An enhanced AHP–TOPSIS-based load balancing algorithm for switch migration in software-defined networks
Considering a software defined network, distributed controller architecture uses multiple controllers in which each controller manages a part of the network. The load imbalance problem in this architecture causes a large number of switch migrations resulting in a significant increase in switch migra...
        Saved in:
      
    
          | Published in | The Journal of supercomputing Vol. 77; no. 1; pp. 563 - 596 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-8542 1573-0484  | 
| DOI | 10.1007/s11227-020-03285-z | 
Cover
| Abstract | Considering a software defined network, distributed controller architecture uses multiple controllers in which each controller manages a part of the network. The load imbalance problem in this architecture causes a large number of switch migrations resulting in a significant increase in switch migration cost and average network response time along with a decrease in throughput. Although recent studies have addressed these issues, access to optimal response time had been achieved with high cost of switch migration and sometimes with reduction of throughput using their methods. Therefore, the load balance in the present study is managed by a variable threshold based on the controllers’ workload. In other words, migration is done by selecting optimal switch and controller so that the switch will be selected with the lowest traffic generation rate which could return the source controller to its steady state. Using the suggested method, a destination controller is selected based on some important parameters such as CPU utilization, rate of incoming packets and the number of hops between switch and controller. The TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) algorithm is used to select the best controller based on the above-mentioned criteria and the AHP (analytic hierarchy process) algorithm is employed for determining the ratio of each criterion. The proposed method considerably outperforms other methods by achieving about 6 and 78% improvement in throughput and the number of switch migration in our implementation, respectively. | 
    
|---|---|
| AbstractList | Considering a software defined network, distributed controller architecture uses multiple controllers in which each controller manages a part of the network. The load imbalance problem in this architecture causes a large number of switch migrations resulting in a significant increase in switch migration cost and average network response time along with a decrease in throughput. Although recent studies have addressed these issues, access to optimal response time had been achieved with high cost of switch migration and sometimes with reduction of throughput using their methods. Therefore, the load balance in the present study is managed by a variable threshold based on the controllers’ workload. In other words, migration is done by selecting optimal switch and controller so that the switch will be selected with the lowest traffic generation rate which could return the source controller to its steady state. Using the suggested method, a destination controller is selected based on some important parameters such as CPU utilization, rate of incoming packets and the number of hops between switch and controller. The TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) algorithm is used to select the best controller based on the above-mentioned criteria and the AHP (analytic hierarchy process) algorithm is employed for determining the ratio of each criterion. The proposed method considerably outperforms other methods by achieving about 6 and 78% improvement in throughput and the number of switch migration in our implementation, respectively. | 
    
| Author | Ider, Masoud Barekatain, Behrang  | 
    
| Author_xml | – sequence: 1 givenname: Masoud surname: Ider fullname: Ider, Masoud organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University – sequence: 2 givenname: Behrang surname: Barekatain fullname: Barekatain, Behrang email: Behrang_Barekatain@iaun.ac.ir organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Big Data Research Center, Najafabad Branch, Islamic Azad University  | 
    
| BookMark | eNp9kM9OAjEQxhuDiYC-gKe-QLX_lnaPhKiQkEACnpvubheKS2vaGiIn38E39Ems4skDp5nMfL8vM98A9Jx3BoBbgu8IxuI-EkKpQJhihBmVBTpegD4pBEOYS94DfVzmlSw4vQKDGHcYY84E6wM7dtC4rXa1aeB4uvz6-FwvlqvZClU65lHndQMr3WWBdRuou40PNm33sPUBxoNN9Rbu7SboZL2D1sHo23TQwaDGtNZlB2fSwYeXeA0uW91Fc_NXh-D58WE9maL54mk2Gc9RzThPqCyN0YSMjCiKsjGkaGuBKy6qmjUlNowJyUtDKcmNwLSsdCF1JRsqhRFtO2JDIE--dfAxBtOq2qbf81LQtlMEq5_I1CkylSNTv5GpY0bpP_Q12L0O7-chdoJiFruNCWrn34LLL56jvgHJrIM9 | 
    
| CitedBy_id | crossref_primary_10_1080_15325008_2024_2349192 crossref_primary_10_1007_s11277_024_10989_5 crossref_primary_10_1016_j_jnca_2024_104043 crossref_primary_10_1007_s11227_024_06231_5 crossref_primary_10_26636_jtit_2023_4_1371 crossref_primary_10_1007_s00607_021_01049_y crossref_primary_10_1007_s11227_022_04591_4 crossref_primary_10_1007_s10586_021_03522_x crossref_primary_10_1080_01969722_2022_2151182 crossref_primary_10_1007_s11227_021_04042_6 crossref_primary_10_1007_s42979_024_03146_z crossref_primary_10_1016_j_eswa_2023_122578 crossref_primary_10_1109_ACCESS_2021_3109296 crossref_primary_10_3233_WEB_230263 crossref_primary_10_1109_TNSM_2023_3323743  | 
    
| Cites_doi | 10.1109/MED.2016.7535946 10.1142/p505 10.1109/ICC.2018.8422750 10.1109/ICEIEC.2017.8076592 10.1007/s00521-015-2040-7 10.1109/ACCESS.2018.2814738 10.1145/2890955.2890968 10.1109/JSAC.2019.2894237 10.1155/2015/531538 10.1007/s00521-014-1771-1 10.1145/2658260.2658261 10.12988/ces.2016.66105 10.1109/CC.2018.8485475 10.1007/s10922-016-9393-9 10.1007/s11277-016-3790-y 10.1049/iet-net.2018.5166 10.1109/COMST.2014.2330903 10.1109/ACCESS.2019.2929651 10.1109/TNSM.2018.2876369 10.1109/ACCESS.2019.2906683 10.1109/INDIN.2016.7819196 10.1109/ACCESS.2018.2820148 10.1109/IC2E.2017.33  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s11227-020-03285-z | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-0484 | 
    
| EndPage | 596 | 
    
| ExternalDocumentID | 10_1007_s11227_020_03285_z | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION  | 
    
| ID | FETCH-LOGICAL-c344t-99eea116e7559de15fc70b47bc3d90e337849e2213787029ba58ab8d287e7ff63 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0920-8542 | 
    
| IngestDate | Wed Oct 01 03:43:49 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Fri Feb 21 02:27:35 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Load balancing algorithm Throughput Software defined network (SDN) Response time AHP–TOPSIS Switch migration  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c344t-99eea116e7559de15fc70b47bc3d90e337849e2213787029ba58ab8d287e7ff63 | 
    
| PageCount | 34 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s11227_020_03285_z crossref_primary_10_1007_s11227_020_03285_z springer_journals_10_1007_s11227_020_03285_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210100 2021-01-00  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2021 text: 20210100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use | 
    
| PublicationTitle | The Journal of supercomputing | 
    
| PublicationTitleAbbrev | J Supercomput | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer US | 
    
| Publisher_xml | – name: Springer US | 
    
| References | Dixit A, Hao F, Mukherjee S, Lakshman T, Kompella RR (2014) ElastiCon; an elastic distributed SDN controller. In: 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). IEEE, pp 17–27 ChenWShangZTianXLiHDynamic server cluster load balancing in virtualization environment with openflowInt J Distrib Sens Netw201511753153810.1155/2015/531538 XiaWWenYFohCHNiyatoDXieHA survey on software-defined networkingIEEE Commun Surv Tutor2014171275110.1109/COMST.2014.2330903 MaY-WChenJ-LTsaiY-HChengK-HHungW-CLoad-balancing multiple controllers mechanism for software-defined networkingWirel Pers Commun20179443549357410.1007/s11277-016-3790-y CuiJLuQZhongHTianMLiuLA load-balancing mechanism for distributed SDN control plane using response timeIEEE Trans Netw Serv Manag20181541197120610.1109/TNSM.2018.2876369 Cbench benchmarking. https://githubcom/mininet/oflops/tree/master/cbench Filali A, Kobbane A, Elmachkour M, Cherkaoui S (2018) SDN controller assignment and load balancing with minimum quota of processing capacity. In: 2018 IEEE International Conference on Communications (ICC). IEEE, pp 1–6 Li Y, Pan D (2013) OpenFlow based load balancing for fat-tree networks with multipath support. In: Proceedings of the 12th IEEE International Conference on Communications (ICC’13), Budapest, Hungary, pp 1–5 HuTGuoZYiPBakerTLanJMulti-controller based software-defined networking: a surveyIEEE Access20186159801599610.1109/ACCESS.2018.2814738 SahooKSSahooBCAMD: a switch migration based load balancing framework for software defined networksIET Netw2019826427110.1049/iet-net.2018.5166 Al-TamFCorreiaNOn load balancing via switch migration in software-defined networkingIEEE Access20197959989601010.1109/ACCESS.2019.2929651 Cello M, Xu Y, Walid A, Wilfong G, Chao HJ, Marchese M (2017) Balcon: a distributed elastic SDN control via efficient switch migration. In: 2017 IEEE International Conference on Cloud Engineering (IC2E). IEEE, pp 40–50 SinghSJhaRKA survey on software defined networking: architecture for next generation networkJ Netw Syst Manag201725232137410.1007/s10922-016-9393-9 SangaiahAKSubramaniamPRZhengXA combined fuzzy DEMATEL and fuzzy TOPSIS approach for evaluating GSD project outcome factorsNeural Comput Appl20152651025104010.1007/s00521-014-1771-1 Kasberg DW, Udapudi D, Yasser MA (2018) Automatic load balancing of switches in a cluster of controllers in a software-defined switch network. Google Patents Cimorelli F, Priscoli FD, Pietrabissa A, Celsi LR, Suraci V, Zuccaro L (2016) A distributed load balancing algorithm for the control plane in software defined networking. In: 2016 24th Mediterranean Conference on Control and Automation (MED). IEEE, pp 1033–1040 ChirammalHDMukhedkarPVettathuAMastering KVM virtualization2016BirminghamPackt Publishing Ltd Li L, Xu Q (2017) Load balancing researches in SDN: a survey. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC). IEEE, pp 403–408 Hai NT, Kim D-S (2016) Efficient load balancing for multi-controller in SDN-based mission-critical networks. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, pp 420–425 Li J-Q, Sun E-C, Zhang Y-H (2018) Multi-threshold SDN controllers load balancing algorithm based on controller load. In: International Conference on Computer, Communication and Network Technology (CCNT 2018), Wuzhen, pp 1–10 LiGWangXZhangZSDN-based load balancing scheme for multi-controller deploymentIEEE Access20197396123962210.1109/ACCESS.2019.2906683 Wang K-Y, Kao S-J, Kao M-T (2018) An efficient load adjustment for balancing multiple controllers in reliable SDN systems. In: 2018 IEEE International Conference on Applied System Invention (ICASI). IEEE, pp 593–596 Katta N, Hira M, Kim C, Sivaraman A, Rexford J (2016) Hula: scalable load balancing using programmable data planes. In: Proceedings of the Symposium on SDN Research. ACM, p 10 Kreutz D, Ramos F, Verissimo P, Rothenberg CE, Azodolmolky S, Uhlig S (2014) Software-defined networking: a comprehensive survey. arXiv preprint arXiv:14060440 KangS-BKwonG-ILoad balancing of software-defined network controller using genetic algorithmContemp Eng Sci201691888188810.12988/ces.2016.66105 HuTYiPZhangJLanJA distributed decision mechanism for controller load balancing based on switch migration in SDNChina Commun2018151012914210.1109/CC.2018.8485475 ZhangSLanJSunPJiangYOnline load balancing for distributed control plane in software-defined data center networkIEEE Access20186181841819110.1109/ACCESS.2018.2820148 XuYCelloMWangI-CWalidAWilfongGWenCH-PMarcheseMChaoHJDynamic switch migration in distributed software-defined networks to achieve controller load balanceIEEE J Sel Areas Commun201937351552910.1109/JSAC.2019.2894237 SangaiahAKGopalJBasuASubramaniamPRAn integrated fuzzy DEMATEL, TOPSIS, and ELECTRE approach for evaluating knowledge transfer effectiveness with reference to GSD project outcomeNeural Comput Appl201728111112310.1007/s00521-015-2040-7 LuJRuanDMulti-objective group decision making: methods, software and applications with fuzzy set techniques2007LondonImperial College Press10.1142/p505 G Li (3285_CR5) 2019; 7 AK Sangaiah (3285_CR15) 2017; 28 3285_CR1 T Hu (3285_CR21) 2018; 15 3285_CR30 F Al-Tam (3285_CR7) 2019; 7 T Hu (3285_CR4) 2018; 6 KS Sahoo (3285_CR6) 2019; 8 3285_CR13 AK Sangaiah (3285_CR16) 2015; 26 Y Xu (3285_CR23) 2019; 37 3285_CR10 S Singh (3285_CR2) 2017; 25 3285_CR17 S-B Kang (3285_CR12) 2016; 9 3285_CR19 J Cui (3285_CR22) 2018; 15 W Chen (3285_CR26) 2015; 11 J Lu (3285_CR14) 2007 HD Chirammal (3285_CR29) 2016 W Xia (3285_CR3) 2014; 17 S Zhang (3285_CR11) 2018; 6 3285_CR25 3285_CR24 3285_CR27 Y-W Ma (3285_CR28) 2017; 94 3285_CR20 cr-split#-3285_CR18.1 cr-split#-3285_CR18.2 3285_CR9 3285_CR8  | 
    
| References_xml | – reference: Al-TamFCorreiaNOn load balancing via switch migration in software-defined networkingIEEE Access20197959989601010.1109/ACCESS.2019.2929651 – reference: LiGWangXZhangZSDN-based load balancing scheme for multi-controller deploymentIEEE Access20197396123962210.1109/ACCESS.2019.2906683 – reference: Hai NT, Kim D-S (2016) Efficient load balancing for multi-controller in SDN-based mission-critical networks. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, pp 420–425 – reference: MaY-WChenJ-LTsaiY-HChengK-HHungW-CLoad-balancing multiple controllers mechanism for software-defined networkingWirel Pers Commun20179443549357410.1007/s11277-016-3790-y – reference: ChenWShangZTianXLiHDynamic server cluster load balancing in virtualization environment with openflowInt J Distrib Sens Netw201511753153810.1155/2015/531538 – reference: XiaWWenYFohCHNiyatoDXieHA survey on software-defined networkingIEEE Commun Surv Tutor2014171275110.1109/COMST.2014.2330903 – reference: SahooKSSahooBCAMD: a switch migration based load balancing framework for software defined networksIET Netw2019826427110.1049/iet-net.2018.5166 – reference: Cello M, Xu Y, Walid A, Wilfong G, Chao HJ, Marchese M (2017) Balcon: a distributed elastic SDN control via efficient switch migration. In: 2017 IEEE International Conference on Cloud Engineering (IC2E). IEEE, pp 40–50 – reference: HuTYiPZhangJLanJA distributed decision mechanism for controller load balancing based on switch migration in SDNChina Commun2018151012914210.1109/CC.2018.8485475 – reference: Filali A, Kobbane A, Elmachkour M, Cherkaoui S (2018) SDN controller assignment and load balancing with minimum quota of processing capacity. In: 2018 IEEE International Conference on Communications (ICC). IEEE, pp 1–6 – reference: SangaiahAKSubramaniamPRZhengXA combined fuzzy DEMATEL and fuzzy TOPSIS approach for evaluating GSD project outcome factorsNeural Comput Appl20152651025104010.1007/s00521-014-1771-1 – reference: Dixit A, Hao F, Mukherjee S, Lakshman T, Kompella RR (2014) ElastiCon; an elastic distributed SDN controller. In: 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). IEEE, pp 17–27 – reference: CuiJLuQZhongHTianMLiuLA load-balancing mechanism for distributed SDN control plane using response timeIEEE Trans Netw Serv Manag20181541197120610.1109/TNSM.2018.2876369 – reference: LuJRuanDMulti-objective group decision making: methods, software and applications with fuzzy set techniques2007LondonImperial College Press10.1142/p505 – reference: HuTGuoZYiPBakerTLanJMulti-controller based software-defined networking: a surveyIEEE Access20186159801599610.1109/ACCESS.2018.2814738 – reference: KangS-BKwonG-ILoad balancing of software-defined network controller using genetic algorithmContemp Eng Sci201691888188810.12988/ces.2016.66105 – reference: Kasberg DW, Udapudi D, Yasser MA (2018) Automatic load balancing of switches in a cluster of controllers in a software-defined switch network. Google Patents – reference: Li Y, Pan D (2013) OpenFlow based load balancing for fat-tree networks with multipath support. In: Proceedings of the 12th IEEE International Conference on Communications (ICC’13), Budapest, Hungary, pp 1–5 – reference: Li J-Q, Sun E-C, Zhang Y-H (2018) Multi-threshold SDN controllers load balancing algorithm based on controller load. In: International Conference on Computer, Communication and Network Technology (CCNT 2018), Wuzhen, pp 1–10 – reference: Cbench benchmarking. https://githubcom/mininet/oflops/tree/master/cbench – reference: Kreutz D, Ramos F, Verissimo P, Rothenberg CE, Azodolmolky S, Uhlig S (2014) Software-defined networking: a comprehensive survey. arXiv preprint arXiv:14060440 – reference: Li L, Xu Q (2017) Load balancing researches in SDN: a survey. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC). IEEE, pp 403–408 – reference: SinghSJhaRKA survey on software defined networking: architecture for next generation networkJ Netw Syst Manag201725232137410.1007/s10922-016-9393-9 – reference: ZhangSLanJSunPJiangYOnline load balancing for distributed control plane in software-defined data center networkIEEE Access20186181841819110.1109/ACCESS.2018.2820148 – reference: XuYCelloMWangI-CWalidAWilfongGWenCH-PMarcheseMChaoHJDynamic switch migration in distributed software-defined networks to achieve controller load balanceIEEE J Sel Areas Commun201937351552910.1109/JSAC.2019.2894237 – reference: Wang K-Y, Kao S-J, Kao M-T (2018) An efficient load adjustment for balancing multiple controllers in reliable SDN systems. In: 2018 IEEE International Conference on Applied System Invention (ICASI). IEEE, pp 593–596 – reference: Cimorelli F, Priscoli FD, Pietrabissa A, Celsi LR, Suraci V, Zuccaro L (2016) A distributed load balancing algorithm for the control plane in software defined networking. In: 2016 24th Mediterranean Conference on Control and Automation (MED). IEEE, pp 1033–1040 – reference: Katta N, Hira M, Kim C, Sivaraman A, Rexford J (2016) Hula: scalable load balancing using programmable data planes. In: Proceedings of the Symposium on SDN Research. ACM, p 10 – reference: SangaiahAKGopalJBasuASubramaniamPRAn integrated fuzzy DEMATEL, TOPSIS, and ELECTRE approach for evaluating knowledge transfer effectiveness with reference to GSD project outcomeNeural Comput Appl201728111112310.1007/s00521-015-2040-7 – reference: ChirammalHDMukhedkarPVettathuAMastering KVM virtualization2016BirminghamPackt Publishing Ltd – ident: 3285_CR9 doi: 10.1109/MED.2016.7535946 – volume-title: Multi-objective group decision making: methods, software and applications with fuzzy set techniques year: 2007 ident: 3285_CR14 doi: 10.1142/p505 – ident: 3285_CR13 doi: 10.1109/ICC.2018.8422750 – ident: #cr-split#-3285_CR18.2 – ident: 3285_CR8 doi: 10.1109/ICEIEC.2017.8076592 – volume: 28 start-page: 111 issue: 1 year: 2017 ident: 3285_CR15 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2040-7 – ident: 3285_CR10 – volume: 6 start-page: 15980 year: 2018 ident: 3285_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2814738 – ident: 3285_CR25 doi: 10.1145/2890955.2890968 – volume: 37 start-page: 515 issue: 3 year: 2019 ident: 3285_CR23 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2019.2894237 – volume: 11 start-page: 531538 issue: 7 year: 2015 ident: 3285_CR26 publication-title: Int J Distrib Sens Netw doi: 10.1155/2015/531538 – volume: 26 start-page: 1025 issue: 5 year: 2015 ident: 3285_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1771-1 – ident: 3285_CR20 – ident: #cr-split#-3285_CR18.1 doi: 10.1145/2658260.2658261 – volume: 9 start-page: 881 issue: 18 year: 2016 ident: 3285_CR12 publication-title: Contemp Eng Sci doi: 10.12988/ces.2016.66105 – volume: 15 start-page: 129 issue: 10 year: 2018 ident: 3285_CR21 publication-title: China Commun doi: 10.1109/CC.2018.8485475 – volume: 25 start-page: 321 issue: 2 year: 2017 ident: 3285_CR2 publication-title: J Netw Syst Manag doi: 10.1007/s10922-016-9393-9 – ident: 3285_CR24 – ident: 3285_CR1 – volume: 94 start-page: 3549 issue: 4 year: 2017 ident: 3285_CR28 publication-title: Wirel Pers Commun doi: 10.1007/s11277-016-3790-y – volume: 8 start-page: 264 year: 2019 ident: 3285_CR6 publication-title: IET Netw doi: 10.1049/iet-net.2018.5166 – volume: 17 start-page: 27 issue: 1 year: 2014 ident: 3285_CR3 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2014.2330903 – volume: 7 start-page: 95998 year: 2019 ident: 3285_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929651 – volume: 15 start-page: 1197 issue: 4 year: 2018 ident: 3285_CR22 publication-title: IEEE Trans Netw Serv Manag doi: 10.1109/TNSM.2018.2876369 – ident: 3285_CR30 – volume: 7 start-page: 39612 year: 2019 ident: 3285_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906683 – ident: 3285_CR27 – ident: 3285_CR19 doi: 10.1109/INDIN.2016.7819196 – volume: 6 start-page: 18184 year: 2018 ident: 3285_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820148 – ident: 3285_CR17 doi: 10.1109/IC2E.2017.33 – volume-title: Mastering KVM virtualization year: 2016 ident: 3285_CR29  | 
    
| SSID | ssj0004373 | 
    
| Score | 2.3340108 | 
    
| Snippet | Considering a software defined network, distributed controller architecture uses multiple controllers in which each controller manages a part of the network.... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 563 | 
    
| SubjectTerms | Compilers Computer Science Interpreters Processor Architectures Programming Languages  | 
    
| Title | An enhanced AHP–TOPSIS-based load balancing algorithm for switch migration in software-defined networks | 
    
| URI | https://link.springer.com/article/10.1007/s11227-020-03285-z | 
    
| Volume | 77 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXrz4Fuuj5OBNA90km90ct9JaFWqhLdTTstlk60K7lW6l0JP_wX_oLzHZh6UgBU97mU1gJpOZycx8A8CNS4UbSCYRlpQgynCEXKkCxEKDbk6UjrqyKt8u6wzp08geFU1haVntXqYks5t63exmYewgE-4YDDgbrXZB1TZwXvoUD7G37oYkeV6Za0rXprholfl7jU1ztJkLzUxM-xDsF74h9HJhHoEdlRyDg3LuAizU8ATEXgJV8pbl7qHX6X1_fg1eev3HPjI2ScLJLJBQmJrFUO8Dg8l4No8Xb1OoHVSYLmMtKDiNx7nsYZzAVN_Fy2CukFSR9jolTPLi8PQUDNutwX0HFSMTUEgoXSDOlQosiylHRwpSWXYUOg1BHRESyRuKEMelXGFsEaOomIvAdgPhSh03KSeKGDkDlWSWqHMAhRBScKak0zAANqGgBs5LhoxHmhaLGrBKzvlhgSduxlpM_DUSsuG2r7ntZ9z2VzVw-_vPe46msZX6rhSIX2hWuoX84n_kl2APm_qU7DnlClQW8w91rR2MhaiDqtduNrvm-_D63Kpn5-sHroHLmg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW6zPPXjThWZ38zoGsaRaa6Et9BZ2s5s20KbSRAo9-R_8h_4Sd_OwFKTg_UsWZjI7M5mZbwC4cyh3mLAEwoISRC0cIUdIhqxQs5sTqbKuvMu3Y_kD-jw0h-VQWFp1u1clyfymXg27GRjbSKc7mgPORMttsKMJrDRj_gB7q2lIUtSVXYV0TIrLUZm_37HujtZrobmLaR6C_TI2hF6hzCOwJZNjcFDtXYClGZ6A2EugTMZ57R56fvf786v_1u21ekj7JAEnMyYg1z2LoToHssloNo-z8RSqABWmi1gpCk7jUaF7GCcwVXfxgs0lEjJSUaeASdEcnp6CQfOp_-ijcmUCCgmlGXJdKZlhWNJWmYKQhhmFdoNTm4dEuA1JiO1QV2JsEG2o2OXMdBh3hMqbpB1FFjkDtWSWyHMAOeeCu5YUdkMT2IScajovEVpupLCY14FRSS4ISz5xvdZiEqyYkLW0AyXtIJd2sKyD-99n3gs2jY3oh0ohQWlZ6Qb4xf_gt2DX77-2g3ar83IJ9rDuVcl_rVyBWjb_kNcq2Mj4Tf5t_QCZD8t2 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FuszB28a2k2yr-OillalFtpCb0uyybYL7bZ0Vwo9-R_8h_4Sk31YCyJ4n83CPDIzmZlvALhxKHeYsATCghJELRwiR0iGrECjmxOpsq6sy7dtNfv0aWAOfkzxZ93uZUkyn2nQKE1xWpuJsLYafDMwtpFOfTQenImWm2CLaqAEpdF97K0mI0leY3YVpWNSXIzN_H7Gumtar4tm7qaxD3aLOBF6uWAPwIaMD8FeuYMBFiZ5BCIvhjIeZXV86DU7n-8fvddOt9VF2j8JOJ4yAbnuXwzUfyAbD6fzKB1NoApWYbKIlNDgJBrmegCjGCbqXl6wuURChioCFTDOG8WTY9BvPPbum6hYn4ACQmmKXFdKZhiWtFXWIKRhhoFd59TmARFuXRJiO9SVGBtEGy12OTMdxh2hcihph6FFTkAlnsbyFEDOueCuJYVd12A2Aaca2ksElhsqWsyrwCg55wcFtrhecTH2V6jImtu-4rafcdtfVsHt9zezHFnjT-q7UiB-YWXJH-Rn_yO_Btudh4b_0mo_n4MdrNtWsleWC1BJ52_yUsUdKb_KVOsLf4fPsg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+AHP%E2%80%93TOPSIS-based+load+balancing+algorithm+for+switch+migration+in+software-defined+networks&rft.jtitle=The+Journal+of+supercomputing&rft.au=Ider%2C+Masoud&rft.au=Barekatain%2C+Behrang&rft.date=2021-01-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=1&rft.spage=563&rft.epage=596&rft_id=info:doi/10.1007%2Fs11227-020-03285-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_020_03285_z | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |