Dimension selection: an innovative metaheuristic strategy for particle swarm optimization

Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better resul...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 28; no. 6; p. 379
Main Authors Shami, Tareq M., Al-Tashi, Qasem, Khodadadi, Nima, Abdulkadir, Said Jadid, Ahmed, Abdulaziz, Mirjalili, Seyedali
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
1573-7543
DOI10.1007/s10586-025-05201-7

Cover

Abstract Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes .
AbstractList Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes.
Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes .
Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems. Nonetheless, the conventional PSO algorithm and its state-of-the-art variants update the global best position entirely although better results can be achieved if only certain dimensions are updated. This sub-optimal replacement can limit the potential of PSO to obtain better optimization performance. To tackle this issue, this work proposes a new strategy called dimension selection that aims to decide which dimensions should be updated if a better solution is found. Dimension selection is a binary problem where a value of 1 indicates that a dimension of the global best position should be updated while a value of 0 means that a dimension should keep its value. The dimension selection strategy is integrated with PSO resulting in a new algorithm called dimension selection PSO (DSPSO). To solve the dimension selection problem, seven well-known and recent binary algorithms are implemented. To test the effectiveness of DSPSO, comprehensive experiments are conducted using two of the most complex and challenging test suites: CEC2017 and CEC2020. Moreover, DSPSO is tested on four constrained engineering problems. The performance of DSPSO is compared with seven well-established and high-performance PSO and non-PSO algorithms. The Wilcoxon rank-sum and Friedman statistical tests show that DSPSO significantly outperforms other competing algorithms on the majority of the considered problems. The promising results of DSPSO motivate other researchers to apply the dimension selection approach to enhance the performance of existing or new metaheuristic algorithms. The source codes of the DSPSO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes .
ArticleNumber 379
Author Khodadadi, Nima
Al-Tashi, Qasem
Abdulkadir, Said Jadid
Ahmed, Abdulaziz
Mirjalili, Seyedali
Shami, Tareq M.
Author_xml – sequence: 1
  givenname: Tareq M.
  surname: Shami
  fullname: Shami, Tareq M.
  organization: School of Physics, Engineering and Technology, University of York
– sequence: 2
  givenname: Qasem
  surname: Al-Tashi
  fullname: Al-Tashi, Qasem
  organization: Department of Imaging Physics, The University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Nima
  surname: Khodadadi
  fullname: Khodadadi, Nima
  email: Nima.khodadadi@miami.edu
  organization: Department of Civil and Architectural Engineering, University of Miami
– sequence: 4
  givenname: Said Jadid
  surname: Abdulkadir
  fullname: Abdulkadir, Said Jadid
  organization: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS
– sequence: 5
  givenname: Abdulaziz
  surname: Ahmed
  fullname: Ahmed, Abdulaziz
  organization: Department of Health Services Administration, School of Health Professions, University of Alabama at Birmingham
– sequence: 6
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, University Research and Innovation Center, Obuda University
BookMark eNqNkE9LAzEUxINUUKtfwFPA82pesmkab1L_guBFD57C6zZbU3aza5K21E9vagvexFOGvJlh-J2Qge-8JeQc2CUwpq4iMDkeFYzLgknOoFAH5BikEoWSpRhkLfJZjaU6IicxLhhjWnF9TN5vXWt9dJ2n0Ta2SlldU_TUed-tMLmVpa1N-GGXwcXkKhpTwGTnG1p3gfYY8l9jaVxjaGnXJ9e6L9y2nJLDGptoz_bvkLzd371OHovnl4enyc1zUYmyTIXWGkTFa4CpkNMRZllXXNXASo6iwnImKwREjZpDPZ1y1Gws9EywmQXOrBgSsetd-h43a2wa0wfXYtgYYGZLx-zomEzH_NAxKqcudqk-dJ9LG5NZdMvg81AjeDniQkkY_e0CDSXwctvFd64qdDEGW_9vwH52zGY_t-G3-o_UN9w8k2g
Cites_doi 10.1007/s00500-016-2307-7
10.1109/TCYB.2015.2474153
10.1007/s00500-018-3536-8
10.1007/s10462-022-10328-9
10.1016/j.swevo.2023.101274
10.1016/j.future.2019.07.015
10.1016/j.ins.2014.09.053
10.1016/j.eswa.2021.116158
10.1016/j.asoc.2015.10.004
10.1016/j.asoc.2022.109852
10.1016/j.future.2019.02.028
10.1007/s10489-020-01893-z
10.1016/j.ins.2014.08.039
10.1016/j.cie.2021.107250
10.1016/j.ins.2020.07.013
10.1016/j.knosys.2022.108320
10.1109/TCYB.2015.2475174
10.1016/j.knosys.2022.109446
10.1109/ICNN.1995.488968
10.1109/ACCESS.2020.3013617
10.1016/j.ins.2021.07.093
10.1016/j.asoc.2017.02.007
10.1016/j.aej.2024.04.060
10.1016/j.knosys.2024.111380
10.1016/j.eswa.2024.123337
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-023-08465-5
10.1016/j.swevo.2024.101533
10.1016/j.swevo.2018.04.006
10.1016/S0166-3615(99)00046-9
10.1016/j.ins.2023.119238
10.1109/TEVC.2004.826069
10.1016/j.asoc.2022.108731
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Oct 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Oct 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
ADTOC
UNPAY
DOI 10.1007/s10586-025-05201-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10.1007/s10586-025-05201-7
10_1007_s10586_025_05201_7
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29B
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
RNI
RZC
RZE
RZK
TEORI
JQ2
ADTOC
UNPAY
ID FETCH-LOGICAL-c344t-99913c2f11b35b6ac2ffc27f1042a3ca4d5ca1aa9a921fbb2a90839d30de120e3
IEDL.DBID UNPAY
ISSN 1386-7857
1573-7543
IngestDate Tue Aug 19 23:31:32 EDT 2025
Sat Sep 06 06:23:45 EDT 2025
Fri Jul 25 09:27:31 EDT 2025
Wed Oct 01 05:25:20 EDT 2025
Thu Sep 04 04:30:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Dimension selection
Genetic algorithm
PSO
Particle swarm optimization
Metaheuristic algorithms
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-99913c2f11b35b6ac2ffc27f1042a3ca4d5ca1aa9a921fbb2a90839d30de120e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10586-025-05201-7.pdf
PQID 3219141247
PQPubID 2043865
ParticipantIDs unpaywall_primary_10_1007_s10586_025_05201_7
proquest_journals_3246237516
proquest_journals_3219141247
crossref_primary_10_1007_s10586_025_05201_7
springer_journals_10_1007_s10586_025_05201_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Xia (5201_CR9) 2019; 44
W Li (5201_CR20) 2023; 78
Y-J Gong (5201_CR13) 2015; 46
L Abualigah (5201_CR31) 2021; 157
AA Heidari (5201_CR32) 2019; 97
W Li (5201_CR23) 2023; 643
R Cheng (5201_CR12) 2015; 291
Q Qin (5201_CR14) 2015; 46
D Tian (5201_CR18) 2024; 86
X Jin (5201_CR11) 2013; 219
J Gao (5201_CR3) 2024; 286
R Wang (5201_CR28) 2021; 579
S Tijjani (5201_CR4) 2024; 247
5201_CR1
T Li (5201_CR22) 2022; 121
L Abualigah (5201_CR26) 2022; 191
Y Gao (5201_CR35) 2020; 8
M Taherkhani (5201_CR10) 2016; 38
M Ghasemi (5201_CR30) 2019; 23
Ali Kaveh (5201_CR5) 2022; 1
N Lynn (5201_CR15) 2017; 55
J-S Pan (5201_CR2) 2023; 56
X Zhang (5201_CR7) 2024
F Van den Bergh (5201_CR17) 2004; 8
KM Hosny (5201_CR25) 2024; 98
S Mirjalili (5201_CR33) 2016; 95
TM Shami (5201_CR19) 2023; 35
IM Ali (5201_CR36) 2021; 542
FA Hashim (5201_CR39) 2019; 101
FA Hashim (5201_CR34) 2021; 51
Z Beheshti (5201_CR37) 2022; 252
Y Yue (5201_CR6) 2024; 16
CAC Coello (5201_CR38) 2000; 41
FA Hashim (5201_CR27) 2022; 242
X Chen (5201_CR16) 2017; 21
MR Tanweer (5201_CR8) 2015; 294
D Li (5201_CR21) 2023; 132
CM Rahman (5201_CR24) 2023; 35
5201_CR29
References_xml – volume: 21
  start-page: 7519
  year: 2017
  ident: 5201_CR16
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2307-7
– volume: 46
  start-page: 2238
  issue: 10
  year: 2015
  ident: 5201_CR14
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2474153
– volume: 23
  start-page: 9701
  issue: 19
  year: 2019
  ident: 5201_CR30
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3536-8
– volume: 56
  start-page: 6101
  issue: 7
  year: 2023
  ident: 5201_CR2
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10328-9
– volume: 78
  start-page: 101274
  year: 2023
  ident: 5201_CR20
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101274
– volume: 101
  start-page: 646
  year: 2019
  ident: 5201_CR39
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 294
  start-page: 182
  year: 2015
  ident: 5201_CR8
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.053
– volume: 191
  start-page: 116158
  year: 2022
  ident: 5201_CR26
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 38
  start-page: 281
  year: 2016
  ident: 5201_CR10
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.004
– volume: 132
  start-page: 109852
  year: 2023
  ident: 5201_CR21
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109852
– volume: 97
  start-page: 849
  year: 2019
  ident: 5201_CR32
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 219
  start-page: 5185
  issue: 10
  year: 2013
  ident: 5201_CR11
  publication-title: Appl. Math. Comput.
– volume: 51
  start-page: 1531
  issue: 3
  year: 2021
  ident: 5201_CR34
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 291
  start-page: 43
  year: 2015
  ident: 5201_CR12
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.039
– volume: 157
  start-page: 107250
  year: 2021
  ident: 5201_CR31
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 16
  start-page: 1
  year: 2024
  ident: 5201_CR6
  publication-title: Wirel. Pers. Commun.
– volume: 542
  start-page: 177
  year: 2021
  ident: 5201_CR36
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.013
– volume: 242
  start-page: 108320
  year: 2022
  ident: 5201_CR27
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108320
– volume: 46
  start-page: 2277
  issue: 10
  year: 2015
  ident: 5201_CR13
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2475174
– volume: 252
  start-page: 109446
  year: 2022
  ident: 5201_CR37
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.109446
– ident: 5201_CR1
  doi: 10.1109/ICNN.1995.488968
– volume: 8
  start-page: 140936
  year: 2020
  ident: 5201_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013617
– volume: 579
  start-page: 231
  year: 2021
  ident: 5201_CR28
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.093
– volume: 55
  start-page: 533
  year: 2017
  ident: 5201_CR15
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.007
– volume: 98
  start-page: 221
  year: 2024
  ident: 5201_CR25
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.04.060
– volume: 286
  start-page: 111380
  year: 2024
  ident: 5201_CR3
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111380
– volume: 1
  start-page: 1
  year: 2022
  ident: 5201_CR5
  publication-title: Eng. Comput.
– volume: 247
  start-page: 123337
  year: 2024
  ident: 5201_CR4
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2024.123337
– volume: 95
  start-page: 51
  year: 2016
  ident: 5201_CR33
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 35
  start-page: 14013
  issue: 19
  year: 2023
  ident: 5201_CR24
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08465-5
– ident: 5201_CR29
– volume: 86
  start-page: 101533
  year: 2024
  ident: 5201_CR18
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101533
– volume: 44
  start-page: 349
  year: 2019
  ident: 5201_CR9
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.04.006
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 5201_CR38
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 643
  start-page: 119238
  year: 2023
  ident: 5201_CR23
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119238
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 5201_CR17
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– volume: 35
  start-page: 1
  year: 2023
  ident: 5201_CR19
  publication-title: Neural Comput. Appl.
– volume-title: Wi-fi-based indoor localization with interval random analysis and improved particle swarm optimization. IEEE transactions on mobile computing
  year: 2024
  ident: 5201_CR7
– volume: 121
  start-page: 108731
  year: 2022
  ident: 5201_CR22
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108731
SSID ssj0009729
Score 2.3782885
Snippet Particle swarm optimization (PSO) is a prominent metaheuristic algorithm that has demonstrated remarkable efficiency in tackling diverse optimization problems....
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 379
SubjectTerms Algorithms
Biogeography
Computer Communication Networks
Computer Science
Evolution & development
Foraging behavior
Heuristic methods
Interactive learning
Operating Systems
Optimization
Particle swarm optimization
Performance enhancement
Processor Architectures
Statistical tests
Velocity
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QHv8XplDz45grLV7v6JtMxBH1yMJ9KkqYobN3YOsf-ey9tuqqo6FsgIS2Xy92vvbvfIXQJepDQVgzWL6DGtjCLPcUYADnF29Kniumcge_h0e_1-f1ADBxNjq2F-RK_tyVuom3TZIVnMzaIF6yjDXBSfh6Y9TsVwW6QdyQjDFYHbRG4Apnv9_jshCpkuQqGbqPNeTqRy4UcDj_4m-4e2nFAEd8UJ7uP1kx6gHbLJgzY3clD9Hxr-fntPy88y3vawOgayxS_un6nbwaPTCZfzLwgZcazgpB2iQGv4olTHTxbyOkIj8GCjFxp5hHqd--eOj3P9UvwNOM88yzWY5omhCgmlC9hmGgaJPDFRSXTksdCSyJlKENKEqWoDAGAhTFrxYbQlmHHqJaOU3OCsFbEQjlGhCTc2FtNEwl2kYdxosEu1dFVKcBoUtBiRBUBshV3BOKOcnFHsLpRyjhyV2QWMWqp5QBe_DTNAZkFgvh11CyPpZr-7WHN1dH94d1O_7f7GdqiVpHydL4GqmXTuTkHWJKpi1wf3wHJ9tah
  priority: 102
  providerName: Springer Nature
Title Dimension selection: an innovative metaheuristic strategy for particle swarm optimization
URI https://link.springer.com/article/10.1007/s10586-025-05201-7
https://www.proquest.com/docview/3219141247
https://www.proquest.com/docview/3246237516
https://link.springer.com/content/pdf/10.1007/s10586-025-05201-7.pdf
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BewAOsMtDPCsfuEFK_UoablWBRbsC7YFK9BTZjiMQNFQ0BbG_fseJQ2G1u2K1l8iSR0lsj8ef7ZlvAPZRDzLWSdH6Rcy6FGZpoDlHIKdFV4VMc1My8F1chucD8fVaXs_BSR0LU3q711eSVUyDY2nKi6Nxmh29CXyTXec8KwPnx0GDqI3V89AMJSLyBjQHl997w3KvhWJRtyT8pDLiQSQF97Ezv3_R-_VpBjpf70mXYGGaj9XLs7q_f7MUna2ArRtReaDctaeFbpsfv_A7_m8rP8Gyx6qkVynXZ5iz-Sqs1HkgiDcLazA8cSkC3LEbmZRpdbB0TFRObn3K1SdLRrZQN3Za8UKTScWJ-0IQMpOx114yeVaPI_KARmzko0PXYXB2etU_D3zKhsBwIYrAwU1uWEap5lKHCouZYVGGmz6muFEilUZRpWIVM5ppzVSMGDBOeSe1lHUs34BG_pDbTSBGU4cmOZWKCusMC8sUmmYRp5lB07gFB_VAJeOKmSOZcTC7nkuw55Ky5xKU3q3HMvGzdJJw5tjtEOH8qVogOIwkDbfgsB6tWfXfPnb4qiIf-LftfxPfgUXmdKL0KNyFRvE4tXuIjArdgmbvy_DbaQvm-2EfnwPWa_nJ8BN-eAaV
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD-jBbyOK2oM3XULbfTBvRCWowAkSPDXt1kUTGIQNCf-9r1sHmKjRW5M23fK--tv63u8hdA12ENFaCNHPo0q3MAstyRgAOWnXhUslCzIGvk7XbfXt54EzMEVhSZHtXlxJZpF6rdjNqeuEWcfSuRvE8jbRliaw0oz5fdpYUe16WW8ywmC1V3c8Uyrz_R5fj6MVxlxei-6g8iyeiMVcDIdrJ09zH-0ayIgbuY4P0IaKD9Fe0Y4BG-88Qq8Pmqlf__3CSdbdBkZ3WMT43XQ-_VB4pFLxpmY5PTNOcmraBQbkiifGiHAyF9MRHkMsGZkizWPUbz727luW6ZxgBcy2U0ujPhbQiBDJHOkKGEYB9SL49qKCBcIOnUAQIXzhUxJJSYUPUMwPWS1UhNYUO0GleByrU4QDSTSoY8QRxFbav2kkIELafhgFEKEq6KYQIJ_kBBl8RYWsxc1B3DwTN4fV1ULG3DhLwhnVJHMANH6atgGjeQ5xK-i2UMtq-reH3S5V94d3O_vf7leo3Op12rz91H05R9tUG1WW5FdFpXQ6UxcAVlJ5mdnmJx8X3bE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4UEy8P3o0oah98kwV62cZ8MyDBG_FBEnxa2q2LJjAIGxL-vae7MEzU6FuTNt1yenr6bT3n-xC6BD8IaN2H6GdTpSXMfEMyBkBO8oawqGRewsD31LU6PX7fN_tLVfxJtnt-JZnWNGiWpjCujf2gtlT4ZjZ08qxp6DwOYtiraI3D6aY1DJpWs6DdtROdMsJgtN0w7axs5vs5vh5NBd5cXJFuoY1pOBbzmRgMlk6h9i7azuAjvknXew-tqHAf7eTSDDjbqQfotaVZ-_WfMBwlSjfQusYixO-ZCuqHwkMVizc1TamacZTS1M4xoFg8zhwKRzMxGeIRxJVhVrB5iHrt25dmx8hUFAyPcR4bGgEyjwaESGZKS0Az8KgdwHcYFcwT3Dc9QYRwhENJICUVDsAyx2d1XxFaV-wIlcJRqI4R9iTRAI8RUxCu9F6ngYBoyR0_8CBaldFVbkB3nJJluAUtsja3C-Z2E3O7MLqS29jNNk7kMqoJ5wB0_NTNAa_ZJrHKqJovS9H928Oqi6X7w7ud_G_2C7T-3Gq7j3fdh1O0SbVPJfl-FVSKJ1N1BrgllueJa34C-Y3h1w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-KbHLxp182r3XoTH4igeHBBTyVJUxTdurhdRX-9kzZ1VVQUb4EZ2iaZTr4kM98AbKIdZKyVoveLmHUlzNJAc45ATou2CpnmpmTgOz0Ljzvi5FJejsBBnQtTRrvXV5JVToNjacqLnV6a7bxLfJNtFzwrAxfHQYOoieJRGAslIvIGjHXOzveuyr0WqkXtkvCTyogHkRTc5858_aCP69MQdL7dk07C-CDvqecndXf3bik6mgZbd6KKQLltDgrdNC-f-B3_28sZmPJYlexVxjULIzafg-m6DgTxbmEerg5ciQB37Eb6ZVkdbO0SlZMbX3L10ZKuLdS1HVS80KRfceI-E4TMpOetl_Sf1EOX3KMT6_rs0AXoHB1e7B8HvmRDYLgQReDgJjcso1RzqUOFzcywKMNNH1PcKJFKo6hSsYoZzbRmKkYMGKe8lVrKWpYvQiO_z-0SEKOpQ5OcSkWFdY6FZQpds4jTzKBrXIateqKSXsXMkQw5mN3IJThySTlyCWqv1XOZ-L-0n3Dm2O0Q4XwnFggOI0nDZdiuZ2so_ull228m8otvW_mb-ipMMGcTZUThGjSKh4FdR2RU6A1v-K8ivQM7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+selection%3A+an+innovative+metaheuristic+strategy+for+particle+swarm+optimization&rft.jtitle=Cluster+computing&rft.au=Shami%2C+Tareq+M.&rft.au=Al-Tashi%2C+Qasem&rft.au=Khodadadi%2C+Nima&rft.au=Abdulkadir%2C+Said+Jadid&rft.date=2025-10-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1007%2Fs10586-025-05201-7&rft.externalDocID=10_1007_s10586_025_05201_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon