A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition

•Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of gait recognition.•Two-dimensional feature sets with KNN are suitable for online gait recognition.•Thirty-seven-dimensional feature sets achi...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 68; p. 102587
Main Authors Wei, Pengna, Zhang, Jinhua, Tian, Feifei, Hong, Jun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
1746-8108
DOI10.1016/j.bspc.2021.102587

Cover

Abstract •Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of gait recognition.•Two-dimensional feature sets with KNN are suitable for online gait recognition.•Thirty-seven-dimensional feature sets achieved the highest classification accuracy. Surface electromyography (sEMG) and electroencephalogram (EEG) can be utilized to discriminate gait phases. However, the classification performance of various combination methods of the features extracted from sEMG and EEG channels for seven gait phase recognition has yet to be discussed. This study investigates the effectiveness of various dimensions of feature sets with different neural network algorithms in multiclass discrimination of gait phases. There are thirty-seven feature sets (slope sign change (SSC) of eight sEMG and twenty-one EEG channels, mean absolute value (MAV) of eight sEMG channels) and three classifiers (Linear Discriminant Analysis (LDA), K-nearest neighbor (KNN), Kernel Support Vector Machine (KSVM)) were utilized. The thirty-seven one-dimensional and six two-dimensional feature sets were applied to LDA and KNN, twenty-one-dimensional and thirty-seven-dimensional feature sets were applied to three optimized KSVM for gait phase recognition. We found that thirty-seven-dimensional feature sets with grid search KSVM achieved the highest classification accuracy (98.56 ± 1.34 %) and the time consumption was 26.37 s. The average time consumption of two-dimensional feature sets with KNN was the shortest (0.33 s). The SSC of sEMG with wider values distributions than others obtained a high performance. This indicates the wider the value distribution of features, the better accuracy of gait recognition. The findings suggest that a multi-dimensional feature set composed of EEG and sEMG features with KSVM achieved good performance. Considering execution time and recognition rate, two-dimensional feature sets with KNN are suitable for online gait recognition, thirty-seven-dimensional feature sets with KSVM are more likely to be used for off-line gait analysis.
AbstractList •Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of gait recognition.•Two-dimensional feature sets with KNN are suitable for online gait recognition.•Thirty-seven-dimensional feature sets achieved the highest classification accuracy. Surface electromyography (sEMG) and electroencephalogram (EEG) can be utilized to discriminate gait phases. However, the classification performance of various combination methods of the features extracted from sEMG and EEG channels for seven gait phase recognition has yet to be discussed. This study investigates the effectiveness of various dimensions of feature sets with different neural network algorithms in multiclass discrimination of gait phases. There are thirty-seven feature sets (slope sign change (SSC) of eight sEMG and twenty-one EEG channels, mean absolute value (MAV) of eight sEMG channels) and three classifiers (Linear Discriminant Analysis (LDA), K-nearest neighbor (KNN), Kernel Support Vector Machine (KSVM)) were utilized. The thirty-seven one-dimensional and six two-dimensional feature sets were applied to LDA and KNN, twenty-one-dimensional and thirty-seven-dimensional feature sets were applied to three optimized KSVM for gait phase recognition. We found that thirty-seven-dimensional feature sets with grid search KSVM achieved the highest classification accuracy (98.56 ± 1.34 %) and the time consumption was 26.37 s. The average time consumption of two-dimensional feature sets with KNN was the shortest (0.33 s). The SSC of sEMG with wider values distributions than others obtained a high performance. This indicates the wider the value distribution of features, the better accuracy of gait recognition. The findings suggest that a multi-dimensional feature set composed of EEG and sEMG features with KSVM achieved good performance. Considering execution time and recognition rate, two-dimensional feature sets with KNN are suitable for online gait recognition, thirty-seven-dimensional feature sets with KSVM are more likely to be used for off-line gait analysis.
ArticleNumber 102587
Author Hong, Jun
Zhang, Jinhua
Tian, Feifei
Wei, Pengna
Author_xml – sequence: 1
  givenname: Pengna
  surname: Wei
  fullname: Wei, Pengna
  organization: The Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 2
  givenname: Jinhua
  surname: Zhang
  fullname: Zhang, Jinhua
  email: jjshua@mail.xjtu.edu.cn
  organization: The Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 3
  givenname: Feifei
  surname: Tian
  fullname: Tian, Feifei
  organization: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China
– sequence: 4
  givenname: Jun
  surname: Hong
  fullname: Hong, Jun
  organization: The Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
BookMark eNqNkEFLwzAYhoNMcJv-AU_5A51J2zUpeBmjTmHiZffwNU22zC4pSebYv7dlevEwPL0vHzwvfM8EjayzCqFHSmaU0OJpP6tDJ2cpSWl_SOec3aAxZXmRcEr46LeTMr9DkxD2hOSc0XyM6gWW7tCBN8FZ7DS26uih7SOenP8MGNqt8ybuDgFr53FVrTDYBofqfYW1gnj0KuAagmrwFkzE3a7vAXsl3daaaJy9R7ca2qAefnKKNi_VZvmarD9Wb8vFOpFZnseEsaYp5oTXvGYAmpRSyayY5xpUXai80SzjdE6YTiVNC8qJLlNeQ8loKsuMZVOUXWaPtoPzCdpWdN4cwJ8FJWKwJPZisCQGS-JiqafSCyW9C8Er_T-I_4GkiTD8Gj2Y9jr6fEFVb-LLKC-CNMpK1ZheWRSNM9fwb1vcljc
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109651
crossref_primary_10_1016_j_jksuci_2024_102161
crossref_primary_10_4274_jtss_galenos_2022_70288
crossref_primary_10_1142_S0219477523500335
crossref_primary_10_1016_j_bspc_2022_104272
crossref_primary_10_3390_sym15010163
crossref_primary_10_1016_j_gaitpost_2024_12_028
crossref_primary_10_1109_ACCESS_2025_3541585
crossref_primary_10_4028_p_Q2hYbX
crossref_primary_10_1142_S0219519423400511
crossref_primary_10_1016_j_bspc_2021_103115
crossref_primary_10_1016_j_csbj_2025_02_001
crossref_primary_10_3390_robotics13090133
crossref_primary_10_1016_j_bspc_2022_103754
crossref_primary_10_1016_j_sasc_2024_200144
crossref_primary_10_3389_fnbot_2022_1047325
crossref_primary_10_3389_fnbot_2021_692539
crossref_primary_10_1016_j_medntd_2024_100341
crossref_primary_10_3934_mbe_2023308
crossref_primary_10_1109_TNSRE_2024_3459924
crossref_primary_10_1016_j_engappai_2025_110106
crossref_primary_10_1016_j_engappai_2023_105886
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1016_j_bspc_2022_103693
crossref_primary_10_61189_673672yizrwd
crossref_primary_10_3390_bioengineering10101162
crossref_primary_10_3390_math10224387
crossref_primary_10_3390_s24217016
crossref_primary_10_1016_j_engappai_2023_105909
crossref_primary_10_1016_j_ijhcs_2024_103229
crossref_primary_10_1016_j_jobe_2023_106776
crossref_primary_10_1155_2022_9933018
Cites_doi 10.1109/TBME.2012.2198821
10.1113/jphysiol.2012.227397
10.1016/j.eswa.2012.01.102
10.1109/TBME.2008.919734
10.1016/j.neuroimage.2017.07.013
10.3389/fnhum.2018.00312
10.1097/01241398-199211000-00023
10.1109/NER.2009.5109299
10.1109/TNSRE.2016.2521160
10.3233/THC-174836
10.1109/ACCESS.2020.2991812
10.1016/j.eswa.2013.02.023
10.1109/86.481972
10.3390/s16010066
10.1109/10.204774
10.1088/1741-2552/ab9842
10.1109/ChiCC.2016.7553988
10.1016/j.ijleo.2017.10.090
10.1109/PHT.2013.6461326
10.1186/s10033-019-0389-8
10.1016/j.bspc.2018.08.030
10.1016/j.neuroimage.2010.08.066
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.bspc.2021.102587
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID oai:ir.opt.ac.cn:181661/94675
10_1016_j_bspc_2021_102587
S1746809421001841
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c344t-77dd6508b8b7aaf09cec3654faeb6e4df7381507f2c126180f928ba9712c9373
IEDL.DBID UNPAY
ISSN 1746-8094
1746-8108
IngestDate Sun Oct 26 04:14:31 EDT 2025
Wed Oct 29 21:19:14 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:43:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Surface electromyography (sEMG)
Electroencephalogram (EEG)
Gait phases recognition
Feature-classifier combination
Feature dimension
Language English
License cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-77dd6508b8b7aaf09cec3654faeb6e4df7381507f2c126180f928ba9712c9373
OpenAccessLink https://proxy.k.utb.cz/login?url=http://ir.opt.ac.cn/handle/181661/94675
ParticipantIDs unpaywall_primary_10_1016_j_bspc_2021_102587
crossref_primary_10_1016_j_bspc_2021_102587
crossref_citationtrail_10_1016_j_bspc_2021_102587
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102587
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zardoshti-Kermani, Wheeler, Badie, Hashemi (bib0175) 1995; 3
Shi, Zhang, Zhang, Ding (bib0040) 2019; 32
Nazmi, Abdul Rahman, Yamamoto, Ahmad (bib0045) 2019; 47
Joshi, Lahiri, Thakor (bib0155) 2013
Gordleeva, Lobov, Grigorev, Savosenkov, Shamshin, Lukoyanov, Khoruzhko, Kazantsev (bib0075) 2020; 8
Hudgins, Parker, Scott (bib0165) 1993; 40
Choi, Kim (bib0060) 2019
Indriani, Muslim (bib0125) 2019; 10
Gwin, Gramann, Makeig, Ferris (bib0145) 2011; 54
Li, Xu, Liu, Lu (bib0085) 2018; 26
Ziegler, Gattringer, Mueller (bib0010) 2018
Taborri, Palermo, Rossi, Cappa (bib0015) 2016; 16
Jacquelin Perry, Slack (bib0135) 1993
Lenzi, De Rossi, Vitiello, Carrozza (bib0025) 2012; 59
Wang, Zhang (bib0200) 2012; 39
Tariq, Trivailo, Simic (bib0185) 2018; 12
Tortora, Ghidoni, Chisari, Micera, Artoni (bib0035) 2020; 17
Zhang, Zhao, Han, Zhao (bib0105) 2014
Choi, Lee, Kim, Lee, Kim (bib0030) 2018
Islam, Wu, Ahmadi, Sid-Ahmed (bib0190) 2008
Young, Ferris (bib0005) 2017; 25
Petersen, Willerslev-Olsen, Conway, Nielsen (bib0140) 2012; 590
Perry, k, Davids (bib0150) 1992; 12
Artoni, Fanciullacci, Bertolucci, Panarese, Makeig, Micera, Chisari (bib0130) 2017; 159
Negi, Kumar, Mishra (bib0100) 2016
na Wei, Xie, Tang, Li, Kim, Wu (bib0050) 2018
Mannini, Sabatini (bib0070) 2011
Tan, Sun, Yang, Che, Ye, Zhang, Zou (bib0115) 2018; 154
Yazdani, Ebrahimi, Hoffmann (bib0180) 2009
Oskoei, Hu (bib0110) 2008; 55
Anika Nastarin, Akter (bib0080) 2019
Phinyomark, Phukpattaranont, Limsakul (bib0170) 2012; 39
Li, Gao, Chen, Xu (bib0065) 2016
Morbidoni, Cucchiarelli, Fioretti, Di Nardo (bib0020) 2019; 8
Paul, Goyal, Jaswal (bib0095) 2017
Barros, Guilherme, Horta (bib0120) 2006
Tryon, Friedman, Trejos (bib0055) 2019
Murugappan (bib0090) 2011
Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (bib0160) 2013; 40
Kadoya, Nagaya, Konyo, Tadokoro (bib0195) 2014
Tariq (10.1016/j.bspc.2021.102587_bib0185) 2018; 12
Petersen (10.1016/j.bspc.2021.102587_bib0140) 2012; 590
Ziegler (10.1016/j.bspc.2021.102587_bib0010) 2018
Taborri (10.1016/j.bspc.2021.102587_bib0015) 2016; 16
na Wei (10.1016/j.bspc.2021.102587_bib0050) 2018
Young (10.1016/j.bspc.2021.102587_bib0005) 2017; 25
Phinyomark (10.1016/j.bspc.2021.102587_bib0160) 2013; 40
Gwin (10.1016/j.bspc.2021.102587_bib0145) 2011; 54
Islam (10.1016/j.bspc.2021.102587_bib0190) 2008
Artoni (10.1016/j.bspc.2021.102587_bib0130) 2017; 159
Shi (10.1016/j.bspc.2021.102587_bib0040) 2019; 32
Phinyomark (10.1016/j.bspc.2021.102587_bib0170) 2012; 39
Anika Nastarin (10.1016/j.bspc.2021.102587_bib0080) 2019
Indriani (10.1016/j.bspc.2021.102587_bib0125) 2019; 10
Paul (10.1016/j.bspc.2021.102587_bib0095) 2017
Mannini (10.1016/j.bspc.2021.102587_bib0070) 2011
Choi (10.1016/j.bspc.2021.102587_bib0030) 2018
Tortora (10.1016/j.bspc.2021.102587_bib0035) 2020; 17
Gordleeva (10.1016/j.bspc.2021.102587_bib0075) 2020; 8
Negi (10.1016/j.bspc.2021.102587_bib0100) 2016
Zardoshti-Kermani (10.1016/j.bspc.2021.102587_bib0175) 1995; 3
Wang (10.1016/j.bspc.2021.102587_bib0200) 2012; 39
Yazdani (10.1016/j.bspc.2021.102587_bib0180) 2009
Morbidoni (10.1016/j.bspc.2021.102587_bib0020) 2019; 8
Choi (10.1016/j.bspc.2021.102587_bib0060) 2019
Tan (10.1016/j.bspc.2021.102587_bib0115) 2018; 154
Joshi (10.1016/j.bspc.2021.102587_bib0155) 2013
Barros (10.1016/j.bspc.2021.102587_bib0120) 2006
Kadoya (10.1016/j.bspc.2021.102587_bib0195) 2014
Hudgins (10.1016/j.bspc.2021.102587_bib0165) 1993; 40
Perry (10.1016/j.bspc.2021.102587_bib0150) 1992; 12
Murugappan (10.1016/j.bspc.2021.102587_bib0090) 2011
Lenzi (10.1016/j.bspc.2021.102587_bib0025) 2012; 59
Oskoei (10.1016/j.bspc.2021.102587_bib0110) 2008; 55
Nazmi (10.1016/j.bspc.2021.102587_bib0045) 2019; 47
Li (10.1016/j.bspc.2021.102587_bib0065) 2016
Li (10.1016/j.bspc.2021.102587_bib0085) 2018; 26
Zhang (10.1016/j.bspc.2021.102587_bib0105) 2014
Tryon (10.1016/j.bspc.2021.102587_bib0055) 2019
Jacquelin Perry (10.1016/j.bspc.2021.102587_bib0135) 1993
References_xml – volume: 590
  start-page: 2443
  year: 2012
  end-page: 2452
  ident: bib0140
  article-title: The motor cortex drives the muscles during walking in human subjects
  publication-title: J. Physiol.
– start-page: 4369
  year: 2011
  end-page: 4373
  ident: bib0070
  article-title: A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS.
– start-page: 1
  year: 2019
  end-page: 3
  ident: bib0060
  article-title: Real-time decoding of EEG gait intention for controlling a lower-limb exoskeleton system
  publication-title: 7th Int. Winter Conf. Brain-Computer Interface, BCI 2019
– volume: 3
  start-page: 324
  year: 1995
  end-page: 333
  ident: bib0175
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Trans. Rehabil. Eng.
– start-page: 1
  year: 2018
  end-page: 3
  ident: bib0030
  article-title: Detecting voluntary gait initiation/termination intention using EEG
  publication-title: 2018 6th Int. Conf. Brain-Computer Interface, BCI 2018. 2018-Janua
– volume: 8
  start-page: 84070
  year: 2020
  end-page: 84081
  ident: bib0075
  article-title: Real-Time EEG-EMG human-machine interface-based control system for a lower-limb exoskeleton
  publication-title: IEEE Access
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: bib0110
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 119
  year: 2019
  ident: bib0125
  article-title: SVM optimization based on PSO and AdaBoost to increasing accuracy of CKD diagnosis, lontar komput
  publication-title: J. Ilm. Teknol. Inf.
– volume: 16
  start-page: 40
  year: 2016
  end-page: 42
  ident: bib0015
  article-title: Gait partitioning methods: a systematic review
  publication-title: Sensors (Switzerland)
– volume: 54
  start-page: 1289
  year: 2011
  end-page: 1296
  ident: bib0145
  article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking
  publication-title: Neuroimage
– start-page: 106
  year: 2011
  end-page: 110
  ident: bib0090
  article-title: Electromyogram signal based human emotion classification using KNN and LDA
  publication-title: Proc. - 2011 IEEE Int. Conf. Syst. Eng. Technol. ICSET 2011
– start-page: 169
  year: 2017
  end-page: 175
  ident: bib0095
  article-title: Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features
  publication-title: 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017. 2017-Janua
– volume: 17
  year: 2020
  ident: bib0035
  article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network
  publication-title: J. Neural Eng.
– volume: 159
  start-page: 403
  year: 2017
  end-page: 416
  ident: bib0130
  article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking
  publication-title: Neuroimage
– volume: 40
  start-page: 4832
  year: 2013
  end-page: 4840
  ident: bib0160
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
– start-page: 143
  year: 2019
  end-page: 148
  ident: bib0080
  article-title: Robust control of hand prostheses from surface EMG Signal for transradial amputees
  publication-title: 2019 5th Int. Conf. Adv. Electr. Eng.
– start-page: 327
  year: 2009
  end-page: 330
  ident: bib0180
  article-title: Classification of EEG signals using Dempster Shafer theory and a K-nearest neighbor classifier
  publication-title: 2009 4th Int. IEEE/EMBS Conf. Neural Eng. NER’ 09
– start-page: 486
  year: 2006
  end-page: 489
  ident: bib0120
  article-title: GA-SVM optimization kernel applied to analog IC design automation
  publication-title: Proc. IEEE Int. Conf. Electron. Circuits Syst.
– volume: 39
  start-page: 28
  year: 2012
  end-page: 31
  ident: bib0200
  article-title: A parameter optimization method for an SVM based on improved grid search algorithm
  publication-title: Appl. Sci. Technol.
– volume: 59
  start-page: 2180
  year: 2012
  end-page: 2190
  ident: bib0025
  article-title: Intention-based EMG control for powered exoskeletons
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7431
  ident: bib0170
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: S509
  year: 2018
  end-page: S519
  ident: bib0085
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol. Health Care
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: bib0165
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 171
  year: 2017
  end-page: 182
  ident: bib0005
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  year: 1992
  ident: bib0150
  article-title: Gait analysis: normal and pathological function
  publication-title: J. Pediatr. Orthop.
– year: 2016
  ident: bib0100
  article-title: Feature extraction and classification for EMG signals using linear discriminant analysis
  publication-title: Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. (Fall), ICACCA 2016
– volume: 32
  year: 2019
  ident: bib0040
  article-title: A review on lower limb rehabilitation exoskeleton robots
  publication-title: Chinese J. Mech. Eng.
– volume: 47
  start-page: 334
  year: 2019
  end-page: 343
  ident: bib0045
  article-title: Walking gait event detection based on electromyography signals using artificial neural network
  publication-title: Biomed. Signal Process. Control
– start-page: 4068
  year: 2016
  end-page: 4072
  ident: bib0065
  article-title: Gait recognition based on EMG with different individuals and sample sizes
  publication-title: Chinese Control Conf. CCC. 2016-Augus
– volume: 12
  year: 2018
  ident: bib0185
  article-title: EEG-based BCI control schemes for lower-limb assistive-robots
  publication-title: Front. Hum. Neurosci.
– start-page: 1541
  year: 2008
  end-page: 1546
  ident: bib0190
  article-title: Investigating the Performance of Naive- Bayes Classifiers and K- Nearest Neighbor Classifiers
– start-page: 524
  year: 1993
  ident: bib0135
  article-title: Thorofare, Gait Analysis:Normal and Pathological Function
– start-page: 228
  year: 2013
  end-page: 231
  ident: bib0155
  article-title: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis
  publication-title: 2013 IEEE Point-of-Care Healthc. Technol.
– year: 2018
  ident: bib0050
  article-title: sEMG based gait phase recognition for children with spastic cerebral palsy
  publication-title: Ann. Biomed. Eng.
– start-page: 1852
  year: 2014
  end-page: 1857
  ident: bib0195
  article-title: A precise gait phase detection based on high-frequency vibration on lower limbs
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
– volume: 154
  start-page: 581
  year: 2018
  end-page: 592
  ident: bib0115
  article-title: Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM
  publication-title: Optik (Stuttg)
– start-page: 978
  year: 2018
  end-page: 983
  ident: bib0010
  article-title: Classification of gait phases based on bilateral EMG data using support vector machines
  publication-title: IEEE
– volume: 8
  year: 2019
  ident: bib0020
  article-title: A deep learning approach to EMG-based classification of gait phases during level ground walking
  publication-title: Electron
– start-page: 971
  year: 2019
  end-page: 976
  ident: bib0055
  article-title: Performance evaluation of EEG/EMG fusion methods for motion classification
  publication-title: 2019 IEEE 16th Int. Conf. Rehabil. Robot.
– start-page: 4850
  year: 2014
  end-page: 4855
  ident: bib0105
  article-title: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
– volume: 59
  start-page: 2180
  year: 2012
  ident: 10.1016/j.bspc.2021.102587_bib0025
  article-title: Intention-based EMG control for powered exoskeletons
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2198821
– volume: 590
  start-page: 2443
  year: 2012
  ident: 10.1016/j.bspc.2021.102587_bib0140
  article-title: The motor cortex drives the muscles during walking in human subjects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.227397
– volume: 39
  start-page: 7420
  year: 2012
  ident: 10.1016/j.bspc.2021.102587_bib0170
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
– start-page: 169
  year: 2017
  ident: 10.1016/j.bspc.2021.102587_bib0095
  article-title: Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features
  publication-title: 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017. 2017-Janua
– volume: 55
  start-page: 1956
  year: 2008
  ident: 10.1016/j.bspc.2021.102587_bib0110
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919734
– volume: 159
  start-page: 403
  year: 2017
  ident: 10.1016/j.bspc.2021.102587_bib0130
  article-title: Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.013
– volume: 12
  year: 2018
  ident: 10.1016/j.bspc.2021.102587_bib0185
  article-title: EEG-based BCI control schemes for lower-limb assistive-robots
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00312
– volume: 12
  year: 1992
  ident: 10.1016/j.bspc.2021.102587_bib0150
  article-title: Gait analysis: normal and pathological function
  publication-title: J. Pediatr. Orthop.
  doi: 10.1097/01241398-199211000-00023
– volume: 39
  start-page: 28
  year: 2012
  ident: 10.1016/j.bspc.2021.102587_bib0200
  article-title: A parameter optimization method for an SVM based on improved grid search algorithm
  publication-title: Appl. Sci. Technol.
– start-page: 4850
  year: 2014
  ident: 10.1016/j.bspc.2021.102587_bib0105
  article-title: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
– start-page: 327
  year: 2009
  ident: 10.1016/j.bspc.2021.102587_bib0180
  article-title: Classification of EEG signals using Dempster Shafer theory and a K-nearest neighbor classifier
  publication-title: 2009 4th Int. IEEE/EMBS Conf. Neural Eng. NER’ 09
  doi: 10.1109/NER.2009.5109299
– volume: 25
  start-page: 171
  year: 2017
  ident: 10.1016/j.bspc.2021.102587_bib0005
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2521160
– start-page: 143
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0080
  article-title: Robust control of hand prostheses from surface EMG Signal for transradial amputees
  publication-title: 2019 5th Int. Conf. Adv. Electr. Eng.
– year: 2018
  ident: 10.1016/j.bspc.2021.102587_bib0050
  article-title: sEMG based gait phase recognition for children with spastic cerebral palsy
  publication-title: Ann. Biomed. Eng.
– volume: 8
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0020
  article-title: A deep learning approach to EMG-based classification of gait phases during level ground walking
  publication-title: Electron
– start-page: 486
  year: 2006
  ident: 10.1016/j.bspc.2021.102587_bib0120
  article-title: GA-SVM optimization kernel applied to analog IC design automation
  publication-title: Proc. IEEE Int. Conf. Electron. Circuits Syst.
– volume: 26
  start-page: S509
  year: 2018
  ident: 10.1016/j.bspc.2021.102587_bib0085
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174836
– start-page: 978
  year: 2018
  ident: 10.1016/j.bspc.2021.102587_bib0010
  article-title: Classification of gait phases based on bilateral EMG data using support vector machines
  publication-title: IEEE
– volume: 8
  start-page: 84070
  year: 2020
  ident: 10.1016/j.bspc.2021.102587_bib0075
  article-title: Real-Time EEG-EMG human-machine interface-based control system for a lower-limb exoskeleton
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991812
– volume: 40
  start-page: 4832
  year: 2013
  ident: 10.1016/j.bspc.2021.102587_bib0160
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.023
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.102587_bib0030
  article-title: Detecting voluntary gait initiation/termination intention using EEG
  publication-title: 2018 6th Int. Conf. Brain-Computer Interface, BCI 2018. 2018-Janua
– start-page: 524
  year: 1993
  ident: 10.1016/j.bspc.2021.102587_bib0135
– start-page: 1541
  year: 2008
  ident: 10.1016/j.bspc.2021.102587_bib0190
– volume: 3
  start-page: 324
  year: 1995
  ident: 10.1016/j.bspc.2021.102587_bib0175
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.481972
– volume: 16
  start-page: 40
  year: 2016
  ident: 10.1016/j.bspc.2021.102587_bib0015
  article-title: Gait partitioning methods: a systematic review
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s16010066
– volume: 10
  start-page: 119
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0125
  article-title: SVM optimization based on PSO and AdaBoost to increasing accuracy of CKD diagnosis, lontar komput
  publication-title: J. Ilm. Teknol. Inf.
– volume: 40
  start-page: 82
  year: 1993
  ident: 10.1016/j.bspc.2021.102587_bib0165
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– year: 2016
  ident: 10.1016/j.bspc.2021.102587_bib0100
  article-title: Feature extraction and classification for EMG signals using linear discriminant analysis
  publication-title: Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. (Fall), ICACCA 2016
– volume: 17
  year: 2020
  ident: 10.1016/j.bspc.2021.102587_bib0035
  article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab9842
– start-page: 4068
  year: 2016
  ident: 10.1016/j.bspc.2021.102587_bib0065
  article-title: Gait recognition based on EMG with different individuals and sample sizes
  publication-title: Chinese Control Conf. CCC. 2016-Augus
  doi: 10.1109/ChiCC.2016.7553988
– start-page: 106
  year: 2011
  ident: 10.1016/j.bspc.2021.102587_bib0090
  article-title: Electromyogram signal based human emotion classification using KNN and LDA
  publication-title: Proc. - 2011 IEEE Int. Conf. Syst. Eng. Technol. ICSET 2011
– start-page: 971
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0055
  article-title: Performance evaluation of EEG/EMG fusion methods for motion classification
  publication-title: 2019 IEEE 16th Int. Conf. Rehabil. Robot.
– volume: 154
  start-page: 581
  year: 2018
  ident: 10.1016/j.bspc.2021.102587_bib0115
  article-title: Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2017.10.090
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0060
  article-title: Real-time decoding of EEG gait intention for controlling a lower-limb exoskeleton system
  publication-title: 7th Int. Winter Conf. Brain-Computer Interface, BCI 2019
– start-page: 4369
  year: 2011
  ident: 10.1016/j.bspc.2021.102587_bib0070
  article-title: A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS.
– start-page: 228
  year: 2013
  ident: 10.1016/j.bspc.2021.102587_bib0155
  article-title: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis
  publication-title: 2013 IEEE Point-of-Care Healthc. Technol.
  doi: 10.1109/PHT.2013.6461326
– volume: 32
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0040
  article-title: A review on lower limb rehabilitation exoskeleton robots
  publication-title: Chinese J. Mech. Eng.
  doi: 10.1186/s10033-019-0389-8
– volume: 47
  start-page: 334
  year: 2019
  ident: 10.1016/j.bspc.2021.102587_bib0045
  article-title: Walking gait event detection based on electromyography signals using artificial neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.030
– volume: 54
  start-page: 1289
  year: 2011
  ident: 10.1016/j.bspc.2021.102587_bib0145
  article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.066
– start-page: 1852
  year: 2014
  ident: 10.1016/j.bspc.2021.102587_bib0195
  article-title: A precise gait phase detection based on high-frequency vibration on lower limbs
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
SSID ssj0048714
Score 2.4585667
Snippet •Various dimensions of features and different classifiers applied for gait phases recognition.•The wider value distribution of features, the better accuracy of...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102587
SubjectTerms Electroencephalogram (EEG)
Feature dimension
Feature-classifier combination
Gait phases recognition
Surface electromyography (sEMG)
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL-pBfGJ9sQdvGptkN69jKWmLUC9W6C3ss43UJDQp4sXf7m5eVJAi3pIwy4bZ3Zlv4ZtvALiT1KEWR6YhbUoMjLk6c4wIQ5jI5y6XApViz9Nnd_KKn-bOvAOGTS2MplXWsb-K6WW0rr_0a2_2szjuvygs7frqdmJrGSG_LF7H2NNdDB6_WpqHwuOlvrc2NrR1XThTcbxonmkZQ9vSCgaOptX9npz2NklGPj_IarWVfEZH4LBGjXBQ_dgx6IjkBBxsaQmeAjqArO0pCFMJtVKlGpNUPO8cktUiXcfF8j2HCqjCMBxDknCYh9MxlKLU98yhTmocLkhcwGypnnPYMozS5AzMRuFsODHqBgoGQxgXCjlzrhEY9alHiDQDJhhyHSyJoK7AXHoqXytAKG1mqZuUb8rA9ikJPMtmCragc9BN0kRcAMi1EJyggSeRAlguD7grJPMdIRC1mHB6wGocF7FaXFz3uFhFDYvsLdLOjrSzo8rZPXDfjskqaY2d1k6zHtGPDRKp2L9z3EO7eH-Y5vKf01yBff1WEXmvQbdYb8SNgisFvS334zcDIOf9
  priority: 102
  providerName: Elsevier
Title A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition
URI https://dx.doi.org/10.1016/j.bspc.2021.102587
http://ir.opt.ac.cn/handle/181661/94675
UnpaywallVersion submittedVersion
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LS8NAEMYHbQ_iwbeoaNmDN02bTbJpcixSrYrFg4Kewj61WpPQpIge_Nvd7aZVUHzc9rDDBmbDfCHf_AZgXzHCsPBdR3mMOkEg9DvHqXSk60ciFEr6E9jzRT_sXQdnN-TmA5I0GDWzfGLc4GnLcgZa2Pzawi0zC57MQz0kWnTXoH7dv-zc2nZHg9SdjDy0a-xGVXuMdXKxIjewQg8bTgEx5rnvS9DCOM3pyzMdDj-VmONl6E0bdayz5LE5LlmTv37lNv729CuwVMlM1LH3YhXmZLoGi5_gg-vAOojPhhCiTCGDttQxqTWGF4gO77LRoLx_KpBWtqjbPUH6MFR0L06QkhMgaIFMFRTojg5KlN_rdYFmlqQs3YCr4-7VUc-pJi443A-CUkttIYxkYxFrU6rcmEvuhyRQVLJQBkK1dYHXClJ5HOtPr8hVsRcxGrexx7XO8Tehlmap3AIkDDlOsritfK3IQhGLUCoeESl9hrkk24CnOUh4RSM3QzGGydR29pCYvCUmb4nN2zYczGJyy-L4cTeZpjap1IRVCYkuFj_GHc7uwR-O2fnf9l2olaOx3NNKpmQNmG--4QbUO6fnvX6jutPvV0rzmg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPVQP4hPrcw_eNLZ5J8dS-lDbXqzQW9hnG6lpaFLEi7_dnSQNFaSIt5DssmF2d-Yb-OYbhG4ltanOzaYmDUo0y-LqzjEiNNE0Pe5wKcxM7Hk4cvqv1tPEnlRQe10LA7TKwvfnPj3z1sWbRmHNRhyGjReFpR1PZScGyAh5ULy-Y9mGCxnYw1fJ81CAPBP4htEaDC8qZ3KSF01i0DE0dJAwsIFX93t0qq2imHx-kPl8I_p0D9B-ARtxK_-zQ1QR0RHa2xATPEa0hVnZVBAvJAapSjUnyoneCSbz6WIZprP3BCukijudHiYRx0ln2MNSZAKfCYaoxvGUhCmOZ-o5wSXFaBGdoHG3M273taKDgsZMy0oVdOYcIBj1qEuIbPpMMNOxLUkEdYTFpasCtkKE0mC6SqW8pvQNjxLf1Q2mcIt5iqrRIhJnCHNQghPUd6WpEJbDfe4IyTxbCJPqTNh1pK8NF7BCXRyaXMyDNY3sLQBjB2DsIDd2Hd2Vc-JcW2PraHu9H8GPExIo57913n25eX9Y5vyfy9ygWn88HASDx9HzBdqFLzmr9xJV0-VKXCnsktLr7Gx-A7-M6yA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LS8NAEMYXbQ_iwbdYUdmDN02bTbJpcizSB4LFQwv1FPbZVmMSmhTRv97dbloLStXbHnbYwGyYL-Sb3wBwLSmmiLu2JR1KLM_j6p1jRFjCdgPucyncBez5oe_3ht79CI--IEnTWT3NFsYNljQMZ6CB9K8t1NCz4PE2qPpYie4KqA77j60n0-6okbqLkYdmjeygbI8xTi6aZxpW6CDNKcDaPPdzCdqZJxl5fyNxvFZiOvugt2zUMc6Sl_q8oHX28Z3b-NvTH4C9UmbClrkXh2BLJEdgdw0-eAxoC7LVEEKYSqjRliomMcbwHJJ4nM6mxeQ1h0rZwna7C9VhMG8_dKEUCyBoDnUV5HBMpgXMJmqdw5UlKU1OwKDTHtz1rHLigsVczyuU1OZcSzYa0CYh0g6ZYK6PPUkE9YXHZVMVeKUgpcOQ-vQKbBk6ASVhEzlM6Rz3FFSSNBFnAHJNjhM0bEpXKTKfh9wXkgVYCJciJnANoGUOIlbSyPVQjDha2s6eI523SOctMnmrgZtVTGZYHBt342Vqo1JNGJUQqWKxMe52dQ_-cMz5_7ZfgEoxm4tLpWQKelXe4k8bZvEO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+neural+networks+algorithms+for+EEG+and+sEMG+features+based+gait+phases+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wei%2C+Pengna&rft.au=Zhang%2C+Jinhua&rft.au=Tian%2C+Feifei&rft.au=Hong%2C+Jun&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=68&rft_id=info:doi/10.1016%2Fj.bspc.2021.102587&rft.externalDocID=S1746809421001841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon