FG-HFS: A feature filter and group evolution hybrid feature selection algorithm for high-dimensional gene expression data

High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correla...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 245; p. 123069
Main Authors Xu, Zhaozhao, Yang, Fangyuan, Tang, Chaosheng, Wang, Hong, Wang, Shuihua, Sun, Junding, Zhang, Yudong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
1873-6793
DOI10.1016/j.eswa.2023.123069

Cover

Abstract High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correlation between features, and search algorithms tend to fall into the local optimal solution in the feature search process. To this end, this paper proposes a feature filter and group evolution hybrid feature selection algorithm (FG-HFS) for high-dimensional gene expression data. Unlike existing algorithms, we propose using spectral clustering to group redundant features into a group. Then, we propose a redundant feature filter algorithm. According to the principle of approximate Markov blanket, grouped feature groups are filtered to delete these redundant features. Among them, filtered features are evenly divided by density according to the feature exponential strategy. Most importantly, we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets and evaluate the candidate feature subsets according to the in-group and out-group so as to select the feature subsets with the highest accuracy and the least number. Experimental results show that the average accuracy (ACC) and Matthews correlation coefficient (MCC) indexes of the selected feature subsets (FSs) by the FG-HFS algorithm on 5 gene expression datasets are 92.76% and 88.76%, respectively, which are significantly better than the existing algorithms. In addition, the FSs and ACC/FSs indexes of the FG-HFS algorithm are also better than the existing algorithms, which fully proves the superiority of the FG-HFS algorithm. More importantly, the Wilcoxon and Friedman statistical experiments results show that the feature selection effect of FG-HFS algorithm is significantly better than that of existing algorithms, no matter in pairwise comparison or multiple comparison. •We propose using spectral clustering to group the features so that the in-group feature similarity is extremely high.•We propose a redundant feature filter algorithm since existing algorithms cannot filter redundant features.•we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets.
AbstractList High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correlation between features, and search algorithms tend to fall into the local optimal solution in the feature search process. To this end, this paper proposes a feature filter and group evolution hybrid feature selection algorithm (FG-HFS) for high-dimensional gene expression data. Unlike existing algorithms, we propose using spectral clustering to group redundant features into a group. Then, we propose a redundant feature filter algorithm. According to the principle of approximate Markov blanket, grouped feature groups are filtered to delete these redundant features. Among them, filtered features are evenly divided by density according to the feature exponential strategy. Most importantly, we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets and evaluate the candidate feature subsets according to the in-group and out-group so as to select the feature subsets with the highest accuracy and the least number. Experimental results show that the average accuracy (ACC) and Matthews correlation coefficient (MCC) indexes of the selected feature subsets (FSs) by the FG-HFS algorithm on 5 gene expression datasets are 92.76% and 88.76%, respectively, which are significantly better than the existing algorithms. In addition, the FSs and ACC/FSs indexes of the FG-HFS algorithm are also better than the existing algorithms, which fully proves the superiority of the FG-HFS algorithm. More importantly, the Wilcoxon and Friedman statistical experiments results show that the feature selection effect of FG-HFS algorithm is significantly better than that of existing algorithms, no matter in pairwise comparison or multiple comparison. •We propose using spectral clustering to group the features so that the in-group feature similarity is extremely high.•We propose a redundant feature filter algorithm since existing algorithms cannot filter redundant features.•we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets.
ArticleNumber 123069
Author Wang, Shuihua
Zhang, Yudong
Tang, Chaosheng
Wang, Hong
Sun, Junding
Xu, Zhaozhao
Yang, Fangyuan
Author_xml – sequence: 1
  givenname: Zhaozhao
  orcidid: 0000-0002-7811-3799
  surname: Xu
  fullname: Xu, Zhaozhao
  email: zhaozhaotoms@foxmail.com
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
– sequence: 2
  givenname: Fangyuan
  orcidid: 0009-0004-7055-4209
  surname: Yang
  fullname: Yang, Fangyuan
  email: fangyuan_yang@foxmail.com
  organization: Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan, 454000, China
– sequence: 3
  givenname: Chaosheng
  orcidid: 0000-0001-6923-855X
  surname: Tang
  fullname: Tang, Chaosheng
  email: tcs@hpu.edu.cn
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
– sequence: 4
  givenname: Hong
  orcidid: 0000-0003-4106-2067
  surname: Wang
  fullname: Wang, Hong
  email: hongwang197408@outlook.com
  organization: Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan, 454000, China
– sequence: 5
  givenname: Shuihua
  orcidid: 0000-0003-4713-2791
  surname: Wang
  fullname: Wang, Shuihua
  email: shuihuawang@ieee.org
  organization: School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 6
  givenname: Junding
  orcidid: 0000-0001-7349-0248
  surname: Sun
  fullname: Sun, Junding
  email: sunjd@hpu.edu.cn
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
– sequence: 7
  givenname: Yudong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yudong
  email: yudongzhang@ieee.org
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
BookMark eNqNkM9KAzEQh4MoWP-8gKe8wNZkE5Nd8VLEqiB4UM9hmkzalHS3JFu1b--uFQ8eiqeBmflm-H0n5LBpGyTkgrMxZ1xdLseYP2BcslKMeSmYqg_IiFdaFErX4pCMWH2lC8m1PCYnOS8Z45oxPSLb6X3xMH25phPqEbpNQupD7DBRaBydp3azpvjexk0X2oYutrMU3O9mxoj2ewBx3qbQLVbUt4kuwnxRuLDCJvdDiHSODVL8XCfMQ4c66OCMHHmIGc9_6il5m9693j4UT8_3j7eTp8IKKbui4uCxklBiaWdKWcX0TMsS-JWoHPThFEqtmBQlk17V3glw3LIaXa28mtXilIjd3U2zhu0HxGjWKawgbQ1nZrBnlmawZwZ7Zmevp6odZVObc0JvbOhgyNolCHE_Wv5B__XvZgdhr-I9YDLZBmwsupB6x8a1YR_-BVd9n24
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126404
crossref_primary_10_1016_j_compeleceng_2024_109720
crossref_primary_10_1016_j_cor_2025_107009
crossref_primary_10_1142_S1469026824500317
crossref_primary_10_1016_j_ins_2024_120483
crossref_primary_10_1186_s40537_025_01105_w
crossref_primary_10_1016_j_knosys_2024_112379
crossref_primary_10_1016_j_compeleceng_2024_109362
crossref_primary_10_1007_s42235_024_00558_8
Cites_doi 10.1109/TIP.2019.2912290
10.1016/j.asoc.2021.107302
10.1109/TIM.2021.3123218
10.1109/TNNLS.2017.2772264
10.1016/j.eswa.2021.115312
10.1016/j.artmed.2021.102228
10.1016/j.artmed.2013.12.006
10.1109/TCBB.2015.2476796
10.1109/TNNLS.2020.3018790
10.1016/j.eswa.2022.116813
10.1016/j.patrec.2023.02.028
10.1109/TII.2017.2773475
10.1016/j.ins.2019.04.046
10.1016/j.ins.2019.01.064
10.3390/e24050617
10.1016/j.knosys.2014.03.015
10.1007/s11063-019-10185-8
10.1016/j.inffus.2018.11.008
10.1016/j.eswa.2020.113981
10.1109/TETCI.2021.3074147
10.1016/j.neucom.2016.07.080
10.1016/j.neucom.2016.12.045
10.1016/j.knosys.2010.03.016
10.1109/TITS.2020.3011452
10.1016/j.compbiomed.2021.105051
10.1016/j.eswa.2010.12.156
10.1109/JBHI.2022.3182722
10.1016/j.eswa.2019.113122
10.1016/j.knosys.2022.108256
10.1016/j.jbi.2020.103465
10.1007/s11042-020-10074-6
10.1016/j.asoc.2022.108532
10.1016/j.future.2020.09.014
10.1093/jcde/qwac040
10.1016/j.comnet.2020.107183
10.1016/j.eswa.2009.02.038
10.1016/j.eswa.2022.116621
10.1016/j.ins.2021.02.056
10.1093/bib/bbab354
10.1007/s10115-017-1145-y
10.1016/j.future.2022.04.011
10.1016/j.ins.2021.01.020
10.1016/j.jksuci.2023.101731
10.1016/j.knosys.2021.107224
10.1016/j.knosys.2010.07.003
10.1109/TKDE.2010.150
10.1016/j.patrec.2019.12.022
10.1016/j.jbi.2017.11.005
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.eswa.2023.123069
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10.1016/j.eswa.2023.123069
10_1016_j_eswa_2023_123069
S0957417423035716
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c344t-81afe84a2e2cb66c607b742a1538da7936e476043204f69fd3ad1c09ed96f6b93
IEDL.DBID UNPAY
ISSN 0957-4174
1873-6793
IngestDate Tue Aug 19 19:10:01 EDT 2025
Sat Oct 25 05:06:25 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Sat Apr 13 16:35:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective genetic algorithm
Feature selection
Spectral clustering
Gene expression data
Symmetric uncertainty
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-81afe84a2e2cb66c607b742a1538da7936e476043204f69fd3ad1c09ed96f6b93
ORCID 0009-0004-7055-4209
0000-0001-6923-855X
0000-0001-7349-0248
0000-0002-4870-1493
0000-0003-4713-2791
0000-0002-7811-3799
0000-0003-4106-2067
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.eswa.2023.123069
ParticipantIDs unpaywall_primary_10_1016_j_eswa_2023_123069
crossref_citationtrail_10_1016_j_eswa_2023_123069
crossref_primary_10_1016_j_eswa_2023_123069
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_123069
PublicationCentury 2000
PublicationDate 2024-07-01
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Singh, Singh (b39) 2017; 14
Kundu, Mallipeddi (b21) 2022; 9
Hu, Zhao, Li, Dong, Xu, Zhao (b13) 2022; 200
Wang, Yang, Liu, Ma, Li, Wang (b43) 2021; 70
Bommert, Welchowski, Schmid, Rahnenführer (b5) 2022; 23
Zhang, Gong, Cheng (b53) 2015; 14
Karegowda, Manjunath, Jayaram (b19) 2010; 2
Alhenawi, Al-Sayyed, Hudaib, Mirjalili (b1) 2022; 140
Got, Moussaoui, Zouache (b10) 2021; 183
Lu, Chen, Yan, *, Xue, Gao (b30) 2017; 256
Kannan, Ramaraj (b18) 2010; 23
Chiew, Tan, Wong, Yong, Tiong (b6) 2019; 484
Lee, Tseng, Yang, *, Jiang, Pu, ., Zhao (b23) 2022; 24
Xu, Yang, Wang, Sun, Zhu, Wang, Zhang (b49) 2023; 35
Alshaer, Otair, Abualigah, Alshinwan, Khasawneh (b2) 2021; 80
Tiwari, Chaturvedi (b41) 2022; 196
Yang, Dai, Yan (b52) 2010; 23
Li, Wu, Wan, Zhu (b26) 2011; 24
Omuya, Okeyo, Kimwele (b33) 2021; 174
Rostami, Forouzandeh, Berahmand, Soltani, Shahsavari, Oussalah (b37) 2022; 123
Liang, Ma (b28) 2020; 23
Bolón-Canedo, Alonso-Betanzos (b4) 2019; 52
Zhang, Wang, Phillips, Ji (b57) 2014; 64
Khammassi, Krichen (b20) 2020; 172
Xu, Shen, Nie, Kou (b47) 2022; 33
Yan, Nazmi, Erol, Homaifar, Gebru, Tunstel (b51) 2020; 131
Fan, Chen, Huang, Liu, Weng, Lan (b9) 2022; 241
Salesi, Cosma, Mavrovouniotis (b38) 2021; 565
Zhang, Shao, Xu, Liu, Yang (b56) 2017; 29
Kang, Wang, Pu, Tao, Chen, Philip (b17) 2022
Zhang, Lai, Huang, Wong, e, Liu, Shao (b54) 2019; 28
Xu, Shen, Kou, Nie (b45) 2022
Li, Pu, Kang, Lu (b25) 2019; 36
Xue, Tang, Xu, Liang, Neri (b50) 2021; 6
Xu, Shen, Nie, Kou (b46) 2020; 107
Xu, Shen, Nie, Kou, Yin, Han (b48) 2021; 572
BinSaeedan, Alramlawi (b3) 2021; 227
Cui, Meng, Qiao (b8) 2022; 119
Li, Xue, Zhang (b27) 2021; 106
Zhao, Li, Pu, Chen, Li, Liao (b58) 2022; 135
Wu, Tan, Pu, Duan, Cai (b44) 2022
Hancer (b11) 2021
Jiang, Kong, Li (b14) 2019; 51
Palma-Mendoza, Rodriguez, De-Marcos (b34) 2018; 57
Pu, Lu, Chen, Li, Zhu, Wei, Li (b35) 2022; 26
Lu, Li, Pu, Tan, Zhu (b31) 2022
Jiménez, Sánchez, Juárez (b16) 2014; 60
Liu, Mu, Chen, Li, Guo (b29) 2020; 51
Maleki, Zeinali, Niaki (b32) 2021; 164
Pu, Zhu, Li, Li (b36) 2021; 115
Tubishat, Idris, Shuib, Abushariah, Mirjalili (b42) 2020; 145
Zhang, Liu, Luo, Huang, Shen, Shen, Lu (b55) 2020; 32
Cilia, D’Alessandro, De Stefano, Fontanella, di Freca (b7) 2023; 168
Lee (b22) 2009; 36
Jiménez, Sánchez, García, Sciavicco, Miralles (b15) 2017; 234
Hsu, Hsieh, Lu (b12) 2011; 38
Lee, Xu, Li, Yang (b24) 2018; 78
Sosa-Cabrera, García-Torres, Gómez-Guerrero, Schaerer, Divina (b40) 2019; 494
Sosa-Cabrera (10.1016/j.eswa.2023.123069_b40) 2019; 494
Wu (10.1016/j.eswa.2023.123069_b44) 2022
Zhang (10.1016/j.eswa.2023.123069_b57) 2014; 64
Palma-Mendoza (10.1016/j.eswa.2023.123069_b34) 2018; 57
Li (10.1016/j.eswa.2023.123069_b25) 2019; 36
Zhang (10.1016/j.eswa.2023.123069_b56) 2017; 29
Kang (10.1016/j.eswa.2023.123069_b17) 2022
Lee (10.1016/j.eswa.2023.123069_b24) 2018; 78
Pu (10.1016/j.eswa.2023.123069_b36) 2021; 115
Hu (10.1016/j.eswa.2023.123069_b13) 2022; 200
Wang (10.1016/j.eswa.2023.123069_b43) 2021; 70
Xu (10.1016/j.eswa.2023.123069_b48) 2021; 572
Got (10.1016/j.eswa.2023.123069_b10) 2021; 183
Xu (10.1016/j.eswa.2023.123069_b49) 2023; 35
Zhao (10.1016/j.eswa.2023.123069_b58) 2022; 135
Yan (10.1016/j.eswa.2023.123069_b51) 2020; 131
Xu (10.1016/j.eswa.2023.123069_b46) 2020; 107
Jiménez (10.1016/j.eswa.2023.123069_b15) 2017; 234
Cilia (10.1016/j.eswa.2023.123069_b7) 2023; 168
Xu (10.1016/j.eswa.2023.123069_b47) 2022; 33
Khammassi (10.1016/j.eswa.2023.123069_b20) 2020; 172
BinSaeedan (10.1016/j.eswa.2023.123069_b3) 2021; 227
Liang (10.1016/j.eswa.2023.123069_b28) 2020; 23
Rostami (10.1016/j.eswa.2023.123069_b37) 2022; 123
Bolón-Canedo (10.1016/j.eswa.2023.123069_b4) 2019; 52
Tiwari (10.1016/j.eswa.2023.123069_b41) 2022; 196
Alshaer (10.1016/j.eswa.2023.123069_b2) 2021; 80
Kannan (10.1016/j.eswa.2023.123069_b18) 2010; 23
Cui (10.1016/j.eswa.2023.123069_b8) 2022; 119
Jiménez (10.1016/j.eswa.2023.123069_b16) 2014; 60
Lu (10.1016/j.eswa.2023.123069_b30) 2017; 256
Alhenawi (10.1016/j.eswa.2023.123069_b1) 2022; 140
Hsu (10.1016/j.eswa.2023.123069_b12) 2011; 38
Li (10.1016/j.eswa.2023.123069_b26) 2011; 24
Maleki (10.1016/j.eswa.2023.123069_b32) 2021; 164
Lee (10.1016/j.eswa.2023.123069_b23) 2022; 24
Lu (10.1016/j.eswa.2023.123069_b31) 2022
Lee (10.1016/j.eswa.2023.123069_b22) 2009; 36
Pu (10.1016/j.eswa.2023.123069_b35) 2022; 26
Bommert (10.1016/j.eswa.2023.123069_b5) 2022; 23
Fan (10.1016/j.eswa.2023.123069_b9) 2022; 241
Li (10.1016/j.eswa.2023.123069_b27) 2021; 106
Xu (10.1016/j.eswa.2023.123069_b45) 2022
Liu (10.1016/j.eswa.2023.123069_b29) 2020; 51
Salesi (10.1016/j.eswa.2023.123069_b38) 2021; 565
Tubishat (10.1016/j.eswa.2023.123069_b42) 2020; 145
Karegowda (10.1016/j.eswa.2023.123069_b19) 2010; 2
Omuya (10.1016/j.eswa.2023.123069_b33) 2021; 174
Hancer (10.1016/j.eswa.2023.123069_b11) 2021
Jiang (10.1016/j.eswa.2023.123069_b14) 2019; 51
Yang (10.1016/j.eswa.2023.123069_b52) 2010; 23
Zhang (10.1016/j.eswa.2023.123069_b53) 2015; 14
Zhang (10.1016/j.eswa.2023.123069_b55) 2020; 32
Kundu (10.1016/j.eswa.2023.123069_b21) 2022; 9
Singh (10.1016/j.eswa.2023.123069_b39) 2017; 14
Chiew (10.1016/j.eswa.2023.123069_b6) 2019; 484
Zhang (10.1016/j.eswa.2023.123069_b54) 2019; 28
Xue (10.1016/j.eswa.2023.123069_b50) 2021; 6
References_xml – volume: 107
  year: 2020
  ident: b46
  article-title: A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data
  publication-title: Journal of Biomedical Informatics
– volume: 32
  start-page: 4514
  year: 2020
  end-page: 4528
  ident: b55
  article-title: Inductive structure consistent hashing via flexible semantic calibration
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 24
  start-page: 617
  year: 2022
  ident: b23
  article-title: Random rotboost: An ensemble classification method based on rotation forest and adaboost in random subsets and its application to clinical decision support
  publication-title: Entropy
– volume: 200
  year: 2022
  ident: b13
  article-title: Classifying the multi-omics data of gastric cancer using a deep feature selection method
  publication-title: Expert Systems with Applications
– volume: 172
  year: 2020
  ident: b20
  article-title: A NSGA2-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Computer Networks
– volume: 23
  start-page: 368
  year: 2020
  end-page: 382
  ident: b28
  article-title: FS-MOEA: A novel feature selection algorithm for IDSs in vehicular networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2022
  ident: b31
  article-title: A YOLOX-based deep instance segmentation neural network for cardiac anatomical structures in fetal ultrasound images
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 119
  year: 2022
  ident: b8
  article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism
  publication-title: Applied Soft Computing
– volume: 164
  year: 2021
  ident: b32
  article-title: A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 2994
  year: 2017
  end-page: 3002
  ident: b39
  article-title: Optimal feature selection via NSGA-II for power quality disturbances classification
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 484
  start-page: 153
  year: 2019
  end-page: 166
  ident: b6
  article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system
  publication-title: Information Sciences
– volume: 29
  start-page: 4645
  year: 2017
  end-page: 4659
  ident: b56
  article-title: Marginal representation learning with graph structure self-adaptation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 36
  start-page: 10896
  year: 2009
  end-page: 10904
  ident: b22
  article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction
  publication-title: Expert Systems with Applications
– volume: 6
  start-page: 355
  year: 2021
  end-page: 364
  ident: b50
  article-title: Multi-objective feature selection with missing data in classification
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 35
  year: 2023
  ident: b49
  article-title: CGUFS: A clustering-guided unsupervised feature selection algorithm for gene expression data
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 494
  start-page: 1
  year: 2019
  end-page: 20
  ident: b40
  article-title: A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem
  publication-title: Information Sciences
– volume: 23
  start-page: bbab354
  year: 2022
  ident: b5
  article-title: Benchmark of filter methods for feature selection in high-dimensional gene expression survival data
  publication-title: Briefings in Bioinformatics
– volume: 131
  start-page: 277
  year: 2020
  end-page: 284
  ident: b51
  article-title: An efficient unsupervised feature selection procedure through feature clustering
  publication-title: Pattern Recognition Letters
– volume: 145
  year: 2020
  ident: b42
  article-title: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Systems with Applications
– volume: 70
  start-page: 1
  year: 2021
  end-page: 14
  ident: b43
  article-title: Photoplethysmography-based blood pressure estimation combining filter-wrapper collaborated feature selection with LASSO-LSTM model
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 26
  start-page: 5540
  year: 2022
  end-page: 5550
  ident: b35
  article-title: Mobileunet-fpn: A semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 123
  year: 2022
  ident: b37
  article-title: Gene selection for microarray data classification via multi-objective graph theoretic-based method
  publication-title: Artificial Intelligence in Medicine
– volume: 23
  start-page: 568
  year: 2010
  end-page: 584
  ident: b52
  article-title: Finding correlated biclusters from gene expression data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 106
  year: 2021
  ident: b27
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Applied Soft Computing
– volume: 115
  start-page: 825
  year: 2021
  end-page: 836
  ident: b36
  article-title: Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework
  publication-title: Future Generation Computer Systems
– volume: 168
  start-page: 39
  year: 2023
  end-page: 46
  ident: b7
  article-title: Comparing filter and wrapper approaches for feature selection in handwritten character recognition
  publication-title: Pattern Recognition Letters
– volume: 23
  start-page: 580
  year: 2010
  end-page: 585
  ident: b18
  article-title: A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm
  publication-title: Knowledge-Based Systems
– volume: 9
  start-page: 949
  year: 2022
  end-page: 965
  ident: b21
  article-title: HFMOEA: A hybrid framework for multi-objective feature selection
  publication-title: Journal of Computational Design and Engineering
– volume: 2
  start-page: 271
  year: 2010
  end-page: 277
  ident: b19
  article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection
  publication-title: International Journal of Information Technology and Knowledge Management
– start-page: 1
  year: 2022
  end-page: 16
  ident: b44
  article-title: DH-GAC: Deep hierarchical context fusion network with modified geodesic active contour for multiple neurofibromatosis segmentation
  publication-title: Neural Computing and Applications
– volume: 196
  year: 2022
  ident: b41
  article-title: A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2021
  end-page: 24
  ident: b11
  article-title: An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme
  publication-title: Machine Learning
– volume: 256
  start-page: 56
  year: 2017
  end-page: 62
  ident: b30
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
– volume: 174
  year: 2021
  ident: b33
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Systems with Applications
– volume: 51
  start-page: 1747
  year: 2019
  end-page: 1756
  ident: b14
  article-title: Wrapper framework for test-cost-sensitive feature selection
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 57
  start-page: 1
  year: 2018
  end-page: 20
  ident: b34
  article-title: Distributed ReliefF-based feature selection in Spark
  publication-title: Knowledge and Information Systems
– volume: 227
  year: 2021
  ident: b3
  article-title: CS-BPSO: Hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis
  publication-title: Knowledge-Based Systems
– volume: 51
  start-page: 1771
  year: 2020
  end-page: 1787
  ident: b29
  article-title: Daily activity feature selection in smart homes based on pearson correlation coefficient
  publication-title: Neural Processing Letters
– volume: 60
  start-page: 197
  year: 2014
  end-page: 219
  ident: b16
  article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction
  publication-title: Artificial Intelligence in Medicine
– volume: 135
  start-page: 234
  year: 2022
  end-page: 243
  ident: b58
  article-title: An ultrasound standard plane detection model of fetal head based on multi-task learning and hybrid knowledge graph
  publication-title: Future Generation Computer Systems
– volume: 241
  year: 2022
  ident: b9
  article-title: Multi-label feature selection based on label correlations and feature redundancy
  publication-title: Knowledge-Based Systems
– volume: 33
  start-page: 1128
  year: 2022
  end-page: 1140
  ident: b47
  article-title: Hybrid feature selection algorithm combining information gain ratio and genetic algorithm
  publication-title: Journal of Software
– volume: 14
  start-page: 64
  year: 2015
  end-page: 75
  ident: b53
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 140
  year: 2022
  ident: b1
  article-title: Feature selection methods on gene expression microarray data for cancer classification: A systematic review
  publication-title: Computers in Biology and Medicine
– volume: 64
  start-page: 22
  year: 2014
  end-page: 31
  ident: b57
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowledge-Based Systems
– volume: 80
  start-page: 10373
  year: 2021
  end-page: 10390
  ident: b2
  article-title: Feature selection method using improved CHI Square on Arabic text classifiers: analysis and application
  publication-title: Multimedia Tools and Applications
– volume: 38
  start-page: 8144
  year: 2011
  end-page: 8150
  ident: b12
  article-title: Hybrid feature selection by combining filters and wrappers
  publication-title: Expert Systems with Applications
– volume: 234
  start-page: 75
  year: 2017
  end-page: 92
  ident: b15
  article-title: Multi-objective evolutionary feature selection for online sales forecasting
  publication-title: Neurocomputing
– volume: 572
  start-page: 574
  year: 2021
  end-page: 589
  ident: b48
  article-title: A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data
  publication-title: Information Sciences
– volume: 28
  start-page: 4803
  year: 2019
  end-page: 4818
  ident: b54
  article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding
  publication-title: IEEE Transactions on Image Processing
– year: 2022
  ident: b17
  article-title: A hybrid two-stage teaching-learning-based optimization algorithm for feature selection in bioinformatics
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 52
  start-page: 1
  year: 2019
  end-page: 12
  ident: b4
  article-title: Ensembles for feature selection: A review and future trends
  publication-title: Information Fusion
– year: 2022
  ident: b45
  article-title: A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 36
  start-page: 1161
  year: 2019
  end-page: 1169
  ident: b25
  article-title: Research on massive ECG data in XGBoost
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 565
  start-page: 105
  year: 2021
  end-page: 127
  ident: b38
  article-title: TAGA: Tabu Asexual Genetic Algorithm embedded in a filter/filter feature selection approach for high-dimensional data
  publication-title: Information Sciences
– volume: 78
  start-page: 144
  year: 2018
  end-page: 155
  ident: b24
  article-title: A novel bagging C4. 5 algorithm based on wrapper feature selection for supporting wise clinical decision making
  publication-title: Journal of Biomedical Informatics
– volume: 183
  year: 2021
  ident: b10
  article-title: Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 40
  year: 2011
  end-page: 48
  ident: b26
  article-title: An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
  publication-title: Knowledge-Based Systems
– volume: 28
  start-page: 4803
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2023.123069_b54
  article-title: Scalable supervised asymmetric hashing with semantic and latent factor embedding
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2912290
– volume: 106
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b27
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107302
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b43
  article-title: Photoplethysmography-based blood pressure estimation combining filter-wrapper collaborated feature selection with LASSO-LSTM model
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2021.3123218
– volume: 29
  start-page: 4645
  issue: 10
  year: 2017
  ident: 10.1016/j.eswa.2023.123069_b56
  article-title: Marginal representation learning with graph structure self-adaptation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2772264
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b10
  article-title: Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115312
– volume: 123
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b37
  article-title: Gene selection for microarray data classification via multi-objective graph theoretic-based method
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2021.102228
– volume: 60
  start-page: 197
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2023.123069_b16
  article-title: Multi-objective evolutionary algorithms for fuzzy classification in survival prediction
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2013.12.006
– volume: 14
  start-page: 64
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2023.123069_b53
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2476796
– volume: 32
  start-page: 4514
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b55
  article-title: Inductive structure consistent hashing via flexible semantic calibration
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3018790
– volume: 200
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b13
  article-title: Classifying the multi-omics data of gastric cancer using a deep feature selection method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116813
– volume: 168
  start-page: 39
  year: 2023
  ident: 10.1016/j.eswa.2023.123069_b7
  article-title: Comparing filter and wrapper approaches for feature selection in handwritten character recognition
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2023.02.028
– volume: 14
  start-page: 2994
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2023.123069_b39
  article-title: Optimal feature selection via NSGA-II for power quality disturbances classification
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2773475
– volume: 494
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.123069_b40
  article-title: A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.04.046
– volume: 51
  start-page: 1747
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2023.123069_b14
  article-title: Wrapper framework for test-cost-sensitive feature selection
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 2
  start-page: 271
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2023.123069_b19
  article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection
  publication-title: International Journal of Information Technology and Knowledge Management
– volume: 484
  start-page: 153
  year: 2019
  ident: 10.1016/j.eswa.2023.123069_b6
  article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.01.064
– volume: 174
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b33
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Systems with Applications
– year: 2022
  ident: 10.1016/j.eswa.2023.123069_b17
  article-title: A hybrid two-stage teaching-learning-based optimization algorithm for feature selection in bioinformatics
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– year: 2022
  ident: 10.1016/j.eswa.2023.123069_b45
  article-title: A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 24
  start-page: 617
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b23
  article-title: Random rotboost: An ensemble classification method based on rotation forest and adaboost in random subsets and its application to clinical decision support
  publication-title: Entropy
  doi: 10.3390/e24050617
– volume: 64
  start-page: 22
  year: 2014
  ident: 10.1016/j.eswa.2023.123069_b57
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.03.015
– volume: 51
  start-page: 1771
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b29
  article-title: Daily activity feature selection in smart homes based on pearson correlation coefficient
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-019-10185-8
– volume: 52
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.123069_b4
  article-title: Ensembles for feature selection: A review and future trends
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.008
– volume: 164
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b32
  article-title: A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113981
– volume: 6
  start-page: 355
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b50
  article-title: Multi-objective feature selection with missing data in classification
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2021.3074147
– volume: 256
  start-page: 56
  year: 2017
  ident: 10.1016/j.eswa.2023.123069_b30
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– volume: 234
  start-page: 75
  year: 2017
  ident: 10.1016/j.eswa.2023.123069_b15
  article-title: Multi-objective evolutionary feature selection for online sales forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.045
– volume: 23
  start-page: 580
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2023.123069_b18
  article-title: A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2010.03.016
– volume: 23
  start-page: 368
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b28
  article-title: FS-MOEA: A novel feature selection algorithm for IDSs in vehicular networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3011452
– volume: 140
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b1
  article-title: Feature selection methods on gene expression microarray data for cancer classification: A systematic review
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105051
– volume: 38
  start-page: 8144
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2023.123069_b12
  article-title: Hybrid feature selection by combining filters and wrappers
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.156
– volume: 33
  start-page: 1128
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b47
  article-title: Hybrid feature selection algorithm combining information gain ratio and genetic algorithm
  publication-title: Journal of Software
– volume: 26
  start-page: 5540
  issue: 11
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b35
  article-title: Mobileunet-fpn: A semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3182722
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b42
  article-title: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113122
– volume: 241
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b9
  article-title: Multi-label feature selection based on label correlations and feature redundancy
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108256
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b44
  article-title: DH-GAC: Deep hierarchical context fusion network with modified geodesic active contour for multiple neurofibromatosis segmentation
  publication-title: Neural Computing and Applications
– volume: 107
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b46
  article-title: A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2020.103465
– volume: 80
  start-page: 10373
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b2
  article-title: Feature selection method using improved CHI Square on Arabic text classifiers: analysis and application
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-10074-6
– volume: 119
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b8
  article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.108532
– volume: 115
  start-page: 825
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b36
  article-title: Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.09.014
– volume: 9
  start-page: 949
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b21
  article-title: HFMOEA: A hybrid framework for multi-objective feature selection
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwac040
– volume: 172
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b20
  article-title: A NSGA2-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107183
– volume: 36
  start-page: 10896
  issue: 8
  year: 2009
  ident: 10.1016/j.eswa.2023.123069_b22
  article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.038
– volume: 196
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b41
  article-title: A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116621
– volume: 572
  start-page: 574
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b48
  article-title: A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.02.056
– year: 2022
  ident: 10.1016/j.eswa.2023.123069_b31
  article-title: A YOLOX-based deep instance segmentation neural network for cardiac anatomical structures in fetal ultrasound images
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 23
  start-page: bbab354
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b5
  article-title: Benchmark of filter methods for feature selection in high-dimensional gene expression survival data
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbab354
– volume: 57
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.123069_b34
  article-title: Distributed ReliefF-based feature selection in Spark
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-017-1145-y
– volume: 135
  start-page: 234
  year: 2022
  ident: 10.1016/j.eswa.2023.123069_b58
  article-title: An ultrasound standard plane detection model of fetal head based on multi-task learning and hybrid knowledge graph
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.04.011
– volume: 565
  start-page: 105
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b38
  article-title: TAGA: Tabu Asexual Genetic Algorithm embedded in a filter/filter feature selection approach for high-dimensional data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.01.020
– volume: 36
  start-page: 1161
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2023.123069_b25
  article-title: Research on massive ECG data in XGBoost
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 35
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2023.123069_b49
  article-title: CGUFS: A clustering-guided unsupervised feature selection algorithm for gene expression data
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2023.101731
– volume: 227
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b3
  article-title: CS-BPSO: Hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107224
– volume: 24
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2023.123069_b26
  article-title: An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2010.07.003
– volume: 23
  start-page: 568
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2023.123069_b52
  article-title: Finding correlated biclusters from gene expression data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.150
– volume: 131
  start-page: 277
  year: 2020
  ident: 10.1016/j.eswa.2023.123069_b51
  article-title: An efficient unsupervised feature selection procedure through feature clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.12.022
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.123069_b11
  article-title: An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme
  publication-title: Machine Learning
– volume: 78
  start-page: 144
  year: 2018
  ident: 10.1016/j.eswa.2023.123069_b24
  article-title: A novel bagging C4. 5 algorithm based on wrapper feature selection for supporting wise clinical decision making
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2017.11.005
SSID ssj0017007
Score 2.5232046
Snippet High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 123069
SubjectTerms Feature selection
Gene expression data
Multi-objective genetic algorithm
Spectral clustering
Symmetric uncertainty
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqLrDwRpSXPLCB2zwcO2GrKkqFBEup1C1yYocGlbRqU0oXfju-xKlgoEKMSWwl8p3vvsjffYfQVSCptGM3Ilxyj1DJORG-rYgT8chyg0RHTShOfnxivQF9GHrDGupUtTBAqzSxv4zpRbQ2d1pmNVvTNG31NTjQ6RBOGi3X07AfKtgphy4Gzc81zQPk53ipt8cJjDaFMyXHS82XoD3kuE0boHjwW3LaWmRTsVqK8fhb8unuoR2DGnG7_LB9VFPZAdqtOjJgs0EP0ap7T3rd_i1u40QVkp04SeE8HItM4qKCA6t34214tIJyrfXIedESBx6I8ctkluajN6whLQZFYyKhC0Cp4IG1zymsPgyFNsPAMj1Cg-7dc6dHTHMFEruU5sS3RaJ8KhzlxBFjMbN4pNdSQASUQu9apihnINhn0YQFiXSFNqoVKBmwhEWBe4zq2SRTJwjbiUOFRjIcfhe9IPalcoSklrQojS3PbyC7WtUwNsrj0ABjHFYUs9cQLBGCJcLSEg10vZ4zLXU3No72KmOFP7wn1Ilh47ybtWX_8JrTf77mDG3rK1qyfM9RPZ8t1IXGMnl0WTjrFwsZ8Us
  priority: 102
  providerName: Elsevier
Title FG-HFS: A feature filter and group evolution hybrid feature selection algorithm for high-dimensional gene expression data
URI https://dx.doi.org/10.1016/j.eswa.2023.123069
https://doi.org/10.1016/j.eswa.2023.123069
UnpaywallVersion publishedVersion
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDp7EnxGjpAdvWrIfXbt5I0ZEjcRESfS0dGsnKE4DQ8SDf7t9WyFq1OB5r1323rf2a_re9xDaCySVduxGhEvuESo5J8K3FXEiHllukOhVE4qTL9qs1aFnN96NkcmBWpgv9_d5HpYajkEfyHHrNtDlYBGVmad5dwmVO-3Lxm0hpscJLSSXbZ-7hGnUmQqZnyf5bRdaGqXPYjIW_f6nXaZZKdoVDXNxQkgueaiPsqgev32TbpzvA1bQsiGbuFGgYxUtqHQNVaaNHLD5r9fRpHlCWs2rQ9zAicqVPnHSg2t0LFKJ88IPrF4MSHF3AlVeM8th3kkHHoj-3dOgl3UfsWbCGISQiYTmAYXwB9ZQVVi9mszbFENy6gbqNI-vj1rE9GQgsUtpRnxbJMqnwlFOHDEWM4tH-nQtYOGUQrudKcoZ6PxZNGFBIl2hsWAFSgYsYVHgbqJS-pSqLYTtxKFCEyAOp0wviH2pHCGpJS1KY8vzq8iexiiMjWA59M3oh9PMtPsQfBuCb8PCt1W0PxvzXMh1_GntTUMfGsJREIlQR_HPcQcznMzxmu3_me-gUjYYqV1NdrKohhbr73YNlRun5612zWD-A2x2_NE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcrCG_HGAxuY5uHYCVtVUQoUlhaJLXJiB4pKWvVB6cJvx5c4FQxUiDU-y5HvfHeWv_sOodNAUmnHbkS45B6hknMifFsRJ-KR5QaJ9ppQnHz_wJqP9PbJeyqhelELA7BK4_tzn555a_OlanazOuh2q22dHOhwCC-NluvptH8JLVPP4XADu_ic4zyAf47nhHucgLipnMlBXmo0BfIhx72wIRcPfotOlUk6ELOp6PW-RZ_GOlo1aSOu5X-2gUoq3URrRUsGbE7oFpo1rkmz0b7ENZyojLMTJ114EMcilTgr4cDq3ZgbfplBvdZccpT1xIEB0XvuD7vjlzesc1oMlMZEQhuAnMIDa6NTWH0YDG2KAWa6jR4bV516k5juCiR2KR0T3xaJ8qlwlBNHjMXM4pHeTAEuUAp9bJminAFjn0UTFiTSFVqrVqBkwBIWBe4OKqf9VO0ibCcOFTqV4XBf9ILYl8oRklrSojS2PH8P2cWuhrGhHocOGL2wwJi9hqCJEDQR5prYQ2fzOYOceGOhtFcoK_xhPqGODAvnnc81-4dl9v-5zAmqNDv3rbB183B3gFb0CM0hv4eoPB5O1JFObMbRcWa4Xzzd9G4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDp7EnxGjpgdvWrIfXbt5I0YkJhITJcHT0q2doDgIDBH_evu2QtQowfNeu-y9b-3X9L3vIXQaSCrt2I0Il9wjVHJOhG8r4kQ8stwg0asmFCfftlizTW86XsfI5EAtzLf7-zwPS42noA_kuDUb6HKwjsrM07y7hMrt1l39sRDT44QWksu2z13CNOpMhczvk_y1C21M0qGYTUW__2WXaVSKdkXjXJwQkkteapMsqsUfP6QbV_uALbRpyCauF-jYRmsq3UGVeSMHbP7rXTRrXJNm4_4C13GicqVPnPTgGh2LVOK88AOrNwNS3J1BldfCcpx30oEHov80GPWy7ivWTBiDEDKR0DygEP7AGqoKq3eTeZtiSE7dQ-3G1cNlk5ieDCR2Kc2Ib4tE-VQ4yokjxmJm8UifrgUsnFJotzNFOQOdP4smLEikKzQWrEDJgCUsCtx9VEoHqTpA2E4cKjQB4nDK9ILYl8oRklrSojS2PL-K7HmMwtgIlkPfjH44z0x7DsG3Ifg2LHxbRWeLMcNCrmOptTcPfWgIR0EkQh3FpePOFzhZ4TWH_zM_QqVsNFHHmuxk0YlB-SevgfpF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FG-HFS%3A+A+feature+filter+and+group+evolution+hybrid+feature+selection+algorithm+for+high-dimensional+gene+expression+data&rft.jtitle=Expert+systems+with+applications&rft.au=Xu%2C+Zhaozhao&rft.au=Yang%2C+Fangyuan&rft.au=Tang%2C+Chaosheng&rft.au=Wang%2C+Hong&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=245&rft_id=info:doi/10.1016%2Fj.eswa.2023.123069&rft.externalDocID=S0957417423035716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon