Analyzing modularity maximization in approximation, heuristic, and graph neural network algorithms for community detection

Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 78; p. 102283
Main Authors Aref, Samin, Mostajabdaveh, Mahdi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text
ISSN1877-7503
1877-7511
DOI10.1016/j.jocs.2024.102283

Cover

Abstract Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of various modularity-based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network algorithm, and nine variations of the Bayan approximation algorithm. Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on 68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on networks with modular structures. If modularity is to be used for detecting communities, we recommend approximate optimization algorithms for a methodologically sound usage of modularity within its applicability limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023).
AbstractList Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of various modularity-based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network algorithm, and nine variations of the Bayan approximation algorithm. Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on 68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on networks with modular structures. If modularity is to be used for detecting communities, we recommend approximate optimization algorithms for a methodologically sound usage of modularity within its applicability limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023).
ArticleNumber 102283
Author Aref, Samin
Mostajabdaveh, Mahdi
Author_xml – sequence: 1
  givenname: Samin
  orcidid: 0000-0002-5870-9253
  surname: Aref
  fullname: Aref, Samin
  email: aref@mie.utoronto.ca
  organization: Department of Mechanical and Industrial Engineering, University of Toronto, M5S3G8, Canada
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0002-2816-909X
  surname: Mostajabdaveh
  fullname: Mostajabdaveh, Mahdi
  organization: Department of Mathematical and Industrial Engineering, Polytechnique Montreal, H3T1J4, Canada
BookMark eNqNkMtuwjAQRb2gUinlB7ryBwCN47yQukGoLwmpm3ZtDfYETBM7skNp-Po60FUXqLMZ6UrnjubckIGxBgm5Y9GMRSy73812VvpZHMVJCOK44AMyZEWeT_M04tdk7P0uCsOLYs74kBwXBqruqM2G1lbtK3C67WgN37rWR2i1NVQbCk3jbIhOwYRuce-0b7WcUDCKbhw0W2pCCFVY7cG6TwrVxoaube1paR2Vtq73pu9W2KLse27JVQmVx_HvHpGPp8f35ct09fb8ulysppInSTuFGFNkGeOI2TpnqYI0KeI8ytYJ4xJLWUgGuWI5MAkFzmGeMigThFJhpGTGR4Sfe_emge4AVSUaF35xnWCR6K2Jneitid6aOFsLVHGmpLPeOyyF1O3p_9aBri6j8R_0X_cezhAGFV8anfBSo5GotAu-hLL6Ev4D462hqQ
CitedBy_id crossref_primary_10_1016_j_jocs_2024_102518
crossref_primary_10_1103_PhysRevE_110_044315
crossref_primary_10_33298_2226_8553_2023_2_38_09
Cites_doi 10.1103/PhysRevE.101.042304
10.1140/epjb/e2008-00425-1
10.1145/3292500.3330882
10.1103/PhysRevE.99.010301
10.1017/nws.2020.45
10.1038/s42005-022-00890-7
10.1073/pnas.1409770111
10.1103/PhysRevE.96.042307
10.1103/PhysRevE.78.046110
10.1038/s41598-019-41695-z
10.1073/pnas.0601602103
10.1103/PhysRevE.92.022816
10.1007/s41109-019-0165-9
10.1103/PhysRevE.74.016110
10.1002/j.1538-7305.1970.tb01770.x
10.1103/PhysRevE.70.066111
10.1103/PhysRevE.70.025101
10.1016/j.jocs.2022.101634
10.3758/s13428-022-01975-5
10.1103/PhysRevE.94.052315
10.1103/PhysRevE.84.066122
10.1016/j.jcss.2020.11.005
10.1007/s00453-019-00649-7
10.1103/PhysRevE.81.046106
10.1103/PhysRevLett.100.118703
10.1103/PhysRevE.89.012804
10.1038/s41598-019-44892-y
10.1016/j.jocs.2018.01.004
10.1038/s41567-022-01716-7
10.1016/j.physrep.2016.09.002
10.1016/j.jocs.2017.07.002
10.1073/pnas.0706851105
10.1103/PhysRevE.101.052306
10.1103/PhysRevE.83.016107
10.1016/j.jocs.2023.101962
10.1103/PhysRevE.90.012811
10.1088/1742-5468/aabfc8
10.1080/15427951.2014.950875
10.1073/pnas.0611034104
10.1007/s41109-022-00500-z
10.1109/TKDE.2007.190689
10.1073/pnas.0605965104
10.1007/s10479-012-1286-z
10.1016/j.ins.2020.10.057
10.1016/j.physrep.2009.11.002
10.1371/journal.pone.0205284
10.1016/j.jocs.2017.10.009
10.1007/s41109-017-0023-6
10.1103/PhysRevE.82.046112
10.1016/j.jocs.2012.03.006
10.1088/1742-5468/2008/10/P10008
10.1371/journal.pone.0024195
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.jocs.2024.102283
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
ExternalDocumentID 10.1016/j.jocs.2024.102283
10_1016_j_jocs_2024_102283
S1877750324000760
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c344t-a2e5e1613ee6b715da5482706b413cefc8c1a7d17a1ca8e9a951af4eafde0dc63
IEDL.DBID .~1
ISSN 1877-7503
1877-7511
IngestDate Tue Aug 19 14:23:04 EDT 2025
Wed Oct 01 04:25:12 EDT 2025
Thu Apr 24 23:16:05 EDT 2025
Tue Dec 03 03:45:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Integer programming
Approximation
Modularity maximization
Network science
Graph neural network
Graph optimization
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-a2e5e1613ee6b715da5482706b413cefc8c1a7d17a1ca8e9a951af4eafde0dc63
ORCID 0000-0002-5870-9253
0000-0002-2816-909X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877750324000760
ParticipantIDs unpaywall_primary_10_1016_j_jocs_2024_102283
crossref_citationtrail_10_1016_j_jocs_2024_102283
crossref_primary_10_1016_j_jocs_2024_102283
elsevier_sciencedirect_doi_10_1016_j_jocs_2024_102283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fortunato, Hric (b8) 2016; 659
Riolo, Newman (b59) 2020; 101
Serrano, Vidal (b18) 2021
Schumm, Scoglio (b13) 2012; 3
Zhang, Moore (b33) 2014; 111
P.Z. Li, L. Huang, C.D. Wang, J.H. Lai, EdMot: An edge enhancement approach for motif-aware community detection, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 479–487.
Kawase, Matsui, Miyauchi (b62) 2021; 117
Zhao, Liang, Wang (b58) 2021; 551
Aloise, Cafieri, Caporossi, Hansen, Perron, Liberti (b63) 2010; 82
Guimerà, Sales-Pardo, Amaral (b9) 2004; 70
Fortunato, Barthélemy (b12) 2007; 104
Newman (b5) 2016; 94
Sobolevsky, Campari, Belyi, Ratti (b25) 2014; 90
Kernighan, Lin (b37) 1970; 49
Agarwal, Kempe (b41) 2008; 66
Khomami, Rezvanian, Meybodi (b14) 2018; 24
Sobolevsky, Belyi (b27) 2022; 7
Newman, Cantwell, Young (b45) 2020; 101
Aref, Mostajabdaveh, Chheda (b50) 2023
Rosvall, Bergstrom (b20) 2008; 105
Hamid, Wu, Nawaz, Zhao (b23) 2018; 25
Clauset, Newman, Moore (b29) 2004; 70
Newman (b3) 2006; 103
Marchese, Caldarelli, Squartini (b24) 2022; 5
Good, De Montjoye, Clauset (b26) 2010; 81
Peixoto (b16) 2014; 89
Lancichinetti, Fortunato (b55) 2011; 84
Gates, Wood, Hetrick, Ahn (b49) 2019; 9
Brusco, Steinley, Watts (b64) 2023; 55
Peixoto (b11) 2023
Traag, Aldecoa, Delvenne (b21) 2015; 92
Meeks, Skerman (b7) 2020; 82
Rossetti, Milli, Cazabet (b39) 2019; 4
Aref, Chheda, Mostajabdaveh (b28) 2022
Singh, Nandi, Chakraborty, Choudhury (b47) 2022; 61
Fortunato (b10) 2010; 486
Aref, Mostajabdaveh (b65) 2023
Leicht, Newman (b32) 2008; 100
Kawamoto, Kabashima (b6) 2019; 99
Chen, Wang, Tang, Tang, Gao, Li, Xiang, Zhang (b57) 2018; 13
Miasnikof, Shestopaloff, Bonner, Lawryshyn, Pardalos (b60) 2020; 8
Schaub, Delvenne, Rosvall, Lambiotte (b1) 2017; 2
Kosowski, Saulpic, Mallmann-Trenn, Cohen-Addad (b4) 2020
Vinh, Epps, Bailey (b44) 2010; 11
Dinh, Li, Thai (b54) 2015
Liu, Yang, Chen, Musial, Chen, Li, Zuo (b17) 2021; 15
Cafieri, Costa, Hansen (b61) 2014; 222
Karrer, Newman (b15) 2011; 83
Rosvall, Bergstrom (b19) 2007; 104
Reichardt, Bornholdt (b31) 2006; 74
Brandes, Delling, Gaertler, Gorke, Hoefer, Nikoloski, Wagner (b40) 2007; 20
Roozbahani, Rezaeenour, Katanforoush (b46) 2023; 67
Jerdee, Kirkley, Newman (b43) 2023
Fortunato, Newman (b2) 2022; 18
Maier, Brockmann (b53) 2017; 96
Blondel, Guillaume, Lambiotte, Lefebvre (b30) 2008; 2008
Dinh, Thai (b38) 2015; 11
Traag, Waltman, van Eck (b35) 2019; 9
Kamiński, Prałat, Théberge (b52) 2021; 9
T. Bonald, B. Charpentier, A. Galland, A. Hollocou, Hierarchical graph clustering using node pair sampling, in: MLG 2018-14th International Workshop on Mining and Learning with Graphs. London, UK, 2018.
Sattari, Zamanifar (b48) 2018; 25
Chen, Singh, Bassler (b56) 2018; 2018
Aldecoa, Marín (b22) 2011; 6
Lancichinetti, Fortunato, Radicchi (b51) 2008; 78
(b42) 2023
Aldecoa (10.1016/j.jocs.2024.102283_b22) 2011; 6
Riolo (10.1016/j.jocs.2024.102283_b59) 2020; 101
Aref (10.1016/j.jocs.2024.102283_b65) 2023
Newman (10.1016/j.jocs.2024.102283_b5) 2016; 94
Fortunato (10.1016/j.jocs.2024.102283_b12) 2007; 104
Agarwal (10.1016/j.jocs.2024.102283_b41) 2008; 66
Kawamoto (10.1016/j.jocs.2024.102283_b6) 2019; 99
Newman (10.1016/j.jocs.2024.102283_b3) 2006; 103
Serrano (10.1016/j.jocs.2024.102283_b18) 2021
Khomami (10.1016/j.jocs.2024.102283_b14) 2018; 24
Peixoto (10.1016/j.jocs.2024.102283_b11) 2023
Kamiński (10.1016/j.jocs.2024.102283_b52) 2021; 9
Fortunato (10.1016/j.jocs.2024.102283_b2) 2022; 18
Maier (10.1016/j.jocs.2024.102283_b53) 2017; 96
Cafieri (10.1016/j.jocs.2024.102283_b61) 2014; 222
Kosowski (10.1016/j.jocs.2024.102283_b4) 2020
Rosvall (10.1016/j.jocs.2024.102283_b20) 2008; 105
Lancichinetti (10.1016/j.jocs.2024.102283_b51) 2008; 78
Peixoto (10.1016/j.jocs.2024.102283_b16) 2014; 89
Marchese (10.1016/j.jocs.2024.102283_b24) 2022; 5
Sobolevsky (10.1016/j.jocs.2024.102283_b27) 2022; 7
Clauset (10.1016/j.jocs.2024.102283_b29) 2004; 70
(10.1016/j.jocs.2024.102283_b42) 2023
Sobolevsky (10.1016/j.jocs.2024.102283_b25) 2014; 90
Liu (10.1016/j.jocs.2024.102283_b17) 2021; 15
Aref (10.1016/j.jocs.2024.102283_b28) 2022
Traag (10.1016/j.jocs.2024.102283_b35) 2019; 9
Lancichinetti (10.1016/j.jocs.2024.102283_b55) 2011; 84
Hamid (10.1016/j.jocs.2024.102283_b23) 2018; 25
Singh (10.1016/j.jocs.2024.102283_b47) 2022; 61
Schumm (10.1016/j.jocs.2024.102283_b13) 2012; 3
Aref (10.1016/j.jocs.2024.102283_b50) 2023
Zhang (10.1016/j.jocs.2024.102283_b33) 2014; 111
Blondel (10.1016/j.jocs.2024.102283_b30) 2008; 2008
Leicht (10.1016/j.jocs.2024.102283_b32) 2008; 100
Meeks (10.1016/j.jocs.2024.102283_b7) 2020; 82
Reichardt (10.1016/j.jocs.2024.102283_b31) 2006; 74
Rossetti (10.1016/j.jocs.2024.102283_b39) 2019; 4
Jerdee (10.1016/j.jocs.2024.102283_b43) 2023
Good (10.1016/j.jocs.2024.102283_b26) 2010; 81
Sattari (10.1016/j.jocs.2024.102283_b48) 2018; 25
Rosvall (10.1016/j.jocs.2024.102283_b19) 2007; 104
Vinh (10.1016/j.jocs.2024.102283_b44) 2010; 11
Aloise (10.1016/j.jocs.2024.102283_b63) 2010; 82
Chen (10.1016/j.jocs.2024.102283_b57) 2018; 13
Brusco (10.1016/j.jocs.2024.102283_b64) 2023; 55
Guimerà (10.1016/j.jocs.2024.102283_b9) 2004; 70
Karrer (10.1016/j.jocs.2024.102283_b15) 2011; 83
Kernighan (10.1016/j.jocs.2024.102283_b37) 1970; 49
Newman (10.1016/j.jocs.2024.102283_b45) 2020; 101
Miasnikof (10.1016/j.jocs.2024.102283_b60) 2020; 8
Dinh (10.1016/j.jocs.2024.102283_b54) 2015
Kawase (10.1016/j.jocs.2024.102283_b62) 2021; 117
Dinh (10.1016/j.jocs.2024.102283_b38) 2015; 11
Gates (10.1016/j.jocs.2024.102283_b49) 2019; 9
Schaub (10.1016/j.jocs.2024.102283_b1) 2017; 2
Chen (10.1016/j.jocs.2024.102283_b56) 2018; 2018
Brandes (10.1016/j.jocs.2024.102283_b40) 2007; 20
Fortunato (10.1016/j.jocs.2024.102283_b8) 2016; 659
Zhao (10.1016/j.jocs.2024.102283_b58) 2021; 551
10.1016/j.jocs.2024.102283_b36
Traag (10.1016/j.jocs.2024.102283_b21) 2015; 92
Fortunato (10.1016/j.jocs.2024.102283_b10) 2010; 486
Roozbahani (10.1016/j.jocs.2024.102283_b46) 2023; 67
10.1016/j.jocs.2024.102283_b34
References_xml – start-page: 612
  year: 2023
  end-page: 626
  ident: b50
  article-title: Heuristic modularity maximization algorithms for community detection rarely return an optimal partition or anything similar
  publication-title: Computational Science – ICCS 2023
– volume: 101
  year: 2020
  ident: b45
  article-title: Improved mutual information measure for clustering, classification, and community detection
  publication-title: Phys. Rev. E
– volume: 96
  year: 2017
  ident: b53
  article-title: Cover time for random walks on arbitrary complex networks
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 1
  year: 2020
  end-page: 33
  ident: b60
  article-title: A density-based statistical analysis of graph clustering algorithm performance
  publication-title: J. Complex Netw.
– volume: 92
  year: 2015
  ident: b21
  article-title: Detecting communities using asymptotical surprise
  publication-title: Phys. Rev. E
– volume: 82
  year: 2010
  ident: b63
  article-title: Column generation algorithms for exact modularity maximization in networks
  publication-title: Phys. Rev. E
– reference: P.Z. Li, L. Huang, C.D. Wang, J.H. Lai, EdMot: An edge enhancement approach for motif-aware community detection, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 479–487.
– year: 2020
  ident: b4
  article-title: On the power of Louvain for graph clustering
  publication-title: Advances in Neural Information Processing Systems 33
– volume: 100
  year: 2008
  ident: b32
  article-title: Community structure in directed networks
  publication-title: Phys. Rev. Lett.
– volume: 90
  year: 2014
  ident: b25
  article-title: General optimization technique for high-quality community detection in complex networks
  publication-title: Phys. Rev. E
– volume: 4
  start-page: 1
  year: 2019
  end-page: 26
  ident: b39
  article-title: CDlib: a Python library to extract, compare and evaluate communities from complex networks
  publication-title: Appl. Netw. Sci.
– year: 2023
  ident: b42
  article-title: Gurobi Optimizer Reference Manual
– volume: 3
  start-page: 356
  year: 2012
  end-page: 366
  ident: b13
  article-title: Bloom: a stochastic growth-based fast method of community detection in networks
  publication-title: J. Comput. Sci.
– volume: 55
  start-page: 3549
  year: 2023
  end-page: 3565
  ident: b64
  article-title: On maximization of the modularity index in network psychometrics
  publication-title: Behav. Res. Methods
– volume: 9
  year: 2019
  ident: b35
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci. Rep.
– volume: 20
  start-page: 172
  year: 2007
  end-page: 188
  ident: b40
  article-title: On modularity clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2021
  ident: b18
  article-title: Community detection in the stochastic block model by mixed integer programming
– volume: 81
  year: 2010
  ident: b26
  article-title: Performance of modularity maximization in practical contexts
  publication-title: Phys. Rev. E
– volume: 2
  start-page: 1
  year: 2017
  end-page: 13
  ident: b1
  article-title: The many facets of community detection in complex networks
  publication-title: Appl. Netw. Sci.
– volume: 103
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: b3
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 67
  year: 2023
  ident: b46
  article-title: Community detection in multi-relational directional networks
  publication-title: J. Comput. Sci.
– volume: 89
  year: 2014
  ident: b16
  article-title: Efficient Monte Carlo and Greedy heuristic for the inference of stochastic block models
  publication-title: Phys. Rev. E
– volume: 111
  start-page: 18144
  year: 2014
  end-page: 18149
  ident: b33
  article-title: Scalable detection of statistically significant communities and hierarchies, using message passing for modularity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 551
  start-page: 358
  year: 2021
  end-page: 372
  ident: b58
  article-title: A community detection algorithm based on graph compression for large-scale social networks
  publication-title: Inform. Sci.
– volume: 117
  start-page: 182
  year: 2021
  end-page: 201
  ident: b62
  article-title: Additive approximation algorithms for modularity maximization
  publication-title: J. Comput. System Sci.
– volume: 49
  start-page: 291
  year: 1970
  end-page: 307
  ident: b37
  article-title: An efficient heuristic procedure for partitioning graphs
  publication-title: Bell Syst. Tech. J.
– volume: 11
  start-page: 181
  year: 2015
  end-page: 200
  ident: b38
  article-title: Toward optimal community detection: From trees to general weighted networks
  publication-title: Internet Math.
– volume: 659
  start-page: 1
  year: 2016
  end-page: 44
  ident: b8
  article-title: Community detection in networks: A user guide
  publication-title: Phys. Rep.
– year: 2023
  ident: b65
  article-title: Dataset of synthetic modular graphs from LFR and ABCD benchmark models for community detection
– volume: 83
  year: 2011
  ident: b15
  article-title: Stochastic blockmodels and community structure in networks
  publication-title: Phys. Rev. E
– volume: 101
  year: 2020
  ident: b59
  article-title: Consistency of community structure in complex networks
  publication-title: Phys. Rev. E
– volume: 70
  year: 2004
  ident: b9
  article-title: Modularity from fluctuations in random graphs and complex networks
  publication-title: Phys. Rev. E
– volume: 5
  start-page: 1
  year: 2022
  end-page: 16
  ident: b24
  article-title: Detecting mesoscale structures by surprise
  publication-title: Commun. Phys.
– volume: 99
  year: 2019
  ident: b6
  article-title: Counting the number of metastable states in the modularity landscape: Algorithmic detectability limit of greedy algorithms in community detection
  publication-title: Phys. Rev. E
– year: 2023
  ident: b43
  article-title: Normalized mutual information is a biased measure for classification and community detection
– volume: 82
  start-page: 2174
  year: 2020
  end-page: 2199
  ident: b7
  article-title: The parameterised complexity of computing the maximum modularity of a graph
  publication-title: Algorithmica
– volume: 25
  start-page: 280
  year: 2018
  end-page: 288
  ident: b23
  article-title: A fast heuristic detection algorithm for visualizing structure of large community
  publication-title: J. Comput. Sci.
– volume: 7
  start-page: 1
  year: 2022
  end-page: 19
  ident: b27
  article-title: Graph neural network inspired algorithm for unsupervised network community detection
  publication-title: Appl. Netw. Sci.
– volume: 222
  start-page: 213
  year: 2014
  end-page: 226
  ident: b61
  article-title: Reformulation of a model for hierarchical divisive graph modularity maximization
  publication-title: Ann. Oper. Res.
– reference: T. Bonald, B. Charpentier, A. Galland, A. Hollocou, Hierarchical graph clustering using node pair sampling, in: MLG 2018-14th International Workshop on Mining and Learning with Graphs. London, UK, 2018.
– volume: 70
  year: 2004
  ident: b29
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
– volume: 2008
  year: 2008
  ident: b30
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 61
  year: 2022
  ident: b47
  article-title: Disintegrating constant communities in complex networks
  publication-title: J. Comput. Sci.
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: b20
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2018
  year: 2018
  ident: b56
  article-title: Network community detection using modularity density measures
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 94
  year: 2016
  ident: b5
  article-title: Equivalence between modularity optimization and maximum likelihood methods for community detection
  publication-title: Phys. Rev. E
– volume: 9
  start-page: 8574
  year: 2019
  ident: b49
  article-title: Element-centric clustering comparison unifies overlaps and hierarchy
  publication-title: Sci. Rep.
– year: 2023
  ident: b11
  article-title: Descriptive vs. inferential community detection in networks: Pitfalls, myths and half-truths
  publication-title: Elements in the Structure and Dynamics of Complex Networks
– volume: 84
  year: 2011
  ident: b55
  article-title: Limits of modularity maximization in community detection
  publication-title: Phys. Rev. E
– volume: 18
  start-page: 848
  year: 2022
  end-page: 850
  ident: b2
  article-title: 20 Years of network community detection
  publication-title: Nat. Phys.
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: b10
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
– volume: 78
  year: 2008
  ident: b51
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E
– volume: 25
  start-page: 122
  year: 2018
  end-page: 133
  ident: b48
  article-title: A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks
  publication-title: J. Comput. Sci.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 28
  ident: b17
  article-title: A scalable redefined stochastic blockmodel
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: b44
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 74
  year: 2006
  ident: b31
  article-title: Statistical mechanics of community detection
  publication-title: Phys. Rev. E
– volume: 24
  start-page: 413
  year: 2018
  end-page: 426
  ident: b14
  article-title: A new cellular learning automata-based algorithm for community detection in complex social networks
  publication-title: J. Comput. Sci.
– year: 2022
  ident: b28
  article-title: The Bayan algorithm: Detecting communities in networks through exact and approximate optimization of modularity
– volume: 66
  start-page: 409
  year: 2008
  end-page: 418
  ident: b41
  article-title: Modularity-maximizing graph communities via mathematical programming
  publication-title: Eur. Phys. J. B
– start-page: 101
  year: 2015
  end-page: 110
  ident: b54
  article-title: Network clustering via maximizing modularity: Approximation algorithms and theoretical limits
  publication-title: 2015 IEEE International Conference on Data Mining
– volume: 13
  start-page: 1
  year: 2018
  end-page: 21
  ident: b57
  article-title: Global vs local modularity for network community detection
  publication-title: PLoS One
– volume: 104
  start-page: 36
  year: 2007
  end-page: 41
  ident: b12
  article-title: Resolution limit in community detection
  publication-title: Proc. Natl. Acad. Sci.
– volume: 9
  start-page: 153
  year: 2021
  end-page: 178
  ident: b52
  article-title: Artificial benchmark for community detection (ABCD)—Fast random graph model with community structure
  publication-title: Netw. Sci.
– volume: 104
  start-page: 7327
  year: 2007
  end-page: 7331
  ident: b19
  article-title: An information-theoretic framework for resolving community structure in complex networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 6
  start-page: 1
  year: 2011
  end-page: 8
  ident: b22
  article-title: Deciphering network community structure by surprise
  publication-title: PLoS One
– volume: 101
  issue: 4
  year: 2020
  ident: 10.1016/j.jocs.2024.102283_b45
  article-title: Improved mutual information measure for clustering, classification, and community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.042304
– volume: 15
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.jocs.2024.102283_b17
  article-title: A scalable redefined stochastic blockmodel
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– year: 2023
  ident: 10.1016/j.jocs.2024.102283_b42
– volume: 66
  start-page: 409
  issue: 3
  year: 2008
  ident: 10.1016/j.jocs.2024.102283_b41
  article-title: Modularity-maximizing graph communities via mathematical programming
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2008-00425-1
– ident: 10.1016/j.jocs.2024.102283_b36
  doi: 10.1145/3292500.3330882
– volume: 99
  issue: 1
  year: 2019
  ident: 10.1016/j.jocs.2024.102283_b6
  article-title: Counting the number of metastable states in the modularity landscape: Algorithmic detectability limit of greedy algorithms in community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.010301
– volume: 9
  start-page: 153
  issue: 2
  year: 2021
  ident: 10.1016/j.jocs.2024.102283_b52
  article-title: Artificial benchmark for community detection (ABCD)—Fast random graph model with community structure
  publication-title: Netw. Sci.
  doi: 10.1017/nws.2020.45
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.jocs.2024.102283_b24
  article-title: Detecting mesoscale structures by surprise
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-00890-7
– volume: 111
  start-page: 18144
  issue: 51
  year: 2014
  ident: 10.1016/j.jocs.2024.102283_b33
  article-title: Scalable detection of statistically significant communities and hierarchies, using message passing for modularity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1409770111
– volume: 96
  issue: 4
  year: 2017
  ident: 10.1016/j.jocs.2024.102283_b53
  article-title: Cover time for random walks on arbitrary complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.042307
– volume: 78
  issue: 4
  year: 2008
  ident: 10.1016/j.jocs.2024.102283_b51
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.046110
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.jocs.2024.102283_b35
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41695-z
– volume: 103
  start-page: 8577
  issue: 23
  year: 2006
  ident: 10.1016/j.jocs.2024.102283_b3
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0601602103
– volume: 92
  issue: 2
  year: 2015
  ident: 10.1016/j.jocs.2024.102283_b21
  article-title: Detecting communities using asymptotical surprise
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.022816
– volume: 4
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.jocs.2024.102283_b39
  article-title: CDlib: a Python library to extract, compare and evaluate communities from complex networks
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-019-0165-9
– volume: 74
  issue: 1
  year: 2006
  ident: 10.1016/j.jocs.2024.102283_b31
  article-title: Statistical mechanics of community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.016110
– volume: 11
  start-page: 2837
  issue: 95
  year: 2010
  ident: 10.1016/j.jocs.2024.102283_b44
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 291
  issue: 2
  year: 1970
  ident: 10.1016/j.jocs.2024.102283_b37
  article-title: An efficient heuristic procedure for partitioning graphs
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– volume: 70
  issue: 6
  year: 2004
  ident: 10.1016/j.jocs.2024.102283_b29
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066111
– start-page: 612
  year: 2023
  ident: 10.1016/j.jocs.2024.102283_b50
  article-title: Heuristic modularity maximization algorithms for community detection rarely return an optimal partition or anything similar
– volume: 70
  year: 2004
  ident: 10.1016/j.jocs.2024.102283_b9
  article-title: Modularity from fluctuations in random graphs and complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.025101
– volume: 61
  year: 2022
  ident: 10.1016/j.jocs.2024.102283_b47
  article-title: Disintegrating constant communities in complex networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101634
– volume: 55
  start-page: 3549
  issue: 7
  year: 2023
  ident: 10.1016/j.jocs.2024.102283_b64
  article-title: On maximization of the modularity index in network psychometrics
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-022-01975-5
– volume: 94
  issue: 5
  year: 2016
  ident: 10.1016/j.jocs.2024.102283_b5
  article-title: Equivalence between modularity optimization and maximum likelihood methods for community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.052315
– volume: 84
  issue: 6
  year: 2011
  ident: 10.1016/j.jocs.2024.102283_b55
  article-title: Limits of modularity maximization in community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.066122
– volume: 8
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.jocs.2024.102283_b60
  article-title: A density-based statistical analysis of graph clustering algorithm performance
  publication-title: J. Complex Netw.
– volume: 117
  start-page: 182
  year: 2021
  ident: 10.1016/j.jocs.2024.102283_b62
  article-title: Additive approximation algorithms for modularity maximization
  publication-title: J. Comput. System Sci.
  doi: 10.1016/j.jcss.2020.11.005
– volume: 82
  start-page: 2174
  issue: 8
  year: 2020
  ident: 10.1016/j.jocs.2024.102283_b7
  article-title: The parameterised complexity of computing the maximum modularity of a graph
  publication-title: Algorithmica
  doi: 10.1007/s00453-019-00649-7
– volume: 81
  issue: 4
  year: 2010
  ident: 10.1016/j.jocs.2024.102283_b26
  article-title: Performance of modularity maximization in practical contexts
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.046106
– volume: 100
  issue: 11
  year: 2008
  ident: 10.1016/j.jocs.2024.102283_b32
  article-title: Community structure in directed networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.118703
– volume: 89
  issue: 1
  year: 2014
  ident: 10.1016/j.jocs.2024.102283_b16
  article-title: Efficient Monte Carlo and Greedy heuristic for the inference of stochastic block models
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.012804
– volume: 9
  start-page: 8574
  issue: 1
  year: 2019
  ident: 10.1016/j.jocs.2024.102283_b49
  article-title: Element-centric clustering comparison unifies overlaps and hierarchy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44892-y
– volume: 25
  start-page: 122
  year: 2018
  ident: 10.1016/j.jocs.2024.102283_b48
  article-title: A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.01.004
– volume: 18
  start-page: 848
  year: 2022
  ident: 10.1016/j.jocs.2024.102283_b2
  article-title: 20 Years of network community detection
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01716-7
– volume: 659
  start-page: 1
  year: 2016
  ident: 10.1016/j.jocs.2024.102283_b8
  article-title: Community detection in networks: A user guide
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.09.002
– year: 2023
  ident: 10.1016/j.jocs.2024.102283_b65
– volume: 25
  start-page: 280
  year: 2018
  ident: 10.1016/j.jocs.2024.102283_b23
  article-title: A fast heuristic detection algorithm for visualizing structure of large community
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.002
– volume: 105
  start-page: 1118
  issue: 4
  year: 2008
  ident: 10.1016/j.jocs.2024.102283_b20
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706851105
– volume: 101
  year: 2020
  ident: 10.1016/j.jocs.2024.102283_b59
  article-title: Consistency of community structure in complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.052306
– volume: 83
  year: 2011
  ident: 10.1016/j.jocs.2024.102283_b15
  article-title: Stochastic blockmodels and community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.016107
– volume: 67
  year: 2023
  ident: 10.1016/j.jocs.2024.102283_b46
  article-title: Community detection in multi-relational directional networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2023.101962
– year: 2023
  ident: 10.1016/j.jocs.2024.102283_b43
– volume: 90
  issue: 1
  year: 2014
  ident: 10.1016/j.jocs.2024.102283_b25
  article-title: General optimization technique for high-quality community detection in complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012811
– volume: 2018
  issue: 5
  year: 2018
  ident: 10.1016/j.jocs.2024.102283_b56
  article-title: Network community detection using modularity density measures
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/aabfc8
– year: 2020
  ident: 10.1016/j.jocs.2024.102283_b4
  article-title: On the power of Louvain for graph clustering
– year: 2022
  ident: 10.1016/j.jocs.2024.102283_b28
– volume: 11
  start-page: 181
  issue: 3
  year: 2015
  ident: 10.1016/j.jocs.2024.102283_b38
  article-title: Toward optimal community detection: From trees to general weighted networks
  publication-title: Internet Math.
  doi: 10.1080/15427951.2014.950875
– volume: 104
  start-page: 7327
  issue: 18
  year: 2007
  ident: 10.1016/j.jocs.2024.102283_b19
  article-title: An information-theoretic framework for resolving community structure in complex networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0611034104
– volume: 7
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.jocs.2024.102283_b27
  article-title: Graph neural network inspired algorithm for unsupervised network community detection
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-022-00500-z
– start-page: 101
  year: 2015
  ident: 10.1016/j.jocs.2024.102283_b54
  article-title: Network clustering via maximizing modularity: Approximation algorithms and theoretical limits
– ident: 10.1016/j.jocs.2024.102283_b34
– volume: 20
  start-page: 172
  issue: 2
  year: 2007
  ident: 10.1016/j.jocs.2024.102283_b40
  article-title: On modularity clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.190689
– volume: 104
  start-page: 36
  issue: 1
  year: 2007
  ident: 10.1016/j.jocs.2024.102283_b12
  article-title: Resolution limit in community detection
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0605965104
– volume: 222
  start-page: 213
  year: 2014
  ident: 10.1016/j.jocs.2024.102283_b61
  article-title: Reformulation of a model for hierarchical divisive graph modularity maximization
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-012-1286-z
– volume: 551
  start-page: 358
  year: 2021
  ident: 10.1016/j.jocs.2024.102283_b58
  article-title: A community detection algorithm based on graph compression for large-scale social networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.10.057
– year: 2023
  ident: 10.1016/j.jocs.2024.102283_b11
  article-title: Descriptive vs. inferential community detection in networks: Pitfalls, myths and half-truths
– volume: 486
  start-page: 75
  issue: 3–5
  year: 2010
  ident: 10.1016/j.jocs.2024.102283_b10
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.11.002
– volume: 13
  start-page: 1
  issue: 10
  year: 2018
  ident: 10.1016/j.jocs.2024.102283_b57
  article-title: Global vs local modularity for network community detection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0205284
– volume: 24
  start-page: 413
  year: 2018
  ident: 10.1016/j.jocs.2024.102283_b14
  article-title: A new cellular learning automata-based algorithm for community detection in complex social networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.10.009
– year: 2021
  ident: 10.1016/j.jocs.2024.102283_b18
– volume: 2
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jocs.2024.102283_b1
  article-title: The many facets of community detection in complex networks
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-017-0023-6
– volume: 82
  issue: 4
  year: 2010
  ident: 10.1016/j.jocs.2024.102283_b63
  article-title: Column generation algorithms for exact modularity maximization in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.046112
– volume: 3
  start-page: 356
  issue: 5
  year: 2012
  ident: 10.1016/j.jocs.2024.102283_b13
  article-title: Bloom: a stochastic growth-based fast method of community detection in networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2012.03.006
– volume: 2008
  issue: 10
  year: 2008
  ident: 10.1016/j.jocs.2024.102283_b30
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 6
  start-page: 1
  issue: 9
  year: 2011
  ident: 10.1016/j.jocs.2024.102283_b22
  article-title: Deciphering network community structure by surprise
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024195
SSID ssj0000388913
Score 2.358598
Snippet Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102283
SubjectTerms Approximation
Graph neural network
Graph optimization
Integer programming
Modularity maximization
Network science
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60BT35FhWVPXhQbCTbbl5HEaUIFg8W9BT2MdHWNC02Re2vdzbZ1gdaak5h2QeZnWS-MN98S8hRlAADjGsOounE4SyJHMml63ihq6WCyIUio3vT8pttfn3v3VuZHFML8y1_X_Cwun1lZLXr3KgMYDBcJFXfQ9xdIdV26_b8wfxRhUHgmITc5z1jtkLm90n-ikLLo2wg3l9Fmn6JMler5XFFw0Kc0JBLns9GuTxT4x_SjfM9wBpZsWCTnpfesU4WINsgSxOu-wZZt2_2kB5b-emTTTIudErGGNJor68NSxWBOu2Jt07P1mzSTkYLLXJsKhpq9AlGpeRzjYpM00IGmxqtTFw-K5nmVKSPfZzrqTekiJSpKktTcG4NeUEIy7ZI--ry7qLp2BMaHNXgPHdEHTxAzNgA8GXAPC08Iyvq-hJjo4JEhYqJQLNAMCVCiATiOZFwEIkGVyu_sU0qWT-DHUIFGscLBeNJI-QyrMuoLqUbCLzwW66TXcImOxYrK19uTtFI4wlPrRsbS8fG0nFp6V1yOh0zKMU7Zvb2Jo4QW_hRwooY93TmuNrUa-ZYZu9_3fdJJX8ZwQFCn1weWp__AMfDAhc
  priority: 102
  providerName: Unpaywall
Title Analyzing modularity maximization in approximation, heuristic, and graph neural network algorithms for community detection
URI https://dx.doi.org/10.1016/j.jocs.2024.102283
https://doi.org/10.1016/j.jocs.2024.102283
UnpaywallVersion publishedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1877-7503
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000388913
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  issn: 1877-7503
  databaseCode: ACRLP
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000388913
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1877-7503
  databaseCode: .~1
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000388913
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1877-7503
  databaseCode: AIKHN
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000388913
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1877-7503
  databaseCode: AKRWK
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIQEvEx0gBqzyAw8gGhonTpM8VtOqDkSFBJXGU-QfF9apTautFbAH_vbd2U61PVAh8hLFsn2Rz7k7xd99x9ibsgYB6NcijKbrSIq6jLTUcZQVsdUGyhjcie7nyWA8lR_Ps_M9dtLmwhCsMth-b9OdtQ4t_bCa_dVs1v8qiMoui4lRzp0vUQa7zKmKwYc_YvufhdhOSlclmfpHNCDkzniY1-XSEGt3IonEICnSv_mnR5tmpX7_VPP5Hf8zesIOQuDIh_7dOmwPmkP2sMWtH7JO-Eqv-dtAJf3uKbtxnCM36J74YmkJcYpBN1-oX7NFyL_ks4Y7XnFscg09fgEbT9_c46qx3FFac-K9RPGNR41zNf-xxLkuFtcco15ufJoJzm1h7cBdzTM2HZ1-OxlHodpCZFIp15FKIAOM_1KAgc5FZlVGFKHxQKOfM1CbwgiVW5ErYVQBpcLYTNUSVG0htmaQPmf7zbKBF4wrXMqsUELWaSF1kegy0TrOFV5ol219xES7xpUJVORUEWNetZizy4r0UpFeKq-XI_Z-O2bliTh29s5a1VX3tlOFnmLnuN5Wz_8g5uV_innFHtOTh5y9Zvvrqw0cY3Cz1l23e7vswfDs03iC9-nky_D7LfsG_Pk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKpVeKqCtSh_Uhx5addONE3uTHCsEWihwKUjcIj8msGg3uyq7gnLob-_4kVU5gFBzdDJx5HFmvsTffAb4VDXIkfJaQmi6SQRvqkQLnSayTK02WKXoV3SPjgfDU3FwJs9WYKerhXG0yhj7Q0z30Tq29ONo9mejUf8nd1J2MnWKcn596Qk8FTIr3BfYtz98-aPFyZ1UfptkZ5A4i1g8E3hel1PjZLsz4VQMsjK_L0GtLdqZ-n2txuN_EtDeOryIyJF9Dw-3ASvYbsKzjri-CRvxNb1in6OW9JeXcOtFR24pP7HJ1DrKKaFuNlE3o0kswGSjlnlhcWryDT12gYug39xjqrXMa1ozJ3xJ3beBNs7U-HxK97qYXDGCvcyEOhO6t8W5Z3e1r-B0b_dkZ5jE7RYSkwsxT1SGEgkA5ogDXXBplXQaoelAU6Iz2JjScFVYXihuVImVInCmGoGqsZhaM8hfw2o7bfENMEVDKUvFRZOXQpeZrjKt00LRQYHZNlvAuzGuTdQid1tijOuOdHZZO7_Uzi918MsWfF3azIISx4NXy8519Z35VFOqeNCut_TzI7p5-5_dfIS14cnRYX24f_zjHTx3ZwL_7D2szn8t8AMhnbne9jP5L-H6_N4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60BT35FhWVPXhQbCTbbl5HEaUIFg8W9BT2MdHWNC02Re2vdzbZ1gdaak5h2QeZnWS-MN98S8hRlAADjGsOounE4SyJHMml63ihq6WCyIUio3vT8pttfn3v3VuZHFML8y1_X_Cwun1lZLXr3KgMYDBcJFXfQ9xdIdV26_b8wfxRhUHgmITc5z1jtkLm90n-ikLLo2wg3l9Fmn6JMler5XFFw0Kc0JBLns9GuTxT4x_SjfM9wBpZsWCTnpfesU4WINsgSxOu-wZZt2_2kB5b-emTTTIudErGGNJor68NSxWBOu2Jt07P1mzSTkYLLXJsKhpq9AlGpeRzjYpM00IGmxqtTFw-K5nmVKSPfZzrqTekiJSpKktTcG4NeUEIy7ZI--ry7qLp2BMaHNXgPHdEHTxAzNgA8GXAPC08Iyvq-hJjo4JEhYqJQLNAMCVCiATiOZFwEIkGVyu_sU0qWT-DHUIFGscLBeNJI-QyrMuoLqUbCLzwW66TXcImOxYrK19uTtFI4wlPrRsbS8fG0nFp6V1yOh0zKMU7Zvb2Jo4QW_hRwooY93TmuNrUa-ZYZu9_3fdJJX8ZwQFCn1weWp__AMfDAhc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+modularity+maximization+in+approximation%2C+heuristic%2C+and+graph+neural+network+algorithms+for+community+detection&rft.jtitle=Journal+of+computational+science&rft.au=Aref%2C+Samin&rft.au=Mostajabdaveh%2C+Mahdi&rft.date=2024-06-01&rft.issn=1877-7503&rft.volume=78&rft.spage=102283&rft_id=info:doi/10.1016%2Fj.jocs.2024.102283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2024_102283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon