Dimension selection: an innovative metaheuristic strategy for particle swarm optimization
Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better resul...
Saved in:
| Published in | Cluster computing Vol. 28; no. 6; p. 379 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 1573-7543 |
| DOI | 10.1007/s10586-025-05201-7 |
Cover
| Abstract | Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at
https://nimakhodadadi.com/algorithms-%2B-codes
. |
|---|---|
| AbstractList | Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes. Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes . Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes . |
| ArticleNumber | 379 |
| Author | Khodadadi, Nima Al-Tashi, Qasem Abdulkadir, Said Jadid Ahmed, Abdulaziz Mirjalili, Seyedali Shami, Tareq M. |
| Author_xml | – sequence: 1 givenname: Tareq M. surname: Shami fullname: Shami, Tareq M. organization: School of Physics, Engineering and Technology, University of York – sequence: 2 givenname: Qasem surname: Al-Tashi fullname: Al-Tashi, Qasem organization: Department of Imaging Physics, The University of Texas MD Anderson Cancer Center – sequence: 3 givenname: Nima surname: Khodadadi fullname: Khodadadi, Nima email: Nima.khodadadi@miami.edu organization: Department of Civil and Architectural Engineering, University of Miami – sequence: 4 givenname: Said Jadid surname: Abdulkadir fullname: Abdulkadir, Said Jadid organization: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS – sequence: 5 givenname: Abdulaziz surname: Ahmed fullname: Ahmed, Abdulaziz organization: Department of Health Services Administration, School of Health Professions, University of Alabama at Birmingham – sequence: 6 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, University Research and Innovation Center, Obuda University |
| BookMark | eNqNkE9LAzEUxINUUKtfwFPA82pesmkab1L_guBFD57C6zZbU3aza5K21E9vagvexFOGvJlh-J2Qge-8JeQc2CUwpq4iMDkeFYzLgknOoFAH5BikEoWSpRhkLfJZjaU6IicxLhhjWnF9TN5vXWt9dJ2n0Ta2SlldU_TUed-tMLmVpa1N-GGXwcXkKhpTwGTnG1p3gfYY8l9jaVxjaGnXJ9e6L9y2nJLDGptoz_bvkLzd371OHovnl4enyc1zUYmyTIXWGkTFa4CpkNMRZllXXNXASo6iwnImKwREjZpDPZ1y1Gws9EywmQXOrBgSsetd-h43a2wa0wfXYtgYYGZLx-zomEzH_NAxKqcudqk-dJ9LG5NZdMvg81AjeDniQkkY_e0CDSXwctvFd64qdDEGW_9vwH52zGY_t-G3-o_UN9w8k2g |
| Cites_doi | 10.1007/s00500-016-2307-7 10.1109/TCYB.2015.2474153 10.1007/s00500-018-3536-8 10.1007/s10462-022-10328-9 10.1016/j.swevo.2023.101274 10.1016/j.future.2019.07.015 10.1016/j.ins.2014.09.053 10.1016/j.eswa.2021.116158 10.1016/j.asoc.2015.10.004 10.1016/j.asoc.2022.109852 10.1016/j.future.2019.02.028 10.1007/s10489-020-01893-z 10.1016/j.ins.2014.08.039 10.1016/j.cie.2021.107250 10.1016/j.ins.2020.07.013 10.1016/j.knosys.2022.108320 10.1109/TCYB.2015.2475174 10.1016/j.knosys.2022.109446 10.1109/ICNN.1995.488968 10.1109/ACCESS.2020.3013617 10.1016/j.ins.2021.07.093 10.1016/j.asoc.2017.02.007 10.1016/j.aej.2024.04.060 10.1016/j.knosys.2024.111380 10.1016/j.eswa.2024.123337 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-023-08465-5 10.1016/j.swevo.2024.101533 10.1016/j.swevo.2018.04.006 10.1016/S0166-3615(99)00046-9 10.1016/j.ins.2023.119238 10.1109/TEVC.2004.826069 10.1016/j.asoc.2022.108731 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Oct 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Oct 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 ADTOC UNPAY |
| DOI | 10.1007/s10586-025-05201-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10.1007/s10586-025-05201-7 10_1007_s10586_025_05201_7 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB PUEGO RNI RZC RZE RZK TEORI JQ2 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c344t-99913c2f11b35b6ac2ffc27f1042a3ca4d5ca1aa9a921fbb2a90839d30de120e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1386-7857 1573-7543 |
| IngestDate | Tue Aug 19 23:31:32 EDT 2025 Sat Sep 06 06:23:45 EDT 2025 Fri Jul 25 09:27:31 EDT 2025 Wed Oct 01 05:25:20 EDT 2025 Thu Sep 04 04:30:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Dimension selection Genetic algorithm PSO Particle swarm optimization Metaheuristic algorithms |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-99913c2f11b35b6ac2ffc27f1042a3ca4d5ca1aa9a921fbb2a90839d30de120e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10586-025-05201-7.pdf |
| PQID | 3219141247 |
| PQPubID | 2043865 |
| ParticipantIDs | unpaywall_primary_10_1007_s10586_025_05201_7 proquest_journals_3246237516 proquest_journals_3219141247 crossref_primary_10_1007_s10586_025_05201_7 springer_journals_10_1007_s10586_025_05201_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | X Xia (5201_CR9) 2019; 44 W Li (5201_CR20) 2023; 78 Y-J Gong (5201_CR13) 2015; 46 L Abualigah (5201_CR31) 2021; 157 AA Heidari (5201_CR32) 2019; 97 W Li (5201_CR23) 2023; 643 R Cheng (5201_CR12) 2015; 291 Q Qin (5201_CR14) 2015; 46 D Tian (5201_CR18) 2024; 86 X Jin (5201_CR11) 2013; 219 J Gao (5201_CR3) 2024; 286 R Wang (5201_CR28) 2021; 579 S Tijjani (5201_CR4) 2024; 247 5201_CR1 T Li (5201_CR22) 2022; 121 L Abualigah (5201_CR26) 2022; 191 Y Gao (5201_CR35) 2020; 8 M Taherkhani (5201_CR10) 2016; 38 M Ghasemi (5201_CR30) 2019; 23 Ali Kaveh (5201_CR5) 2022; 1 N Lynn (5201_CR15) 2017; 55 J-S Pan (5201_CR2) 2023; 56 X Zhang (5201_CR7) 2024 F Van den Bergh (5201_CR17) 2004; 8 KM Hosny (5201_CR25) 2024; 98 S Mirjalili (5201_CR33) 2016; 95 TM Shami (5201_CR19) 2023; 35 IM Ali (5201_CR36) 2021; 542 FA Hashim (5201_CR39) 2019; 101 FA Hashim (5201_CR34) 2021; 51 Z Beheshti (5201_CR37) 2022; 252 Y Yue (5201_CR6) 2024; 16 CAC Coello (5201_CR38) 2000; 41 FA Hashim (5201_CR27) 2022; 242 X Chen (5201_CR16) 2017; 21 MR Tanweer (5201_CR8) 2015; 294 D Li (5201_CR21) 2023; 132 CM Rahman (5201_CR24) 2023; 35 5201_CR29 |
| References_xml | – volume: 21 start-page: 7519 year: 2017 ident: 5201_CR16 publication-title: Soft Comput. doi: 10.1007/s00500-016-2307-7 – volume: 46 start-page: 2238 issue: 10 year: 2015 ident: 5201_CR14 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2474153 – volume: 23 start-page: 9701 issue: 19 year: 2019 ident: 5201_CR30 publication-title: Soft Comput. doi: 10.1007/s00500-018-3536-8 – volume: 56 start-page: 6101 issue: 7 year: 2023 ident: 5201_CR2 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10328-9 – volume: 78 start-page: 101274 year: 2023 ident: 5201_CR20 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101274 – volume: 101 start-page: 646 year: 2019 ident: 5201_CR39 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 294 start-page: 182 year: 2015 ident: 5201_CR8 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.053 – volume: 191 start-page: 116158 year: 2022 ident: 5201_CR26 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 38 start-page: 281 year: 2016 ident: 5201_CR10 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.004 – volume: 132 start-page: 109852 year: 2023 ident: 5201_CR21 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109852 – volume: 97 start-page: 849 year: 2019 ident: 5201_CR32 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 219 start-page: 5185 issue: 10 year: 2013 ident: 5201_CR11 publication-title: Appl. Math. Comput. – volume: 51 start-page: 1531 issue: 3 year: 2021 ident: 5201_CR34 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 291 start-page: 43 year: 2015 ident: 5201_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.039 – volume: 157 start-page: 107250 year: 2021 ident: 5201_CR31 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 16 start-page: 1 year: 2024 ident: 5201_CR6 publication-title: Wirel. Pers. Commun. – volume: 542 start-page: 177 year: 2021 ident: 5201_CR36 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.07.013 – volume: 242 start-page: 108320 year: 2022 ident: 5201_CR27 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108320 – volume: 46 start-page: 2277 issue: 10 year: 2015 ident: 5201_CR13 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2475174 – volume: 252 start-page: 109446 year: 2022 ident: 5201_CR37 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.109446 – ident: 5201_CR1 doi: 10.1109/ICNN.1995.488968 – volume: 8 start-page: 140936 year: 2020 ident: 5201_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013617 – volume: 579 start-page: 231 year: 2021 ident: 5201_CR28 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.07.093 – volume: 55 start-page: 533 year: 2017 ident: 5201_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.007 – volume: 98 start-page: 221 year: 2024 ident: 5201_CR25 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.04.060 – volume: 286 start-page: 111380 year: 2024 ident: 5201_CR3 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.111380 – volume: 1 start-page: 1 year: 2022 ident: 5201_CR5 publication-title: Eng. Comput. – volume: 247 start-page: 123337 year: 2024 ident: 5201_CR4 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2024.123337 – volume: 95 start-page: 51 year: 2016 ident: 5201_CR33 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 35 start-page: 14013 issue: 19 year: 2023 ident: 5201_CR24 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08465-5 – ident: 5201_CR29 – volume: 86 start-page: 101533 year: 2024 ident: 5201_CR18 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101533 – volume: 44 start-page: 349 year: 2019 ident: 5201_CR9 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.04.006 – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 5201_CR38 publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 643 start-page: 119238 year: 2023 ident: 5201_CR23 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119238 – volume: 8 start-page: 225 issue: 3 year: 2004 ident: 5201_CR17 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826069 – volume: 35 start-page: 1 year: 2023 ident: 5201_CR19 publication-title: Neural Comput. Appl. – volume-title: Wi-fi-based indoor localization with interval random analysis and improved particle swarm optimization. IEEE transactions on mobile computing year: 2024 ident: 5201_CR7 – volume: 121 start-page: 108731 year: 2022 ident: 5201_CR22 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108731 |
| SSID | ssj0009729 |
| Score | 2.3782885 |
| Snippet | Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems.... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 379 |
| SubjectTerms | Algorithms Biogeography Computer Communication Networks Computer Science Evolution & development Foraging behavior Heuristic methods Interactive learning Operating Systems Optimization Particle swarm optimization Performance enhancement Processor Architectures Statistical tests Velocity |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QHv8XplDz45grLV7v6JtMxBH1yMJ9KkqYobN3YOsf-ey9tuqqo6FsgIS2Xy92vvbvfIXQJepDQVgzWL6DGtjCLPcUYADnF29Kniumcge_h0e_1-f1ADBxNjq2F-RK_tyVuom3TZIVnMzaIF6yjDXBSfh6Y9TsVwW6QdyQjDFYHbRG4Apnv9_jshCpkuQqGbqPNeTqRy4UcDj_4m-4e2nFAEd8UJ7uP1kx6gHbLJgzY3clD9Hxr-fntPy88y3vawOgayxS_un6nbwaPTCZfzLwgZcazgpB2iQGv4olTHTxbyOkIj8GCjFxp5hHqd--eOj3P9UvwNOM88yzWY5omhCgmlC9hmGgaJPDFRSXTksdCSyJlKENKEqWoDAGAhTFrxYbQlmHHqJaOU3OCsFbEQjlGhCTc2FtNEwl2kYdxosEu1dFVKcBoUtBiRBUBshV3BOKOcnFHsLpRyjhyV2QWMWqp5QBe_DTNAZkFgvh11CyPpZr-7WHN1dH94d1O_7f7GdqiVpHydL4GqmXTuTkHWJKpi1wf3wHJ9tah priority: 102 providerName: Springer Nature |
| Title | Dimension selection: an innovative metaheuristic strategy for particle swarm optimization |
| URI | https://link.springer.com/article/10.1007/s10586-025-05201-7 https://www.proquest.com/docview/3219141247 https://www.proquest.com/docview/3246237516 https://link.springer.com/content/pdf/10.1007/s10586-025-05201-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BewAOsMtDPCsfuEFK_UoablWBRbsC7YFK9BTZjiMQNFQ0BbG_fseJQ2G1u2K1l8iSR0lsj8ef7ZlvAPZRDzLWSdH6Rcy6FGZpoDlHIKdFV4VMc1My8F1chucD8fVaXs_BSR0LU3q711eSVUyDY2nKi6Nxmh29CXyTXec8KwPnx0GDqI3V89AMJSLyBjQHl997w3KvhWJRtyT8pDLiQSQF97Ezv3_R-_VpBjpf70mXYGGaj9XLs7q_f7MUna2ArRtReaDctaeFbpsfv_A7_m8rP8Gyx6qkVynXZ5iz-Sqs1HkgiDcLazA8cSkC3LEbmZRpdbB0TFRObn3K1SdLRrZQN3Za8UKTScWJ-0IQMpOx114yeVaPI_KARmzko0PXYXB2etU_D3zKhsBwIYrAwU1uWEap5lKHCouZYVGGmz6muFEilUZRpWIVM5ppzVSMGDBOeSe1lHUs34BG_pDbTSBGU4cmOZWKCusMC8sUmmYRp5lB07gFB_VAJeOKmSOZcTC7nkuw55Ky5xKU3q3HMvGzdJJw5tjtEOH8qVogOIwkDbfgsB6tWfXfPnb4qiIf-LftfxPfgUXmdKL0KNyFRvE4tXuIjArdgmbvy_DbaQvm-2EfnwPWa_nJ8BN-eAaV |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD-jBbyOK2oM3XULbfTBvRCWowAkSPDXt1kUTGIQNCf-9r1sHmKjRW5M23fK--tv63u8hdA12ENFaCNHPo0q3MAstyRgAOWnXhUslCzIGvk7XbfXt54EzMEVhSZHtXlxJZpF6rdjNqeuEWcfSuRvE8jbRliaw0oz5fdpYUe16WW8ywmC1V3c8Uyrz_R5fj6MVxlxei-6g8iyeiMVcDIdrJ09zH-0ayIgbuY4P0IaKD9Fe0Y4BG-88Qq8Pmqlf__3CSdbdBkZ3WMT43XQ-_VB4pFLxpmY5PTNOcmraBQbkiifGiHAyF9MRHkMsGZkizWPUbz727luW6ZxgBcy2U0ujPhbQiBDJHOkKGEYB9SL49qKCBcIOnUAQIXzhUxJJSYUPUMwPWS1UhNYUO0GleByrU4QDSTSoY8QRxFbav2kkIELafhgFEKEq6KYQIJ_kBBl8RYWsxc1B3DwTN4fV1ULG3DhLwhnVJHMANH6atgGjeQ5xK-i2UMtq-reH3S5V94d3O_vf7leo3Op12rz91H05R9tUG1WW5FdFpXQ6UxcAVlJ5mdnmJx8X3bE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4UEy8P3o0oah98kwV62cZ8MyDBG_FBEnxa2q2LJjAIGxL-vae7MEzU6FuTNt1yenr6bT3n-xC6BD8IaN2H6GdTpSXMfEMyBkBO8oawqGRewsD31LU6PX7fN_tLVfxJtnt-JZnWNGiWpjCujf2gtlT4ZjZ08qxp6DwOYtiraI3D6aY1DJpWs6DdtROdMsJgtN0w7axs5vs5vh5NBd5cXJFuoY1pOBbzmRgMlk6h9i7azuAjvknXew-tqHAf7eTSDDjbqQfotaVZ-_WfMBwlSjfQusYixO-ZCuqHwkMVizc1TamacZTS1M4xoFg8zhwKRzMxGeIRxJVhVrB5iHrt25dmx8hUFAyPcR4bGgEyjwaESGZKS0Az8KgdwHcYFcwT3Dc9QYRwhENJICUVDsAyx2d1XxFaV-wIlcJRqI4R9iTRAI8RUxCu9F6ngYBoyR0_8CBaldFVbkB3nJJluAUtsja3C-Z2E3O7MLqS29jNNk7kMqoJ5wB0_NTNAa_ZJrHKqJovS9H928Oqi6X7w7ud_G_2C7T-3Gq7j3fdh1O0SbVPJfl-FVSKJ1N1BrgllueJa34C-Y3h1w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-KbHLxp182r3XoTH4igeHBBTyVJUxTdurhdRX-9kzZ1VVQUb4EZ2iaZTr4kM98AbKIdZKyVoveLmHUlzNJAc45ATou2CpnmpmTgOz0Ljzvi5FJejsBBnQtTRrvXV5JVToNjacqLnV6a7bxLfJNtFzwrAxfHQYOoieJRGAslIvIGjHXOzveuyr0WqkXtkvCTyogHkRTc5858_aCP69MQdL7dk07C-CDvqecndXf3bik6mgZbd6KKQLltDgrdNC-f-B3_28sZmPJYlexVxjULIzafg-m6DgTxbmEerg5ciQB37Eb6ZVkdbO0SlZMbX3L10ZKuLdS1HVS80KRfceI-E4TMpOetl_Sf1EOX3KMT6_rs0AXoHB1e7B8HvmRDYLgQReDgJjcso1RzqUOFzcywKMNNH1PcKJFKo6hSsYoZzbRmKkYMGKe8lVrKWpYvQiO_z-0SEKOpQ5OcSkWFdY6FZQpds4jTzKBrXIateqKSXsXMkQw5mN3IJThySTlyCWqv1XOZ-L-0n3Dm2O0Q4XwnFggOI0nDZdiuZ2so_ull228m8otvW_mb-ipMMGcTZUThGjSKh4FdR2RU6A1v-K8ivQM7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+selection%3A+an+innovative+metaheuristic+strategy+for+particle+swarm+optimization&rft.jtitle=Cluster+computing&rft.au=Shami%2C+Tareq+M.&rft.au=Al-Tashi%2C+Qasem&rft.au=Khodadadi%2C+Nima&rft.au=Abdulkadir%2C+Said+Jadid&rft.date=2025-10-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1007%2Fs10586-025-05201-7&rft.externalDocID=10_1007_s10586_025_05201_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |