Stellar oscillation optimizer: a nature-inspired metaheuristic optimization algorithm
This paper proposes a nature-inspired metaheuristic optimization algorithm called Stellar Oscillation Optimizer (SOO), SOO is inspired from the field of asteroseismology, which examines the oscillatory behavior of stars to understand their internal structures, physical properties, and evolutionary s...
        Saved in:
      
    
          | Published in | Cluster computing Vol. 28; no. 6; p. 362 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1386-7857 1573-7543 1573-7543  | 
| DOI | 10.1007/s10586-024-04976-5 | 
Cover
| Abstract | This paper proposes a nature-inspired metaheuristic optimization algorithm called Stellar Oscillation Optimizer (SOO), SOO is inspired from the field of asteroseismology, which examines the oscillatory behavior of stars to understand their internal structures, physical properties, and evolutionary stages. SOO simulates the dynamic expansion and contraction phases observed in stellar pulsations for balancing exploration and exploitation. SOO was evaluated using the IEEE CEC2020 and CEC2022 benchmark datasets, which consist of 10 and 12 functions, respectively. In addition, SOO’s performance was tested on three real-world engineering design problems to further validate its effectiveness. SOO was benchmarked against 10 Physics and mathematics-inspired Optimizers, as well as 15 recent optimizers (2021-2024). SOO achieved first place in 6 out of 10 functions on the CEC2020 dataset when compared to 25 recent, physics and mathematics-inspired optimizers and ranked first in 9 out of 12 functions on the CEC2022 dataset when compared to the 15 recent optimizers. To assess the statistical significance of SOO’s performance, Wilcoxon’s signed-rank and Friedman’s tests were employed. The experimental results demonstrate that SOO consistently outperforms its competitors across a wide variety of optimization tasks. Moreover, SOO was successfully applied to multi-level image segmentation, highlighting its diversity in solving real-world practical applications. The source code of SOO is publicly available for both MATLAB at: (
https://www.mathworks.com/matlabcentral/fileexchange/161921-stellar-oscillation-optimizer-meta-heuristic-optimimization
) and PYTHON at: (
https://github.com/AliRodan/Stellar-Oscillation-Optimizer
) (For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Authors Accepted Manuscript version of this paper arising from this submission.). | 
    
|---|---|
| AbstractList | This paper proposes a nature-inspired metaheuristic optimization algorithm called Stellar Oscillation Optimizer (SOO), SOO is inspired from the field of asteroseismology, which examines the oscillatory behavior of stars to understand their internal structures, physical properties, and evolutionary stages. SOO simulates the dynamic expansion and contraction phases observed in stellar pulsations for balancing exploration and exploitation. SOO was evaluated using the IEEE CEC2020 and CEC2022 benchmark datasets, which consist of 10 and 12 functions, respectively. In addition, SOO’s performance was tested on three real-world engineering design problems to further validate its effectiveness. SOO was benchmarked against 10 Physics and mathematics-inspired Optimizers, as well as 15 recent optimizers (2021-2024). SOO achieved first place in 6 out of 10 functions on the CEC2020 dataset when compared to 25 recent, physics and mathematics-inspired optimizers and ranked first in 9 out of 12 functions on the CEC2022 dataset when compared to the 15 recent optimizers. To assess the statistical significance of SOO’s performance, Wilcoxon’s signed-rank and Friedman’s tests were employed. The experimental results demonstrate that SOO consistently outperforms its competitors across a wide variety of optimization tasks. Moreover, SOO was successfully applied to multi-level image segmentation, highlighting its diversity in solving real-world practical applications. The source code of SOO is publicly available for both MATLAB at: (
https://www.mathworks.com/matlabcentral/fileexchange/161921-stellar-oscillation-optimizer-meta-heuristic-optimimization
) and PYTHON at: (
https://github.com/AliRodan/Stellar-Oscillation-Optimizer
) (For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Authors Accepted Manuscript version of this paper arising from this submission.). This paper proposes a nature-inspired metaheuristic optimization algorithm called Stellar Oscillation Optimizer (SOO), SOO is inspired from the field of asteroseismology, which examines the oscillatory behavior of stars to understand their internal structures, physical properties, and evolutionary stages. SOO simulates the dynamic expansion and contraction phases observed in stellar pulsations for balancing exploration and exploitation. SOO was evaluated using the IEEE CEC2020 and CEC2022 benchmark datasets, which consist of 10 and 12 functions, respectively. In addition, SOO’s performance was tested on three real-world engineering design problems to further validate its effectiveness. SOO was benchmarked against 10 Physics and mathematics-inspired Optimizers, as well as 15 recent optimizers (2021-2024). SOO achieved first place in 6 out of 10 functions on the CEC2020 dataset when compared to 25 recent, physics and mathematics-inspired optimizers and ranked first in 9 out of 12 functions on the CEC2022 dataset when compared to the 15 recent optimizers. To assess the statistical significance of SOO’s performance, Wilcoxon’s signed-rank and Friedman’s tests were employed. The experimental results demonstrate that SOO consistently outperforms its competitors across a wide variety of optimization tasks. Moreover, SOO was successfully applied to multi-level image segmentation, highlighting its diversity in solving real-world practical applications. The source code of SOO is publicly available for both MATLAB at: (https://www.mathworks.com/matlabcentral/fileexchange/161921-stellar-oscillation-optimizer-meta-heuristic-optimimization) and PYTHON at: (https://github.com/AliRodan/Stellar-Oscillation-Optimizer) (For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Authors Accepted Manuscript version of this paper arising from this submission.).  | 
    
| ArticleNumber | 362 | 
    
| Author | Rodan, Ali Al-Alnemer, Loai Mirjalili, Seyedali Al-Tamimi, Abdel-Karimi  | 
    
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-9282-5717 surname: Rodan fullname: Rodan, Ali email: a.rodan@ju.edu.jo organization: King Abdullah II School for IT, The University of Jordan – sequence: 2 givenname: Abdel-Karimi orcidid: 0000-0003-2459-0298 surname: Al-Tamimi fullname: Al-Tamimi, Abdel-Karimi organization: Sheffield Hallam University, Computer Engineering Department, Yarmouk University – sequence: 3 givenname: Loai orcidid: 0000-0002-1208-9861 surname: Al-Alnemer fullname: Al-Alnemer, Loai organization: King Abdullah II School for IT, The University of Jordan – sequence: 4 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University, University Research and Innovation Center, Obuda University  | 
    
| BookMark | eNqNkF9LwzAUxYNMcJt-AZ8KPkeTJmla32T4DwY-6J5D2t5uGV1TkxSZn95oJ76p9-VeuL9zOJwZmnS2A4TOKbmkhMgrT4nIM0xSjgkvZIbFEZpSIRmWgrNJvFl8y1zIEzTzfksIKWRaTNHqOUDbapdYX5l4BGO7xPbB7Mw7uOtEJ50OgwNsOt8bB3Wyg6A3MDjjg6m-0VGn27V1Jmx2p-i40a2Hs8Oeo9Xd7cviAS-f7h8XN0tcMc4DFqzScUhZccZplbGylDyHtC4bUgMAL8sKQNKaibKGPAJQgJaSatlIkCmbIzb6Dl2v92-6bVXvzE67vaJEfTajxmZUbEZ9NaNEVF2Mqt7Z1wF8UFs7uC4GVSzlWcpkmv1B0YJyKgSJVDpSlbPeO2j-F-AQ20e4W4P7sf5F9QEEz5Ov | 
    
| Cites_doi | 10.1007/s00500-023-09276-5 10.1109/TCT.1972.1083500 10.1007/s00500-016-2474-6 10.1016/S0021-9991(02)00053-0 10.1016/j.ins.2020.06.037 10.1016/j.knosys.2014.02.021 10.1063/1.531419 10.1016/j.cie.2021.107250 10.2478/amns.2021.2.00228 10.1111/j.1365-2966.2011.18968.x 10.3390/math9202633 10.1016/j.knosys.2015.12.022 10.1016/j.eswa.2021.115665 10.1016/j.future.2020.03.055 10.1007/978-3-319-91086-4_1 10.1007/978-3-030-23760-8_4 10.1016/0031-3203(86)90046-4 10.1007/978-981-32-9990-0_13 10.1088/0305-4470/38/8/011 10.1155/2021/9210050 10.1016/j.eswa.2021.116158 10.1007/s10462-023-10653-7 10.14569/IJACSA.2013.040119 10.1016/j.rser.2021.111848 10.4236/jcc.2019.73002 10.1016/j.cie.2021.107224 10.1016/j.neucom.2023.02.010 10.1016/j.eswa.2022.116924 10.1007/s10462-023-10567-4 10.1504/IJBIC.2016.074630 10.1007/s00500-024-09800-1 10.1007/s11277-021-08659-x 10.3390/app8091521 10.1109/ICETCE48199.2020.9091743 10.1007/s13042-018-0888-4 10.1051/0004-6361/200912944 10.1016/j.advengsoft.2013.12.007 10.32604/cmc.2024.053189 10.1016/j.advengsoft.2016.01.008 10.1007/s00366-022-01604-x 10.1051/0004-6361/201218854 10.1080/00031305.2015.1089788 10.1016/j.cie.2019.106040 10.1088/0004-637X/803/2/92 10.1007/s42452-020-2073-0 10.3847/1538-3881/ab3461 10.1007/s00521-015-1870-7 10.1007/s10489-018-1306-z 10.1115/1.4036023 10.1093/mnras/staa973 10.11591/eei.v12i5.4757 10.1109/ACCESS.2022.3172789 10.1109/TIP.2011.2109730 10.1088/1742-6596/1288/1/012057 10.3847/1538-4357/833/2/244 10.1016/j.eswa.2022.116516 10.1007/s10489-022-03994-3 10.1007/s42452-021-04349-2 10.1007/s00500-018-3102-4 10.1007/s10489-022-03533-0 10.3991/ijoe.v19i09.39683 10.1093/mnras/stv661 10.1016/j.eswa.2021.116087 10.1016/j.future.2019.02.028 10.1007/978-3-642-04225-6_3 10.1016/j.neucom.2020.06.142 10.1016/j.physletb.2008.07.053 10.1016/j.eswa.2021.115079 10.1016/j.eswa.2020.113377 10.1007/s00521-019-04629-4 10.32604/cmes.2023.045170 10.1016/B978-0-08-052084-1.50017-X 10.1016/j.cie.2018.11.058 10.1016/j.knosys.2022.110146 10.1007/s40998-019-00251-1 10.1016/j.asoc.2016.08.041 10.1007/s00521-015-1920-1 10.1103/PhysRevD.101.063523 10.1016/j.engappai.2022.105075 10.1002/int.22535  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Oct 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Oct 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.  | 
    
| DBID | AAYXX CITATION JQ2 ADTOC UNPAY  | 
    
| DOI | 10.1007/s10586-024-04976-5 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection ProQuest Computer Science Collection  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-7543 | 
    
| ExternalDocumentID | 10.1007/s10586-024-04976-5 10_1007_s10586_024_04976_5  | 
    
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB PUEGO RNI RZC RZE RZK TEORI JQ2 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c344t-53caaaa0bc4341c63bb748e2dbf0deee4bbcee71d35bde8c63e9ea771a7f7e723 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1386-7857 1573-7543  | 
    
| IngestDate | Sun Sep 07 11:28:38 EDT 2025 Sat Sep 06 06:23:44 EDT 2025 Fri Jul 25 09:26:22 EDT 2025 Wed Oct 01 05:25:20 EDT 2025 Thu Sep 04 04:30:02 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | SOO Metaheuristic Global optimization Swarm intelligence optimization Physical optimizer Grey wolf optimizer Sine cosine optimization Particle swarm optimization Artificial intelligence Stellar oscillation optimizer Optimization Heuristic  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c344t-53caaaa0bc4341c63bb748e2dbf0deee4bbcee71d35bde8c63e9ea771a7f7e723 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1208-9861 0000-0003-2459-0298 0000-0002-9282-5717 0000-0002-1443-9458  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s10586-024-04976-5 | 
    
| PQID | 3219141550 | 
    
| PQPubID | 2043865 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10586_024_04976_5 proquest_journals_3246237265 proquest_journals_3219141550 crossref_primary_10_1007_s10586_024_04976_5 springer_journals_10_1007_s10586_024_04976_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-10-01 | 
    
| PublicationDateYYYYMMDD | 2025-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications | 
    
| PublicationTitle | Cluster computing | 
    
| PublicationTitleAbbrev | Cluster Comput | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | F Soto-Eguibar (4976_CR75) 2013; 59 4976_CR92 B Vahidi (4976_CR60) 2019; 3 4976_CR94 G Beni (4976_CR9) 2020 Z Cao (4976_CR68) 2019; 49 4976_CR1 A Sharma (4976_CR30) 2020; 7 FA Hashim (4976_CR39) 2023; 260 TS Metcalfe (4976_CR66) 2003; 185 TL Smith (4976_CR70) 2020; 101 4976_CR8 4976_CR15 4976_CR16 IA Falahah (4976_CR54) 2024 J Kapur (4976_CR85) 1986; 19 4976_CR17 I Ahmadianfar (4976_CR38) 2022; 195 4976_CR19 L Abualigah (4976_CR48) 2021; 157 OA Kittaneh (4976_CR88) 2016; 70 H Wang (4976_CR20) 2016; 8 S Minaee (4976_CR83) 2021; 44 A Srivastava (4976_CR6) 2021; 121 H-H Xiong (4976_CR73) 2008; 666 H Mohammed (4976_CR56) 2023; 53 GA Verner (4976_CR74) 2011; 415 HT Sadeeq (4976_CR82) 2023; 19 AS Joshi (4976_CR21) 2017; 4 C Quesne (4976_CR77) 2005; 38 RA Kumar (4976_CR4) 2022; 1 N Mbuli (4976_CR11) 2022; 155 S Zhao (4976_CR53) 2023; 53 E Trojovská (4976_CR46) 2022; 10 4976_CR62 P Sharma (4976_CR3) 2024; 28 C Guo (4976_CR10) 2021; 452 S Mirjalili (4976_CR40) 2016; 96 G Davies (4976_CR65) 2016 AA Heidari (4976_CR27) 2019; 97 J Reiter (4976_CR72) 2015; 803 W Aribowo (4976_CR45) 2023; 29 H Karami (4976_CR42) 2021; 156 L Zhang (4976_CR96) 2011; 20 B Abdollahzadeh (4976_CR32) 2021; 36 Q-K Pan (4976_CR26) 2014; 62 KD Lawson (4976_CR69) 2019; 158 H Jia (4976_CR43) 2023; 56 H Su (4976_CR34) 2023; 532 D Wang (4976_CR18) 2018; 22 A Stevens (4976_CR64) 2016; 833 L Abualigah (4976_CR5) 2020; 32 L Balona (4976_CR61) 2015; 450 B Mosser (4976_CR63) 2009; 508 S Mirjalili (4976_CR28) 2016; 27 AE Ezugwu (4976_CR2) 2020; 2 L Abualigah (4976_CR52) 2022; 191 R Devarapalli (4976_CR67) 2021; 3 I Ahmadianfar (4976_CR36) 2020; 540 C Hernández-Aguayo (4976_CR81) 2020; 494 S Li (4976_CR35) 2020; 111 J Fuente (4976_CR79) 2017; 9 S Mirjalili (4976_CR25) 2014; 69 A Gopalakrishnan (4976_CR7) 2023; 12 Z Cui (4976_CR22) 2019; 10 L Brezočnik (4976_CR14) 2018; 8 I Bakurov (4976_CR95) 2022; 189 I Ahmadianfar (4976_CR37) 2021; 181 W-S Chung (4976_CR76) 1996; 37 S Mirjalili (4976_CR24) 2016; 95 H Jia (4976_CR57) 2021; 185 H Peraza-Vázquez (4976_CR51) 2024; 57 R Dorothy (4976_CR86) 2015; 2 B Lei (4976_CR93) 2024 W Wu (4976_CR58) 2022 S Pare (4976_CR84) 2020; 44 T Kallinger (4976_CR78) 2012; 541 A Faramarzi (4976_CR31) 2020; 152 S Arora (4976_CR29) 2019; 23 A Seyyedabbasi (4976_CR44) 2023; 39 T Dokeroglu (4976_CR12) 2019; 137 4976_CR87 4976_CR89 D Poobathy (4976_CR90) 2014; 10 4976_CR49 U Sara (4976_CR91) 2019; 7 N Chopra (4976_CR50) 2022; 198 T Aprille (4976_CR71) 1972; 19 M Dorigo (4976_CR13) 2019 P Holmes (4976_CR80) 1979; 292 AL Bolaji (4976_CR23) 2016; 49 L Xie (4976_CR47) 2021; 2021 H Rachih (4976_CR33) 2019; 127 S Mirjalili (4976_CR41) 2016; 27 S Zhao (4976_CR55) 2022; 114 Q Al-Tashi (4976_CR59) 2020  | 
    
| References_xml | – ident: 4976_CR89 – volume: 28 start-page: 3123 issue: 4 year: 2024 ident: 4976_CR3 publication-title: Soft Comput. doi: 10.1007/s00500-023-09276-5 – volume: 19 start-page: 354 issue: 4 year: 1972 ident: 4976_CR71 publication-title: IEEE Trans. Circuit Theory doi: 10.1109/TCT.1972.1083500 – volume: 22 start-page: 387 year: 2018 ident: 4976_CR18 publication-title: Soft comput. doi: 10.1007/s00500-016-2474-6 – ident: 4976_CR62 – volume: 185 start-page: 176 issue: 1 year: 2003 ident: 4976_CR66 publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(02)00053-0 – volume: 540 start-page: 131 year: 2020 ident: 4976_CR36 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.06.037 – volume: 62 start-page: 69 year: 2014 ident: 4976_CR26 publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2014.02.021 – volume: 29 start-page: 1 issue: 1 year: 2023 ident: 4976_CR45 publication-title: Indones. J. Electr. Eng. and Comput. Sci. (IJEECS) – volume: 37 start-page: 917 issue: 2 year: 1996 ident: 4976_CR76 publication-title: J. Math. Phys. doi: 10.1063/1.531419 – volume: 3 start-page: 12 issue: 4 year: 2019 ident: 4976_CR60 publication-title: J. Soft Comput. Civil Eng. – volume: 157 start-page: 107250 year: 2021 ident: 4976_CR48 publication-title: Comput. & Ind. Eng. doi: 10.1016/j.cie.2021.107250 – year: 2022 ident: 4976_CR58 publication-title: Appl. Math. and Nonlinear Sci. doi: 10.2478/amns.2021.2.00228 – volume: 415 start-page: 3539 issue: 4 year: 2011 ident: 4976_CR74 publication-title: Mon. Notices of the Royal Astron. Soc. doi: 10.1111/j.1365-2966.2011.18968.x – ident: 4976_CR1 doi: 10.3390/math9202633 – volume: 96 start-page: 120 year: 2016 ident: 4976_CR40 publication-title: Knowledge-Based syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 185 start-page: 115665 year: 2021 ident: 4976_CR57 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2021.115665 – volume: 111 start-page: 300 year: 2020 ident: 4976_CR35 publication-title: Futur. gener. comput. syst. doi: 10.1016/j.future.2020.03.055 – ident: 4976_CR15 doi: 10.1007/978-3-319-91086-4_1 – ident: 4976_CR17 doi: 10.1007/978-3-030-23760-8_4 – volume: 59 start-page: 122 issue: 2 year: 2013 ident: 4976_CR75 publication-title: Rev. Mex. de Física E – volume: 19 start-page: 473 issue: 6 year: 1986 ident: 4976_CR85 publication-title: Pattern Recognit. doi: 10.1016/0031-3203(86)90046-4 – year: 2020 ident: 4976_CR59 publication-title: Evolut. Mach. Learn. Tech. Algorithms and Appl. doi: 10.1007/978-981-32-9990-0_13 – volume: 38 start-page: 1747 issue: 8 year: 2005 ident: 4976_CR77 publication-title: J. Phys. A: Math. and Gener. doi: 10.1088/0305-4470/38/8/011 – volume: 2021 start-page: 9210050 issue: 1 year: 2021 ident: 4976_CR47 publication-title: Comput. Intell. and Neurosci. doi: 10.1155/2021/9210050 – volume: 191 start-page: 116158 year: 2022 ident: 4976_CR52 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2021.116158 – ident: 4976_CR92 – volume: 57 start-page: 59 issue: 3 year: 2024 ident: 4976_CR51 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10653-7 – ident: 4976_CR94 doi: 10.14569/IJACSA.2013.040119 – volume: 155 start-page: 111848 year: 2022 ident: 4976_CR11 publication-title: Renew. and Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111848 – volume: 7 start-page: 8 issue: 3 year: 2019 ident: 4976_CR91 publication-title: J. Comput. and Commun. doi: 10.4236/jcc.2019.73002 – volume: 156 start-page: 107224 year: 2021 ident: 4976_CR42 publication-title: Comput. & Ind. Eng. doi: 10.1016/j.cie.2021.107224 – volume: 532 start-page: 183 year: 2023 ident: 4976_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 198 start-page: 116924 year: 2022 ident: 4976_CR50 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2022.116924 – volume: 56 start-page: 1919 issue: Suppl 2 year: 2023 ident: 4976_CR43 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10567-4 – volume: 8 start-page: 33 issue: 1 year: 2016 ident: 4976_CR20 publication-title: Int. J. of Bio-Inspired Comput. doi: 10.1504/IJBIC.2016.074630 – year: 2024 ident: 4976_CR93 publication-title: Soft Comput. doi: 10.1007/s00500-024-09800-1 – volume: 121 start-page: 745 issue: 1 year: 2021 ident: 4976_CR6 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08659-x – volume: 8 start-page: 1521 issue: 9 year: 2018 ident: 4976_CR14 publication-title: Appl. Sci. doi: 10.3390/app8091521 – ident: 4976_CR16 doi: 10.1109/ICETCE48199.2020.9091743 – volume: 10 start-page: 603 year: 2019 ident: 4976_CR22 publication-title: Int. J. Mach. Learn. and Cybern. doi: 10.1007/s13042-018-0888-4 – volume: 2 start-page: 21 issue: 4 year: 2015 ident: 4976_CR86 publication-title: Int. J. Nano Corros. Sci. and Eng. – volume: 508 start-page: 877 issue: 2 year: 2009 ident: 4976_CR63 publication-title: Astron. & Astrophys. doi: 10.1051/0004-6361/200912944 – volume: 1 start-page: 435 issue: 64 year: 2022 ident: 4976_CR4 publication-title: Mater. Today: Proc. – volume: 69 start-page: 46 year: 2014 ident: 4976_CR25 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – year: 2024 ident: 4976_CR54 publication-title: Comput. Mater. & Contin. doi: 10.32604/cmc.2024.053189 – volume: 95 start-page: 51 year: 2016 ident: 4976_CR24 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 39 start-page: 2627 issue: 4 year: 2023 ident: 4976_CR44 publication-title: Eng. with Comput. doi: 10.1007/s00366-022-01604-x – volume: 541 start-page: 51 year: 2012 ident: 4976_CR78 publication-title: Astron. & Astrophys. doi: 10.1051/0004-6361/201218854 – volume: 70 start-page: 18 issue: 1 year: 2016 ident: 4976_CR88 publication-title: The Am. Stat. doi: 10.1080/00031305.2015.1089788 – volume: 137 start-page: 106040 year: 2019 ident: 4976_CR12 publication-title: Comput. & Ind. Eng. doi: 10.1016/j.cie.2019.106040 – volume: 803 start-page: 92 issue: 2 year: 2015 ident: 4976_CR72 publication-title: The Astrophys. J. doi: 10.1088/0004-637X/803/2/92 – volume: 2 start-page: 273 issue: 2 year: 2020 ident: 4976_CR2 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2073-0 – volume: 158 start-page: 119 issue: 3 year: 2019 ident: 4976_CR69 publication-title: The Astron. J. doi: 10.3847/1538-3881/ab3461 – volume: 27 start-page: 495 year: 2016 ident: 4976_CR41 publication-title: Neural Comput. and Appl. doi: 10.1007/s00521-015-1870-7 – volume: 49 start-page: 1355 year: 2019 ident: 4976_CR68 publication-title: Appl. Intell. doi: 10.1007/s10489-018-1306-z – volume: 9 start-page: 024502 issue: 2 year: 2017 ident: 4976_CR79 publication-title: J. Mech. and Robotics doi: 10.1115/1.4036023 – volume: 494 start-page: 3120 issue: 3 year: 2020 ident: 4976_CR81 publication-title: Mon. Notices of the Royal Astron. Soc. doi: 10.1093/mnras/staa973 – volume: 12 start-page: 3061 issue: 5 year: 2023 ident: 4976_CR7 publication-title: Bull. Electr. Eng. and Inform. doi: 10.11591/eei.v12i5.4757 – volume: 10 start-page: 49445 year: 2022 ident: 4976_CR46 publication-title: Ieee Access doi: 10.1109/ACCESS.2022.3172789 – volume: 20 start-page: 2378 issue: 8 year: 2011 ident: 4976_CR96 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2109730 – volume-title: Asteroseismology of red giants: from analysing light curves to estimating ages year: 2016 ident: 4976_CR65 – ident: 4976_CR8 doi: 10.1088/1742-6596/1288/1/012057 – volume: 833 start-page: 244 issue: 2 year: 2016 ident: 4976_CR64 publication-title: The Astrophys. J. doi: 10.3847/1538-4357/833/2/244 – volume: 195 start-page: 116516 year: 2022 ident: 4976_CR38 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2022.116516 – volume: 53 start-page: 11833 issue: 10 year: 2023 ident: 4976_CR53 publication-title: Appl. Intell. doi: 10.1007/s10489-022-03994-3 – volume: 3 start-page: 1 year: 2021 ident: 4976_CR67 publication-title: SN Appl. Sci. doi: 10.1007/s42452-021-04349-2 – volume: 23 start-page: 715 year: 2019 ident: 4976_CR29 publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 53 start-page: 1030 issue: 1 year: 2023 ident: 4976_CR56 publication-title: Appl. Intell. doi: 10.1007/s10489-022-03533-0 – volume: 19 start-page: 142 issue: 9 year: 2023 ident: 4976_CR82 publication-title: Int. J. Online & Biomed. Eng. doi: 10.3991/ijoe.v19i09.39683 – volume: 450 start-page: 956 issue: 1 year: 2015 ident: 4976_CR61 publication-title: Mon. Notices of the Royal Astron. Soc. doi: 10.1093/mnras/stv661 – volume: 4 start-page: 7262 issue: 8 year: 2017 ident: 4976_CR21 publication-title: Mater. Today: Proc. – volume: 189 start-page: 116087 year: 2022 ident: 4976_CR95 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2021.116087 – volume-title: Swarm intelligence. Complex social and behavioral systems: game theory and agent-based models year: 2020 ident: 4976_CR9 – volume: 97 start-page: 849 year: 2019 ident: 4976_CR27 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume-title: Ant colony optimization: overview and recent advances year: 2019 ident: 4976_CR13 – ident: 4976_CR19 doi: 10.1007/978-3-642-04225-6_3 – volume: 452 start-page: 728 year: 2021 ident: 4976_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.142 – volume: 666 start-page: 212 issue: 3 year: 2008 ident: 4976_CR73 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.07.053 – volume: 292 start-page: 419 issue: 1394 year: 1979 ident: 4976_CR80 publication-title: Philos. Trans. Royal Soc. Lond. Ser. A, Math. and Phys. Sci. – volume: 181 start-page: 115079 year: 2021 ident: 4976_CR37 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2021.115079 – volume: 44 start-page: 3523 issue: 7 year: 2021 ident: 4976_CR83 publication-title: IEEE Trans. Pattern Anal. and Mach. Intell. – volume: 152 start-page: 113377 year: 2020 ident: 4976_CR31 publication-title: Expert Syst. with Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 32 start-page: 11195 year: 2020 ident: 4976_CR5 publication-title: Neural Comput. and Appl. doi: 10.1007/s00521-019-04629-4 – ident: 4976_CR49 doi: 10.32604/cmes.2023.045170 – ident: 4976_CR87 doi: 10.1016/B978-0-08-052084-1.50017-X – volume: 127 start-page: 45 year: 2019 ident: 4976_CR33 publication-title: Comput. & Ind. Eng. doi: 10.1016/j.cie.2018.11.058 – volume: 260 start-page: 110146 year: 2023 ident: 4976_CR39 publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2022.110146 – volume: 44 start-page: 1 issue: 1 year: 2020 ident: 4976_CR84 publication-title: Iran. J. Sci. and Technol., Trans. Electr. Eng. doi: 10.1007/s40998-019-00251-1 – volume: 49 start-page: 437 year: 2016 ident: 4976_CR23 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.041 – volume: 27 start-page: 1053 year: 2016 ident: 4976_CR28 publication-title: Neural Comput. and Appl. doi: 10.1007/s00521-015-1920-1 – volume: 101 start-page: 063523 issue: 6 year: 2020 ident: 4976_CR70 publication-title: Phys. Rev. D. doi: 10.1103/PhysRevD.101.063523 – volume: 10 start-page: 55 year: 2014 ident: 4976_CR90 publication-title: IJ Image, Gr. and Signal Proc. – volume: 114 start-page: 105075 year: 2022 ident: 4976_CR55 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105075 – volume: 7 start-page: 4097 issue: 11 year: 2020 ident: 4976_CR30 publication-title: J. Crit. Rev. – volume: 36 start-page: 5887 issue: 10 year: 2021 ident: 4976_CR32 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535  | 
    
| SSID | ssj0009729 | 
    
| Score | 2.377739 | 
    
| Snippet | This paper proposes a nature-inspired metaheuristic optimization algorithm called Stellar Oscillation Optimizer (SOO), SOO is inspired from the field of... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 362 | 
    
| SubjectTerms | Algorithms Artificial intelligence Computer Communication Networks Computer Science Datasets Design engineering Design optimization Foraging behavior Heuristic methods Image segmentation Literature reviews Operating Systems Optimization Optimization algorithms Physical properties Processor Architectures Scheduling Source code Stellar oscillations Stellar seismology Traveling salesman problem  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46H9QH7-K80QffNNI1SdP6NkQRwSHoQJ9Kkp7qcOvG1iHu13vSi9Ohon3NSdrc-n0h53yHkCPuxgaRS9OQJQnlMg6pNkjktMc1V55B1LbByTct_6rNrx_EQymTY2NhZu7vbYibCKybrHWXQOikYp4s-AJ5d40stFu3zcf8RIUmMshlPRtCMioFZ2WEzPeNfEWhKbX8uA1dJovjdKDeXlW3-wlwLleLzEWjXKfQ-pm8nI4zfWomMyqOf-vLGlkpeafTLBbKOpmDdIOsVjkdnHKLb5L2nQ0rUUPHilx2C0c5p4__lV5nAsMzRzmFFCjtpPaOHmKnB5l6hnGh-FyZFvVU96k_7GTPvS3Svry4P7-iZeoFahjnGRXMKHxcbTjCnPGZ1pIH4MU6cWMA4FojuspGzISOIUADCEFJ2VAykSA9tk1qaT-FHeKAVJD4WBxgE67wNCBndJXrhwJM6Jo6Oa6mIhoUChvRVEvZjliEIxblIxaJOtmvZisqd9soYp5VqbOHrR-KOZI86flY-6Sa4Gnxby87-VgEf_i23f-Z75ElzyYTzj0D90ktG47hABlOpg_Lpf0O0_bw6w priority: 102 providerName: Unpaywall  | 
    
| Title | Stellar oscillation optimizer: a nature-inspired metaheuristic optimization algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s10586-024-04976-5 https://www.proquest.com/docview/3219141550 https://www.proquest.com/docview/3246237265 https://doi.org/10.1007/s10586-024-04976-5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA_qHtQHv8XpHH3wzRW6NGla34Y4h-IQtKBPJUmvOtg62TpE_3ov_XATVLRvJcm13CX5Xcjd7wg5YU6sEbmUHbhJYjMRB7bS6MgpyhSTVCNqm-Tkm77XC9nVA38ok8KmVbR7dSWZ79QLyW7cNwGzJnACQdTmy6TGDZ0XzuKQduZUuyKvTdZ2sbfwuShTZb6X8RWO5j7m57XoOlmdpS_y7VUOhwvI090iG6XLaHUKG2-TJUh3yGZVjsEqV-cuCe9MRoicWIafcljEuFlj3BJGg3eYnFnSKlg87UFqrtchtkaQyWeYFWTNVddinBw-jSeD7Hm0R8Luxf15zy6rJtjaZSyzuaslPo7SDBFKe65SgvlAY5U4MQAwpRAYRTt2uYrBxw4QgBSiLUUiQFB3n6yk4xQOiAVCQuJhs48iHE4VoLvnSMcLOOjA0XVyWikveinIMaI5DbJRdYSqjnJVR7xOGpV-o3KhTCOXGoI5c076oZmhfyaoh6NblUnmzb99rPVptj_82-H_pB-RNWrqAOdBfQ2ykk1mcIzOSaaapNa5fLy-aOZzEt_C_m3n8QNBnN_l | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIADb8SbHrhBpS5NmpbbhEADtl2gErcqSV02aeum0QnBr8fpgw4JEPRqJ62cx-fK9mdCzpgTa0QuZQdukthMxIGtNDpyijLFJNWI2qY4udvz2iG7e-JPZVHYS5XtXoUk85t6rtiN-yZh1iROIIjafJEsGQIrw5gf0lZNtSvy3mRNF7WFz0VZKvP9HF_hqPYxP8Oiq2R5lk7k26scDueQ52aDrJUuo9Uq1niTLEC6RdardgxWeTq3SfhgKkLk1DL8lMMix80a45UwGrzD9NKSVsHiaQ9SE16H2BpBJvswK8iaK9VinBw-j6eDrD_aIeHN9eNV2y67JtjaZSyzuaslPo7SDBFKe65SgvlAY5U4MQAwpRAYRTN2uYrBRwUIQArRlCIRIKi7SxrpOIU9YoGQkHgo9nEKh1MF6O450vECDjpw9D45r4wXTQpyjKimQTamjtDUUW7qiO-To8q-UXlQXiKXGoI585_0g5ihfyaoh6MvqiWpxb-97OJz2f7wbQf_m_2ULLcfu52oc9u7PyQr1PQEzhP8jkgjm87gGB2VTJ3k-_ID3DDfjQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF48wOPBW6xWzYNvNphudrOJb0Ut3gha6FvY3Uy00Kalpoj-emdztBVUNK87OwmzxzdhZr4h5Ig5kUbkUnbgxrHNRBTYSqMjpyhTTFKNqG2Kk-_uvcsWu27z9lQVf5btXoYk85oGw9KUpCeDKD6ZKnzjvkmeNUkUCKg2nyXzzBAl4I5u0caEdldkfcrqLkoLn4uibOZ7HV-haeJvjkOky2RxlAzk-5vsdqdQqLlGVgr30Wrk671OZiDZIKtlawarOKmbpPVoqkPk0DJcld08383q4_XQ63zA8NSSVs7oaXcSE2qHyOpBKl9glBM3l6L5PNl97g876Utvi7SaF09nl3bRQcHWLmOpzV0t8XGUZohW2nOVEswHGqnYiQCAKYUgKeqRy1UEPgpAAFKIuhSxAEHdbTKX9BPYIRYICbGHwz6qcDhVgK6fIx0v4KADR1fIcWm8cJATZYQTSmRj6hBNHWamDnmFVEv7hsWheQ1dasjmzD_TD8MMfTVBPZxdK5dkMvzby2rjZfvDt-3-T_shWXg4b4a3V_c3e2SJmvbAWa5flcylwxHso8-SqoNsW34CxUTjyQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46H9QH7-K80QffNNI1SdP6NkQRwSHoQJ9Kkp7qcOvG1iHu13vSi9Ohon3NSdrc-n0h53yHkCPuxgaRS9OQJQnlMg6pNkjktMc1V55B1LbByTct_6rNrx_EQymTY2NhZu7vbYibCKybrHWXQOikYp4s-AJ5d40stFu3zcf8RIUmMshlPRtCMioFZ2WEzPeNfEWhKbX8uA1dJovjdKDeXlW3-wlwLleLzEWjXKfQ-pm8nI4zfWomMyqOf-vLGlkpeafTLBbKOpmDdIOsVjkdnHKLb5L2nQ0rUUPHilx2C0c5p4__lV5nAsMzRzmFFCjtpPaOHmKnB5l6hnGh-FyZFvVU96k_7GTPvS3Svry4P7-iZeoFahjnGRXMKHxcbTjCnPGZ1pIH4MU6cWMA4FojuspGzISOIUADCEFJ2VAykSA9tk1qaT-FHeKAVJD4WBxgE67wNCBndJXrhwJM6Jo6Oa6mIhoUChvRVEvZjliEIxblIxaJOtmvZisqd9soYp5VqbOHrR-KOZI86flY-6Sa4Gnxby87-VgEf_i23f-Z75ElzyYTzj0D90ktG47hABlOpg_Lpf0O0_bw6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stellar+oscillation+optimizer%3A+a+nature-inspired+metaheuristic+optimization+algorithm&rft.jtitle=Cluster+computing&rft.au=Rodan%2C+Ali&rft.au=Al-Tamimi%2C+Abdel-Karimi&rft.au=Al-Alnemer%2C+Loai&rft.au=Mirjalili%2C+Seyedali&rft.date=2025-10-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1007%2Fs10586-024-04976-5&rft.externalDocID=10_1007_s10586_024_04976_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |