Rank equalities related to outer inverses of matrices and applications

A matrix X is called an outer inverse for a matrix A if XAX=X. In this paper, we present some basic rank equalities for difference and sum of outer inverses of a matrix, and apply them to characterize various equalities related to outer inverses, Moore-Penrose inverses, group inverses, Drazin invers...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 49; no. 4; pp. 269 - 288
Main Author Tian, Yongge
Format Journal Article
LanguageEnglish
Published Gordon and Breach Science Publishers 15.12.2001
Subjects
Online AccessGet full text
ISSN0308-1087
1563-5139
DOI10.1080/03081080108818701

Cover

Abstract A matrix X is called an outer inverse for a matrix A if XAX=X. In this paper, we present some basic rank equalities for difference and sum of outer inverses of a matrix, and apply them to characterize various equalities related to outer inverses, Moore-Penrose inverses, group inverses, Drazin inverses and weighted Moore-Penrose inverses of matrices.
AbstractList A matrix X is called an outer inverse for a matrix A if XAX=X. In this paper, we present some basic rank equalities for difference and sum of outer inverses of a matrix, and apply them to characterize various equalities related to outer inverses, Moore-Penrose inverses, group inverses, Drazin inverses and weighted Moore-Penrose inverses of matrices.
Author Tian, Yongge
Author_xml – sequence: 1
  givenname: Yongge
  surname: Tian
  fullname: Tian, Yongge
  email: ytian@mast.queensu.ca
  organization: Department of Mathematics and Statistics , Queen's University
BookMark eNqFkN1KAzEQhYNUsK0-gHf7AquJyW6y4I0Uq0JBEL0Os_mBaJrUJFX79m6tVxbqxcwcOHzD4UzQKMRgEDon-IJggS8xxWIrhhFEcEyO0Jg0La0bQrsRGm_9ejD5CZrk_IoxZoQ2YzR_gvBWmfc1eFecyVUyHorRVYlVXBeTKhc-TMqDE221hJKcGjQEXcFq5Z2C4mLIp-jYgs_m7PdO0cv89nl2Xy8e7x5mN4taUcZK3V51uuk1tIJpy6EnjLFecWg6YYjlWnFClWmH1fWGKRDQdtD2VgnWUAY9nSK--6tSzDkZK5UrPxFKAuclwXLbgtyrYyDJH3KV3BLS5iBzvWNcsDEt4TMmr2WBjY_JJgjKZUkP4fxffI-S5avQb5WqibA
CitedBy_id crossref_primary_10_1016_j_laa_2010_02_018
crossref_primary_10_1016_S0024_3795_03_00650_5
crossref_primary_10_3934_math_2021803
crossref_primary_10_1016_j_jmva_2010_04_011
crossref_primary_10_1016_j_laa_2005_03_024
crossref_primary_10_1016_j_heliyon_2020_e04924
crossref_primary_10_1080_03081080802095461
crossref_primary_10_1007_s13226_021_00200_x
crossref_primary_10_1515_gmj_2024_2016
crossref_primary_10_1216_rmjm_1187453116
crossref_primary_10_1007_s10957_010_9760_8
crossref_primary_10_1016_S0096_3003_02_00796_8
crossref_primary_10_1007_s40314_022_02084_x
crossref_primary_10_1016_j_jfranklin_2009_02_013
crossref_primary_10_1007_s00010_024_01072_2
crossref_primary_10_1007_s10958_006_0294_4
crossref_primary_10_1016_j_amc_2003_08_124
crossref_primary_10_1515_dema_2022_0171
crossref_primary_10_1016_j_laa_2010_11_014
crossref_primary_10_1080_00207390500226168
crossref_primary_10_1007_s10958_005_0451_1
Cites_doi 10.1007/BF01385696
10.1016/S0024-3795(98)00008-1
10.1080/03081087408817070
10.1016/S0024-3795(99)00269-4
10.1016/0024-3795(92)90206-P
10.1016/0024-3795(85)90055-2
10.1007/BF02009557
10.1016/S0024-3795(98)10049-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2001
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2001
DBID AAYXX
CITATION
DOI 10.1080/03081080108818701
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 288
ExternalDocumentID 10_1080_03081080108818701
8818701
GroupedDBID -~X
.7F
.QJ
0BK
0R~
1TA
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c344t-629d5bda684df7ab1444bc7a598e1f7dc713ce613c9be4ca8a69a6bfc84534ab3
ISSN 0308-1087
IngestDate Thu Apr 24 23:02:16 EDT 2025
Wed Oct 01 02:43:32 EDT 2025
Mon Oct 20 23:35:54 EDT 2025
Mon May 13 12:09:03 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-629d5bda684df7ab1444bc7a598e1f7dc713ce613c9be4ca8a69a6bfc84534ab3
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_03081080108818701
crossref_citationtrail_10_1080_03081080108818701
crossref_primary_10_1080_03081080108818701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 12/15/2001
PublicationDateYYYYMMDD 2001-12-15
PublicationDate_xml – month: 12
  year: 2001
  text: 12/15/2001
  day: 15
PublicationDecade 2000
PublicationTitle Linear & multilinear algebra
PublicationYear 2001
Publisher Gordon and Breach Science Publishers
Publisher_xml – name: Gordon and Breach Science Publishers
References CIT0012
CIT0011
Getson A. J. (CIT0004) 1988; 47
Rao C. R. (CIT0010) 1971
Campbell S. L. (CIT0002) 1979
CIT0003
CIT0013
CIT0005
Ben-Israel A. (CIT0001) 1980
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – volume-title: Generalized Inverses: Theory and Applications
  year: 1980
  ident: CIT0001
– ident: CIT0009
  doi: 10.1007/BF01385696
– ident: CIT0012
  doi: 10.1016/S0024-3795(98)00008-1
– ident: CIT0013
– volume-title: Generalized Inverses of Linear Transformations
  year: 1979
  ident: CIT0002
– ident: CIT0007
  doi: 10.1080/03081087408817070
– ident: CIT0003
  doi: 10.1016/S0024-3795(99)00269-4
– ident: CIT0008
  doi: 10.1016/0024-3795(92)90206-P
– volume: 47
  volume-title: Lecture Notes in Statistics
  year: 1988
  ident: CIT0004
– volume-title: Generalized Inverse of Matrices and Its Applications
  year: 1971
  ident: CIT0010
– ident: CIT0005
  doi: 10.1016/0024-3795(85)90055-2
– ident: CIT0006
  doi: 10.1007/BF02009557
– ident: CIT0011
  doi: 10.1016/S0024-3795(98)10049-6
SSID ssj0004135
Score 1.6691219
Snippet A matrix X is called an outer inverse for a matrix A if XAX=X. In this paper, we present some basic rank equalities for difference and sum of outer inverses of...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms AMS Subject Classifications:15A03, 15A09
Drazin inverse
Moore-Penrose inverse
Outer inverse
Rank
Weighted Moore-Penrose inverse
Title Rank equalities related to outer inverses of matrices and applications
URI https://www.tandfonline.com/doi/abs/10.1080/03081080108818701
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1563-5139
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004135
  issn: 0308-1087
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1563-5139
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004135
  issn: 0308-1087
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuQwELWY5sIcEKum2eQDJ1BQEjuOc2RvIcEBNWK5tGzHGaFhEtQECfH1lGNnaTYBh0TZnER-TrmqUvUKoU3uZ5kwPJVpkPmV68YTcaA8X4Cyz7jWkTC5w6dnbHBBT66iq7bQZZVdUsod9fxuXslPUIVjgKvJkv0Gss1N4QBsA76wBoRh_SWMz0X-b1vbvEiweG1iCmiQoE8WplTD9m1uoi4sr-z_ioxfW07m7n_rrn4Kpqlh9jHjoQo1vLP7phiIHDcSfHhr3abXRf7XxRLVjoPABGHY1MkK6mMwbl3A897YRG420qQNyO8II1LRwLrJUTthyYgXBZaMqJamloDUjRraFY22JIubZUNbzO-NAHcRj_A0swkLKBSxc3dM8mK7M7_QdAgC3e-h6d3Bwc1lmxTrqqvWL17_0jbE6q9vP6GUTFDWdpSN4RyadVYC3rWQz6MpnS-g36cNxe7DIjoy4OMWfOzAx2WBK_BxDT4uMlyDjwEI3AV_CV0cHQ73B54riuEpQmnpsTBJI5kKxmmaxUKCQUylikWUcB1kcarigCgNSppKpKZKcMESwWSmOI0IFZIso15e5PoPwhKkecI40YIJSgWVIpahJLEKueRRKvvIr3tlpBxjvClccjcKamLZ1x3ZR1tNk3tLl_LZxX63q0dl5aPKbEGZt5ePyqeyj6JPmpAPH7Xyw3araKb9dNZQrxw_6nXQQku54cbbC45Qg4s
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yD-rBb3F-5uBJ6GyXj6ZHEcfUbQfZYLeSpAnItBXXgfjXm6Tt3KbusEMh0Lw2SdPkvZf3fj8ArpivNbc4lUmgfee68XgYSM_nRtmnTCnCbe5wt0fbA_w4JMPS4TYuwyqtDa0LoAi3Vtuf2zqjq5C4G4uxYgvmMvtNaNO31olR9C2DAfJ7P3mRJcEmchCmLKxONf96xNy-NIdaOrPftHZAXLW0CDMZNSa5aMivBRDH1buyC7ZLVRTeFnNnD6ypdB9sdac4ruMD0Hrm6QiqIvPS2NTQpb6oBOYZzCwZBHxJbVyHuZNp-Obg_k3ZNAfOnowfgkHrvn_X9krmBU8ijHOPNqOEiIRThhMdcmGsLixkyEnEVKDDRBrTViqjCchIKCw54zTiVGjJMEGYC3QEammWqmMAhVkyIsqQ4pRjzLHgoWgKFMomE4wkog78atxjWcKSW3aM1zio0EsXh6gOrqci7wUmx7LK_uzHjHPnCNEFa8nv6nH-mdcBWSKC_n3VyYpyl2Cj3e924s5D7-kUbLoot6DpBeQM1PKPiTo3ak8uLtzc_gYJ9vWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iIPrgXZzXPPgkdPaSpOmjqGVeNkQc7K0kaQIybYfrQPz1Jmk7t6l72EMh0Jxe0jTnnJzzfQeAc-oqxQxPZeop127dOCz0hOMybewTKiVmBjvc7pBWF933cK_KzRlWaZXGh1YlUYRdq83PPUhVnRF3aShWTEMfWt2EBr21QkxEzCA43M4PLLKqrxlYBlMa1kHNvy4xpZamSEsn1E28WdZUHVqWQpNl0m-OCt4UXzMcjgu_yRbYqAxReFXOnG2wJLMdsN4es7gOd0H8zLI-lCXuUnvU0AJfZAqLHOamFAR8zUxWhz6TK_huyf51Wz8NnIyL74FufPty3XKquguOCBAqHOJHKeYpIxSlKmRc-1yIi5DhiEpPhanQjq2Q2g4QEZdIMMpIxAhXgiIcIMaDfbCc5Zk8AJDrBSMiNJCMMIQY4izkPg9C4VNOccobwK2HPREVKbmpjfGWeDV36ewQNcDFWGRQMnLM6-xOfsuksNsgqqxZ8rt7UnwWDYDniAT_3upwQbkzsPp0EyePd52HI7BmU9w83_HwMVguPkbyRNs8BT-1M_sbBIn0RA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank+equalities+related+to+outer+inverses+of+matrices+and+applications&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Tian%2C+Yongge&rft.date=2001-12-15&rft.pub=Gordon+and+Breach+Science+Publishers&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=49&rft.issue=4&rft.spage=269&rft.epage=288&rft_id=info:doi/10.1080%2F03081080108818701&rft.externalDocID=8818701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon