publication-title: Ann. Oper. Res. doi: 10.1007/s10479-012-1286-z – volume: 551 start-page: 358 year: 2021 ident: 10.1016/j.jocs.2024.102283_b58 article-title: A community detection algorithm based on graph compression for large-scale social networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.10.057 – year: 2023 ident: 10.1016/j.jocs.2024.102283_b11 article-title: Descriptive vs. inferential community detection in networks: Pitfalls, myths and half-truths – volume: 486 start-page: 75 issue: 3–5 year: 2010 ident: 10.1016/j.jocs.2024.102283_b10 article-title: Community detection in graphs publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.11.002 – volume: 13 start-page: 1 issue: 10 year: 2018 ident: 10.1016/j.jocs.2024.102283_b57 article-title: Global vs local modularity for network community detection publication-title: PLoS One doi: 10.1371/journal.pone.0205284 – volume: 24 start-page: 413 year: 2018 ident: 10.1016/j.jocs.2024.102283_b14 article-title: A new cellular learning automata-based algorithm for community detection in complex social networks publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.10.009 – year: 2021 ident: 10.1016/j.jocs.2024.102283_b18 – volume: 2 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jocs.2024.102283_b1 article-title: The many facets of community detection in complex networks publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-017-0023-6 – volume: 82 issue: 4 year: 2010 ident: 10.1016/j.jocs.2024.102283_b63 article-title: Column generation algorithms for exact modularity maximization in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.046112 – volume: 3 start-page: 356 issue: 5 year: 2012 ident: 10.1016/j.jocs.2024.102283_b13 article-title: Bloom: a stochastic growth-based fast method of community detection in networks publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2012.03.006 – volume: 2008 issue: 10 year: 2008 ident: 10.1016/j.jocs.2024.102283_b30 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 6 start-page: 1 issue: 9 year: 2011 ident: 10.1016/j.jocs.2024.102283_b22 article-title: Deciphering network community structure by surprise publication-title: PLoS One doi: 10.1371/journal.pone.0024195 |
| SSID | ssj0000388913 |
| Score | 2.358598 |
| Snippet | Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 102283 |
| SubjectTerms | Approximation Graph neural network Graph optimization Integer programming Modularity maximization Network science |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60BT35FhWVPXhQbCTbbl5HEaUIFg8W9BT2MdHWNC02Re2vdzbZ1gdaak5h2QeZnWS-MN98S8hRlAADjGsOounE4SyJHMml63ihq6WCyIUio3vT8pttfn3v3VuZHFML8y1_X_Cwun1lZLXr3KgMYDBcJFXfQ9xdIdV26_b8wfxRhUHgmITc5z1jtkLm90n-ikLLo2wg3l9Fmn6JMler5XFFw0Kc0JBLns9GuTxT4x_SjfM9wBpZsWCTnpfesU4WINsgSxOu-wZZt2_2kB5b-emTTTIudErGGNJor68NSxWBOu2Jt07P1mzSTkYLLXJsKhpq9AlGpeRzjYpM00IGmxqtTFw-K5nmVKSPfZzrqTekiJSpKktTcG4NeUEIy7ZI--ry7qLp2BMaHNXgPHdEHTxAzNgA8GXAPC08Iyvq-hJjo4JEhYqJQLNAMCVCiATiOZFwEIkGVyu_sU0qWT-DHUIFGscLBeNJI-QyrMuoLqUbCLzwW66TXcImOxYrK19uTtFI4wlPrRsbS8fG0nFp6V1yOh0zKMU7Zvb2Jo4QW_hRwooY93TmuNrUa-ZYZu9_3fdJJX8ZwQFCn1weWp__AMfDAhc priority: 102 providerName: Unpaywall |
| Title | Analyzing modularity maximization in approximation, heuristic, and graph neural network algorithms for community detection |
| URI | https://dx.doi.org/10.1016/j.jocs.2024.102283 https://doi.org/10.1016/j.jocs.2024.102283 |
| UnpaywallVersion | publishedVersion |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1877-7503 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000388913 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection issn: 1877-7503 databaseCode: ACRLP dateStart: 20100501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000388913 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1877-7503 databaseCode: .~1 dateStart: 20100501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000388913 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1877-7503 databaseCode: AIKHN dateStart: 20100501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000388913 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1877-7503 databaseCode: AKRWK dateStart: 20100501 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIQEvEx0gBqzyAw8gGhonTpM8VtOqDkSFBJXGU-QfF9apTautFbAH_vbd2U61PVAh8hLFsn2Rz7k7xd99x9ibsgYB6NcijKbrSIq6jLTUcZQVsdUGyhjcie7nyWA8lR_Ps_M9dtLmwhCsMth-b9OdtQ4t_bCa_dVs1v8qiMoui4lRzp0vUQa7zKmKwYc_YvufhdhOSlclmfpHNCDkzniY1-XSEGt3IonEICnSv_mnR5tmpX7_VPP5Hf8zesIOQuDIh_7dOmwPmkP2sMWtH7JO-Eqv-dtAJf3uKbtxnCM36J74YmkJcYpBN1-oX7NFyL_ks4Y7XnFscg09fgEbT9_c46qx3FFac-K9RPGNR41zNf-xxLkuFtcco15ufJoJzm1h7cBdzTM2HZ1-OxlHodpCZFIp15FKIAOM_1KAgc5FZlVGFKHxQKOfM1CbwgiVW5ErYVQBpcLYTNUSVG0htmaQPmf7zbKBF4wrXMqsUELWaSF1kegy0TrOFV5ol219xES7xpUJVORUEWNetZizy4r0UpFeKq-XI_Z-O2bliTh29s5a1VX3tlOFnmLnuN5Wz_8g5uV_innFHtOTh5y9Zvvrqw0cY3Cz1l23e7vswfDs03iC9-nky_D7LfsG_Pk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKpVeKqCtSh_Uhx5addONE3uTHCsEWihwKUjcIj8msGg3uyq7gnLob-_4kVU5gFBzdDJx5HFmvsTffAb4VDXIkfJaQmi6SQRvqkQLnSayTK02WKXoV3SPjgfDU3FwJs9WYKerhXG0yhj7Q0z30Tq29ONo9mejUf8nd1J2MnWKcn596Qk8FTIr3BfYtz98-aPFyZ1UfptkZ5A4i1g8E3hel1PjZLsz4VQMsjK_L0GtLdqZ-n2txuN_EtDeOryIyJF9Dw-3ASvYbsKzjri-CRvxNb1in6OW9JeXcOtFR24pP7HJ1DrKKaFuNlE3o0kswGSjlnlhcWryDT12gYug39xjqrXMa1ozJ3xJ3beBNs7U-HxK97qYXDGCvcyEOhO6t8W5Z3e1r-B0b_dkZ5jE7RYSkwsxT1SGEgkA5ogDXXBplXQaoelAU6Iz2JjScFVYXihuVImVInCmGoGqsZhaM8hfw2o7bfENMEVDKUvFRZOXQpeZrjKt00LRQYHZNlvAuzGuTdQid1tijOuOdHZZO7_Uzi918MsWfF3azIISx4NXy8519Z35VFOqeNCut_TzI7p5-5_dfIS14cnRYX24f_zjHTx3ZwL_7D2szn8t8AMhnbne9jP5L-H6_N4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60BT35FhWVPXhQbCTbbl5HEaUIFg8W9BT2MdHWNC02Re2vdzbZ1gdaak5h2QeZnWS-MN98S8hRlAADjGsOounE4SyJHMml63ihq6WCyIUio3vT8pttfn3v3VuZHFML8y1_X_Cwun1lZLXr3KgMYDBcJFXfQ9xdIdV26_b8wfxRhUHgmITc5z1jtkLm90n-ikLLo2wg3l9Fmn6JMler5XFFw0Kc0JBLns9GuTxT4x_SjfM9wBpZsWCTnpfesU4WINsgSxOu-wZZt2_2kB5b-emTTTIudErGGNJor68NSxWBOu2Jt07P1mzSTkYLLXJsKhpq9AlGpeRzjYpM00IGmxqtTFw-K5nmVKSPfZzrqTekiJSpKktTcG4NeUEIy7ZI--ry7qLp2BMaHNXgPHdEHTxAzNgA8GXAPC08Iyvq-hJjo4JEhYqJQLNAMCVCiATiOZFwEIkGVyu_sU0qWT-DHUIFGscLBeNJI-QyrMuoLqUbCLzwW66TXcImOxYrK19uTtFI4wlPrRsbS8fG0nFp6V1yOh0zKMU7Zvb2Jo4QW_hRwooY93TmuNrUa-ZYZu9_3fdJJX8ZwQFCn1weWp__AMfDAhc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+modularity+maximization+in+approximation%2C+heuristic%2C+and+graph+neural+network+algorithms+for+community+detection&rft.jtitle=Journal+of+computational+science&rft.au=Aref%2C+Samin&rft.au=Mostajabdaveh%2C+Mahdi&rft.date=2024-06-01&rft.issn=1877-7503&rft.volume=78&rft.spage=102283&rft_id=info:doi/10.1016%2Fj.jocs.2024.102283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2024_102283 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |