Improving EEG major depression disorder classification using FBSE coupled with domain adaptation method based machine learning algorithms

•FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of feature distributions among subjects. Major depression disorder (MDD) has become the leading mental disorder worldwide. Medical reports have show...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 85; p. 104923
Main Authors Mohammed, Hadeer, Diykh, Mohammed
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2023.104923

Cover

Abstract •FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of feature distributions among subjects. Major depression disorder (MDD) has become the leading mental disorder worldwide. Medical reports have shown that people with depression exhibit abnormal wave patterns in EEG signals compared with the healthy subjects when they are exposed to positive and negative stimuli. In this paper, we proposed an intelligent MDD detection model based on Fourier-Bessel series expansion (FBSE) coupled with domain adaptation (DA). First, EEG signals are segmented into intervals and each segment is passed through FBSE. Two types of features, including statistical and nonlinear features are investigated and extracted from each FBSE coefficient to detect MDD. Student t-test and Wilcoxon test are employed to remove noisy and bad features that can compromise the performance of data-driven learners. Then, DA method named Independence Domain Adaptation was applied to reduce the difference of feature distributions among subjects. The selected features are sent to a least square support vector machine (LS-SVM), and other classifiers named SVM, k-nearest (KNN), ransom forest, Bagged ensemble, boosted ensemble, decision tree, gradient boosting and stacked ensemble for the comparison purpose. Our experiments are simulated by using publicly available dataset. The performance of the proposed model is evaluated in both subject dependence experiment by 10-fold cross validation, subject independence experiment by leave-one-subject-out cross-validation, and Confidence interval respectively. Results showed that the features reduction method can significantly improve the mean accuracy by 4.20. The proposed model is compared with previous studies and the results show that the proposed model outperforms the other methods.
AbstractList •FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of feature distributions among subjects. Major depression disorder (MDD) has become the leading mental disorder worldwide. Medical reports have shown that people with depression exhibit abnormal wave patterns in EEG signals compared with the healthy subjects when they are exposed to positive and negative stimuli. In this paper, we proposed an intelligent MDD detection model based on Fourier-Bessel series expansion (FBSE) coupled with domain adaptation (DA). First, EEG signals are segmented into intervals and each segment is passed through FBSE. Two types of features, including statistical and nonlinear features are investigated and extracted from each FBSE coefficient to detect MDD. Student t-test and Wilcoxon test are employed to remove noisy and bad features that can compromise the performance of data-driven learners. Then, DA method named Independence Domain Adaptation was applied to reduce the difference of feature distributions among subjects. The selected features are sent to a least square support vector machine (LS-SVM), and other classifiers named SVM, k-nearest (KNN), ransom forest, Bagged ensemble, boosted ensemble, decision tree, gradient boosting and stacked ensemble for the comparison purpose. Our experiments are simulated by using publicly available dataset. The performance of the proposed model is evaluated in both subject dependence experiment by 10-fold cross validation, subject independence experiment by leave-one-subject-out cross-validation, and Confidence interval respectively. Results showed that the features reduction method can significantly improve the mean accuracy by 4.20. The proposed model is compared with previous studies and the results show that the proposed model outperforms the other methods.
ArticleNumber 104923
Author Mohammed, Hadeer
Diykh, Mohammed
Author_xml – sequence: 1
  givenname: Hadeer
  surname: Mohammed
  fullname: Mohammed, Hadeer
  email: Msc21co1@utq.edu.iq
  organization: University of Thi-Qar, College of Education for Pure Science, Iraq
– sequence: 2
  givenname: Mohammed
  surname: Diykh
  fullname: Diykh, Mohammed
  email: Mohammed.diykh@utq.edu.iq, mohammed.diykh@usq.edu.au
  organization: University of Thi-Qar, College of Education for Pure Science, Iraq
BookMark eNqNkEFOwzAQRb0oEi1wAVa-QIudOE0isYGqLZUqsQDW1sSetK4SO7LTVj0CtyZRWLGoWI309d-X5k3IyDqLhDxyNuOMz58OsyI0ahaxKO4CkUfxiIx5KubTjOXilkxCODAmspSLMfne1I13J2N3dLlc0xoOzlONjccQjLNUm-C8Rk9VBV1SGgVtnx9Dj6xeP5ZUuWNToaZn0-6pdjUYS0FD0w7NGtu907SA0HVqUHtjkVYI3vYLUO2c78A63JObEqqAD7_3jnytlp-Lt-n2fb1ZvGynKhaineZFwssiLyIoIMlYMi-7R-IYIp1jIjioNElyEas0K1mmdZRwLUSZznWGBWQije9IPOwebQOXM1SVbLypwV8kZ7I3KA-yNyh7g3Iw2FHRQCnvQvBY_g_K_kDKDFZaD6a6jj4PKHYqTga9DMqgVaiNR9VK7cw1_AcnjKQV
CitedBy_id crossref_primary_10_3390_brainsci14111087
crossref_primary_10_1016_j_rineng_2025_104597
crossref_primary_10_1016_j_heliyon_2024_e36991
crossref_primary_10_3390_bioengineering12020095
crossref_primary_10_1016_j_bspc_2024_107271
crossref_primary_10_1016_j_bspc_2025_107749
crossref_primary_10_1109_LSP_2024_3421259
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_3390_s24216815
Cites_doi 10.1016/j.jad.2019.04.059
10.1016/j.bspc.2019.101569
10.36227/techrxiv.21717608.v1
10.1371/journal.pone.0171409
10.1016/j.cmpb.2018.04.012
10.1007/s11571-020-09619-0
10.1080/01621459.1967.10482916
10.1007/s10916-019-1486-z
10.1016/j.dsp.2023.103938
10.1049/iet-smt.2018.5393
10.1016/j.bspc.2011.07.007
10.1016/j.bspc.2021.102937
10.1214/aoms/1177730491
10.1109/TNSRE.2020.3043426
10.1109/TNSRE.2021.3059429
10.1109/TNSRE.2020.2972270
10.1007/s13246-022-01145-z
10.1016/j.ins.2022.07.121
10.1016/j.apacoust.2021.108078
10.1016/j.measurement.2022.110731
10.3390/diagnostics12010074
10.1016/j.eswa.2019.07.007
10.1016/j.dsp.2006.10.004
10.1016/j.cogsys.2018.07.010
10.1016/j.bspc.2022.103612
10.1109/JSEN.2019.2959697
10.1109/TBME.2020.3010472
10.3390/e24101322
10.1016/j.jneumeth.2021.109209
10.1109/TCYB.2016.2633306
10.1109/JSEN.2019.2935552
10.1016/j.sigpro.2007.07.022
10.1145/130385.130401
10.1016/j.inffus.2020.01.008
10.1007/s00542-018-4075-z
10.1016/j.ijmedinf.2023.105001
10.1016/j.bspc.2016.07.006
10.1109/ACCESS.2022.3146711
10.1016/j.cmpb.2017.11.023
10.1007/s13246-020-00897-w
10.1016/j.cmpb.2022.107305
10.3389/fpsyt.2018.00768
10.1016/j.patcog.2005.01.025
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.bspc.2023.104923
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10.1016/j.bspc.2023.104923
10_1016_j_bspc_2023_104923
S1746809423003567
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c344t-9b51fb9b2aba58056f87133a2d9e541ac755943c78f08dd251d44f76d8eba8473
IEDL.DBID .~1
ISSN 1746-8094
1746-8108
IngestDate Tue Aug 19 19:57:53 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Wed Oct 29 21:17:41 EDT 2025
Sun Apr 06 06:53:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wilcoxon test
Student t-test
Fourier Bessel series expansion
LS-SVM
Segmentation
Domain adaptation
Statistical features
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-9b51fb9b2aba58056f87133a2d9e541ac755943c78f08dd251d44f76d8eba8473
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1746809423003567
ParticipantIDs unpaywall_primary_10_1016_j_bspc_2023_104923
crossref_primary_10_1016_j_bspc_2023_104923
crossref_citationtrail_10_1016_j_bspc_2023_104923
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104923
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Anuragi, Sisodia, Pachori (b0225) 2022; 610
Harati, Crowell, Mayberg, Nemati (b0060) 2018
Pachori, Sircar (b0170) 2008; 88
Rajadurai, Gandhi (b0280) 2020
Mumtaz, Xia, Mohd Yasin, Azhar Ali, Malik (b0175) 2017; 12
Yan, Kou, Zhang (b0260) 2017; 48
Lafta, Zhang, Tao, Li, Diykh, Lin (b0195) 2018
Dessai, Usgaonkar (b0135) 2022
Elwood, Murray, Bell, Sinclair, Kernohan, Stockdale (b0040) 2019; 253
Bachmann (b0090) 2018; 155
Mahato, Paul (b0325) 2020; 44
R.B. Pachori. Time-Frequency Analysis Techniques and their Applications.
Nikravan, Ebrahimzadeh (b0075) 2021, September.
Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (b0235) 2012; 7
Mann, Whitney (b0250) 1947
Abdulla, Diykh, Siuly, Ali (b0245) 2023
1992, pp. 144-152.
P.K. Chaudhary, K. Das, R.B. Pachori, Breast Cancer Diagnosis Using Iterative Fourier-Bessel Decomposition Method Based CNN-kernel Features, 2022.
Mumtaz (b0010) 2017; 12
Mahato, Paul (b0305) 2019; 25
Jiang, Harati, Crowell, Mayberg, Nemati, Clifford (b0045) 2020; 68
Diykh, Miften, Abdulla, Deo, Siuly, Green, Oudahb (b0180) 2022; 190
Li (b0025) 2021
B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in
Movahed (b0120) 2021; 358
Nalwaya, Das, Pachori (b0160) 2022; 24
Alsafy, Diykh (b0185) 2022; 45
Alghowinem (b0140) 2020
Mumtaz (b0315) 2017, 31
Gupta, Pachori (b0200) 2019; 53
Saeedi, Saeedi, Maghsoudi (b0080) 2020; 43
Diykh, Miften, Abdulla, Saleh, Green (b0230) 2020; 14
Kuzu (b0300) 2023; 1277
Jiang (b0030) 2021; 29
Song (b0115) 2022; 75
Abdulla, Diykh, Laft, Saleh, Deo (b0285) 2019; 138
Lilliefors (b0255) 1967; 62
Sharma (b0095) 2018; 52
Nikravan, Ebrahimzadeh (b0130) 2021
Jiang, Li, Tang, Guan (b0065) 2021; 29
Al-Hadeethi, Abdulla, Diykh, Green (b0290) 2021; 12
Khan, Pachori (b0150) 2023
Dev (b0035) 2022
Dessai, Usgaonkar (b0055) 2022
Tripathy, Bhattacharyya, Pachori (b0205) 2019; 19
Gajbhiye, Tripathy, Pachori (b0210) 2019; 20
Cai, Qu, Li, Zhang, Hu, Hu (b0320) 2020; 59
Jiang (b0110) 2020; 68
Tan, Steinbach, Kumar (b0295) 2016
Zhang (b0015) 2020; 29
Diykh, Abdulla, Deo, Siuly, Ali (b0240) 2023; 229
Liao (b0275) 2005; 38
Akbari (b0085) 2021; 179
Jaworska (b0005) 2019; 9
Das, Verma, Pachori (b0155) 2022, March.
Mahato, Paul (b0100) 2020; 44
Saeedi (b0105) 2021; 15
Pachori, Sircar (b0165) 2007; 17
Dev, Roy, Islam, Biswas, Ahmed, Amin, Sarker, Vaidyanathan, Mamun (b0070) 2022
Acharya, Oh, Hagiwara, Tan, Adeli, Subha (b0310) 2018; 161
Diykh, Abdulla, Deo, Siuly, Ali (b0190) 2022
Zhu (b0020) 2020; 28
Zhu, Jayagopal, Mehta, Erraguntla, Nuamah, McDonald, Taylor, Chang (b0050) 2020; 28
Zhao, Xia, Zhang (b0265) 2021; 69
Harati (b0125) 2018
Chaudhary, Gupta, Pachori (b0215) 2023
Nikravan (10.1016/j.bspc.2023.104923_b0075) 2021
Nikravan (10.1016/j.bspc.2023.104923_b0130) 2021
Bachmann (10.1016/j.bspc.2023.104923_b0090) 2018; 155
Lafta (10.1016/j.bspc.2023.104923_b0195) 2018
Zhao (10.1016/j.bspc.2023.104923_b0265) 2021; 69
Movahed (10.1016/j.bspc.2023.104923_b0120) 2021; 358
Diykh (10.1016/j.bspc.2023.104923_b0190) 2022
Rajadurai (10.1016/j.bspc.2023.104923_b0280) 2020
Alghowinem (10.1016/j.bspc.2023.104923_b0140) 2020
Khan (10.1016/j.bspc.2023.104923_b0150) 2023
Mahato (10.1016/j.bspc.2023.104923_b0100) 2020; 44
Yan (10.1016/j.bspc.2023.104923_b0260) 2017; 48
Liao (10.1016/j.bspc.2023.104923_b0275) 2005; 38
Jiang (10.1016/j.bspc.2023.104923_b0030) 2021; 29
Dessai (10.1016/j.bspc.2023.104923_b0055) 2022
Akbari (10.1016/j.bspc.2023.104923_b0085) 2021; 179
Jiang (10.1016/j.bspc.2023.104923_b0045) 2020; 68
Chaudhary (10.1016/j.bspc.2023.104923_b0215) 2023
Diykh (10.1016/j.bspc.2023.104923_b0180) 2022; 190
Zhu (10.1016/j.bspc.2023.104923_b0020) 2020; 28
Abdulla (10.1016/j.bspc.2023.104923_b0245) 2023
Acharya (10.1016/j.bspc.2023.104923_b0235) 2012; 7
Jiang (10.1016/j.bspc.2023.104923_b0110) 2020; 68
Pachori (10.1016/j.bspc.2023.104923_b0170) 2008; 88
Mumtaz (10.1016/j.bspc.2023.104923_b0175) 2017; 12
Gupta (10.1016/j.bspc.2023.104923_b0200) 2019; 53
Anuragi (10.1016/j.bspc.2023.104923_b0225) 2022; 610
Nalwaya (10.1016/j.bspc.2023.104923_b0160) 2022; 24
Dev (10.1016/j.bspc.2023.104923_b0070) 2022
Song (10.1016/j.bspc.2023.104923_b0115) 2022; 75
Jaworska (10.1016/j.bspc.2023.104923_b0005) 2019; 9
Mahato (10.1016/j.bspc.2023.104923_b0305) 2019; 25
Kuzu (10.1016/j.bspc.2023.104923_b0300) 2023; 1277
Cai (10.1016/j.bspc.2023.104923_b0320) 2020; 59
Al-Hadeethi (10.1016/j.bspc.2023.104923_b0290) 2021; 12
Jiang (10.1016/j.bspc.2023.104923_b0065) 2021; 29
Das (10.1016/j.bspc.2023.104923_b0155) 2022
Mumtaz (10.1016/j.bspc.2023.104923_b0010) 2017; 12
Mumtaz (10.1016/j.bspc.2023.104923_b0315) 2017
Alsafy (10.1016/j.bspc.2023.104923_b0185) 2022; 45
Tripathy (10.1016/j.bspc.2023.104923_b0205) 2019; 19
Elwood (10.1016/j.bspc.2023.104923_b0040) 2019; 253
Dessai (10.1016/j.bspc.2023.104923_b0135) 2022
10.1016/j.bspc.2023.104923_b0145
Acharya (10.1016/j.bspc.2023.104923_b0310) 2018; 161
10.1016/j.bspc.2023.104923_b0220
Gajbhiye (10.1016/j.bspc.2023.104923_b0210) 2019; 20
Diykh (10.1016/j.bspc.2023.104923_b0230) 2020; 14
Diykh (10.1016/j.bspc.2023.104923_b0240) 2023; 229
Tan (10.1016/j.bspc.2023.104923_b0295) 2016
Saeedi (10.1016/j.bspc.2023.104923_b0080) 2020; 43
Saeedi (10.1016/j.bspc.2023.104923_b0105) 2021; 15
Pachori (10.1016/j.bspc.2023.104923_b0165) 2007; 17
Lilliefors (10.1016/j.bspc.2023.104923_b0255) 1967; 62
Harati (10.1016/j.bspc.2023.104923_b0060) 2018
Zhang (10.1016/j.bspc.2023.104923_b0015) 2020; 29
Mann (10.1016/j.bspc.2023.104923_b0250) 1947
Harati (10.1016/j.bspc.2023.104923_b0125) 2018
Mahato (10.1016/j.bspc.2023.104923_b0325) 2020; 44
Sharma (10.1016/j.bspc.2023.104923_b0095) 2018; 52
Abdulla (10.1016/j.bspc.2023.104923_b0285) 2019; 138
Dev (10.1016/j.bspc.2023.104923_b0035) 2022
Zhu (10.1016/j.bspc.2023.104923_b0050) 2020; 28
10.1016/j.bspc.2023.104923_b0270
Li (10.1016/j.bspc.2023.104923_b0025) 2021
References_xml – volume: 12
  start-page: e0171409
  year: 2017
  ident: b0175
  article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder
  publication-title: PLoS One
– volume: 75
  year: 2022
  ident: b0115
  article-title: LSDD-EEGNet: An efficient end-to-end framework for EEG-based depression detection
  publication-title: Biomed. Signal Process. Control
– start-page: 5763
  year: 2018
  end-page: 5766
  ident: b0060
  article-title: Depression severity classification from speech emotion
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2020
  ident: b0140
  article-title: Interpretation of depression detection models via feature selection methods
  publication-title: IEEE Trans. Affect. Comput.
– volume: 1277
  year: 2023
  ident: b0300
  article-title: Evaluation of gradient boosting and deep learning algorithms in dimuon production
  publication-title: J. Mol. Struct.
– volume: 68
  start-page: 664
  year: 2020
  end-page: 672
  ident: b0110
  article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: b0310
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
– volume: 68
  start-page: 664
  year: 2020
  end-page: 672
  ident: b0045
  article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 45
  start-page: 793
  year: 2022
  end-page: 808
  ident: b0185
  article-title: Developing a robust model to predict depth of anesthesia from single channel EEG signal
  publication-title: Phys Eng Sci Med
– start-page: 1
  year: 2020
  end-page: 9
  ident: b0280
  article-title: A stacked ensemble learning model for intrusion detection in wireless network
  publication-title: Neural Comput. & Applic.
– year: 2023
  ident: b0245
  article-title: An Intelligent Model Involving Multi-Channels Spectrum Patterns Based Features for Automatic Sleep Stage Classification
  publication-title: Int. J. Med. Inf.
– volume: 9
  start-page: 768
  year: 2019
  ident: b0005
  article-title: Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data
  publication-title: Front. Psych.
– volume: 29
  start-page: 215
  year: 2020
  end-page: 229
  ident: b0015
  article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 190
  year: 2022
  ident: b0180
  article-title: Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals
  publication-title: Measurement
– volume: 15
  start-page: 239
  year: 2021
  end-page: 252
  ident: b0105
  article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach
  publication-title: Cogn. Neurodyn.
– volume: 29
  start-page: 566
  year: 2021
  end-page: 575
  ident: b0065
  article-title: Enhancing EEG-based classification of depression patients using spatial information
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  start-page: 74
  year: 2021
  ident: b0290
  article-title: Determinant of covariance matrix model coupled with AdaBoost classification algorithm for EEG seizure detection
  publication-title: Diagnostics
– start-page: 107305
  year: 2022
  ident: b0190
  article-title: Developing a Novel Hybrid Method Based on Dispersion Entropy and Adaptive Boosting Algorithm for Human Activity Recognition
  publication-title: Computer Methods Prog Biomed
– volume: 28
  start-page: 961
  year: 2020
  end-page: 969
  ident: b0020
  article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 24
  start-page: 1322
  year: 2022
  ident: b0160
  article-title: Automated Emotion Identification Using Fourier-Bessel Domain-Based Entropies
  publication-title: Entropy
– volume: 138
  year: 2019
  ident: b0285
  article-title: Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2021, September.
  end-page: 3
  ident: b0075
  article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS
– volume: 155
  start-page: 11
  year: 2018
  end-page: 17
  ident: b0090
  article-title: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis
  publication-title: Comput. Methods Programs Biomed.
– volume: 29
  start-page: 566
  year: 2021
  end-page: 575
  ident: b0030
  article-title: Enhancing EEG-based classification of depression patients using spatial information
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: P.K. Chaudhary, K. Das, R.B. Pachori, Breast Cancer Diagnosis Using Iterative Fourier-Bessel Decomposition Method Based CNN-kernel Features, 2022.
– year: 2016
  ident: b0295
  article-title: Introduction to data mining
– volume: 229
  year: 2023
  ident: b0240
  article-title: Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition
  publication-title: Comput. Methods Programs Biomed.
– start-page: 1
  year: 2022
  end-page: 4
  ident: b0055
  article-title: May. Depression Detection on Social Media Using Text Mining
  publication-title: 2022 3rd International Conference for Emerging Technology (INCET)
– year: 2021
  ident: b0025
  article-title: Altered Brain Dynamics and Their Ability for Major Depression Detection using EEG Microstates Analysis
  publication-title: IEEE Trans. Affect. Comput.
– volume: 53
  year: 2019
  ident: b0200
  article-title: Epileptic seizure identification using entropy of FBSE based EEG rhythms
  publication-title: Biomed. Signal Process. Control
– year: 2022
  ident: b0035
  article-title: Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review
  publication-title: IEEE Access
– volume: 20
  start-page: 3687
  year: 2019
  end-page: 3696
  ident: b0210
  article-title: Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms
  publication-title: IEEE Sens. J.
– volume: 610
  start-page: 508
  year: 2022
  end-page: 524
  ident: b0225
  article-title: EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method
  publication-title: Inf. Sci.
– year: 2022
  ident: b0135
  article-title: Depression Detection on Social Media Using Text Mining
  publication-title: 2022 3rd International Conference for Emerging Technology (INCET)
– volume: 14
  start-page: 128
  year: 2020
  end-page: 136
  ident: b0230
  article-title: Robust approach to depth of anaesthesia assessment based on hybrid transform and statistical features<? show [AQ ID= Q1]?>
  publication-title: IET Sci. Meas. Technol.
– volume: 43
  start-page: 1007
  year: 2020
  end-page: 1018
  ident: b0080
  article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals
  publication-title: Phys. Eng. Sci. Med.
– year: 2022
  ident: b0070
  article-title: Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review
– volume: 25
  start-page: 1065
  year: 2019
  end-page: 1076
  ident: b0305
  article-title: Detection of major depressive disorder using linear and non-linear features from EEG signals
  publication-title: Microsyst. Technol.
– volume: 253
  start-page: 51
  year: 2019
  end-page: 62
  ident: b0040
  article-title: A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression
  publication-title: J. Affect. Disord.
– volume: 19
  start-page: 11437
  year: 2019
  end-page: 11448
  ident: b0205
  article-title: Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network
  publication-title: IEEE Sens. J.
– volume: 179
  year: 2021
  ident: b0085
  article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features
  publication-title: Appl. Acoust.
– volume: 52
  start-page: 508
  year: 2018
  end-page: 520
  ident: b0095
  article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals
  publication-title: Cogn. Syst. Res.
– volume: 88
  start-page: 415
  year: 2008
  end-page: 420
  ident: b0170
  article-title: EEG signal analysis using FB expansion and second-order linear TVAR process
  publication-title: Signal Process.
– year: 2023
  ident: b0215
  article-title: Fourier-Bessel representation for signal processing: A review
  publication-title: Digital Signal Process.
– start-page: 363
  year: 2018
  end-page: 384
  ident: b0195
  article-title: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment
  publication-title: Big Data in Engineering Applications
– year: 2021
  ident: b0130
  article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS
  publication-title: 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)
– start-page: 1
  year: 2022, March.
  end-page: 5
  ident: b0155
  article-title: Assessment of chanting effects using EEG signals
  publication-title: 2022 24th International Conference on Digital Signal Processing and its Applications (DSPA)
– volume: 12
  start-page: e0171409
  year: 2017
  ident: b0010
  article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder
  publication-title: PLoS One
– volume: 7
  start-page: 401
  year: 2012
  end-page: 408
  ident: b0235
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
– volume: 59
  start-page: 127
  year: 2020
  end-page: 138
  ident: b0320
  article-title: Feature-level fusion approaches based on multimodal EEG data for depression recognition
  publication-title: Information Fusion
– reference: R.B. Pachori. Time-Frequency Analysis Techniques and their Applications.
– volume: 38
  start-page: 1857
  year: 2005
  end-page: 1874
  ident: b0275
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recogn.
– year: 2023
  ident: b0150
  article-title: Automated Eye Movement Classification Based on EMG of EOM Signals Using FBSE-EWT Technique
– volume: 28
  start-page: 961
  year: 2020
  end-page: 969
  ident: b0050
  article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 44
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0100
  article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry
  publication-title: J. Med. Syst.
– start-page: 108
  year: 2017, 31,
  end-page: 115
  ident: b0315
  article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomed. Signal Process. Control
– reference: B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in;
– volume: 62
  start-page: 399
  year: 1967
  end-page: 402
  ident: b0255
  article-title: On the Kolmogorov-Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
– volume: 358
  year: 2021
  ident: b0120
  article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis
  publication-title: J. Neurosci. Methods
– volume: 17
  start-page: 466
  year: 2007
  end-page: 474
  ident: b0165
  article-title: A new technique to reduce cross terms in the Wigner distribution
  publication-title: Digital Signal Process.
– start-page: 50
  year: 1947
  end-page: 60
  ident: b0250
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann. Math. Stat.
– volume: 48
  start-page: 288
  year: 2017
  end-page: 299
  ident: b0260
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybern.
– volume: 69
  year: 2021
  ident: b0265
  article-title: Unsupervised sleep staging system based on domain adaptation
  publication-title: Biomed. Signal Process. Control
– reference: , 1992, pp. 144-152.
– year: 2018
  ident: b0125
  article-title: Depression severity classification from speech emotion
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 44
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0325
  article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry
  publication-title: J. Med. Syst.
– volume: 253
  start-page: 51
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0040
  article-title: A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2019.04.059
– volume: 53
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0200
  article-title: Epileptic seizure identification using entropy of FBSE based EEG rhythms
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101569
– ident: 10.1016/j.bspc.2023.104923_b0145
  doi: 10.36227/techrxiv.21717608.v1
– year: 2016
  ident: 10.1016/j.bspc.2023.104923_b0295
– volume: 12
  start-page: e0171409
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2023.104923_b0175
  article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171409
– volume: 161
  start-page: 103
  year: 2018
  ident: 10.1016/j.bspc.2023.104923_b0310
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 15
  start-page: 239
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0105
  article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09619-0
– volume: 62
  start-page: 399
  issue: 318
  year: 1967
  ident: 10.1016/j.bspc.2023.104923_b0255
  article-title: On the Kolmogorov-Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1967.10482916
– volume: 44
  start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0325
  article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1486-z
– start-page: 363
  year: 2018
  ident: 10.1016/j.bspc.2023.104923_b0195
  article-title: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment
– volume: 1277
  year: 2023
  ident: 10.1016/j.bspc.2023.104923_b0300
  article-title: Evaluation of gradient boosting and deep learning algorithms in dimuon production
  publication-title: J. Mol. Struct.
– year: 2023
  ident: 10.1016/j.bspc.2023.104923_b0215
  article-title: Fourier-Bessel representation for signal processing: A review
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2023.103938
– volume: 14
  start-page: 128
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0230
  article-title: Robust approach to depth of anaesthesia assessment based on hybrid transform and statistical features<? show [AQ ID= Q1]?>
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2018.5393
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  ident: 10.1016/j.bspc.2023.104923_b0235
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0265
  article-title: Unsupervised sleep staging system based on domain adaptation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102937
– start-page: 5763
  year: 2018
  ident: 10.1016/j.bspc.2023.104923_b0060
  article-title: Depression severity classification from speech emotion
– start-page: 50
  year: 1947
  ident: 10.1016/j.bspc.2023.104923_b0250
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730491
– volume: 29
  start-page: 215
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0015
  article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3043426
– volume: 29
  start-page: 566
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0030
  article-title: Enhancing EEG-based classification of depression patients using spatial information
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3059429
– volume: 28
  start-page: 961
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0050
  article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2972270
– volume: 45
  start-page: 793
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0185
  article-title: Developing a robust model to predict depth of anesthesia from single channel EEG signal
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-022-01145-z
– year: 2018
  ident: 10.1016/j.bspc.2023.104923_b0125
  article-title: Depression severity classification from speech emotion
– volume: 610
  start-page: 508
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0225
  article-title: EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.121
– volume: 179
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0085
  article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108078
– volume: 190
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0180
  article-title: Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110731
– volume: 28
  start-page: 961
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0020
  article-title: Classifying major depressive disorder using fNIRS during motor rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2972270
– volume: 12
  start-page: 74
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0290
  article-title: Determinant of covariance matrix model coupled with AdaBoost classification algorithm for EEG seizure detection
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12010074
– volume: 138
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0285
  article-title: Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.007
– volume: 17
  start-page: 466
  issue: 2
  year: 2007
  ident: 10.1016/j.bspc.2023.104923_b0165
  article-title: A new technique to reduce cross terms in the Wigner distribution
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2006.10.004
– volume: 52
  start-page: 508
  year: 2018
  ident: 10.1016/j.bspc.2023.104923_b0095
  article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.010
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0280
  article-title: A stacked ensemble learning model for intrusion detection in wireless network
  publication-title: Neural Comput. & Applic.
– volume: 75
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0115
  article-title: LSDD-EEGNet: An efficient end-to-end framework for EEG-based depression detection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103612
– year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0135
  article-title: Depression Detection on Social Media Using Text Mining
– volume: 20
  start-page: 3687
  issue: 7
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0210
  article-title: Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2959697
– volume: 68
  start-page: 664
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0045
  article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3010472
– year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0025
  article-title: Altered Brain Dynamics and Their Ability for Major Depression Detection using EEG Microstates Analysis
  publication-title: IEEE Trans. Affect. Comput.
– volume: 24
  start-page: 1322
  issue: 10
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0160
  article-title: Automated Emotion Identification Using Fourier-Bessel Domain-Based Entropies
  publication-title: Entropy
  doi: 10.3390/e24101322
– volume: 44
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0100
  article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1486-z
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0155
  article-title: Assessment of chanting effects using EEG signals
– volume: 358
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0120
  article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109209
– year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0140
  article-title: Interpretation of depression detection models via feature selection methods
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 107305
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0190
  article-title: Developing a Novel Hybrid Method Based on Dispersion Entropy and Adaptive Boosting Algorithm for Human Activity Recognition
  publication-title: Computer Methods Prog Biomed
– year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0130
  article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS
– year: 2023
  ident: 10.1016/j.bspc.2023.104923_b0150
– volume: 48
  start-page: 288
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2023.104923_b0260
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2633306
– volume: 19
  start-page: 11437
  issue: 23
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0205
  article-title: Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2935552
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0075
  article-title: Time-frequency analysis in EEG for the Treatment of Major Depressive Disorder Using rTMS
– year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0070
– volume: 68
  start-page: 664
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0110
  article-title: Classifying major depressive disorder and response to deep brain stimulation over time by analyzing facial expressions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3010472
– volume: 88
  start-page: 415
  issue: 2
  year: 2008
  ident: 10.1016/j.bspc.2023.104923_b0170
  article-title: EEG signal analysis using FB expansion and second-order linear TVAR process
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2007.07.022
– ident: 10.1016/j.bspc.2023.104923_b0270
  doi: 10.1145/130385.130401
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0055
  article-title: May. Depression Detection on Social Media Using Text Mining
– volume: 59
  start-page: 127
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0320
  article-title: Feature-level fusion approaches based on multimodal EEG data for depression recognition
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.01.008
– ident: 10.1016/j.bspc.2023.104923_b0220
– volume: 25
  start-page: 1065
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0305
  article-title: Detection of major depressive disorder using linear and non-linear features from EEG signals
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-018-4075-z
– year: 2023
  ident: 10.1016/j.bspc.2023.104923_b0245
  article-title: An Intelligent Model Involving Multi-Channels Spectrum Patterns Based Features for Automatic Sleep Stage Classification
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2023.105001
– start-page: 108
  year: 2017
  ident: 10.1016/j.bspc.2023.104923_b0315
  article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.006
– year: 2022
  ident: 10.1016/j.bspc.2023.104923_b0035
  article-title: Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146711
– volume: 155
  start-page: 11
  year: 2018
  ident: 10.1016/j.bspc.2023.104923_b0090
  article-title: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.11.023
– volume: 43
  start-page: 1007
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2023.104923_b0080
  article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00897-w
– volume: 12
  start-page: e0171409
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2023.104923_b0010
  article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171409
– volume: 229
  year: 2023
  ident: 10.1016/j.bspc.2023.104923_b0240
  article-title: Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.107305
– volume: 9
  start-page: 768
  year: 2019
  ident: 10.1016/j.bspc.2023.104923_b0005
  article-title: Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data
  publication-title: Front. Psych.
  doi: 10.3389/fpsyt.2018.00768
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  ident: 10.1016/j.bspc.2023.104923_b0275
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.01.025
– volume: 29
  start-page: 566
  year: 2021
  ident: 10.1016/j.bspc.2023.104923_b0065
  article-title: Enhancing EEG-based classification of depression patients using spatial information
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3059429
SSID ssj0048714
Score 2.4058545
Snippet •FBSE is used to extract features from original data.•Statistical metrics are applied to remove noisy features.•DA is employed to reduce the difference of...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104923
SubjectTerms Domain adaptation
Fourier Bessel series expansion
LS-SVM
Segmentation
Statistical features
Student t-test
Wilcoxon test
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHsSDb1FRmYM3XdlH9nVUaS2CRdCCnpZkky3W7e7SB6L_wH9tpkmLipZ620MmYTMD8yX55htCTgRVMCSiUgUvDSyF_4XF0tC2Yju1XS5RsByrkW_bQatDbx79RyOTg7Uw397vJzwsPqxQatD18DlSwZFlUg98hbtrpN5p31086YpHVNWddD3U344dmQqZ3yf5KwutjIuKvb2yPP-SZZrrul3RcCJOiOSSl_PxiJ-n7z-kGxf7gQ2yZsAmXOjo2CRLstgiq18kCLfJx-xWARqNa-izXjmAGT22AGHUOSFFmI28ookrAfnyXWhe3jcgLcdVLgXglS6Iss-eC2CCVfqRH3SPasB0KdT8yN2UYJpVdIHl3XKgDPvDHdJpNh6uWpZpz2ClHqUjK-a-k_GYu4wzP1JAKovwxMtcEUufOsrl6rRCvTSMMjsSQgEpQWkWBiKSnKmk6O2SWlEWco8ADRVylLHDMs-hzA2572aBMvKDKHaFQ_eJM3VXkhrtcmyhkSdTklovwW1OcJsTvc375HRmU2nljrmj_WkUJAZ7aEyRKIfOtTubhcwCyxz8b_ghqY0GY3mkcM-IH5uA_wQA2v4d
  priority: 102
  providerName: Unpaywall
Title Improving EEG major depression disorder classification using FBSE coupled with domain adaptation method based machine learning algorithms
URI https://dx.doi.org/10.1016/j.bspc.2023.104923
https://doi.org/10.1016/j.bspc.2023.104923
UnpaywallVersion publishedVersion
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq7gE4oOUlykI1B24QmofzOnarlO4iKqRSqZwiO3aqrtIk6kMrLtz51zvTuFE5UCFOUSKPHXlGns_2NzOMvVccYUjENRovDyzE_8oSWWhbsZ3ZrtSUsJyikb9Og8mc3y78RYeNjrEwRKs0a3-zph9Wa_NlYGZzUK9Wgxli6SDC3QmCaNvzA4oo59g12vSnXy3NA_H4Ib83NbaotQmcaThecltTGkPXo6vO2PX-5pwe7cta_LwXRXHifMaX7KlBjTBsfuwZ6-jyOXtykkvwBfvdHg9AknyGtbirNtDyXEtQJs0mZISXiSB00AkQ8X0J4-tZAlm1rwutgM5mQVVrsSpBKFE3t_XQFJsG8nsK-ycSpgZTdWIJolhWGxRcb1-y-Tj5PppYps6ClXmc76xY-k4uY-kKKfwIEVEe0dZVuCrWPndQd7jt4F4WRrkdKYWISHGeh4GKtBTo3bxXrFtWpX7NgIcIAXXsiNxzuHBD6bt5gEJ-EMWucniPOccJTjOThJxqYRTpkW12l5JSUlJK2iilxz60MnWTguNsa_-ot_QPQ0rRR5yV-9gq-R-GefOfw1yxx_TWUAjfsu5us9fvENbsZP9gt312Mbz5Mpnicz79NvzxAA00-Ig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHCiHqpRWQCnMoTdIN3HsfBwB7bK0wAWQuEV27KwWZZNo2VXVS-_918xsvBEcQBXXxBNHHsvzxn5-w9h3IxCGJMLi5BWRh_jfeCqPfS_1c59rS4LldBv58ioa3oqfd_JuhZ0u78IQrdKt_e2avlit3ZOeG81eMx73rhFLRwlmJwii_VBG8Tu2JiSPKQP78bfjeSAgXwh8U2uPmrubMy3JSz80pGPIQzrrTHn4UnRan1eN-vNbleWT6DP4yD442AjH7Z9tshVbfWIbT8QEt9i_bn8A-v0zmKj7egod0bUC43Q2ISfATAyhhVOAmO8jGJxc9yGv501pDdDmLJh6osYVKKOa9rge2mrTQIHP4PeJhWnBlZ0YgSpH9RQNJw-f2e2gf3M69FyhBS8PhZh5qZZBoVPNlVYyQUhUJJS7Km5SK0WAzsO8Q4R5nBR-YgxCIiNEEUcmsVpheAu_sNWqruw2AxEjBrRpoIowEIrHWvIiQiMZJSk3gdhhwXKAs9ypkFMxjDJb0s3uM3JKRk7JWqfssMPOpmk1OF5tLZd-y57NpAyDxKt2R52T_6Ob3Td2c8DWhzeXF9nF-dWvr-w9vWn5hHtsdTad22-IcWZ6fzGHHwED6_ht
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHsSDb1FRmYM3XdlH9nVUaS2CRdCCnpZkky3W7e7SB6L_wH9tpkmLipZ620MmYTMD8yX55htCTgRVMCSiUgUvDSyF_4XF0tC2Yju1XS5RsByrkW_bQatDbx79RyOTg7Uw397vJzwsPqxQatD18DlSwZFlUg98hbtrpN5p31086YpHVNWddD3U344dmQqZ3yf5KwutjIuKvb2yPP-SZZrrul3RcCJOiOSSl_PxiJ-n7z-kGxf7gQ2yZsAmXOjo2CRLstgiq18kCLfJx-xWARqNa-izXjmAGT22AGHUOSFFmI28ookrAfnyXWhe3jcgLcdVLgXglS6Iss-eC2CCVfqRH3SPasB0KdT8yN2UYJpVdIHl3XKgDPvDHdJpNh6uWpZpz2ClHqUjK-a-k_GYu4wzP1JAKovwxMtcEUufOsrl6rRCvTSMMjsSQgEpQWkWBiKSnKmk6O2SWlEWco8ADRVylLHDMs-hzA2572aBMvKDKHaFQ_eJM3VXkhrtcmyhkSdTklovwW1OcJsTvc375HRmU2nljrmj_WkUJAZ7aEyRKIfOtTubhcwCyxz8b_ghqY0GY3mkcM-IH5uA_wQA2v4d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+EEG+major+depression+disorder+classification+using+FBSE+coupled+with+domain+adaptation+method+based+machine+learning+algorithms&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Mohammed%2C+Hadeer&rft.au=Diykh%2C+Mohammed&rft.date=2023-08-01&rft.issn=1746-8094&rft.volume=85&rft.spage=104923&rft_id=info:doi/10.1016%2Fj.bspc.2023.104923&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon