Improving EEG major depression disorder classification using FBSE coupled with domain adaptation method based machine learning algorithms
•FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of feature distributions among subjects. Major depression disorder (MDD) has become the leading mental disorder worldwide. Medical reports have show...
Saved in:
| Published in | Biomedical signal processing and control Vol. 85; p. 104923 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2023.104923 |
Cover
| Abstract | •FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of feature distributions among subjects.
Major depression disorder (MDD) has become the leading mental disorder worldwide. Medical reports have shown that people with depression exhibit abnormal wave patterns in EEG signals compared with the healthy subjects when they are exposed to positive and negative stimuli. In this paper, we proposed an intelligent MDD detection model based on Fourier-Bessel series expansion (FBSE) coupled with domain adaptation (DA). First, EEG signals are segmented into intervals and each segment is passed through FBSE. Two types of features, including statistical and nonlinear features are investigated and extracted from each FBSE coefficient to detect MDD. Student t-test and Wilcoxon test are employed to remove noisy and bad features that can compromise the performance of data-driven learners. Then, DA method named Independence Domain Adaptation was applied to reduce the difference of feature distributions among subjects. The selected features are sent to a least square support vector machine (LS-SVM), and other classifiers named SVM, k-nearest (KNN), ransom forest, Bagged ensemble, boosted ensemble, decision tree, gradient boosting and stacked ensemble for the comparison purpose. Our experiments are simulated by using publicly available dataset. The performance of the proposed model is evaluated in both subject dependence experiment by 10-fold cross validation, subject independence experiment by leave-one-subject-out cross-validation, and Confidence interval respectively. Results showed that the features reduction method can significantly improve the mean accuracy by 4.20. The proposed model is compared with previous studies and the results show that the proposed model outperforms the other methods. |
|---|---|
| AbstractList | •FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of feature distributions among subjects.
Major depression disorder (MDD) has become the leading mental disorder worldwide. Medical reports have shown that people with depression exhibit abnormal wave patterns in EEG signals compared with the healthy subjects when they are exposed to positive and negative stimuli. In this paper, we proposed an intelligent MDD detection model based on Fourier-Bessel series expansion (FBSE) coupled with domain adaptation (DA). First, EEG signals are segmented into intervals and each segment is passed through FBSE. Two types of features, including statistical and nonlinear features are investigated and extracted from each FBSE coefficient to detect MDD. Student t-test and Wilcoxon test are employed to remove noisy and bad features that can compromise the performance of data-driven learners. Then, DA method named Independence Domain Adaptation was applied to reduce the difference of feature distributions among subjects. The selected features are sent to a least square support vector machine (LS-SVM), and other classifiers named SVM, k-nearest (KNN), ransom forest, Bagged ensemble, boosted ensemble, decision tree, gradient boosting and stacked ensemble for the comparison purpose. Our experiments are simulated by using publicly available dataset. The performance of the proposed model is evaluated in both subject dependence experiment by 10-fold cross validation, subject independence experiment by leave-one-subject-out cross-validation, and Confidence interval respectively. Results showed that the features reduction method can significantly improve the mean accuracy by 4.20. The proposed model is compared with previous studies and the results show that the proposed model outperforms the other methods. |
| ArticleNumber | 104923 |
| Author | Mohammed, Hadeer Diykh, Mohammed |
| Author_xml | – sequence: 1 givenname: Hadeer surname: Mohammed fullname: Mohammed, Hadeer email: Msc21co1@utq.edu.iq organization: University of Thi-Qar, College of Education for Pure Science, Iraq – sequence: 2 givenname: Mohammed surname: Diykh fullname: Diykh, Mohammed email: Mohammed.diykh@utq.edu.iq, mohammed.diykh@usq.edu.au organization: University of Thi-Qar, College of Education for Pure Science, Iraq |
| BookMark | eNqNkEFOwzAQRb0oEi1wAVa-QIudOE0isYGqLZUqsQDW1sSetK4SO7LTVj0CtyZRWLGoWI309d-X5k3IyDqLhDxyNuOMz58OsyI0ahaxKO4CkUfxiIx5KubTjOXilkxCODAmspSLMfne1I13J2N3dLlc0xoOzlONjccQjLNUm-C8Rk9VBV1SGgVtnx9Dj6xeP5ZUuWNToaZn0-6pdjUYS0FD0w7NGtu907SA0HVqUHtjkVYI3vYLUO2c78A63JObEqqAD7_3jnytlp-Lt-n2fb1ZvGynKhaineZFwssiLyIoIMlYMi-7R-IYIp1jIjioNElyEas0K1mmdZRwLUSZznWGBWQije9IPOwebQOXM1SVbLypwV8kZ7I3KA-yNyh7g3Iw2FHRQCnvQvBY_g_K_kDKDFZaD6a6jj4PKHYqTga9DMqgVaiNR9VK7cw1_AcnjKQV |
| CitedBy_id | crossref_primary_10_3390_brainsci14111087 crossref_primary_10_1016_j_rineng_2025_104597 crossref_primary_10_1016_j_heliyon_2024_e36991 crossref_primary_10_3390_bioengineering12020095 crossref_primary_10_1016_j_bspc_2024_107271 crossref_primary_10_1016_j_bspc_2025_107749 crossref_primary_10_1109_LSP_2024_3421259 crossref_primary_10_3390_diagnostics15020210 crossref_primary_10_1016_j_eswa_2023_122356 crossref_primary_10_3390_s24216815 |
| Cites_doi | 10.1016/j.jad.2019.04.059 10.1016/j.bspc.2019.101569 10.36227/techrxiv.21717608.v1 10.1371/journal.pone.0171409 10.1016/j.cmpb.2018.04.012 10.1007/s11571-020-09619-0 10.1080/01621459.1967.10482916 10.1007/s10916-019-1486-z 10.1016/j.dsp.2023.103938 10.1049/iet-smt.2018.5393 10.1016/j.bspc.2011.07.007 10.1016/j.bspc.2021.102937 10.1214/aoms/1177730491 10.1109/TNSRE.2020.3043426 10.1109/TNSRE.2021.3059429 10.1109/TNSRE.2020.2972270 10.1007/s13246-022-01145-z 10.1016/j.ins.2022.07.121 10.1016/j.apacoust.2021.108078 10.1016/j.measurement.2022.110731 10.3390/diagnostics12010074 10.1016/j.eswa.2019.07.007 10.1016/j.dsp.2006.10.004 10.1016/j.cogsys.2018.07.010 10.1016/j.bspc.2022.103612 10.1109/JSEN.2019.2959697 10.1109/TBME.2020.3010472 10.3390/e24101322 10.1016/j.jneumeth.2021.109209 10.1109/TCYB.2016.2633306 10.1109/JSEN.2019.2935552 10.1016/j.sigpro.2007.07.022 10.1145/130385.130401 10.1016/j.inffus.2020.01.008 10.1007/s00542-018-4075-z 10.1016/j.ijmedinf.2023.105001 10.1016/j.bspc.2016.07.006 10.1109/ACCESS.2022.3146711 10.1016/j.cmpb.2017.11.023 10.1007/s13246-020-00897-w 10.1016/j.cmpb.2022.107305 10.3389/fpsyt.2018.00768 10.1016/j.patcog.2005.01.025 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.bspc.2023.104923 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10.1016/j.bspc.2023.104923 10_1016_j_bspc_2023_104923 S1746809423003567 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c344t-9b51fb9b2aba58056f87133a2d9e541ac755943c78f08dd251d44f76d8eba8473 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 1746-8108 |
| IngestDate | Tue Aug 19 19:57:53 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Wed Oct 29 21:17:41 EDT 2025 Sun Apr 06 06:53:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wilcoxon test Student t-test Fourier Bessel series expansion LS-SVM Segmentation Domain adaptation Statistical features |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-9b51fb9b2aba58056f87133a2d9e541ac755943c78f08dd251d44f76d8eba8473 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1746809423003567 |
| ParticipantIDs | unpaywall_primary_10_1016_j_bspc_2023_104923 crossref_primary_10_1016_j_bspc_2023_104923 crossref_citationtrail_10_1016_j_bspc_2023_104923 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104923 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Anuragi, Sisodia, Pachori (b0225) 2022; 610 Harati, Crowell, Mayberg, Nemati (b0060) 2018 Pachori, Sircar (b0170) 2008; 88 Rajadurai, Gandhi (b0280) 2020 Mumtaz, Xia, Mohd Yasin, Azhar Ali, Malik (b0175) 2017; 12 Yan, Kou, Zhang (b0260) 2017; 48 Lafta, Zhang, Tao, Li, Diykh, Lin (b0195) 2018 Dessai, Usgaonkar (b0135) 2022 Elwood, Murray, Bell, Sinclair, Kernohan, Stockdale (b0040) 2019; 253 Bachmann (b0090) 2018; 155 Mahato, Paul (b0325) 2020; 44 R.B. Pachori. Time-Frequency Analysis Techniques and their Applications. Nikravan, Ebrahimzadeh (b0075) 2021, September. Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (b0235) 2012; 7 Mann, Whitney (b0250) 1947 Abdulla, Diykh, Siuly, Ali (b0245) 2023 1992, pp. 144-152. P.K. Chaudhary, K. Das, R.B. Pachori, Breast Cancer Diagnosis Using Iterative Fourier-Bessel Decomposition Method Based CNN-kernel Features, 2022. Mumtaz (b0010) 2017; 12 Mahato, Paul (b0305) 2019; 25 Jiang, Harati, Crowell, Mayberg, Nemati, Clifford (b0045) 2020; 68 Diykh, Miften, Abdulla, Deo, Siuly, Green, Oudahb (b0180) 2022; 190 Li (b0025) 2021 B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in Movahed (b0120) 2021; 358 Nalwaya, Das, Pachori (b0160) 2022; 24 Alsafy, Diykh (b0185) 2022; 45 Alghowinem (b0140) 2020 Mumtaz (b0315) 2017, 31 Gupta, Pachori (b0200) 2019; 53 Saeedi, Saeedi, Maghsoudi (b0080) 2020; 43 Diykh, Miften, Abdulla, Saleh, Green (b0230) 2020; 14 Kuzu (b0300) 2023; 1277 Jiang (b0030) 2021; 29 Song (b0115) 2022; 75 Abdulla, Diykh, Laft, Saleh, Deo (b0285) 2019; 138 Lilliefors (b0255) 1967; 62 Sharma (b0095) 2018; 52 Nikravan, Ebrahimzadeh (b0130) 2021 Jiang, Li, Tang, Guan (b0065) 2021; 29 Al-Hadeethi, Abdulla, Diykh, Green (b0290) 2021; 12 Khan, Pachori (b0150) 2023 Dev (b0035) 2022 Dessai, Usgaonkar (b0055) 2022 Tripathy, Bhattacharyya, Pachori (b0205) 2019; 19 Gajbhiye, Tripathy, Pachori (b0210) 2019; 20 Cai, Qu, Li, Zhang, Hu, Hu (b0320) 2020; 59 Jiang (b0110) 2020; 68 Tan, Steinbach, Kumar (b0295) 2016 Zhang (b0015) 2020; 29 Diykh, Abdulla, Deo, Siuly, Ali (b0240) 2023; 229 Liao (b0275) 2005; 38 Akbari (b0085) 2021; 179 Jaworska (b0005) 2019; 9 Das, Verma, Pachori (b0155) 2022, March. Mahato, Paul (b0100) 2020; 44 Saeedi (b0105) 2021; 15 Pachori, Sircar (b0165) 2007; 17 Dev, Roy, Islam, Biswas, Ahmed, Amin, Sarker, Vaidyanathan, Mamun (b0070) 2022 Acharya, Oh, Hagiwara, Tan, Adeli, Subha (b0310) 2018; 161 Diykh, Abdulla, Deo, Siuly, Ali (b0190) 2022 Zhu (b0020) 2020; 28 Zhu, Jayagopal, Mehta, Erraguntla, Nuamah, McDonald, Taylor, Chang (b0050) 2020; 28 Zhao, Xia, Zhang (b0265) 2021; 69 Harati (b0125) 2018 Chaudhary, Gupta, Pachori (b0215) 2023 Nikravan (10.1016/j.bspc.2023.104923_b0075) 2021 Nikravan (10.1016/j.bspc.2023.104923_b0130) 2021 Bachmann (10.1016/j.bspc.2023.104923_b0090) 2018; 155 Lafta (10.1016/j.bspc.2023.104923_b0195) 2018 Zhao (10.1016/j.bspc.2023.104923_b0265) 2021; 69 Movahed (10.1016/j.bspc.2023.104923_b0120) 2021; 358 Diykh (10.1016/j.bspc.2023.104923_b0190) 2022 Rajadurai (10.1016/j.bspc.2023.104923_b0280) 2020 Alghowinem (10.1016/j.bspc.2023.104923_b0140) 2020 Khan (10.1016/j.bspc.2023.104923_b0150) 2023 Mahato (10.1016/j.bspc.2023.104923_b0100) 2020; 44 Yan (10.1016/j.bspc.2023.104923_b0260) 2017; 48 Liao (10.1016/j.bspc.2023.104923_b0275) 2005; 38 Jiang (10.1016/j.bspc.2023.104923_b0030) 2021; 29 Dessai (10.1016/j.bspc.2023.104923_b0055) 2022 Akbari (10.1016/j.bspc.2023.104923_b0085) 2021; 179 Jiang (10.1016/j.bspc.2023.104923_b0045) 2020; 68 Chaudhary (10.1016/j.bspc.2023.104923_b0215) 2023 Diykh (10.1016/j.bspc.2023.104923_b0180) 2022; 190 Zhu (10.1016/j.bspc.2023.104923_b0020) 2020; 28 Abdulla (10.1016/j.bspc.2023.104923_b0245) 2023 Acharya (10.1016/j.bspc.2023.104923_b0235) 2012; 7 Jiang (10.1016/j.bspc.2023.104923_b0110) 2020; 68 Pachori (10.1016/j.bspc.2023.104923_b0170) 2008; 88 Mumtaz (10.1016/j.bspc.2023.104923_b0175) 2017; 12 Gupta (10.1016/j.bspc.2023.104923_b0200) 2019; 53 Anuragi (10.1016/j.bspc.2023.104923_b0225) 2022; 610 Nalwaya (10.1016/j.bspc.2023.104923_b0160) 2022; 24 Dev (10.1016/j.bspc.2023.104923_b0070) 2022 Song (10.1016/j.bspc.2023.104923_b0115) 2022; 75 Jaworska (10.1016/j.bspc.2023.104923_b0005) 2019; 9 Mahato (10.1016/j.bspc.2023.104923_b0305) 2019; 25 Kuzu (10.1016/j.bspc.2023.104923_b0300) 2023; 1277 Cai (10.1016/j.bspc.2023.104923_b0320) 2020; 59 Al-Hadeethi (10.1016/j.bspc.2023.104923_b0290) 2021; 12 Jiang (10.1016/j.bspc.2023.104923_b0065) 2021; 29 Das (10.1016/j.bspc.2023.104923_b0155) 2022 Mumtaz (10.1016/j.bspc.2023.104923_b0010) 2017; 12 Mumtaz (10.1016/j.bspc.2023.104923_b0315) 2017 Alsafy (10.1016/j.bspc.2023.104923_b0185) 2022; 45 Tripathy (10.1016/j.bspc.2023.104923_b0205) 2019; 19 Elwood (10.1016/j.bspc.2023.104923_b0040) 2019; 253 Dessai (10.1016/j.bspc.2023.104923_b0135) 2022 10.1016/j.bspc.2023.104923_b0145 Acharya (10.1016/j.bspc.2023.104923_b0310) 2018; 161 10.1016/j.bspc.2023.104923_b0220 Gajbhiye (10.1016/j.bspc.2023.104923_b0210) 2019; 20 Diykh (10.1016/j.bspc.2023.104923_b0230) 2020; 14 Diykh (10.1016/j.bspc.2023.104923_b0240) 2023; 229 Tan (10.1016/j.bspc.2023.104923_b0295) 2016 Saeedi (10.1016/j.bspc.2023.104923_b0080) 2020; 43 Saeedi (10.1016/j.bspc.2023.104923_b0105) 2021; 15 Pachori (10.1016/j.bspc.2023.104923_b0165) 2007; 17 Lilliefors (10.1016/j.bspc.2023.104923_b0255) 1967; 62 Harati (10.1016/j.bspc.2023.104923_b0060) 2018 Zhang (10.1016/j.bspc.2023.104923_b0015) 2020; 29 Mann (10.1016/j.bspc.2023.104923_b0250) 1947 Harati (10.1016/j.bspc.2023.104923_b0125) 2018 Mahato (10.1016/j.bspc.2023.104923_b0325) 2020; 44 Sharma (10.1016/j.bspc.2023.104923_b0095) 2018; 52 Abdulla (10.1016/j.bspc.2023.104923_b0285) 2019; 138 Dev (10.1016/j.bspc.2023.104923_b0035) 2022 Zhu (10.1016/j.bspc.2023.104923_b0050) 2020; 28 10.1016/j.bspc.2023.104923_b0270 Li (10.1016/j.bspc.2023.104923_b0025) 2021 |
| References_xml | – volume: 12 start-page: e0171409 year: 2017 ident: b0175 article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder publication-title: PLoS One – volume: 75 year: 2022 ident: b0115 article-title: LSDD-EEGNet: An efficient end-to-end framework for EEG-based depression detection publication-title: Biomed. Signal Process. Control – start-page: 5763 year: 2018 end-page: 5766 ident: b0060 article-title: Depression severity classification from speech emotion publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – year: 2020 ident: b0140 article-title: Interpretation of depression detection models via feature selection methods publication-title: IEEE Trans. Affect. Comput. – volume: 1277 year: 2023 ident: b0300 article-title: Evaluation of gradient boosting and deep learning algorithms in dimuon production publication-title: J. Mol. Struct. – volume: 68 start-page: 664 year: 2020 end-page: 672 ident: b0110 article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions publication-title: IEEE Trans. Biomed. Eng. – volume: 161 start-page: 103 year: 2018 end-page: 113 ident: b0310 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Programs Biomed. – volume: 68 start-page: 664 year: 2020 end-page: 672 ident: b0045 article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions publication-title: IEEE Trans. Biomed. Eng. – volume: 45 start-page: 793 year: 2022 end-page: 808 ident: b0185 article-title: Developing a robust model to predict depth of anesthesia from single channel EEG signal publication-title: Phys Eng Sci Med – start-page: 1 year: 2020 end-page: 9 ident: b0280 article-title: A stacked ensemble learning model for intrusion detection in wireless network publication-title: Neural Comput. & Applic. – year: 2023 ident: b0245 article-title: An Intelligent Model Involving Multi-Channels Spectrum Patterns Based Features for Automatic Sleep Stage Classification publication-title: Int. J. Med. Inf. – volume: 9 start-page: 768 year: 2019 ident: b0005 article-title: Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data publication-title: Front. Psych. – volume: 29 start-page: 215 year: 2020 end-page: 229 ident: b0015 article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 190 year: 2022 ident: b0180 article-title: Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals publication-title: Measurement – volume: 15 start-page: 239 year: 2021 end-page: 252 ident: b0105 article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach publication-title: Cogn. Neurodyn. – volume: 29 start-page: 566 year: 2021 end-page: 575 ident: b0065 article-title: Enhancing EEG-based classification of depression patients using spatial information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 12 start-page: 74 year: 2021 ident: b0290 article-title: Determinant of covariance matrix model coupled with AdaBoost classification algorithm for EEG seizure detection publication-title: Diagnostics – start-page: 107305 year: 2022 ident: b0190 article-title: Developing a Novel Hybrid Method Based on Dispersion Entropy and Adaptive Boosting Algorithm for Human Activity Recognition publication-title: Computer Methods Prog Biomed – volume: 28 start-page: 961 year: 2020 end-page: 969 ident: b0020 article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 24 start-page: 1322 year: 2022 ident: b0160 article-title: Automated Emotion Identification Using Fourier-Bessel Domain-Based Entropies publication-title: Entropy – volume: 138 year: 2019 ident: b0285 article-title: Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm publication-title: Expert Syst. Appl. – start-page: 1 year: 2021, September. end-page: 3 ident: b0075 article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS – volume: 155 start-page: 11 year: 2018 end-page: 17 ident: b0090 article-title: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis publication-title: Comput. Methods Programs Biomed. – volume: 29 start-page: 566 year: 2021 end-page: 575 ident: b0030 article-title: Enhancing EEG-based classification of depression patients using spatial information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: P.K. Chaudhary, K. Das, R.B. Pachori, Breast Cancer Diagnosis Using Iterative Fourier-Bessel Decomposition Method Based CNN-kernel Features, 2022. – year: 2016 ident: b0295 article-title: Introduction to data mining – volume: 229 year: 2023 ident: b0240 article-title: Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition publication-title: Comput. Methods Programs Biomed. – start-page: 1 year: 2022 end-page: 4 ident: b0055 article-title: May. Depression Detection on Social Media Using Text Mining publication-title: 2022 3rd International Conference for Emerging Technology (INCET) – year: 2021 ident: b0025 article-title: Altered Brain Dynamics and Their Ability for Major Depression Detection using EEG Microstates Analysis publication-title: IEEE Trans. Affect. Comput. – volume: 53 year: 2019 ident: b0200 article-title: Epileptic seizure identification using entropy of FBSE based EEG rhythms publication-title: Biomed. Signal Process. Control – year: 2022 ident: b0035 article-title: Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review publication-title: IEEE Access – volume: 20 start-page: 3687 year: 2019 end-page: 3696 ident: b0210 article-title: Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms publication-title: IEEE Sens. J. – volume: 610 start-page: 508 year: 2022 end-page: 524 ident: b0225 article-title: EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method publication-title: Inf. Sci. – year: 2022 ident: b0135 article-title: Depression Detection on Social Media Using Text Mining publication-title: 2022 3rd International Conference for Emerging Technology (INCET) – volume: 14 start-page: 128 year: 2020 end-page: 136 ident: b0230 article-title: Robust approach to depth of anaesthesia assessment based on hybrid transform and statistical features<? show [AQ ID= Q1]?> publication-title: IET Sci. Meas. Technol. – volume: 43 start-page: 1007 year: 2020 end-page: 1018 ident: b0080 article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals publication-title: Phys. Eng. Sci. Med. – year: 2022 ident: b0070 article-title: Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review – volume: 25 start-page: 1065 year: 2019 end-page: 1076 ident: b0305 article-title: Detection of major depressive disorder using linear and non-linear features from EEG signals publication-title: Microsyst. Technol. – volume: 253 start-page: 51 year: 2019 end-page: 62 ident: b0040 article-title: A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression publication-title: J. Affect. Disord. – volume: 19 start-page: 11437 year: 2019 end-page: 11448 ident: b0205 article-title: Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network publication-title: IEEE Sens. J. – volume: 179 year: 2021 ident: b0085 article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features publication-title: Appl. Acoust. – volume: 52 start-page: 508 year: 2018 end-page: 520 ident: b0095 article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals publication-title: Cogn. Syst. Res. – volume: 88 start-page: 415 year: 2008 end-page: 420 ident: b0170 article-title: EEG signal analysis using FB expansion and second-order linear TVAR process publication-title: Signal Process. – year: 2023 ident: b0215 article-title: Fourier-Bessel representation for signal processing: A review publication-title: Digital Signal Process. – start-page: 363 year: 2018 end-page: 384 ident: b0195 article-title: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment publication-title: Big Data in Engineering Applications – year: 2021 ident: b0130 article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS publication-title: 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) – start-page: 1 year: 2022, March. end-page: 5 ident: b0155 article-title: Assessment of chanting effects using EEG signals publication-title: 2022 24th International Conference on Digital Signal Processing and its Applications (DSPA) – volume: 12 start-page: e0171409 year: 2017 ident: b0010 article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder publication-title: PLoS One – volume: 7 start-page: 401 year: 2012 end-page: 408 ident: b0235 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control – volume: 59 start-page: 127 year: 2020 end-page: 138 ident: b0320 article-title: Feature-level fusion approaches based on multimodal EEG data for depression recognition publication-title: Information Fusion – reference: R.B. Pachori. Time-Frequency Analysis Techniques and their Applications. – volume: 38 start-page: 1857 year: 2005 end-page: 1874 ident: b0275 article-title: Clustering of time series data—a survey publication-title: Pattern Recogn. – year: 2023 ident: b0150 article-title: Automated Eye Movement Classification Based on EMG of EOM Signals Using FBSE-EWT Technique – volume: 28 start-page: 961 year: 2020 end-page: 969 ident: b0050 article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 44 start-page: 1 year: 2020 end-page: 8 ident: b0100 article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry publication-title: J. Med. Syst. – start-page: 108 year: 2017, 31, end-page: 115 ident: b0315 article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD) publication-title: Biomed. Signal Process. Control – reference: B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in; – volume: 62 start-page: 399 year: 1967 end-page: 402 ident: b0255 article-title: On the Kolmogorov-Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. – volume: 358 year: 2021 ident: b0120 article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis publication-title: J. Neurosci. Methods – volume: 17 start-page: 466 year: 2007 end-page: 474 ident: b0165 article-title: A new technique to reduce cross terms in the Wigner distribution publication-title: Digital Signal Process. – start-page: 50 year: 1947 end-page: 60 ident: b0250 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann. Math. Stat. – volume: 48 start-page: 288 year: 2017 end-page: 299 ident: b0260 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybern. – volume: 69 year: 2021 ident: b0265 article-title: Unsupervised sleep staging system based on domain adaptation publication-title: Biomed. Signal Process. Control – reference: , 1992, pp. 144-152. – year: 2018 ident: b0125 article-title: Depression severity classification from speech emotion publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 44 start-page: 1 year: 2020 end-page: 8 ident: b0325 article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry publication-title: J. Med. Syst. – volume: 253 start-page: 51 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0040 article-title: A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2019.04.059 – volume: 53 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0200 article-title: Epileptic seizure identification using entropy of FBSE based EEG rhythms publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101569 – ident: 10.1016/j.bspc.2023.104923_b0145 doi: 10.36227/techrxiv.21717608.v1 – year: 2016 ident: 10.1016/j.bspc.2023.104923_b0295 – volume: 12 start-page: e0171409 issue: 2 year: 2017 ident: 10.1016/j.bspc.2023.104923_b0175 article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder publication-title: PLoS One doi: 10.1371/journal.pone.0171409 – volume: 161 start-page: 103 year: 2018 ident: 10.1016/j.bspc.2023.104923_b0310 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.012 – volume: 15 start-page: 239 issue: 2 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0105 article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09619-0 – volume: 62 start-page: 399 issue: 318 year: 1967 ident: 10.1016/j.bspc.2023.104923_b0255 article-title: On the Kolmogorov-Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1967.10482916 – volume: 44 start-page: 1 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0325 article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1486-z – start-page: 363 year: 2018 ident: 10.1016/j.bspc.2023.104923_b0195 article-title: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment – volume: 1277 year: 2023 ident: 10.1016/j.bspc.2023.104923_b0300 article-title: Evaluation of gradient boosting and deep learning algorithms in dimuon production publication-title: J. Mol. Struct. – year: 2023 ident: 10.1016/j.bspc.2023.104923_b0215 article-title: Fourier-Bessel representation for signal processing: A review publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2023.103938 – volume: 14 start-page: 128 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0230 article-title: Robust approach to depth of anaesthesia assessment based on hybrid transform and statistical features<? show [AQ ID= Q1]?> publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2018.5393 – volume: 7 start-page: 401 issue: 4 year: 2012 ident: 10.1016/j.bspc.2023.104923_b0235 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.007 – volume: 69 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0265 article-title: Unsupervised sleep staging system based on domain adaptation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102937 – start-page: 5763 year: 2018 ident: 10.1016/j.bspc.2023.104923_b0060 article-title: Depression severity classification from speech emotion – start-page: 50 year: 1947 ident: 10.1016/j.bspc.2023.104923_b0250 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730491 – volume: 29 start-page: 215 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0015 article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3043426 – volume: 29 start-page: 566 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0030 article-title: Enhancing EEG-based classification of depression patients using spatial information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3059429 – volume: 28 start-page: 961 issue: 4 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0050 article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2972270 – volume: 45 start-page: 793 issue: 3 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0185 article-title: Developing a robust model to predict depth of anesthesia from single channel EEG signal publication-title: Phys Eng Sci Med doi: 10.1007/s13246-022-01145-z – year: 2018 ident: 10.1016/j.bspc.2023.104923_b0125 article-title: Depression severity classification from speech emotion – volume: 610 start-page: 508 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0225 article-title: EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.121 – volume: 179 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0085 article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108078 – volume: 190 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0180 article-title: Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals publication-title: Measurement doi: 10.1016/j.measurement.2022.110731 – volume: 28 start-page: 961 issue: 4 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0020 article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2972270 – volume: 12 start-page: 74 issue: 1 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0290 article-title: Determinant of covariance matrix model coupled with AdaBoost classification algorithm for EEG seizure detection publication-title: Diagnostics doi: 10.3390/diagnostics12010074 – volume: 138 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0285 article-title: Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.07.007 – volume: 17 start-page: 466 issue: 2 year: 2007 ident: 10.1016/j.bspc.2023.104923_b0165 article-title: A new technique to reduce cross terms in the Wigner distribution publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2006.10.004 – volume: 52 start-page: 508 year: 2018 ident: 10.1016/j.bspc.2023.104923_b0095 article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.010 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0280 article-title: A stacked ensemble learning model for intrusion detection in wireless network publication-title: Neural Comput. & Applic. – volume: 75 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0115 article-title: LSDD-EEGNet: An efficient end-to-end framework for EEG-based depression detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103612 – year: 2022 ident: 10.1016/j.bspc.2023.104923_b0135 article-title: Depression Detection on Social Media Using Text Mining – volume: 20 start-page: 3687 issue: 7 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0210 article-title: Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2959697 – volume: 68 start-page: 664 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0045 article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3010472 – year: 2021 ident: 10.1016/j.bspc.2023.104923_b0025 article-title: Altered Brain Dynamics and Their Ability for Major Depression Detection using EEG Microstates Analysis publication-title: IEEE Trans. Affect. Comput. – volume: 24 start-page: 1322 issue: 10 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0160 article-title: Automated Emotion Identification Using Fourier-Bessel Domain-Based Entropies publication-title: Entropy doi: 10.3390/e24101322 – volume: 44 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0100 article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1486-z – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0155 article-title: Assessment of chanting effects using EEG signals – volume: 358 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0120 article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109209 – year: 2020 ident: 10.1016/j.bspc.2023.104923_b0140 article-title: Interpretation of depression detection models via feature selection methods publication-title: IEEE Trans. Affect. Comput. – start-page: 107305 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0190 article-title: Developing a Novel Hybrid Method Based on Dispersion Entropy and Adaptive Boosting Algorithm for Human Activity Recognition publication-title: Computer Methods Prog Biomed – year: 2021 ident: 10.1016/j.bspc.2023.104923_b0130 article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS – year: 2023 ident: 10.1016/j.bspc.2023.104923_b0150 – volume: 48 start-page: 288 issue: 1 year: 2017 ident: 10.1016/j.bspc.2023.104923_b0260 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2633306 – volume: 19 start-page: 11437 issue: 23 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0205 article-title: Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2935552 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0075 article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS – year: 2022 ident: 10.1016/j.bspc.2023.104923_b0070 – volume: 68 start-page: 664 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0110 article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3010472 – volume: 88 start-page: 415 issue: 2 year: 2008 ident: 10.1016/j.bspc.2023.104923_b0170 article-title: EEG signal analysis using FB expansion and second-order linear TVAR process publication-title: Signal Process. doi: 10.1016/j.sigpro.2007.07.022 – ident: 10.1016/j.bspc.2023.104923_b0270 doi: 10.1145/130385.130401 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104923_b0055 article-title: May. Depression Detection on Social Media Using Text Mining – volume: 59 start-page: 127 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0320 article-title: Feature-level fusion approaches based on multimodal EEG data for depression recognition publication-title: Information Fusion doi: 10.1016/j.inffus.2020.01.008 – ident: 10.1016/j.bspc.2023.104923_b0220 – volume: 25 start-page: 1065 issue: 3 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0305 article-title: Detection of major depressive disorder using linear and non-linear features from EEG signals publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-4075-z – year: 2023 ident: 10.1016/j.bspc.2023.104923_b0245 article-title: An Intelligent Model Involving Multi-Channels Spectrum Patterns Based Features for Automatic Sleep Stage Classification publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2023.105001 – start-page: 108 year: 2017 ident: 10.1016/j.bspc.2023.104923_b0315 article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD) publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.07.006 – year: 2022 ident: 10.1016/j.bspc.2023.104923_b0035 article-title: Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146711 – volume: 155 start-page: 11 year: 2018 ident: 10.1016/j.bspc.2023.104923_b0090 article-title: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.11.023 – volume: 43 start-page: 1007 issue: 3 year: 2020 ident: 10.1016/j.bspc.2023.104923_b0080 article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00897-w – volume: 12 start-page: e0171409 issue: 2 year: 2017 ident: 10.1016/j.bspc.2023.104923_b0010 article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder publication-title: PLoS One doi: 10.1371/journal.pone.0171409 – volume: 229 year: 2023 ident: 10.1016/j.bspc.2023.104923_b0240 article-title: Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.107305 – volume: 9 start-page: 768 year: 2019 ident: 10.1016/j.bspc.2023.104923_b0005 article-title: Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data publication-title: Front. Psych. doi: 10.3389/fpsyt.2018.00768 – volume: 38 start-page: 1857 issue: 11 year: 2005 ident: 10.1016/j.bspc.2023.104923_b0275 article-title: Clustering of time series data—a survey publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2005.01.025 – volume: 29 start-page: 566 year: 2021 ident: 10.1016/j.bspc.2023.104923_b0065 article-title: Enhancing EEG-based classification of depression patients using spatial information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3059429 |
| SSID | ssj0048714 |
| Score | 2.4058545 |
| Snippet | •FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 104923 |
| SubjectTerms | Domain adaptation Fourier Bessel series expansion LS-SVM Segmentation Statistical features Student t-test Wilcoxon test |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHsSDb1FRmYM3XdlH9nVUaS2CRdCCnpZkky3W7e7SB6L_wH9tpkmLipZ620MmYTMD8yX55htCTgRVMCSiUgUvDSyF_4XF0tC2Yju1XS5RsByrkW_bQatDbx79RyOTg7Uw397vJzwsPqxQatD18DlSwZFlUg98hbtrpN5p31086YpHVNWddD3U344dmQqZ3yf5KwutjIuKvb2yPP-SZZrrul3RcCJOiOSSl_PxiJ-n7z-kGxf7gQ2yZsAmXOjo2CRLstgiq18kCLfJx-xWARqNa-izXjmAGT22AGHUOSFFmI28ookrAfnyXWhe3jcgLcdVLgXglS6Iss-eC2CCVfqRH3SPasB0KdT8yN2UYJpVdIHl3XKgDPvDHdJpNh6uWpZpz2ClHqUjK-a-k_GYu4wzP1JAKovwxMtcEUufOsrl6rRCvTSMMjsSQgEpQWkWBiKSnKmk6O2SWlEWco8ADRVylLHDMs-hzA2572aBMvKDKHaFQ_eJM3VXkhrtcmyhkSdTklovwW1OcJsTvc375HRmU2nljrmj_WkUJAZ7aEyRKIfOtTubhcwCyxz8b_ghqY0GY3mkcM-IH5uA_wQA2v4d priority: 102 providerName: Unpaywall |
| Title | Improving EEG major depression disorder classification using FBSE coupled with domain adaptation method based machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.104923 https://doi.org/10.1016/j.bspc.2023.104923 |
| UnpaywallVersion | publishedVersion |
| Volume | 85 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq7gE4oOUlykI1B24QmofzOnarlO4iKqRSqZwiO3aqrtIk6kMrLtz51zvTuFE5UCFOUSKPHXlGns_2NzOMvVccYUjENRovDyzE_8oSWWhbsZ3ZrtSUsJyikb9Og8mc3y78RYeNjrEwRKs0a3-zph9Wa_NlYGZzUK9Wgxli6SDC3QmCaNvzA4oo59g12vSnXy3NA_H4Ib83NbaotQmcaThecltTGkPXo6vO2PX-5pwe7cta_LwXRXHifMaX7KlBjTBsfuwZ6-jyOXtykkvwBfvdHg9AknyGtbirNtDyXEtQJs0mZISXiSB00AkQ8X0J4-tZAlm1rwutgM5mQVVrsSpBKFE3t_XQFJsG8nsK-ycSpgZTdWIJolhWGxRcb1-y-Tj5PppYps6ClXmc76xY-k4uY-kKKfwIEVEe0dZVuCrWPndQd7jt4F4WRrkdKYWISHGeh4GKtBTo3bxXrFtWpX7NgIcIAXXsiNxzuHBD6bt5gEJ-EMWucniPOccJTjOThJxqYRTpkW12l5JSUlJK2iilxz60MnWTguNsa_-ot_QPQ0rRR5yV-9gq-R-GefOfw1yxx_TWUAjfsu5us9fvENbsZP9gt312Mbz5Mpnicz79NvzxAA00-Ig |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHCiHqpRWQCnMoTdIN3HsfBwB7bK0wAWQuEV27KwWZZNo2VXVS-_918xsvBEcQBXXxBNHHsvzxn5-w9h3IxCGJMLi5BWRh_jfeCqPfS_1c59rS4LldBv58ioa3oqfd_JuhZ0u78IQrdKt_e2avlit3ZOeG81eMx73rhFLRwlmJwii_VBG8Tu2JiSPKQP78bfjeSAgXwh8U2uPmrubMy3JSz80pGPIQzrrTHn4UnRan1eN-vNbleWT6DP4yD442AjH7Z9tshVbfWIbT8QEt9i_bn8A-v0zmKj7egod0bUC43Q2ISfATAyhhVOAmO8jGJxc9yGv501pDdDmLJh6osYVKKOa9rge2mrTQIHP4PeJhWnBlZ0YgSpH9RQNJw-f2e2gf3M69FyhBS8PhZh5qZZBoVPNlVYyQUhUJJS7Km5SK0WAzsO8Q4R5nBR-YgxCIiNEEUcmsVpheAu_sNWqruw2AxEjBrRpoIowEIrHWvIiQiMZJSk3gdhhwXKAs9ypkFMxjDJb0s3uM3JKRk7JWqfssMPOpmk1OF5tLZd-y57NpAyDxKt2R52T_6Ob3Td2c8DWhzeXF9nF-dWvr-w9vWn5hHtsdTad22-IcWZ6fzGHHwED6_ht |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHsSDb1FRmYM3XdlH9nVUaS2CRdCCnpZkky3W7e7SB6L_wH9tpkmLipZ620MmYTMD8yX55htCTgRVMCSiUgUvDSyF_4XF0tC2Yju1XS5RsByrkW_bQatDbx79RyOTg7Uw397vJzwsPqxQatD18DlSwZFlUg98hbtrpN5p31086YpHVNWddD3U344dmQqZ3yf5KwutjIuKvb2yPP-SZZrrul3RcCJOiOSSl_PxiJ-n7z-kGxf7gQ2yZsAmXOjo2CRLstgiq18kCLfJx-xWARqNa-izXjmAGT22AGHUOSFFmI28ookrAfnyXWhe3jcgLcdVLgXglS6Iss-eC2CCVfqRH3SPasB0KdT8yN2UYJpVdIHl3XKgDPvDHdJpNh6uWpZpz2ClHqUjK-a-k_GYu4wzP1JAKovwxMtcEUufOsrl6rRCvTSMMjsSQgEpQWkWBiKSnKmk6O2SWlEWco8ADRVylLHDMs-hzA2572aBMvKDKHaFQ_eJM3VXkhrtcmyhkSdTklovwW1OcJsTvc375HRmU2nljrmj_WkUJAZ7aEyRKIfOtTubhcwCyxz8b_ghqY0GY3mkcM-IH5uA_wQA2v4d |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+EEG+major+depression+disorder+classification+using+FBSE+coupled+with+domain+adaptation+method+based+machine+learning+algorithms&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Mohammed%2C+Hadeer&rft.au=Diykh%2C+Mohammed&rft.date=2023-08-01&rft.issn=1746-8094&rft.volume=85&rft.spage=104923&rft_id=info:doi/10.1016%2Fj.bspc.2023.104923&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |