FG-HFS: A feature filter and group evolution hybrid feature selection algorithm for high-dimensional gene expression data
High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correla...
Saved in:
| Published in | Expert systems with applications Vol. 245; p. 123069 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 1873-6793 |
| DOI | 10.1016/j.eswa.2023.123069 |
Cover
| Abstract | High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correlation between features, and search algorithms tend to fall into the local optimal solution in the feature search process. To this end, this paper proposes a feature filter and group evolution hybrid feature selection algorithm (FG-HFS) for high-dimensional gene expression data. Unlike existing algorithms, we propose using spectral clustering to group redundant features into a group. Then, we propose a redundant feature filter algorithm. According to the principle of approximate Markov blanket, grouped feature groups are filtered to delete these redundant features. Among them, filtered features are evenly divided by density according to the feature exponential strategy. Most importantly, we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets and evaluate the candidate feature subsets according to the in-group and out-group so as to select the feature subsets with the highest accuracy and the least number. Experimental results show that the average accuracy (ACC) and Matthews correlation coefficient (MCC) indexes of the selected feature subsets (FSs) by the FG-HFS algorithm on 5 gene expression datasets are 92.76% and 88.76%, respectively, which are significantly better than the existing algorithms. In addition, the FSs and ACC/FSs indexes of the FG-HFS algorithm are also better than the existing algorithms, which fully proves the superiority of the FG-HFS algorithm. More importantly, the Wilcoxon and Friedman statistical experiments results show that the feature selection effect of FG-HFS algorithm is significantly better than that of existing algorithms, no matter in pairwise comparison or multiple comparison.
•We propose using spectral clustering to group the features so that the in-group feature similarity is extremely high.•We propose a redundant feature filter algorithm since existing algorithms cannot filter redundant features.•we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets. |
|---|---|
| AbstractList | High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correlation between features, and search algorithms tend to fall into the local optimal solution in the feature search process. To this end, this paper proposes a feature filter and group evolution hybrid feature selection algorithm (FG-HFS) for high-dimensional gene expression data. Unlike existing algorithms, we propose using spectral clustering to group redundant features into a group. Then, we propose a redundant feature filter algorithm. According to the principle of approximate Markov blanket, grouped feature groups are filtered to delete these redundant features. Among them, filtered features are evenly divided by density according to the feature exponential strategy. Most importantly, we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets and evaluate the candidate feature subsets according to the in-group and out-group so as to select the feature subsets with the highest accuracy and the least number. Experimental results show that the average accuracy (ACC) and Matthews correlation coefficient (MCC) indexes of the selected feature subsets (FSs) by the FG-HFS algorithm on 5 gene expression datasets are 92.76% and 88.76%, respectively, which are significantly better than the existing algorithms. In addition, the FSs and ACC/FSs indexes of the FG-HFS algorithm are also better than the existing algorithms, which fully proves the superiority of the FG-HFS algorithm. More importantly, the Wilcoxon and Friedman statistical experiments results show that the feature selection effect of FG-HFS algorithm is significantly better than that of existing algorithms, no matter in pairwise comparison or multiple comparison.
•We propose using spectral clustering to group the features so that the in-group feature similarity is extremely high.•We propose a redundant feature filter algorithm since existing algorithms cannot filter redundant features.•we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets. |
| ArticleNumber | 123069 |
| Author | Wang, Shuihua Zhang, Yudong Tang, Chaosheng Wang, Hong Sun, Junding Xu, Zhaozhao Yang, Fangyuan |
| Author_xml | – sequence: 1 givenname: Zhaozhao orcidid: 0000-0002-7811-3799 surname: Xu fullname: Xu, Zhaozhao email: zhaozhaotoms@foxmail.com organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China – sequence: 2 givenname: Fangyuan orcidid: 0009-0004-7055-4209 surname: Yang fullname: Yang, Fangyuan email: fangyuan_yang@foxmail.com organization: Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan, 454000, China – sequence: 3 givenname: Chaosheng orcidid: 0000-0001-6923-855X surname: Tang fullname: Tang, Chaosheng email: tcs@hpu.edu.cn organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China – sequence: 4 givenname: Hong orcidid: 0000-0003-4106-2067 surname: Wang fullname: Wang, Hong email: hongwang197408@outlook.com organization: Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan, 454000, China – sequence: 5 givenname: Shuihua orcidid: 0000-0003-4713-2791 surname: Wang fullname: Wang, Shuihua email: shuihuawang@ieee.org organization: School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK – sequence: 6 givenname: Junding orcidid: 0000-0001-7349-0248 surname: Sun fullname: Sun, Junding email: sunjd@hpu.edu.cn organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China – sequence: 7 givenname: Yudong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yudong email: yudongzhang@ieee.org organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China |
| BookMark | eNqNkM9KAzEQh4MoWP-8gKe8wNZkE5Nd8VLEqiB4UM9hmkzalHS3JFu1b--uFQ8eiqeBmflm-H0n5LBpGyTkgrMxZ1xdLseYP2BcslKMeSmYqg_IiFdaFErX4pCMWH2lC8m1PCYnOS8Z45oxPSLb6X3xMH25phPqEbpNQupD7DBRaBydp3azpvjexk0X2oYutrMU3O9mxoj2ewBx3qbQLVbUt4kuwnxRuLDCJvdDiHSODVL8XCfMQ4c66OCMHHmIGc9_6il5m9693j4UT8_3j7eTp8IKKbui4uCxklBiaWdKWcX0TMsS-JWoHPThFEqtmBQlk17V3glw3LIaXa28mtXilIjd3U2zhu0HxGjWKawgbQ1nZrBnlmawZwZ7Zmevp6odZVObc0JvbOhgyNolCHE_Wv5B__XvZgdhr-I9YDLZBmwsupB6x8a1YR_-BVd9n24 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126404 crossref_primary_10_1016_j_compeleceng_2024_109720 crossref_primary_10_1016_j_cor_2025_107009 crossref_primary_10_1142_S1469026824500317 crossref_primary_10_1016_j_ins_2024_120483 crossref_primary_10_1186_s40537_025_01105_w crossref_primary_10_1016_j_knosys_2024_112379 crossref_primary_10_1016_j_compeleceng_2024_109362 crossref_primary_10_1007_s42235_024_00558_8 |
| Cites_doi | 10.1109/TIP.2019.2912290 10.1016/j.asoc.2021.107302 10.1109/TIM.2021.3123218 10.1109/TNNLS.2017.2772264 10.1016/j.eswa.2021.115312 10.1016/j.artmed.2021.102228 10.1016/j.artmed.2013.12.006 10.1109/TCBB.2015.2476796 10.1109/TNNLS.2020.3018790 10.1016/j.eswa.2022.116813 10.1016/j.patrec.2023.02.028 10.1109/TII.2017.2773475 10.1016/j.ins.2019.04.046 10.1016/j.ins.2019.01.064 10.3390/e24050617 10.1016/j.knosys.2014.03.015 10.1007/s11063-019-10185-8 10.1016/j.inffus.2018.11.008 10.1016/j.eswa.2020.113981 10.1109/TETCI.2021.3074147 10.1016/j.neucom.2016.07.080 10.1016/j.neucom.2016.12.045 10.1016/j.knosys.2010.03.016 10.1109/TITS.2020.3011452 10.1016/j.compbiomed.2021.105051 10.1016/j.eswa.2010.12.156 10.1109/JBHI.2022.3182722 10.1016/j.eswa.2019.113122 10.1016/j.knosys.2022.108256 10.1016/j.jbi.2020.103465 10.1007/s11042-020-10074-6 10.1016/j.asoc.2022.108532 10.1016/j.future.2020.09.014 10.1093/jcde/qwac040 10.1016/j.comnet.2020.107183 10.1016/j.eswa.2009.02.038 10.1016/j.eswa.2022.116621 10.1016/j.ins.2021.02.056 10.1093/bib/bbab354 10.1007/s10115-017-1145-y 10.1016/j.future.2022.04.011 10.1016/j.ins.2021.01.020 10.1016/j.jksuci.2023.101731 10.1016/j.knosys.2021.107224 10.1016/j.knosys.2010.07.003 10.1109/TKDE.2010.150 10.1016/j.patrec.2019.12.022 10.1016/j.jbi.2017.11.005 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.eswa.2023.123069 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10.1016/j.eswa.2023.123069 10_1016_j_eswa_2023_123069 S0957417423035716 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c344t-81afe84a2e2cb66c607b742a1538da7936e476043204f69fd3ad1c09ed96f6b93 |
| IEDL.DBID | UNPAY |
| ISSN | 0957-4174 1873-6793 |
| IngestDate | Tue Aug 19 19:10:01 EDT 2025 Sat Oct 25 05:06:25 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Sat Apr 13 16:35:12 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective genetic algorithm Feature selection Spectral clustering Gene expression data Symmetric uncertainty |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-81afe84a2e2cb66c607b742a1538da7936e476043204f69fd3ad1c09ed96f6b93 |
| ORCID | 0009-0004-7055-4209 0000-0001-6923-855X 0000-0001-7349-0248 0000-0002-4870-1493 0000-0003-4713-2791 0000-0002-7811-3799 0000-0003-4106-2067 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.eswa.2023.123069 |
| ParticipantIDs | unpaywall_primary_10_1016_j_eswa_2023_123069 crossref_citationtrail_10_1016_j_eswa_2023_123069 crossref_primary_10_1016_j_eswa_2023_123069 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_123069 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Singh, Singh (b39) 2017; 14 Kundu, Mallipeddi (b21) 2022; 9 Hu, Zhao, Li, Dong, Xu, Zhao (b13) 2022; 200 Wang, Yang, Liu, Ma, Li, Wang (b43) 2021; 70 Bommert, Welchowski, Schmid, Rahnenführer (b5) 2022; 23 Zhang, Gong, Cheng (b53) 2015; 14 Karegowda, Manjunath, Jayaram (b19) 2010; 2 Alhenawi, Al-Sayyed, Hudaib, Mirjalili (b1) 2022; 140 Got, Moussaoui, Zouache (b10) 2021; 183 Lu, Chen, Yan, *, Xue, Gao (b30) 2017; 256 Kannan, Ramaraj (b18) 2010; 23 Chiew, Tan, Wong, Yong, Tiong (b6) 2019; 484 Lee, Tseng, Yang, *, Jiang, Pu, ., Zhao (b23) 2022; 24 Xu, Yang, Wang, Sun, Zhu, Wang, Zhang (b49) 2023; 35 Alshaer, Otair, Abualigah, Alshinwan, Khasawneh (b2) 2021; 80 Tiwari, Chaturvedi (b41) 2022; 196 Yang, Dai, Yan (b52) 2010; 23 Li, Wu, Wan, Zhu (b26) 2011; 24 Omuya, Okeyo, Kimwele (b33) 2021; 174 Rostami, Forouzandeh, Berahmand, Soltani, Shahsavari, Oussalah (b37) 2022; 123 Liang, Ma (b28) 2020; 23 Bolón-Canedo, Alonso-Betanzos (b4) 2019; 52 Zhang, Wang, Phillips, Ji (b57) 2014; 64 Khammassi, Krichen (b20) 2020; 172 Xu, Shen, Nie, Kou (b47) 2022; 33 Yan, Nazmi, Erol, Homaifar, Gebru, Tunstel (b51) 2020; 131 Fan, Chen, Huang, Liu, Weng, Lan (b9) 2022; 241 Salesi, Cosma, Mavrovouniotis (b38) 2021; 565 Zhang, Shao, Xu, Liu, Yang (b56) 2017; 29 Kang, Wang, Pu, Tao, Chen, Philip (b17) 2022 Zhang, Lai, Huang, Wong, e, Liu, Shao (b54) 2019; 28 Xu, Shen, Kou, Nie (b45) 2022 Li, Pu, Kang, Lu (b25) 2019; 36 Xue, Tang, Xu, Liang, Neri (b50) 2021; 6 Xu, Shen, Nie, Kou (b46) 2020; 107 Xu, Shen, Nie, Kou, Yin, Han (b48) 2021; 572 BinSaeedan, Alramlawi (b3) 2021; 227 Cui, Meng, Qiao (b8) 2022; 119 Li, Xue, Zhang (b27) 2021; 106 Zhao, Li, Pu, Chen, Li, Liao (b58) 2022; 135 Wu, Tan, Pu, Duan, Cai (b44) 2022 Hancer (b11) 2021 Jiang, Kong, Li (b14) 2019; 51 Palma-Mendoza, Rodriguez, De-Marcos (b34) 2018; 57 Pu, Lu, Chen, Li, Zhu, Wei, Li (b35) 2022; 26 Lu, Li, Pu, Tan, Zhu (b31) 2022 Jiménez, Sánchez, Juárez (b16) 2014; 60 Liu, Mu, Chen, Li, Guo (b29) 2020; 51 Maleki, Zeinali, Niaki (b32) 2021; 164 Pu, Zhu, Li, Li (b36) 2021; 115 Tubishat, Idris, Shuib, Abushariah, Mirjalili (b42) 2020; 145 Zhang, Liu, Luo, Huang, Shen, Shen, Lu (b55) 2020; 32 Cilia, D’Alessandro, De Stefano, Fontanella, di Freca (b7) 2023; 168 Lee (b22) 2009; 36 Jiménez, Sánchez, García, Sciavicco, Miralles (b15) 2017; 234 Hsu, Hsieh, Lu (b12) 2011; 38 Lee, Xu, Li, Yang (b24) 2018; 78 Sosa-Cabrera, García-Torres, Gómez-Guerrero, Schaerer, Divina (b40) 2019; 494 Sosa-Cabrera (10.1016/j.eswa.2023.123069_b40) 2019; 494 Wu (10.1016/j.eswa.2023.123069_b44) 2022 Zhang (10.1016/j.eswa.2023.123069_b57) 2014; 64 Palma-Mendoza (10.1016/j.eswa.2023.123069_b34) 2018; 57 Li (10.1016/j.eswa.2023.123069_b25) 2019; 36 Zhang (10.1016/j.eswa.2023.123069_b56) 2017; 29 Kang (10.1016/j.eswa.2023.123069_b17) 2022 Lee (10.1016/j.eswa.2023.123069_b24) 2018; 78 Pu (10.1016/j.eswa.2023.123069_b36) 2021; 115 Hu (10.1016/j.eswa.2023.123069_b13) 2022; 200 Wang (10.1016/j.eswa.2023.123069_b43) 2021; 70 Xu (10.1016/j.eswa.2023.123069_b48) 2021; 572 Got (10.1016/j.eswa.2023.123069_b10) 2021; 183 Xu (10.1016/j.eswa.2023.123069_b49) 2023; 35 Zhao (10.1016/j.eswa.2023.123069_b58) 2022; 135 Yan (10.1016/j.eswa.2023.123069_b51) 2020; 131 Xu (10.1016/j.eswa.2023.123069_b46) 2020; 107 Jiménez (10.1016/j.eswa.2023.123069_b15) 2017; 234 Cilia (10.1016/j.eswa.2023.123069_b7) 2023; 168 Xu (10.1016/j.eswa.2023.123069_b47) 2022; 33 Khammassi (10.1016/j.eswa.2023.123069_b20) 2020; 172 BinSaeedan (10.1016/j.eswa.2023.123069_b3) 2021; 227 Liang (10.1016/j.eswa.2023.123069_b28) 2020; 23 Rostami (10.1016/j.eswa.2023.123069_b37) 2022; 123 Bolón-Canedo (10.1016/j.eswa.2023.123069_b4) 2019; 52 Tiwari (10.1016/j.eswa.2023.123069_b41) 2022; 196 Alshaer (10.1016/j.eswa.2023.123069_b2) 2021; 80 Kannan (10.1016/j.eswa.2023.123069_b18) 2010; 23 Cui (10.1016/j.eswa.2023.123069_b8) 2022; 119 Jiménez (10.1016/j.eswa.2023.123069_b16) 2014; 60 Lu (10.1016/j.eswa.2023.123069_b30) 2017; 256 Alhenawi (10.1016/j.eswa.2023.123069_b1) 2022; 140 Hsu (10.1016/j.eswa.2023.123069_b12) 2011; 38 Li (10.1016/j.eswa.2023.123069_b26) 2011; 24 Maleki (10.1016/j.eswa.2023.123069_b32) 2021; 164 Lee (10.1016/j.eswa.2023.123069_b23) 2022; 24 Lu (10.1016/j.eswa.2023.123069_b31) 2022 Lee (10.1016/j.eswa.2023.123069_b22) 2009; 36 Pu (10.1016/j.eswa.2023.123069_b35) 2022; 26 Bommert (10.1016/j.eswa.2023.123069_b5) 2022; 23 Fan (10.1016/j.eswa.2023.123069_b9) 2022; 241 Li (10.1016/j.eswa.2023.123069_b27) 2021; 106 Xu (10.1016/j.eswa.2023.123069_b45) 2022 Liu (10.1016/j.eswa.2023.123069_b29) 2020; 51 Salesi (10.1016/j.eswa.2023.123069_b38) 2021; 565 Tubishat (10.1016/j.eswa.2023.123069_b42) 2020; 145 Karegowda (10.1016/j.eswa.2023.123069_b19) 2010; 2 Omuya (10.1016/j.eswa.2023.123069_b33) 2021; 174 Hancer (10.1016/j.eswa.2023.123069_b11) 2021 Jiang (10.1016/j.eswa.2023.123069_b14) 2019; 51 Yang (10.1016/j.eswa.2023.123069_b52) 2010; 23 Zhang (10.1016/j.eswa.2023.123069_b53) 2015; 14 Zhang (10.1016/j.eswa.2023.123069_b55) 2020; 32 Kundu (10.1016/j.eswa.2023.123069_b21) 2022; 9 Singh (10.1016/j.eswa.2023.123069_b39) 2017; 14 Chiew (10.1016/j.eswa.2023.123069_b6) 2019; 484 Zhang (10.1016/j.eswa.2023.123069_b54) 2019; 28 Xue (10.1016/j.eswa.2023.123069_b50) 2021; 6 |
| References_xml | – volume: 107 year: 2020 ident: b46 article-title: A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data publication-title: Journal of Biomedical Informatics – volume: 32 start-page: 4514 year: 2020 end-page: 4528 ident: b55 article-title: Inductive structure consistent hashing via flexible semantic calibration publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 24 start-page: 617 year: 2022 ident: b23 article-title: Random rotboost: An ensemble classification method based on rotation forest and adaboost in random subsets and its application to clinical decision support publication-title: Entropy – volume: 200 year: 2022 ident: b13 article-title: Classifying the multi-omics data of gastric cancer using a deep feature selection method publication-title: Expert Systems with Applications – volume: 172 year: 2020 ident: b20 article-title: A NSGA2-LR wrapper approach for feature selection in network intrusion detection publication-title: Computer Networks – volume: 23 start-page: 368 year: 2020 end-page: 382 ident: b28 article-title: FS-MOEA: A novel feature selection algorithm for IDSs in vehicular networks publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2022 ident: b31 article-title: A YOLOX-based deep instance segmentation neural network for cardiac anatomical structures in fetal ultrasound images publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 119 year: 2022 ident: b8 article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism publication-title: Applied Soft Computing – volume: 164 year: 2021 ident: b32 article-title: A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection publication-title: Expert Systems with Applications – volume: 14 start-page: 2994 year: 2017 end-page: 3002 ident: b39 article-title: Optimal feature selection via NSGA-II for power quality disturbances classification publication-title: IEEE Transactions on Industrial Informatics – volume: 484 start-page: 153 year: 2019 end-page: 166 ident: b6 article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system publication-title: Information Sciences – volume: 29 start-page: 4645 year: 2017 end-page: 4659 ident: b56 article-title: Marginal representation learning with graph structure self-adaptation publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 36 start-page: 10896 year: 2009 end-page: 10904 ident: b22 article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction publication-title: Expert Systems with Applications – volume: 6 start-page: 355 year: 2021 end-page: 364 ident: b50 article-title: Multi-objective feature selection with missing data in classification publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 35 year: 2023 ident: b49 article-title: CGUFS: A clustering-guided unsupervised feature selection algorithm for gene expression data publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 494 start-page: 1 year: 2019 end-page: 20 ident: b40 article-title: A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem publication-title: Information Sciences – volume: 23 start-page: bbab354 year: 2022 ident: b5 article-title: Benchmark of filter methods for feature selection in high-dimensional gene expression survival data publication-title: Briefings in Bioinformatics – volume: 131 start-page: 277 year: 2020 end-page: 284 ident: b51 article-title: An efficient unsupervised feature selection procedure through feature clustering publication-title: Pattern Recognition Letters – volume: 145 year: 2020 ident: b42 article-title: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Systems with Applications – volume: 70 start-page: 1 year: 2021 end-page: 14 ident: b43 article-title: Photoplethysmography-based blood pressure estimation combining filter-wrapper collaborated feature selection with LASSO-LSTM model publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 26 start-page: 5540 year: 2022 end-page: 5550 ident: b35 article-title: Mobileunet-fpn: A semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 123 year: 2022 ident: b37 article-title: Gene selection for microarray data classification via multi-objective graph theoretic-based method publication-title: Artificial Intelligence in Medicine – volume: 23 start-page: 568 year: 2010 end-page: 584 ident: b52 article-title: Finding correlated biclusters from gene expression data publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 106 year: 2021 ident: b27 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Applied Soft Computing – volume: 115 start-page: 825 year: 2021 end-page: 836 ident: b36 article-title: Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework publication-title: Future Generation Computer Systems – volume: 168 start-page: 39 year: 2023 end-page: 46 ident: b7 article-title: Comparing filter and wrapper approaches for feature selection in handwritten character recognition publication-title: Pattern Recognition Letters – volume: 23 start-page: 580 year: 2010 end-page: 585 ident: b18 article-title: A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm publication-title: Knowledge-Based Systems – volume: 9 start-page: 949 year: 2022 end-page: 965 ident: b21 article-title: HFMOEA: A hybrid framework for multi-objective feature selection publication-title: Journal of Computational Design and Engineering – volume: 2 start-page: 271 year: 2010 end-page: 277 ident: b19 article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection publication-title: International Journal of Information Technology and Knowledge Management – start-page: 1 year: 2022 end-page: 16 ident: b44 article-title: DH-GAC: Deep hierarchical context fusion network with modified geodesic active contour for multiple neurofibromatosis segmentation publication-title: Neural Computing and Applications – volume: 196 year: 2022 ident: b41 article-title: A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification publication-title: Expert Systems with Applications – start-page: 1 year: 2021 end-page: 24 ident: b11 article-title: An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme publication-title: Machine Learning – volume: 256 start-page: 56 year: 2017 end-page: 62 ident: b30 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing – volume: 174 year: 2021 ident: b33 article-title: Feature selection for classification using principal component analysis and information gain publication-title: Expert Systems with Applications – volume: 51 start-page: 1747 year: 2019 end-page: 1756 ident: b14 article-title: Wrapper framework for test-cost-sensitive feature selection publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 57 start-page: 1 year: 2018 end-page: 20 ident: b34 article-title: Distributed ReliefF-based feature selection in Spark publication-title: Knowledge and Information Systems – volume: 227 year: 2021 ident: b3 article-title: CS-BPSO: Hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis publication-title: Knowledge-Based Systems – volume: 51 start-page: 1771 year: 2020 end-page: 1787 ident: b29 article-title: Daily activity feature selection in smart homes based on pearson correlation coefficient publication-title: Neural Processing Letters – volume: 60 start-page: 197 year: 2014 end-page: 219 ident: b16 article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction publication-title: Artificial Intelligence in Medicine – volume: 135 start-page: 234 year: 2022 end-page: 243 ident: b58 article-title: An ultrasound standard plane detection model of fetal head based on multi-task learning and hybrid knowledge graph publication-title: Future Generation Computer Systems – volume: 241 year: 2022 ident: b9 article-title: Multi-label feature selection based on label correlations and feature redundancy publication-title: Knowledge-Based Systems – volume: 33 start-page: 1128 year: 2022 end-page: 1140 ident: b47 article-title: Hybrid feature selection algorithm combining information gain ratio and genetic algorithm publication-title: Journal of Software – volume: 14 start-page: 64 year: 2015 end-page: 75 ident: b53 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 140 year: 2022 ident: b1 article-title: Feature selection methods on gene expression microarray data for cancer classification: A systematic review publication-title: Computers in Biology and Medicine – volume: 64 start-page: 22 year: 2014 end-page: 31 ident: b57 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowledge-Based Systems – volume: 80 start-page: 10373 year: 2021 end-page: 10390 ident: b2 article-title: Feature selection method using improved CHI Square on Arabic text classifiers: analysis and application publication-title: Multimedia Tools and Applications – volume: 38 start-page: 8144 year: 2011 end-page: 8150 ident: b12 article-title: Hybrid feature selection by combining filters and wrappers publication-title: Expert Systems with Applications – volume: 234 start-page: 75 year: 2017 end-page: 92 ident: b15 article-title: Multi-objective evolutionary feature selection for online sales forecasting publication-title: Neurocomputing – volume: 572 start-page: 574 year: 2021 end-page: 589 ident: b48 article-title: A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data publication-title: Information Sciences – volume: 28 start-page: 4803 year: 2019 end-page: 4818 ident: b54 article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding publication-title: IEEE Transactions on Image Processing – year: 2022 ident: b17 article-title: A hybrid two-stage teaching-learning-based optimization algorithm for feature selection in bioinformatics publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 52 start-page: 1 year: 2019 end-page: 12 ident: b4 article-title: Ensembles for feature selection: A review and future trends publication-title: Information Fusion – year: 2022 ident: b45 article-title: A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 36 start-page: 1161 year: 2019 end-page: 1169 ident: b25 article-title: Research on massive ECG data in XGBoost publication-title: Journal of Intelligent & Fuzzy Systems – volume: 565 start-page: 105 year: 2021 end-page: 127 ident: b38 article-title: TAGA: Tabu Asexual Genetic Algorithm embedded in a filter/filter feature selection approach for high-dimensional data publication-title: Information Sciences – volume: 78 start-page: 144 year: 2018 end-page: 155 ident: b24 article-title: A novel bagging C4. 5 algorithm based on wrapper feature selection for supporting wise clinical decision making publication-title: Journal of Biomedical Informatics – volume: 183 year: 2021 ident: b10 article-title: Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach publication-title: Expert Systems with Applications – volume: 24 start-page: 40 year: 2011 end-page: 48 ident: b26 article-title: An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine publication-title: Knowledge-Based Systems – volume: 28 start-page: 4803 issue: 10 year: 2019 ident: 10.1016/j.eswa.2023.123069_b54 article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2019.2912290 – volume: 106 year: 2021 ident: 10.1016/j.eswa.2023.123069_b27 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107302 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.123069_b43 article-title: Photoplethysmography-based blood pressure estimation combining filter-wrapper collaborated feature selection with LASSO-LSTM model publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2021.3123218 – volume: 29 start-page: 4645 issue: 10 year: 2017 ident: 10.1016/j.eswa.2023.123069_b56 article-title: Marginal representation learning with graph structure self-adaptation publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2772264 – volume: 183 year: 2021 ident: 10.1016/j.eswa.2023.123069_b10 article-title: Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115312 – volume: 123 year: 2022 ident: 10.1016/j.eswa.2023.123069_b37 article-title: Gene selection for microarray data classification via multi-objective graph theoretic-based method publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2021.102228 – volume: 60 start-page: 197 issue: 3 year: 2014 ident: 10.1016/j.eswa.2023.123069_b16 article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2013.12.006 – volume: 14 start-page: 64 issue: 1 year: 2015 ident: 10.1016/j.eswa.2023.123069_b53 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2015.2476796 – volume: 32 start-page: 4514 issue: 10 year: 2020 ident: 10.1016/j.eswa.2023.123069_b55 article-title: Inductive structure consistent hashing via flexible semantic calibration publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3018790 – volume: 200 year: 2022 ident: 10.1016/j.eswa.2023.123069_b13 article-title: Classifying the multi-omics data of gastric cancer using a deep feature selection method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116813 – volume: 168 start-page: 39 year: 2023 ident: 10.1016/j.eswa.2023.123069_b7 article-title: Comparing filter and wrapper approaches for feature selection in handwritten character recognition publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2023.02.028 – volume: 14 start-page: 2994 issue: 7 year: 2017 ident: 10.1016/j.eswa.2023.123069_b39 article-title: Optimal feature selection via NSGA-II for power quality disturbances classification publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2773475 – volume: 494 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2023.123069_b40 article-title: A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem publication-title: Information Sciences doi: 10.1016/j.ins.2019.04.046 – volume: 51 start-page: 1747 issue: 3 year: 2019 ident: 10.1016/j.eswa.2023.123069_b14 article-title: Wrapper framework for test-cost-sensitive feature selection publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 2 start-page: 271 issue: 2 year: 2010 ident: 10.1016/j.eswa.2023.123069_b19 article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection publication-title: International Journal of Information Technology and Knowledge Management – volume: 484 start-page: 153 year: 2019 ident: 10.1016/j.eswa.2023.123069_b6 article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system publication-title: Information Sciences doi: 10.1016/j.ins.2019.01.064 – volume: 174 year: 2021 ident: 10.1016/j.eswa.2023.123069_b33 article-title: Feature selection for classification using principal component analysis and information gain publication-title: Expert Systems with Applications – year: 2022 ident: 10.1016/j.eswa.2023.123069_b17 article-title: A hybrid two-stage teaching-learning-based optimization algorithm for feature selection in bioinformatics publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – year: 2022 ident: 10.1016/j.eswa.2023.123069_b45 article-title: A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 24 start-page: 617 issue: 5 year: 2022 ident: 10.1016/j.eswa.2023.123069_b23 article-title: Random rotboost: An ensemble classification method based on rotation forest and adaboost in random subsets and its application to clinical decision support publication-title: Entropy doi: 10.3390/e24050617 – volume: 64 start-page: 22 year: 2014 ident: 10.1016/j.eswa.2023.123069_b57 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.03.015 – volume: 51 start-page: 1771 year: 2020 ident: 10.1016/j.eswa.2023.123069_b29 article-title: Daily activity feature selection in smart homes based on pearson correlation coefficient publication-title: Neural Processing Letters doi: 10.1007/s11063-019-10185-8 – volume: 52 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2023.123069_b4 article-title: Ensembles for feature selection: A review and future trends publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.008 – volume: 164 year: 2021 ident: 10.1016/j.eswa.2023.123069_b32 article-title: A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113981 – volume: 6 start-page: 355 issue: 2 year: 2021 ident: 10.1016/j.eswa.2023.123069_b50 article-title: Multi-objective feature selection with missing data in classification publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2021.3074147 – volume: 256 start-page: 56 year: 2017 ident: 10.1016/j.eswa.2023.123069_b30 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – volume: 234 start-page: 75 year: 2017 ident: 10.1016/j.eswa.2023.123069_b15 article-title: Multi-objective evolutionary feature selection for online sales forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.045 – volume: 23 start-page: 580 issue: 6 year: 2010 ident: 10.1016/j.eswa.2023.123069_b18 article-title: A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2010.03.016 – volume: 23 start-page: 368 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.123069_b28 article-title: FS-MOEA: A novel feature selection algorithm for IDSs in vehicular networks publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.3011452 – volume: 140 year: 2022 ident: 10.1016/j.eswa.2023.123069_b1 article-title: Feature selection methods on gene expression microarray data for cancer classification: A systematic review publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.105051 – volume: 38 start-page: 8144 issue: 7 year: 2011 ident: 10.1016/j.eswa.2023.123069_b12 article-title: Hybrid feature selection by combining filters and wrappers publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.156 – volume: 33 start-page: 1128 issue: 3 year: 2022 ident: 10.1016/j.eswa.2023.123069_b47 article-title: Hybrid feature selection algorithm combining information gain ratio and genetic algorithm publication-title: Journal of Software – volume: 26 start-page: 5540 issue: 11 year: 2022 ident: 10.1016/j.eswa.2023.123069_b35 article-title: Mobileunet-fpn: A semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2022.3182722 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2023.123069_b42 article-title: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113122 – volume: 241 year: 2022 ident: 10.1016/j.eswa.2023.123069_b9 article-title: Multi-label feature selection based on label correlations and feature redundancy publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.108256 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.123069_b44 article-title: DH-GAC: Deep hierarchical context fusion network with modified geodesic active contour for multiple neurofibromatosis segmentation publication-title: Neural Computing and Applications – volume: 107 year: 2020 ident: 10.1016/j.eswa.2023.123069_b46 article-title: A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2020.103465 – volume: 80 start-page: 10373 year: 2021 ident: 10.1016/j.eswa.2023.123069_b2 article-title: Feature selection method using improved CHI Square on Arabic text classifiers: analysis and application publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-10074-6 – volume: 119 year: 2022 ident: 10.1016/j.eswa.2023.123069_b8 article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2022.108532 – volume: 115 start-page: 825 year: 2021 ident: 10.1016/j.eswa.2023.123069_b36 article-title: Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.09.014 – volume: 9 start-page: 949 issue: 3 year: 2022 ident: 10.1016/j.eswa.2023.123069_b21 article-title: HFMOEA: A hybrid framework for multi-objective feature selection publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwac040 – volume: 172 year: 2020 ident: 10.1016/j.eswa.2023.123069_b20 article-title: A NSGA2-LR wrapper approach for feature selection in network intrusion detection publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107183 – volume: 36 start-page: 10896 issue: 8 year: 2009 ident: 10.1016/j.eswa.2023.123069_b22 article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.02.038 – volume: 196 year: 2022 ident: 10.1016/j.eswa.2023.123069_b41 article-title: A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116621 – volume: 572 start-page: 574 year: 2021 ident: 10.1016/j.eswa.2023.123069_b48 article-title: A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data publication-title: Information Sciences doi: 10.1016/j.ins.2021.02.056 – year: 2022 ident: 10.1016/j.eswa.2023.123069_b31 article-title: A YOLOX-based deep instance segmentation neural network for cardiac anatomical structures in fetal ultrasound images publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 23 start-page: bbab354 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.123069_b5 article-title: Benchmark of filter methods for feature selection in high-dimensional gene expression survival data publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbab354 – volume: 57 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.123069_b34 article-title: Distributed ReliefF-based feature selection in Spark publication-title: Knowledge and Information Systems doi: 10.1007/s10115-017-1145-y – volume: 135 start-page: 234 year: 2022 ident: 10.1016/j.eswa.2023.123069_b58 article-title: An ultrasound standard plane detection model of fetal head based on multi-task learning and hybrid knowledge graph publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2022.04.011 – volume: 565 start-page: 105 year: 2021 ident: 10.1016/j.eswa.2023.123069_b38 article-title: TAGA: Tabu Asexual Genetic Algorithm embedded in a filter/filter feature selection approach for high-dimensional data publication-title: Information Sciences doi: 10.1016/j.ins.2021.01.020 – volume: 36 start-page: 1161 issue: 2 year: 2019 ident: 10.1016/j.eswa.2023.123069_b25 article-title: Research on massive ECG data in XGBoost publication-title: Journal of Intelligent & Fuzzy Systems – volume: 35 issue: 9 year: 2023 ident: 10.1016/j.eswa.2023.123069_b49 article-title: CGUFS: A clustering-guided unsupervised feature selection algorithm for gene expression data publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2023.101731 – volume: 227 year: 2021 ident: 10.1016/j.eswa.2023.123069_b3 article-title: CS-BPSO: Hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107224 – volume: 24 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.eswa.2023.123069_b26 article-title: An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2010.07.003 – volume: 23 start-page: 568 issue: 4 year: 2010 ident: 10.1016/j.eswa.2023.123069_b52 article-title: Finding correlated biclusters from gene expression data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.150 – volume: 131 start-page: 277 year: 2020 ident: 10.1016/j.eswa.2023.123069_b51 article-title: An efficient unsupervised feature selection procedure through feature clustering publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.12.022 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.123069_b11 article-title: An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme publication-title: Machine Learning – volume: 78 start-page: 144 year: 2018 ident: 10.1016/j.eswa.2023.123069_b24 article-title: A novel bagging C4. 5 algorithm based on wrapper feature selection for supporting wise clinical decision making publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2017.11.005 |
| SSID | ssj0017007 |
| Score | 2.5232046 |
| Snippet | High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 123069 |
| SubjectTerms | Feature selection Gene expression data Multi-objective genetic algorithm Spectral clustering Symmetric uncertainty |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqLrDwRpSXPLCB2zwcO2GrKkqFBEup1C1yYocGlbRqU0oXfju-xKlgoEKMSWwl8p3vvsjffYfQVSCptGM3Ilxyj1DJORG-rYgT8chyg0RHTShOfnxivQF9GHrDGupUtTBAqzSxv4zpRbQ2d1pmNVvTNG31NTjQ6RBOGi3X07AfKtgphy4Gzc81zQPk53ipt8cJjDaFMyXHS82XoD3kuE0boHjwW3LaWmRTsVqK8fhb8unuoR2DGnG7_LB9VFPZAdqtOjJgs0EP0ap7T3rd_i1u40QVkp04SeE8HItM4qKCA6t34214tIJyrfXIedESBx6I8ctkluajN6whLQZFYyKhC0Cp4IG1zymsPgyFNsPAMj1Cg-7dc6dHTHMFEruU5sS3RaJ8KhzlxBFjMbN4pNdSQASUQu9apihnINhn0YQFiXSFNqoVKBmwhEWBe4zq2SRTJwjbiUOFRjIcfhe9IPalcoSklrQojS3PbyC7WtUwNsrj0ABjHFYUs9cQLBGCJcLSEg10vZ4zLXU3No72KmOFP7wn1Ilh47ybtWX_8JrTf77mDG3rK1qyfM9RPZ8t1IXGMnl0WTjrFwsZ8Us priority: 102 providerName: Elsevier |
| Title | FG-HFS: A feature filter and group evolution hybrid feature selection algorithm for high-dimensional gene expression data |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.123069 https://doi.org/10.1016/j.eswa.2023.123069 |
| UnpaywallVersion | publishedVersion |
| Volume | 245 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDp7EnxGjpAdvWrIfXbt5I0ZEjcRESfS0dGsnKE4DQ8SDf7t9WyFq1OB5r1323rf2a_re9xDaCySVduxGhEvuESo5J8K3FXEiHllukOhVE4qTL9qs1aFnN96NkcmBWpgv9_d5HpYajkEfyHHrNtDlYBGVmad5dwmVO-3Lxm0hpscJLSSXbZ-7hGnUmQqZnyf5bRdaGqXPYjIW_f6nXaZZKdoVDXNxQkgueaiPsqgev32TbpzvA1bQsiGbuFGgYxUtqHQNVaaNHLD5r9fRpHlCWs2rQ9zAicqVPnHSg2t0LFKJ88IPrF4MSHF3AlVeM8th3kkHHoj-3dOgl3UfsWbCGISQiYTmAYXwB9ZQVVi9mszbFENy6gbqNI-vj1rE9GQgsUtpRnxbJMqnwlFOHDEWM4tH-nQtYOGUQrudKcoZ6PxZNGFBIl2hsWAFSgYsYVHgbqJS-pSqLYTtxKFCEyAOp0wviH2pHCGpJS1KY8vzq8iexiiMjWA59M3oh9PMtPsQfBuCb8PCt1W0PxvzXMh1_GntTUMfGsJREIlQR_HPcQcznMzxmu3_me-gUjYYqV1NdrKohhbr73YNlRun5612zWD-A2x2_NE |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcrCG_HGAxuY5uHYCVtVUQoUlhaJLXJiB4pKWvVB6cJvx5c4FQxUiDU-y5HvfHeWv_sOodNAUmnHbkS45B6hknMifFsRJ-KR5QaJ9ppQnHz_wJqP9PbJeyqhelELA7BK4_tzn555a_OlanazOuh2q22dHOhwCC-NluvptH8JLVPP4XADu_ic4zyAf47nhHucgLipnMlBXmo0BfIhx72wIRcPfotOlUk6ELOp6PW-RZ_GOlo1aSOu5X-2gUoq3URrRUsGbE7oFpo1rkmz0b7ENZyojLMTJ114EMcilTgr4cDq3ZgbfplBvdZccpT1xIEB0XvuD7vjlzesc1oMlMZEQhuAnMIDa6NTWH0YDG2KAWa6jR4bV516k5juCiR2KR0T3xaJ8qlwlBNHjMXM4pHeTAEuUAp9bJminAFjn0UTFiTSFVqrVqBkwBIWBe4OKqf9VO0ibCcOFTqV4XBf9ILYl8oRklrSojS2PH8P2cWuhrGhHocOGL2wwJi9hqCJEDQR5prYQ2fzOYOceGOhtFcoK_xhPqGODAvnnc81-4dl9v-5zAmqNDv3rbB183B3gFb0CM0hv4eoPB5O1JFObMbRcWa4Xzzd9G4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDp7EnxGjpgdvWrIfXbt5I0YkJhITJcHT0q2doDgIDBH_evu2QtQowfNeu-y9b-3X9L3vIXQaSCrt2I0Il9wjVHJOhG8r4kQ8stwg0asmFCfftlizTW86XsfI5EAtzLf7-zwPS42noA_kuDUb6HKwjsrM07y7hMrt1l39sRDT44QWksu2z13CNOpMhczvk_y1C21M0qGYTUW__2WXaVSKdkXjXJwQkkteapMsqsUfP6QbV_uALbRpyCauF-jYRmsq3UGVeSMHbP7rXTRrXJNm4_4C13GicqVPnPTgGh2LVOK88AOrNwNS3J1BldfCcpx30oEHov80GPWy7ivWTBiDEDKR0DygEP7AGqoKq3eTeZtiSE7dQ-3G1cNlk5ieDCR2Kc2Ib4tE-VQ4yokjxmJm8UifrgUsnFJotzNFOQOdP4smLEikKzQWrEDJgCUsCtx9VEoHqTpA2E4cKjQB4nDK9ILYl8oRklrSojS2PL-K7HmMwtgIlkPfjH44z0x7DsG3Ifg2LHxbRWeLMcNCrmOptTcPfWgIR0EkQh3FpePOFzhZ4TWH_zM_QqVsNFHHmuxk0YlB-SevgfpF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FG-HFS%3A+A+feature+filter+and+group+evolution+hybrid+feature+selection+algorithm+for+high-dimensional+gene+expression+data&rft.jtitle=Expert+systems+with+applications&rft.au=Xu%2C+Zhaozhao&rft.au=Yang%2C+Fangyuan&rft.au=Tang%2C+Chaosheng&rft.au=Wang%2C+Hong&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=245&rft_id=info:doi/10.1016%2Fj.eswa.2023.123069&rft.externalDocID=S0957417423035716 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |