Partition problems in high dimensional boxes

Alon, Bohman, Holzman and Kleitman proved that any partition of a d-dimensional discrete box into proper sub-boxes must consist of at least 2d sub-boxes. Recently, Leader, Milićević and Tan considered the question of how many odd-sized proper boxes are needed to partition a d-dimensional box of odd...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial theory. Series A Vol. 166; pp. 315 - 336
Main Authors Bucic, Matija, Lidický, Bernard, Long, Jason, Wagner, Adam Zsolt
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2019
Subjects
Online AccessGet full text
ISSN0097-3165
1096-0899
1096-0899
DOI10.1016/j.jcta.2019.02.011

Cover

Abstract Alon, Bohman, Holzman and Kleitman proved that any partition of a d-dimensional discrete box into proper sub-boxes must consist of at least 2d sub-boxes. Recently, Leader, Milićević and Tan considered the question of how many odd-sized proper boxes are needed to partition a d-dimensional box of odd size, and they asked whether the trivial construction consisting of 3d boxes is best possible. We show that approximately 2.93d boxes are enough, and consider some natural generalisations.
AbstractList Alon, Bohman, Holzman and Kleitman proved that any partition of a d-dimensional discrete box into proper sub-boxes must consist of at least 2d sub-boxes. Recently, Leader, Milićević and Tan considered the question of how many odd-sized proper boxes are needed to partition a d-dimensional box of odd size, and they asked whether the trivial construction consisting of 3d boxes is best possible. We show that approximately 2.93d boxes are enough, and consider some natural generalisations.
Author Long, Jason
Bucic, Matija
Lidický, Bernard
Wagner, Adam Zsolt
Author_xml – sequence: 1
  givenname: Matija
  surname: Bucic
  fullname: Bucic, Matija
  email: matija.bucic@math.ethz.ch
  organization: Department of Mathematics, ETH, Rämistrasse 101, 8092 Zürich, Switzerland
– sequence: 2
  givenname: Bernard
  surname: Lidický
  fullname: Lidický, Bernard
  email: lidicky@iastate.edu
  organization: Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, USA
– sequence: 3
  givenname: Jason
  surname: Long
  fullname: Long, Jason
  email: jl694@cam.ac.uk
  organization: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK
– sequence: 4
  givenname: Adam Zsolt
  surname: Wagner
  fullname: Wagner, Adam Zsolt
  email: zawagne2@illinois.edu
  organization: Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana IL 61801, USA
BookMark eNqN0MtKw0AUBuBBKthWX8BVHsDEM7ckA26keIOCLnQ9nEwmdkKalJnx0rc3oa5cFFeHw-E78P8LMuuH3hJySSGjQPPrNmtNxIwBVRmwDCg9IXMKKk-hVGpG5gCqSDnN5RlZhNACAJNUzMnVC_roohv6ZOeHqrPbkLg-2bj3TVK7re3DeMIuqYZvG87JaYNdsBe_c0ne7u9eV4_p-vnhaXW7Tg0XIqaKGilrU6ESmNuC1wWznDXAx7WRohCixEoJZXlOoRRGCkalkIJKhQ0g40vCD38_-h3uv7Dr9M67Lfq9pqCnwLrVU2A9BdbA9Bh4VOygjB9C8Lb5Hyr_IOMiTn1Ej647Tm8O1I5VfDrrdTDO9sbWzlsTdT24Y_wHJguCkQ
CitedBy_id crossref_primary_10_1016_j_disc_2023_113848
crossref_primary_10_1016_j_disc_2021_112288
Cites_doi 10.1016/S0012-365X(02)00428-4
10.1016/S0012-365X(99)00042-4
10.1007/s00493-004-0037-4
10.1090/dimacs/009/09
10.1007/s00454-007-9005-2
10.1016/S0012-365X(02)00596-4
10.1007/BF01504345
10.1016/j.jcta.2017.08.008
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.jcta.2019.02.011
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0899
EndPage 336
ExternalDocumentID 10.1016/j.jcta.2019.02.011
10_1016_j_jcta_2019_02_011
S0097316519300263
GrantInformation_xml – fundername: NSF
  grantid: DMS-1600390
  funderid: https://doi.org/10.13039/100000001
– fundername: SNSF
  grantid: 200021-175573
  funderid: https://doi.org/10.13039/501100001711
GroupedDBID --K
--M
--Z
-DZ
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SSW
SSZ
T5K
TN5
UPT
UQL
VQA
WH7
WUQ
XFK
XJT
XPP
YQT
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c344t-91c55dcba94a6e73d72e32f034a6f547448ab949e361084c54215454159af0a23
IEDL.DBID UNPAY
ISSN 0097-3165
1096-0899
IngestDate Tue Aug 19 08:57:58 EDT 2025
Thu Oct 02 04:26:17 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
Fri Feb 23 02:26:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords High dimensional boxes
Linear programming
Partition problems
Language English
License publisher-specific-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-91c55dcba94a6e73d72e32f034a6f547448ab949e361084c54215454159af0a23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jcta.2019.02.011
PageCount 22
ParticipantIDs unpaywall_primary_10_1016_j_jcta_2019_02_011
crossref_primary_10_1016_j_jcta_2019_02_011
crossref_citationtrail_10_1016_j_jcta_2019_02_011
elsevier_sciencedirect_doi_10_1016_j_jcta_2019_02_011
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationTitle Journal of combinatorial theory. Series A
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kleitman (br0080) 1993; 9
Kearnes, Kiss (br0060) 1999; 207
Saks (br0100) 2002; 257.2–3
Ahlswede, Yudin (br0010) 2006; vol. 4123
Kisielewicz, Przesławski (br0070) 2008; 40
Leader, Milićević, Tan (br0090) 2018; 154
Fekete (br0030) 1923; 17
Grytczuk, Kisielewicz, Przesławski (br0040) 2004; 24
(br0050) 2018
Alon, Bohman, Holzman, Kleitman (br0020) 2002; 257
Alon (10.1016/j.jcta.2019.02.011_br0020) 2002; 257
Kisielewicz (10.1016/j.jcta.2019.02.011_br0070) 2008; 40
Ahlswede (10.1016/j.jcta.2019.02.011_br0010) 2006; vol. 4123
Kleitman (10.1016/j.jcta.2019.02.011_br0080) 1993; 9
Grytczuk (10.1016/j.jcta.2019.02.011_br0040) 2004; 24
Kearnes (10.1016/j.jcta.2019.02.011_br0060) 1999; 207
Leader (10.1016/j.jcta.2019.02.011_br0090) 2018; 154
Saks (10.1016/j.jcta.2019.02.011_br0100) 2002; 257.2–3
Fekete (10.1016/j.jcta.2019.02.011_br0030) 1923; 17
References_xml – volume: 257
  start-page: 255
  year: 2002
  end-page: 258
  ident: br0020
  article-title: On partitions of discrete boxes
  publication-title: Discrete Math.
– year: 2018
  ident: br0050
– volume: 24
  start-page: 605
  year: 2004
  end-page: 614
  ident: br0040
  article-title: Minimal partitions of a box into boxes
  publication-title: Combinatorica
– volume: 9
  start-page: 95
  year: 1993
  end-page: 107
  ident: br0080
  article-title: Partitioning a rectangle into many sub-rectangles so that a line can meet only a few
  publication-title: DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
– volume: 207
  start-page: 89
  year: 1999
  end-page: 135
  ident: br0060
  article-title: Finite algebras of finite complexity
  publication-title: Discrete Math.
– volume: 257.2–3
  start-page: 225
  year: 2002
  end-page: 247
  ident: br0100
  article-title: Kleitman and combinatorics
  publication-title: Discrete Math.
– volume: 17
  start-page: 228
  year: 1923
  end-page: 249
  ident: br0030
  article-title: Über der Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten
  publication-title: Math. Z.
– volume: 40
  start-page: 1
  year: 2008
  end-page: 30
  ident: br0070
  article-title: Polyboxes, cube tilings and rigidity
  publication-title: Discrete Comput. Geom.
– volume: vol. 4123
  year: 2006
  ident: br0010
  article-title: On partitions of a rectangle into rectangles with restricted number of cross sections
  publication-title: General Theory of Information Transfer and Combinatorics
– volume: 154
  start-page: 21
  year: 2018
  end-page: 31
  ident: br0090
  article-title: Decomposing the complete
  publication-title: J. Combin. Theory Ser. A
– volume: 257
  start-page: 255
  year: 2002
  ident: 10.1016/j.jcta.2019.02.011_br0020
  article-title: On partitions of discrete boxes
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(02)00428-4
– volume: 207
  start-page: 89
  year: 1999
  ident: 10.1016/j.jcta.2019.02.011_br0060
  article-title: Finite algebras of finite complexity
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(99)00042-4
– volume: 24
  start-page: 605
  year: 2004
  ident: 10.1016/j.jcta.2019.02.011_br0040
  article-title: Minimal partitions of a box into boxes
  publication-title: Combinatorica
  doi: 10.1007/s00493-004-0037-4
– volume: 9
  start-page: 95
  year: 1993
  ident: 10.1016/j.jcta.2019.02.011_br0080
  article-title: Partitioning a rectangle into many sub-rectangles so that a line can meet only a few
  publication-title: DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
  doi: 10.1090/dimacs/009/09
– volume: 40
  start-page: 1
  year: 2008
  ident: 10.1016/j.jcta.2019.02.011_br0070
  article-title: Polyboxes, cube tilings and rigidity
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-007-9005-2
– volume: 257.2–3
  start-page: 225
  year: 2002
  ident: 10.1016/j.jcta.2019.02.011_br0100
  article-title: Kleitman and combinatorics
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(02)00596-4
– volume: 17
  start-page: 228
  year: 1923
  ident: 10.1016/j.jcta.2019.02.011_br0030
  article-title: Über der Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten
  publication-title: Math. Z.
  doi: 10.1007/BF01504345
– volume: vol. 4123
  year: 2006
  ident: 10.1016/j.jcta.2019.02.011_br0010
  article-title: On partitions of a rectangle into rectangles with restricted number of cross sections
– volume: 154
  start-page: 21
  year: 2018
  ident: 10.1016/j.jcta.2019.02.011_br0090
  article-title: Decomposing the complete r-graph
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2017.08.008
SSID ssj0002514
Score 2.2093844
Snippet Alon, Bohman, Holzman and Kleitman proved that any partition of a d-dimensional discrete box into proper sub-boxes must consist of at least 2d sub-boxes....
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 315
SubjectTerms High dimensional boxes
Linear programming
Partition problems
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jF_Ug_sT5ix68ubq2SZfkKMMxhIkHB7uFJE1gY3TDdUwv_u3mtenUg0M8pryQ8KW896V973sI3TBuozSjPJSK2pBksQy5VSo08BPPMMO0hU8Dw6fuYEQex-m4gXp1LQykVXrfX_n00lv7Jx2PZmcxmUCNb9l2CSgI3CRA8ZMQCl0M7j6-0jwSr-_tjEOw9oUzVY7XVBegPRTzUrczjn8LTjurfCHf13I2-xZ8-gdo37PG4L7a2CFqmPwI7Q03kqvLY9R-hm0DzIFvErMMJnkAcsRBBhL-lfxGoOZvZnmCRv2Hl94g9K0QQo0JKZxL0mmaaSU5kV1DcUYTgxMbYTe0KaHukiUVJ9xgR4cY0SlJgBu56MyljWSCT1Ezn-fmDAWUGWMozQhT2LEnLUEOBktGM6WT2HZbKK4xENrrhEO7ipmoE8KmAnATgJuIEuFwa6HbzZxFpZKx1TqtoRU_zlo4N751XntzDn9Y5vyfy1ygXRhVWX6XqFm8rsyVYx6Fui5frU-oftQO
  priority: 102
  providerName: Elsevier
Title Partition problems in high dimensional boxes
URI https://dx.doi.org/10.1016/j.jcta.2019.02.011
https://doi.org/10.1016/j.jcta.2019.02.011
UnpaywallVersion publishedVersion
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-0899
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002514
  issn: 1096-0899
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1096-0899
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0002514
  issn: 1096-0899
  databaseCode: IXB
  dateStart: 19710101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-0899
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0002514
  issn: 1096-0899
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-0899
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0002514
  issn: 1096-0899
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1096-0899
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002514
  issn: 1096-0899
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-0899
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002514
  issn: 1096-0899
  databaseCode: AKRWK
  dateStart: 19710101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDbgfx4G9xoqMHb66jP9KmPU5xbMrGDg7mKSRpAs7RDdvhj4N_u3ltNlR0zGMgael7oe-b5OXzELqIYuUECYltxomyceIyO1ac2xIO8WQkI6Fga6DXDztDfDsKRgaTA3dhvp3fF3lYY5EDH8iNC7YmXOOthoHW3RVUHfYHrYcSMwmbbUXdSNeBrFq9ijA3ZH5_yF9RaGueztjbC5tMvkSZ9m5Zrigr4ISQXPLUnOe8Kd5_oBvX-4A9tGPEptUqZ8c-2pDpAdruLUmt2SFqDGDugHcsU1smsx5TCyjGVgLk_5LaYfHpq8yO0LB9c3_dsU0FBVv4GOf6TyaCIBGcxZiFkvgJ8aTvKcfXTRVgotdmjMc4lr5WUREWAfZAUumgHjPlMM8_RpV0msoTZJFISklIgiPua9ElGFBkfBaRhAvPVWENuQuLUmHw4lDlYkIXeWRjCpagYAnqeFRbooYul2NmJVxjZe9g4Shq5EEZ9qm2-cpxjaVX13jN6f-6n6FK_jyX51qa5LyONpsfbh1VW927Tl-3uqOrupmnnzg54GU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-jB-DPizx28yWRbO7oejZGgAvEACbem7boEQgaREfXi327f1qEeJMbjtte0-bq893V773sIXUUs8cKYMldImrgk9oXLEildDT_xdKQjlcCngV6_1RmSx1E4qqC7shYG0iqt7y98eu6t7Z2mRbM5H4-hxjdvuwQUBE4SeANtkjCgcAK7-fjK8wiswLexdsHcVs4USV4TlYH4kM9y4U7f_y061ZbpXLy_iun0W_Rp76IdSxud22Jle6ii03203Vtpri4OUOMZ1g04O7ZLzMIZpw7oETsxaPgX-huOnL3pxSEatu8Hdx3X9kJwFSYkMz5JhWGspGBEtDTFMQ00DhIPm8skJNScsoRkhGls-FBEVEgCIEcmPDOReCLAR6iazlJ9jBwaaa0pjUkksaFPSoAeDBYRjaUK_KRVR36JAVdWKBz6VUx5mRE24YAbB9y4F3CDWx1dr8bMC5mMtdZhCS3_sdnc-PG14xqrffjDNCf_nOYS1TqDXpd3H_pPp2gLnhQpf2eomr0s9bmhIZm8yF-zT2l51zE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDbAfx4G9xotKDN9fRNknTHIc4RNjYwcE8hSRNwTm6YTv88deb12ZDRcc8FpKUvhf6vklePg-hq4RnAU0Z96VimU_SUPo8U8o3cIhnEpPoDLYG-oP4bkTux3TsMDlwF-bb-X2VhzXRJfCBQl6xNeEabzOmVnc3UHM0GHYfa8wkbLZVdSPDALJq7SrC3ZD5fZC_otD2Ip_L91c5nX6JMr29ulxRUcEJIbnkubMoVUd__EA3bvYB-2jXiU2vW8-OA7Rl8kO001-RWosj1B7C3AHveK62TOE95R5QjL0UyP81tcNTszdTHKNR7_bh5s53FRR8jQkp7Z9MU5pqJTmRsWE4ZZHBURZg-5hRwuzaTCpOuMFWRSVEUxKBpLJBncsskBE-QY18lptT5LHEGMNYShKFrejSEigyWCYsVToKs7iFwqVFhXZ4cahyMRXLPLKJAEsIsIQIImEt0ULXqz7zGq6xtjVdOko4eVCHfWFtvrZfe-XVDV5z9r_m56hRvizMhZUmpbp0c_IT2lXc1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partition+problems+in+high+dimensional+boxes&rft.jtitle=Journal+of+combinatorial+theory.+Series+A&rft.au=Bucic%2C+Matija&rft.au=Lidick%C3%BD%2C+Bernard&rft.au=Long%2C+Jason&rft.au=Wagner%2C+Adam+Zsolt&rft.date=2019-08-01&rft.pub=Elsevier+Inc&rft.issn=0097-3165&rft.eissn=1096-0899&rft.volume=166&rft.spage=315&rft.epage=336&rft_id=info:doi/10.1016%2Fj.jcta.2019.02.011&rft.externalDocID=S0097316519300263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-3165&client=summon