A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition
•Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of gait recognition.•Two-dimensional feature sets with KNN are suitable for online gait recognition.•Thirty-seven-dimensional feature sets achi...
Saved in:
| Published in | Biomedical signal processing and control Vol. 68; p. 102587 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 1746-8108 |
| DOI | 10.1016/j.bspc.2021.102587 |
Cover
| Abstract | •Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of gait recognition.•Two-dimensional feature sets with KNN are suitable for online gait recognition.•Thirty-seven-dimensional feature sets achieved the highest classification accuracy.
Surface electromyography (sEMG) and electroencephalogram (EEG) can be utilized to discriminate gait phases. However, the classification performance of various combination methods of the features extracted from sEMG and EEG channels for seven gait phase recognition has yet to be discussed. This study investigates the effectiveness of various dimensions of feature sets with different neural network algorithms in multiclass discrimination of gait phases. There are thirty-seven feature sets (slope sign change (SSC) of eight sEMG and twenty-one EEG channels, mean absolute value (MAV) of eight sEMG channels) and three classifiers (Linear Discriminant Analysis (LDA), K-nearest neighbor (KNN), Kernel Support Vector Machine (KSVM)) were utilized. The thirty-seven one-dimensional and six two-dimensional feature sets were applied to LDA and KNN, twenty-one-dimensional and thirty-seven-dimensional feature sets were applied to three optimized KSVM for gait phase recognition. We found that thirty-seven-dimensional feature sets with grid search KSVM achieved the highest classification accuracy (98.56 ± 1.34 %) and the time consumption was 26.37 s. The average time consumption of two-dimensional feature sets with KNN was the shortest (0.33 s). The SSC of sEMG with wider values distributions than others obtained a high performance. This indicates the wider the value distribution of features, the better accuracy of gait recognition. The findings suggest that a multi-dimensional feature set composed of EEG and sEMG features with KSVM achieved good performance. Considering execution time and recognition rate, two-dimensional feature sets with KNN are suitable for online gait recognition, thirty-seven-dimensional feature sets with KSVM are more likely to be used for off-line gait analysis. |
|---|---|
| AbstractList | •Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of gait recognition.•Two-dimensional feature sets with KNN are suitable for online gait recognition.•Thirty-seven-dimensional feature sets achieved the highest classification accuracy.
Surface electromyography (sEMG) and electroencephalogram (EEG) can be utilized to discriminate gait phases. However, the classification performance of various combination methods of the features extracted from sEMG and EEG channels for seven gait phase recognition has yet to be discussed. This study investigates the effectiveness of various dimensions of feature sets with different neural network algorithms in multiclass discrimination of gait phases. There are thirty-seven feature sets (slope sign change (SSC) of eight sEMG and twenty-one EEG channels, mean absolute value (MAV) of eight sEMG channels) and three classifiers (Linear Discriminant Analysis (LDA), K-nearest neighbor (KNN), Kernel Support Vector Machine (KSVM)) were utilized. The thirty-seven one-dimensional and six two-dimensional feature sets were applied to LDA and KNN, twenty-one-dimensional and thirty-seven-dimensional feature sets were applied to three optimized KSVM for gait phase recognition. We found that thirty-seven-dimensional feature sets with grid search KSVM achieved the highest classification accuracy (98.56 ± 1.34 %) and the time consumption was 26.37 s. The average time consumption of two-dimensional feature sets with KNN was the shortest (0.33 s). The SSC of sEMG with wider values distributions than others obtained a high performance. This indicates the wider the value distribution of features, the better accuracy of gait recognition. The findings suggest that a multi-dimensional feature set composed of EEG and sEMG features with KSVM achieved good performance. Considering execution time and recognition rate, two-dimensional feature sets with KNN are suitable for online gait recognition, thirty-seven-dimensional feature sets with KSVM are more likely to be used for off-line gait analysis. |
| ArticleNumber | 102587 |
| Author | Hong, Jun Zhang, Jinhua Tian, Feifei Wei, Pengna |
| Author_xml | – sequence: 1 givenname: Pengna surname: Wei fullname: Wei, Pengna organization: The Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 2 givenname: Jinhua surname: Zhang fullname: Zhang, Jinhua email: jjshua@mail.xjtu.edu.cn organization: The Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 3 givenname: Feifei surname: Tian fullname: Tian, Feifei organization: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China – sequence: 4 givenname: Jun surname: Hong fullname: Hong, Jun organization: The Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China |
| BookMark | eNqNkEFLwzAYhoNMcJv-AU_5A51J2zUpeBmjTmHiZffwNU22zC4pSebYv7dlevEwPL0vHzwvfM8EjayzCqFHSmaU0OJpP6tDJ2cpSWl_SOec3aAxZXmRcEr46LeTMr9DkxD2hOSc0XyM6gWW7tCBN8FZ7DS26uih7SOenP8MGNqt8ybuDgFr53FVrTDYBofqfYW1gnj0KuAagmrwFkzE3a7vAXsl3daaaJy9R7ca2qAefnKKNi_VZvmarD9Wb8vFOpFZnseEsaYp5oTXvGYAmpRSyayY5xpUXai80SzjdE6YTiVNC8qJLlNeQ8loKsuMZVOUXWaPtoPzCdpWdN4cwJ8FJWKwJPZisCQGS-JiqafSCyW9C8Er_T-I_4GkiTD8Gj2Y9jr6fEFVb-LLKC-CNMpK1ZheWRSNM9fwb1vcljc |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_109651 crossref_primary_10_1016_j_jksuci_2024_102161 crossref_primary_10_4274_jtss_galenos_2022_70288 crossref_primary_10_1142_S0219477523500335 crossref_primary_10_1016_j_bspc_2022_104272 crossref_primary_10_3390_sym15010163 crossref_primary_10_1016_j_gaitpost_2024_12_028 crossref_primary_10_1109_ACCESS_2025_3541585 crossref_primary_10_4028_p_Q2hYbX crossref_primary_10_1142_S0219519423400511 crossref_primary_10_1016_j_bspc_2021_103115 crossref_primary_10_1016_j_csbj_2025_02_001 crossref_primary_10_3390_robotics13090133 crossref_primary_10_1016_j_bspc_2022_103754 crossref_primary_10_1016_j_sasc_2024_200144 crossref_primary_10_3389_fnbot_2022_1047325 crossref_primary_10_3389_fnbot_2021_692539 crossref_primary_10_1016_j_medntd_2024_100341 crossref_primary_10_3934_mbe_2023308 crossref_primary_10_1109_TNSRE_2024_3459924 crossref_primary_10_1016_j_engappai_2025_110106 crossref_primary_10_1016_j_engappai_2023_105886 crossref_primary_10_1109_JSEN_2024_3352005 crossref_primary_10_1016_j_bspc_2022_103693 crossref_primary_10_61189_673672yizrwd crossref_primary_10_3390_bioengineering10101162 crossref_primary_10_3390_math10224387 crossref_primary_10_3390_s24217016 crossref_primary_10_1016_j_engappai_2023_105909 crossref_primary_10_1016_j_ijhcs_2024_103229 crossref_primary_10_1016_j_jobe_2023_106776 crossref_primary_10_1155_2022_9933018 |
| Cites_doi | 10.1109/TBME.2012.2198821 10.1113/jphysiol.2012.227397 10.1016/j.eswa.2012.01.102 10.1109/TBME.2008.919734 10.1016/j.neuroimage.2017.07.013 10.3389/fnhum.2018.00312 10.1097/01241398-199211000-00023 10.1109/NER.2009.5109299 10.1109/TNSRE.2016.2521160 10.3233/THC-174836 10.1109/ACCESS.2020.2991812 10.1016/j.eswa.2013.02.023 10.1109/86.481972 10.3390/s16010066 10.1109/10.204774 10.1088/1741-2552/ab9842 10.1109/ChiCC.2016.7553988 10.1016/j.ijleo.2017.10.090 10.1109/PHT.2013.6461326 10.1186/s10033-019-0389-8 10.1016/j.bspc.2018.08.030 10.1016/j.neuroimage.2010.08.066 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.bspc.2021.102587 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | oai:ir.opt.ac.cn:181661/94675 10_1016_j_bspc_2021_102587 S1746809421001841 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c344t-77dd6508b8b7aaf09cec3654faeb6e4df7381507f2c126180f928ba9712c9373 |
| IEDL.DBID | UNPAY |
| ISSN | 1746-8094 1746-8108 |
| IngestDate | Sun Oct 26 04:14:31 EDT 2025 Wed Oct 29 21:19:14 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:43:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Surface electromyography (sEMG) Electroencephalogram (EEG) Gait phases recognition Feature-classifier combination Feature dimension |
| Language | English |
| License | cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-77dd6508b8b7aaf09cec3654faeb6e4df7381507f2c126180f928ba9712c9373 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://ir.opt.ac.cn/handle/181661/94675 |
| ParticipantIDs | unpaywall_primary_10_1016_j_bspc_2021_102587 crossref_primary_10_1016_j_bspc_2021_102587 crossref_citationtrail_10_1016_j_bspc_2021_102587 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102587 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zardoshti-Kermani, Wheeler, Badie, Hashemi (bib0175) 1995; 3 Shi, Zhang, Zhang, Ding (bib0040) 2019; 32 Nazmi, Abdul Rahman, Yamamoto, Ahmad (bib0045) 2019; 47 Joshi, Lahiri, Thakor (bib0155) 2013 Gordleeva, Lobov, Grigorev, Savosenkov, Shamshin, Lukoyanov, Khoruzhko, Kazantsev (bib0075) 2020; 8 Hudgins, Parker, Scott (bib0165) 1993; 40 Choi, Kim (bib0060) 2019 Indriani, Muslim (bib0125) 2019; 10 Gwin, Gramann, Makeig, Ferris (bib0145) 2011; 54 Li, Xu, Liu, Lu (bib0085) 2018; 26 Ziegler, Gattringer, Mueller (bib0010) 2018 Taborri, Palermo, Rossi, Cappa (bib0015) 2016; 16 Jacquelin Perry, Slack (bib0135) 1993 Lenzi, De Rossi, Vitiello, Carrozza (bib0025) 2012; 59 Wang, Zhang (bib0200) 2012; 39 Tariq, Trivailo, Simic (bib0185) 2018; 12 Tortora, Ghidoni, Chisari, Micera, Artoni (bib0035) 2020; 17 Zhang, Zhao, Han, Zhao (bib0105) 2014 Choi, Lee, Kim, Lee, Kim (bib0030) 2018 Islam, Wu, Ahmadi, Sid-Ahmed (bib0190) 2008 Young, Ferris (bib0005) 2017; 25 Petersen, Willerslev-Olsen, Conway, Nielsen (bib0140) 2012; 590 Perry, k, Davids (bib0150) 1992; 12 Artoni, Fanciullacci, Bertolucci, Panarese, Makeig, Micera, Chisari (bib0130) 2017; 159 Negi, Kumar, Mishra (bib0100) 2016 na Wei, Xie, Tang, Li, Kim, Wu (bib0050) 2018 Mannini, Sabatini (bib0070) 2011 Tan, Sun, Yang, Che, Ye, Zhang, Zou (bib0115) 2018; 154 Yazdani, Ebrahimi, Hoffmann (bib0180) 2009 Oskoei, Hu (bib0110) 2008; 55 Anika Nastarin, Akter (bib0080) 2019 Phinyomark, Phukpattaranont, Limsakul (bib0170) 2012; 39 Li, Gao, Chen, Xu (bib0065) 2016 Morbidoni, Cucchiarelli, Fioretti, Di Nardo (bib0020) 2019; 8 Paul, Goyal, Jaswal (bib0095) 2017 Barros, Guilherme, Horta (bib0120) 2006 Tryon, Friedman, Trejos (bib0055) 2019 Murugappan (bib0090) 2011 Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (bib0160) 2013; 40 Kadoya, Nagaya, Konyo, Tadokoro (bib0195) 2014 Tariq (10.1016/j.bspc.2021.102587_bib0185) 2018; 12 Petersen (10.1016/j.bspc.2021.102587_bib0140) 2012; 590 Ziegler (10.1016/j.bspc.2021.102587_bib0010) 2018 Taborri (10.1016/j.bspc.2021.102587_bib0015) 2016; 16 na Wei (10.1016/j.bspc.2021.102587_bib0050) 2018 Young (10.1016/j.bspc.2021.102587_bib0005) 2017; 25 Phinyomark (10.1016/j.bspc.2021.102587_bib0160) 2013; 40 Gwin (10.1016/j.bspc.2021.102587_bib0145) 2011; 54 Islam (10.1016/j.bspc.2021.102587_bib0190) 2008 Artoni (10.1016/j.bspc.2021.102587_bib0130) 2017; 159 Shi (10.1016/j.bspc.2021.102587_bib0040) 2019; 32 Phinyomark (10.1016/j.bspc.2021.102587_bib0170) 2012; 39 Anika Nastarin (10.1016/j.bspc.2021.102587_bib0080) 2019 Indriani (10.1016/j.bspc.2021.102587_bib0125) 2019; 10 Paul (10.1016/j.bspc.2021.102587_bib0095) 2017 Mannini (10.1016/j.bspc.2021.102587_bib0070) 2011 Choi (10.1016/j.bspc.2021.102587_bib0030) 2018 Tortora (10.1016/j.bspc.2021.102587_bib0035) 2020; 17 Gordleeva (10.1016/j.bspc.2021.102587_bib0075) 2020; 8 Negi (10.1016/j.bspc.2021.102587_bib0100) 2016 Zardoshti-Kermani (10.1016/j.bspc.2021.102587_bib0175) 1995; 3 Wang (10.1016/j.bspc.2021.102587_bib0200) 2012; 39 Yazdani (10.1016/j.bspc.2021.102587_bib0180) 2009 Morbidoni (10.1016/j.bspc.2021.102587_bib0020) 2019; 8 Choi (10.1016/j.bspc.2021.102587_bib0060) 2019 Tan (10.1016/j.bspc.2021.102587_bib0115) 2018; 154 Joshi (10.1016/j.bspc.2021.102587_bib0155) 2013 Barros (10.1016/j.bspc.2021.102587_bib0120) 2006 Kadoya (10.1016/j.bspc.2021.102587_bib0195) 2014 Hudgins (10.1016/j.bspc.2021.102587_bib0165) 1993; 40 Perry (10.1016/j.bspc.2021.102587_bib0150) 1992; 12 Murugappan (10.1016/j.bspc.2021.102587_bib0090) 2011 Lenzi (10.1016/j.bspc.2021.102587_bib0025) 2012; 59 Oskoei (10.1016/j.bspc.2021.102587_bib0110) 2008; 55 Nazmi (10.1016/j.bspc.2021.102587_bib0045) 2019; 47 Li (10.1016/j.bspc.2021.102587_bib0065) 2016 Li (10.1016/j.bspc.2021.102587_bib0085) 2018; 26 Zhang (10.1016/j.bspc.2021.102587_bib0105) 2014 Tryon (10.1016/j.bspc.2021.102587_bib0055) 2019 Jacquelin Perry (10.1016/j.bspc.2021.102587_bib0135) 1993 |
| References_xml | – volume: 590 start-page: 2443 year: 2012 end-page: 2452 ident: bib0140 article-title: The motor cortex drives the muscles during walking in human subjects publication-title: J. Physiol. – start-page: 4369 year: 2011 end-page: 4373 ident: bib0070 article-title: A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. – start-page: 1 year: 2019 end-page: 3 ident: bib0060 article-title: Real-time decoding of EEG gait intention for controlling a lower-limb exoskeleton system publication-title: 7th Int. Winter Conf. Brain-Computer Interface, BCI 2019 – volume: 3 start-page: 324 year: 1995 end-page: 333 ident: bib0175 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Trans. Rehabil. Eng. – start-page: 1 year: 2018 end-page: 3 ident: bib0030 article-title: Detecting voluntary gait initiation/termination intention using EEG publication-title: 2018 6th Int. Conf. Brain-Computer Interface, BCI 2018. 2018-Janua – volume: 8 start-page: 84070 year: 2020 end-page: 84081 ident: bib0075 article-title: Real-Time EEG-EMG human-machine interface-based control system for a lower-limb exoskeleton publication-title: IEEE Access – volume: 55 start-page: 1956 year: 2008 end-page: 1965 ident: bib0110 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 119 year: 2019 ident: bib0125 article-title: SVM optimization based on PSO and AdaBoost to increasing accuracy of CKD diagnosis, lontar komput publication-title: J. Ilm. Teknol. Inf. – volume: 16 start-page: 40 year: 2016 end-page: 42 ident: bib0015 article-title: Gait partitioning methods: a systematic review publication-title: Sensors (Switzerland) – volume: 54 start-page: 1289 year: 2011 end-page: 1296 ident: bib0145 article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking publication-title: Neuroimage – start-page: 106 year: 2011 end-page: 110 ident: bib0090 article-title: Electromyogram signal based human emotion classification using KNN and LDA publication-title: Proc. - 2011 IEEE Int. Conf. Syst. Eng. Technol. ICSET 2011 – start-page: 169 year: 2017 end-page: 175 ident: bib0095 article-title: Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features publication-title: 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017. 2017-Janua – volume: 17 year: 2020 ident: bib0035 article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network publication-title: J. Neural Eng. – volume: 159 start-page: 403 year: 2017 end-page: 416 ident: bib0130 article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking publication-title: Neuroimage – volume: 40 start-page: 4832 year: 2013 end-page: 4840 ident: bib0160 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. – start-page: 143 year: 2019 end-page: 148 ident: bib0080 article-title: Robust control of hand prostheses from surface EMG Signal for transradial amputees publication-title: 2019 5th Int. Conf. Adv. Electr. Eng. – start-page: 327 year: 2009 end-page: 330 ident: bib0180 article-title: Classification of EEG signals using Dempster Shafer theory and a K-nearest neighbor classifier publication-title: 2009 4th Int. IEEE/EMBS Conf. Neural Eng. NER’ 09 – start-page: 486 year: 2006 end-page: 489 ident: bib0120 article-title: GA-SVM optimization kernel applied to analog IC design automation publication-title: Proc. IEEE Int. Conf. Electron. Circuits Syst. – volume: 39 start-page: 28 year: 2012 end-page: 31 ident: bib0200 article-title: A parameter optimization method for an SVM based on improved grid search algorithm publication-title: Appl. Sci. Technol. – volume: 59 start-page: 2180 year: 2012 end-page: 2190 ident: bib0025 article-title: Intention-based EMG control for powered exoskeletons publication-title: IEEE Trans. Biomed. Eng. – volume: 39 start-page: 7420 year: 2012 end-page: 7431 ident: bib0170 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. – volume: 26 start-page: S509 year: 2018 end-page: S519 ident: bib0085 article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification publication-title: Technol. Health Care – volume: 40 start-page: 82 year: 1993 end-page: 94 ident: bib0165 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. – volume: 25 start-page: 171 year: 2017 end-page: 182 ident: bib0005 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 12 year: 1992 ident: bib0150 article-title: Gait analysis: normal and pathological function publication-title: J. Pediatr. Orthop. – year: 2016 ident: bib0100 article-title: Feature extraction and classification for EMG signals using linear discriminant analysis publication-title: Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. (Fall), ICACCA 2016 – volume: 32 year: 2019 ident: bib0040 article-title: A review on lower limb rehabilitation exoskeleton robots publication-title: Chinese J. Mech. Eng. – volume: 47 start-page: 334 year: 2019 end-page: 343 ident: bib0045 article-title: Walking gait event detection based on electromyography signals using artificial neural network publication-title: Biomed. Signal Process. Control – start-page: 4068 year: 2016 end-page: 4072 ident: bib0065 article-title: Gait recognition based on EMG with different individuals and sample sizes publication-title: Chinese Control Conf. CCC. 2016-Augus – volume: 12 year: 2018 ident: bib0185 article-title: EEG-based BCI control schemes for lower-limb assistive-robots publication-title: Front. Hum. Neurosci. – start-page: 1541 year: 2008 end-page: 1546 ident: bib0190 article-title: Investigating the Performance of Naive- Bayes Classifiers and K- Nearest Neighbor Classifiers – start-page: 524 year: 1993 ident: bib0135 article-title: Thorofare, Gait Analysis:Normal and Pathological Function – start-page: 228 year: 2013 end-page: 231 ident: bib0155 article-title: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis publication-title: 2013 IEEE Point-of-Care Healthc. Technol. – year: 2018 ident: bib0050 article-title: sEMG based gait phase recognition for children with spastic cerebral palsy publication-title: Ann. Biomed. Eng. – start-page: 1852 year: 2014 end-page: 1857 ident: bib0195 article-title: A precise gait phase detection based on high-frequency vibration on lower limbs publication-title: Proc. IEEE Int. Conf. Robot. Autom. – volume: 154 start-page: 581 year: 2018 end-page: 592 ident: bib0115 article-title: Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM publication-title: Optik (Stuttg) – start-page: 978 year: 2018 end-page: 983 ident: bib0010 article-title: Classification of gait phases based on bilateral EMG data using support vector machines publication-title: IEEE – volume: 8 year: 2019 ident: bib0020 article-title: A deep learning approach to EMG-based classification of gait phases during level ground walking publication-title: Electron – start-page: 971 year: 2019 end-page: 976 ident: bib0055 article-title: Performance evaluation of EEG/EMG fusion methods for motion classification publication-title: 2019 IEEE 16th Int. Conf. Rehabil. Robot. – start-page: 4850 year: 2014 end-page: 4855 ident: bib0105 article-title: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand publication-title: Proc. IEEE Int. Conf. Robot. Autom. – volume: 59 start-page: 2180 year: 2012 ident: 10.1016/j.bspc.2021.102587_bib0025 article-title: Intention-based EMG control for powered exoskeletons publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2198821 – volume: 590 start-page: 2443 year: 2012 ident: 10.1016/j.bspc.2021.102587_bib0140 article-title: The motor cortex drives the muscles during walking in human subjects publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.227397 – volume: 39 start-page: 7420 year: 2012 ident: 10.1016/j.bspc.2021.102587_bib0170 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.102 – start-page: 169 year: 2017 ident: 10.1016/j.bspc.2021.102587_bib0095 article-title: Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features publication-title: 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017. 2017-Janua – volume: 55 start-page: 1956 year: 2008 ident: 10.1016/j.bspc.2021.102587_bib0110 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919734 – volume: 159 start-page: 403 year: 2017 ident: 10.1016/j.bspc.2021.102587_bib0130 article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.013 – volume: 12 year: 2018 ident: 10.1016/j.bspc.2021.102587_bib0185 article-title: EEG-based BCI control schemes for lower-limb assistive-robots publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00312 – volume: 12 year: 1992 ident: 10.1016/j.bspc.2021.102587_bib0150 article-title: Gait analysis: normal and pathological function publication-title: J. Pediatr. Orthop. doi: 10.1097/01241398-199211000-00023 – volume: 39 start-page: 28 year: 2012 ident: 10.1016/j.bspc.2021.102587_bib0200 article-title: A parameter optimization method for an SVM based on improved grid search algorithm publication-title: Appl. Sci. Technol. – start-page: 4850 year: 2014 ident: 10.1016/j.bspc.2021.102587_bib0105 article-title: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand publication-title: Proc. IEEE Int. Conf. Robot. Autom. – start-page: 327 year: 2009 ident: 10.1016/j.bspc.2021.102587_bib0180 article-title: Classification of EEG signals using Dempster Shafer theory and a K-nearest neighbor classifier publication-title: 2009 4th Int. IEEE/EMBS Conf. Neural Eng. NER’ 09 doi: 10.1109/NER.2009.5109299 – volume: 25 start-page: 171 year: 2017 ident: 10.1016/j.bspc.2021.102587_bib0005 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2521160 – start-page: 143 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0080 article-title: Robust control of hand prostheses from surface EMG Signal for transradial amputees publication-title: 2019 5th Int. Conf. Adv. Electr. Eng. – year: 2018 ident: 10.1016/j.bspc.2021.102587_bib0050 article-title: sEMG based gait phase recognition for children with spastic cerebral palsy publication-title: Ann. Biomed. Eng. – volume: 8 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0020 article-title: A deep learning approach to EMG-based classification of gait phases during level ground walking publication-title: Electron – start-page: 486 year: 2006 ident: 10.1016/j.bspc.2021.102587_bib0120 article-title: GA-SVM optimization kernel applied to analog IC design automation publication-title: Proc. IEEE Int. Conf. Electron. Circuits Syst. – volume: 26 start-page: S509 year: 2018 ident: 10.1016/j.bspc.2021.102587_bib0085 article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification publication-title: Technol. Health Care doi: 10.3233/THC-174836 – start-page: 978 year: 2018 ident: 10.1016/j.bspc.2021.102587_bib0010 article-title: Classification of gait phases based on bilateral EMG data using support vector machines publication-title: IEEE – volume: 8 start-page: 84070 year: 2020 ident: 10.1016/j.bspc.2021.102587_bib0075 article-title: Real-Time EEG-EMG human-machine interface-based control system for a lower-limb exoskeleton publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991812 – volume: 40 start-page: 4832 year: 2013 ident: 10.1016/j.bspc.2021.102587_bib0160 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.023 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2021.102587_bib0030 article-title: Detecting voluntary gait initiation/termination intention using EEG publication-title: 2018 6th Int. Conf. Brain-Computer Interface, BCI 2018. 2018-Janua – start-page: 524 year: 1993 ident: 10.1016/j.bspc.2021.102587_bib0135 – start-page: 1541 year: 2008 ident: 10.1016/j.bspc.2021.102587_bib0190 – volume: 3 start-page: 324 year: 1995 ident: 10.1016/j.bspc.2021.102587_bib0175 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.481972 – volume: 16 start-page: 40 year: 2016 ident: 10.1016/j.bspc.2021.102587_bib0015 article-title: Gait partitioning methods: a systematic review publication-title: Sensors (Switzerland) doi: 10.3390/s16010066 – volume: 10 start-page: 119 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0125 article-title: SVM optimization based on PSO and AdaBoost to increasing accuracy of CKD diagnosis, lontar komput publication-title: J. Ilm. Teknol. Inf. – volume: 40 start-page: 82 year: 1993 ident: 10.1016/j.bspc.2021.102587_bib0165 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – year: 2016 ident: 10.1016/j.bspc.2021.102587_bib0100 article-title: Feature extraction and classification for EMG signals using linear discriminant analysis publication-title: Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. (Fall), ICACCA 2016 – volume: 17 year: 2020 ident: 10.1016/j.bspc.2021.102587_bib0035 article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab9842 – start-page: 4068 year: 2016 ident: 10.1016/j.bspc.2021.102587_bib0065 article-title: Gait recognition based on EMG with different individuals and sample sizes publication-title: Chinese Control Conf. CCC. 2016-Augus doi: 10.1109/ChiCC.2016.7553988 – start-page: 106 year: 2011 ident: 10.1016/j.bspc.2021.102587_bib0090 article-title: Electromyogram signal based human emotion classification using KNN and LDA publication-title: Proc. - 2011 IEEE Int. Conf. Syst. Eng. Technol. ICSET 2011 – start-page: 971 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0055 article-title: Performance evaluation of EEG/EMG fusion methods for motion classification publication-title: 2019 IEEE 16th Int. Conf. Rehabil. Robot. – volume: 154 start-page: 581 year: 2018 ident: 10.1016/j.bspc.2021.102587_bib0115 article-title: Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2017.10.090 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0060 article-title: Real-time decoding of EEG gait intention for controlling a lower-limb exoskeleton system publication-title: 7th Int. Winter Conf. Brain-Computer Interface, BCI 2019 – start-page: 4369 year: 2011 ident: 10.1016/j.bspc.2021.102587_bib0070 article-title: A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. – start-page: 228 year: 2013 ident: 10.1016/j.bspc.2021.102587_bib0155 article-title: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis publication-title: 2013 IEEE Point-of-Care Healthc. Technol. doi: 10.1109/PHT.2013.6461326 – volume: 32 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0040 article-title: A review on lower limb rehabilitation exoskeleton robots publication-title: Chinese J. Mech. Eng. doi: 10.1186/s10033-019-0389-8 – volume: 47 start-page: 334 year: 2019 ident: 10.1016/j.bspc.2021.102587_bib0045 article-title: Walking gait event detection based on electromyography signals using artificial neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.030 – volume: 54 start-page: 1289 year: 2011 ident: 10.1016/j.bspc.2021.102587_bib0145 article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.066 – start-page: 1852 year: 2014 ident: 10.1016/j.bspc.2021.102587_bib0195 article-title: A precise gait phase detection based on high-frequency vibration on lower limbs publication-title: Proc. IEEE Int. Conf. Robot. Autom. |
| SSID | ssj0048714 |
| Score | 2.4585667 |
| Snippet | •Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 102587 |
| SubjectTerms | Electroencephalogram (EEG) Feature dimension Feature-classifier combination Gait phases recognition Surface electromyography (sEMG) |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL-pBfGJ9sQdvGptkN69jKWmLUC9W6C3ss43UJDQp4sXf7m5eVJAi3pIwy4bZ3Zlv4ZtvALiT1KEWR6YhbUoMjLk6c4wIQ5jI5y6XApViz9Nnd_KKn-bOvAOGTS2MplXWsb-K6WW0rr_0a2_2szjuvygs7frqdmJrGSG_LF7H2NNdDB6_WpqHwuOlvrc2NrR1XThTcbxonmkZQ9vSCgaOptX9npz2NklGPj_IarWVfEZH4LBGjXBQ_dgx6IjkBBxsaQmeAjqArO0pCFMJtVKlGpNUPO8cktUiXcfF8j2HCqjCMBxDknCYh9MxlKLU98yhTmocLkhcwGypnnPYMozS5AzMRuFsODHqBgoGQxgXCjlzrhEY9alHiDQDJhhyHSyJoK7AXHoqXytAKG1mqZuUb8rA9ikJPMtmCragc9BN0kRcAMi1EJyggSeRAlguD7grJPMdIRC1mHB6wGocF7FaXFz3uFhFDYvsLdLOjrSzo8rZPXDfjskqaY2d1k6zHtGPDRKp2L9z3EO7eH-Y5vKf01yBff1WEXmvQbdYb8SNgisFvS334zcDIOf9 priority: 102 providerName: Elsevier |
| Title | A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition |
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102587 http://ir.opt.ac.cn/handle/181661/94675 |
| UnpaywallVersion | submittedVersion |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LS8NAEMYHbQ_iwbeoaNmDN02bTbJpcixSrYrFg4Kewj61WpPQpIge_Nvd7aZVUHzc9rDDBmbDfCHf_AZgXzHCsPBdR3mMOkEg9DvHqXSk60ciFEr6E9jzRT_sXQdnN-TmA5I0GDWzfGLc4GnLcgZa2Pzawi0zC57MQz0kWnTXoH7dv-zc2nZHg9SdjDy0a-xGVXuMdXKxIjewQg8bTgEx5rnvS9DCOM3pyzMdDj-VmONl6E0bdayz5LE5LlmTv37lNv729CuwVMlM1LH3YhXmZLoGi5_gg-vAOojPhhCiTCGDttQxqTWGF4gO77LRoLx_KpBWtqjbPUH6MFR0L06QkhMgaIFMFRTojg5KlN_rdYFmlqQs3YCr4-7VUc-pJi443A-CUkttIYxkYxFrU6rcmEvuhyRQVLJQBkK1dYHXClJ5HOtPr8hVsRcxGrexx7XO8Tehlmap3AIkDDlOsritfK3IQhGLUCoeESl9hrkk24CnOUh4RSM3QzGGydR29pCYvCUmb4nN2zYczGJyy-L4cTeZpjap1IRVCYkuFj_GHc7uwR-O2fnf9l2olaOx3NNKpmQNmG--4QbUO6fnvX6jutPvV0rzmg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPVQP4hPrcw_eNLZ5J8dS-lDbXqzQW9hnG6lpaFLEi7_dnSQNFaSIt5DssmF2d-Yb-OYbhG4ltanOzaYmDUo0y-LqzjEiNNE0Pe5wKcxM7Hk4cvqv1tPEnlRQe10LA7TKwvfnPj3z1sWbRmHNRhyGjReFpR1PZScGyAh5ULy-Y9mGCxnYw1fJ81CAPBP4htEaDC8qZ3KSF01i0DE0dJAwsIFX93t0qq2imHx-kPl8I_p0D9B-ARtxK_-zQ1QR0RHa2xATPEa0hVnZVBAvJAapSjUnyoneCSbz6WIZprP3BCukijudHiYRx0ln2MNSZAKfCYaoxvGUhCmOZ-o5wSXFaBGdoHG3M273taKDgsZMy0oVdOYcIBj1qEuIbPpMMNOxLUkEdYTFpasCtkKE0mC6SqW8pvQNjxLf1Q2mcIt5iqrRIhJnCHNQghPUd6WpEJbDfe4IyTxbCJPqTNh1pK8NF7BCXRyaXMyDNY3sLQBjB2DsIDd2Hd2Vc-JcW2PraHu9H8GPExIo57913n25eX9Y5vyfy9ygWn88HASDx9HzBdqFLzmr9xJV0-VKXCnsktLr7Gx-A7-M6yA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LS8NAEMYXbQ_iwbdYUdmDN02bTbJpcizSB4LFQwv1FPbZVmMSmhTRv97dbloLStXbHnbYwGyYL-Sb3wBwLSmmiLu2JR1KLM_j6p1jRFjCdgPucyncBez5oe_3ht79CI--IEnTWT3NFsYNljQMZ6CB9K8t1NCz4PE2qPpYie4KqA77j60n0-6okbqLkYdmjeygbI8xTi6aZxpW6CDNKcDaPPdzCdqZJxl5fyNxvFZiOvugt2zUMc6Sl_q8oHX28Z3b-NvTH4C9UmbClrkXh2BLJEdgdw0-eAxoC7LVEEKYSqjRliomMcbwHJJ4nM6mxeQ1h0rZwna7C9VhMG8_dKEUCyBoDnUV5HBMpgXMJmqdw5UlKU1OwKDTHtz1rHLigsVczyuU1OZcSzYa0CYh0g6ZYK6PPUkE9YXHZVMVeKUgpcOQ-vQKbBk6ASVhEzlM6Rz3FFSSNBFnAHJNjhM0bEpXKTKfh9wXkgVYCJciJnANoGUOIlbSyPVQjDha2s6eI523SOctMnmrgZtVTGZYHBt342Vqo1JNGJUQqWKxMe52dQ_-cMz5_7ZfgEoxm4tLpWQKelXe4k8bZvEO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+neural+networks+algorithms+for+EEG+and+sEMG+features+based+gait+phases+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wei%2C+Pengna&rft.au=Zhang%2C+Jinhua&rft.au=Tian%2C+Feifei&rft.au=Hong%2C+Jun&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=68&rft_id=info:doi/10.1016%2Fj.bspc.2021.102587&rft.externalDocID=S1746809421001841 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |