An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes

Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud and default payments, which can result in substantial financial losses, have become more common as the usage of credit cards in online purch...

Full description

Saved in:
Bibliographic Details
Published inJournal of information security and applications Vol. 78; p. 103618
Main Authors Islam, Md Amirul, Uddin, Md Ashraf, Aryal, Sunil, Stea, Giovanni
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN2214-2126
2214-2134
DOI10.1016/j.jisa.2023.103618

Cover

Abstract Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud and default payments, which can result in substantial financial losses, have become more common as the usage of credit cards in online purchases has increased. To address this issue, researchers have explored various machine learning models and their ensemble techniques for detecting anomalies in credit card transaction data. However, detecting anomalies in this data can be challenging due to overlapping class samples and an imbalanced class distribution. Therefore, the detection rate of anomalies from minority class samples is relatively low, and general learning algorithms can be biased towards the majority class samples. In this paper, we propose a model called Credit Card Anomaly Detection (CCAD) that leverages the base learners paradigm and meta-learning ensemble techniques to improve the detection rate of credit card anomalies. We utilize four outlier detection algorithms as base learners and XGBoost algorithm as meta learner in the proposed stacked ensemble approach to detect anomaly in credit card transactions. We apply stratified sampling technique and k-fold cross-validation process to address the issues of data imbalance and overfitting. In addition, the discordance rate is calculated to enhance the accuracy of ensemble learning performances. The proposed model is trained and tested using two datasets: CCF (Credit Card Fraud) and CCDP (Credit Card Default Payment). Experimental results demonstrate that our approach outperforms existing approaches, particularly in detecting anomalies from the minority class instances of these datasets.
AbstractList Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud and default payments, which can result in substantial financial losses, have become more common as the usage of credit cards in online purchases has increased. To address this issue, researchers have explored various machine learning models and their ensemble techniques for detecting anomalies in credit card transaction data. However, detecting anomalies in this data can be challenging due to overlapping class samples and an imbalanced class distribution. Therefore, the detection rate of anomalies from minority class samples is relatively low, and general learning algorithms can be biased towards the majority class samples. In this paper, we propose a model called Credit Card Anomaly Detection (CCAD) that leverages the base learners paradigm and meta-learning ensemble techniques to improve the detection rate of credit card anomalies. We utilize four outlier detection algorithms as base learners and XGBoost algorithm as meta learner in the proposed stacked ensemble approach to detect anomaly in credit card transactions. We apply stratified sampling technique and k-fold cross-validation process to address the issues of data imbalance and overfitting. In addition, the discordance rate is calculated to enhance the accuracy of ensemble learning performances. The proposed model is trained and tested using two datasets: CCF (Credit Card Fraud) and CCDP (Credit Card Default Payment). Experimental results demonstrate that our approach outperforms existing approaches, particularly in detecting anomalies from the minority class instances of these datasets.
ArticleNumber 103618
Author Stea, Giovanni
Aryal, Sunil
Uddin, Md Ashraf
Islam, Md Amirul
Author_xml – sequence: 1
  givenname: Md Amirul
  surname: Islam
  fullname: Islam, Md Amirul
  email: mdamirul.islam@phd.unipi.it
  organization: Department of Information Engineering, University of Pisa, Italy
– sequence: 2
  givenname: Md Ashraf
  orcidid: 0000-0002-4316-4975
  surname: Uddin
  fullname: Uddin, Md Ashraf
  email: ashraf.uddin@deakin.edu.au
  organization: School of Information Technology, Deakin University, Australia
– sequence: 3
  givenname: Sunil
  surname: Aryal
  fullname: Aryal, Sunil
  email: sunil.aryal@deakin.edu.au
  organization: School of Information Technology, Deakin University, Australia
– sequence: 4
  givenname: Giovanni
  orcidid: 0000-0001-5310-6763
  surname: Stea
  fullname: Stea, Giovanni
  email: giovanni.stea@unipi.it
  organization: Department of Information Engineering, University of Pisa, Italy
BookMark eNqNkMtqwzAQRbVIoWmbH-hKP-BUD78C3YTQFwS6addiLI0bGVk2kpuQv6-Nu-oidDXMDOcOc27IwnceCbnnbM0Zzx-adWMjrAUTchzInJcLshSCp4ngIr8mqxgbxhgXfJMJuSR-6yn6iG3lkDqE4K3_otD3oQN9oHUXKPiuBXemBgfUg-08tZ7qgMYOVEMw1MAA9GSHA7VtBQ68RjNShnZHDG7MGlvtIEaMd-SqBhdx9Vtvyefz08fuNdm_v7zttvtEyzQdktRkeal1gZiWOt_ojZGZ5lJiwdPC1DWmLOfjqpBVxao8K2TGQFYZSkAj60LeEjnnfvsezidwTvXBthDOijM1mVKNmkypyZSaTY1UOVM6dDEGrJW2A0wvDwGsu4yKP-i_7j3OEI4qjhaDitripM-GUbUynb2E_wCLXJpd
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3362831
crossref_primary_10_1109_ACCESS_2024_3426955
crossref_primary_10_1109_ACCESS_2024_3516376
crossref_primary_10_1186_s40537_024_01059_5
crossref_primary_10_1109_TIA_2024_3427712
crossref_primary_10_1109_ACCESS_2024_3502542
crossref_primary_10_1007_s11042_024_19353_y
crossref_primary_10_1088_1361_6501_ad480f
Cites_doi 10.1016/j.dss.2017.01.002
10.1145/3338840.3355641
10.3390/math10091480
10.1162/089976601750264965
10.1016/j.eswa.2017.02.017
10.1016/j.patrec.2020.05.035
10.1109/ACCESS.2020.2972009
10.1016/j.procs.2015.04.201
10.3390/electronics11040662
10.1016/j.gltp.2021.01.006
10.1016/j.procs.2020.06.014
10.1109/ICCV.2017.205
10.1093/jamia/ocaa096
10.1016/j.patrec.2005.10.010
10.1145/3152494.3156815
10.1016/j.ins.2019.05.023
10.1016/j.procs.2020.01.057
10.1016/j.eswa.2019.03.042
10.1145/342009.335388
10.1016/j.eswa.2018.01.037
10.1109/TKDE.2008.239
10.1109/TNNLS.2017.2751612
10.1016/j.dss.2010.08.008
10.1109/ACCESS.2018.2806420
10.1016/j.ins.2019.05.042
10.1186/s13040-021-00244-z
10.1145/2939672.2939785
10.1016/j.eswa.2013.05.021
10.1145/1541880.1541882
10.1016/j.neucom.2015.10.042
10.1016/j.dss.2014.07.003
10.1016/j.asoc.2020.106883
10.1093/mnras/stv1551
10.1016/j.engappai.2018.07.002
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.jisa.2023.103618
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10.1016/j.jisa.2023.103618
10_1016_j_jisa_2023_103618
S2214212623002028
GroupedDBID --M
.~1
1~.
4.4
457
4G.
5VS
6I.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
AVARZ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
KOM
M41
MO0
OAUVE
P-8
P-9
PC.
PRBVW
RIG
ROL
SPC
SPCBC
SSB
SSO
SSV
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ADTOC
UNPAY
ID FETCH-LOGICAL-c344t-4d568cc7ee48c69c9d35c133e7147dffe406148c73bb0b657350a3b5e3aed3f73
IEDL.DBID UNPAY
ISSN 2214-2126
2214-2134
IngestDate Sun Oct 26 03:51:57 EDT 2025
Wed Oct 01 03:30:10 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 23 02:35:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Credit card
Base learner
Meta-learning
Anomaly detection
Ensemble
Classification
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-4d568cc7ee48c69c9d35c133e7147dffe406148c73bb0b657350a3b5e3aed3f73
ORCID 0000-0001-5310-6763
0000-0002-4316-4975
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jisa.2023.103618
ParticipantIDs unpaywall_primary_10_1016_j_jisa_2023_103618
crossref_citationtrail_10_1016_j_jisa_2023_103618
crossref_primary_10_1016_j_jisa_2023_103618
elsevier_sciencedirect_doi_10_1016_j_jisa_2023_103618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Journal of information security and applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khatri, Arora, Agrawal (b30) 2020
Fu, Cheng, Tu, Zhang (b14) 2016
Feng (b59) 2021
Gao, Gong, Wang, Mo (b2) 2018
Rout (b16) 2021
Carta, Fenu, Recupero, Saia (b72) 2019; 46
Cheng Z, Zou C, Dong J. Outlier detection using isolation forest and local outlier factor. In: Proceedings of the conference on research in adaptive and convergent systems. 2019, p. 161–8.
MoneyTransfers.com (b3) 2022
Zareapoor, Shamsolmoali (b15) 2015; 48
Vishwakarma, Rasool, Hajela (b63) 2021
Deepanath, Prasad (b20) 2019
Itoo, Singh (b28) 2021; 13
Wang, Deng, Wang (b56) 2020; 136
Da Silva, Hruschka, Hruschka Jr. (b57) 2014; 66
Dong Q, Gong S, Zhu X. Class rectification hard mining for imbalanced deep learning. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1851–60.
Zhenya, Zhang (b65) 2021; 21
Sohony I, Pratap R, Nambiar U. Ensemble learning for credit card fraud detection. In: Proceedings of the ACM India joint international conference on data science and management of data. 2018, p. 289–94.
Alfaiz, Fati (b18) 2022; 11
Randhawa, Loo, Seera, Lim, Nandi (b34) 2018; 6
Chandola, Banerjee, Kumar (b51) 2009; 41
Singh (b39) 2017
Sahin, Bulkan, Duman (b11) 2013; 40
Xia, Liu, Li, Liu (b38) 2017; 78
Bey, Goussault, Grolleau, Benchoufi, Porcher (b61) 2020; 27
Liu, Ting, Zhou (b47) 2008
Dornadula, Geetha (b32) 2019; 165
Wang (b50) 2005
Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b52) 1999
Ceicdata (b7) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b45) 2011; 12
Forough, Momtazi (b25) 2021; 99
Dal Pozzolo, Caelen, Johnson, Bontempi (b62) 2015
Chargebacks911.com (b4) 2023
Asha, KR (b26) 2021; 2
Kalid, Ng, Tong, Khor (b31) 2020; 8
Lokman (b6) 2017
Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data. 2000, p. 93–104.
Carneiro, Figueira, Costa (b42) 2017; 95
legaljobs.io (b5) 2022
Zakaryazad, Duman (b12) 2016; 175
Save, Tiwarekar, Jain, Mahyavanshi (b37) 2017; 161
Raghuwanshi, Shukla (b67) 2018; 74
Seera, Lim, Kumar, Dhamotharan, Tan (b27) 2021
Khaldy, Kambhampati (b69) 2018; 4
Charleonnan (b40) 2016
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (b53) 2001; 13
Chicco, Tötsch, Jurman (b68) 2021; 14
Bagga, Goyal, Gupta, Goyal (b58) 2020; 173
Jurgovsky, Granitzer, Ziegler, Calabretto, Portier, He-Guelton (b13) 2018; 100
Karthik, Mishra, Reddy (b24) 2021
He, Garcia (b66) 2009; 21
Mathew, Pang, Luo, Leong (b9) 2017; 29
Xenopoulos (b36) 2017
Fawcett (b71) 2006; 27
Malik, Khaw, Belaton, Wong, Chew (b19) 2022; 10
Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining. 2016, p. 785–94.
Carcillo, Le Borgne, Caelen, Kessaci, Oblé, Bontempi (b22) 2021; 557
Olowookere, Adewale (b29) 2020; 8
Yeh, Lien (b43) 2016
Venkatesh, Jacob (b41) 2016; 145
Zhang, Lu, Lin, Qiao, Zheng (b21) 2022; 2022
Flennerhag, Moreno, Lawrence, Damianou (b60) 2018
Powers (b64) 2020
Vuttipittayamongkol, Elyan, Petrovski, Jayne (b8) 2018
Kim, Lee, Shin, Yang, Cho, Nam (b17) 2019; 128
Hoyle, Rau, Paech, Bonnett, Seitz, Weller (b46) 2015; 452
Li, Chen, Tang, Xu (b44) 2018
Trisanto, Rismawati, Mulya, Kurniadi (b55) 2021; 14
Ram, Gupta, Agarwal (b35) 2018; 21
Müller, Guido (b70) 2016
Bhattacharyya, Jha, Tharakunnel, Westland (b10) 2011; 50
Zhang, Han, Xu, Wang (b23) 2021; 557
Zhenya (10.1016/j.jisa.2023.103618_b65) 2021; 21
Dal Pozzolo (10.1016/j.jisa.2023.103618_b62) 2015
Xia (10.1016/j.jisa.2023.103618_b38) 2017; 78
Fawcett (10.1016/j.jisa.2023.103618_b71) 2006; 27
Gao (10.1016/j.jisa.2023.103618_b2) 2018
Khaldy (10.1016/j.jisa.2023.103618_b69) 2018; 4
Ceicdata (10.1016/j.jisa.2023.103618_b7) 2018
Bhattacharyya (10.1016/j.jisa.2023.103618_b10) 2011; 50
Ram (10.1016/j.jisa.2023.103618_b35) 2018; 21
Charleonnan (10.1016/j.jisa.2023.103618_b40) 2016
Zakaryazad (10.1016/j.jisa.2023.103618_b12) 2016; 175
Sahin (10.1016/j.jisa.2023.103618_b11) 2013; 40
Bey (10.1016/j.jisa.2023.103618_b61) 2020; 27
Zareapoor (10.1016/j.jisa.2023.103618_b15) 2015; 48
10.1016/j.jisa.2023.103618_b33
Kim (10.1016/j.jisa.2023.103618_b17) 2019; 128
Raghuwanshi (10.1016/j.jisa.2023.103618_b67) 2018; 74
Müller (10.1016/j.jisa.2023.103618_b70) 2016
Seera (10.1016/j.jisa.2023.103618_b27) 2021
Wang (10.1016/j.jisa.2023.103618_b50) 2005
Vishwakarma (10.1016/j.jisa.2023.103618_b63) 2021
Venkatesh (10.1016/j.jisa.2023.103618_b41) 2016; 145
Pedregosa (10.1016/j.jisa.2023.103618_b45) 2011; 12
Flennerhag (10.1016/j.jisa.2023.103618_b60) 2018
Forough (10.1016/j.jisa.2023.103618_b25) 2021; 99
Da Silva (10.1016/j.jisa.2023.103618_b57) 2014; 66
Alfaiz (10.1016/j.jisa.2023.103618_b18) 2022; 11
Randhawa (10.1016/j.jisa.2023.103618_b34) 2018; 6
Schölkopf (10.1016/j.jisa.2023.103618_b53) 2001; 13
Itoo (10.1016/j.jisa.2023.103618_b28) 2021; 13
Vuttipittayamongkol (10.1016/j.jisa.2023.103618_b8) 2018
Rout (10.1016/j.jisa.2023.103618_b16) 2021
Zhang (10.1016/j.jisa.2023.103618_b21) 2022; 2022
Li (10.1016/j.jisa.2023.103618_b44) 2018
Fu (10.1016/j.jisa.2023.103618_b14) 2016
Dornadula (10.1016/j.jisa.2023.103618_b32) 2019; 165
legaljobs.io (10.1016/j.jisa.2023.103618_b5) 2022
MoneyTransfers.com (10.1016/j.jisa.2023.103618_b3) 2022
Lokman (10.1016/j.jisa.2023.103618_b6) 2017
Hoyle (10.1016/j.jisa.2023.103618_b46) 2015; 452
Chicco (10.1016/j.jisa.2023.103618_b68) 2021; 14
Mathew (10.1016/j.jisa.2023.103618_b9) 2017; 29
10.1016/j.jisa.2023.103618_b49
10.1016/j.jisa.2023.103618_b48
Chandola (10.1016/j.jisa.2023.103618_b51) 2009; 41
Carcillo (10.1016/j.jisa.2023.103618_b22) 2021; 557
Schölkopf (10.1016/j.jisa.2023.103618_b52) 1999
Khatri (10.1016/j.jisa.2023.103618_b30) 2020
Karthik (10.1016/j.jisa.2023.103618_b24) 2021
Liu (10.1016/j.jisa.2023.103618_b47) 2008
Powers (10.1016/j.jisa.2023.103618_b64) 2020
Singh (10.1016/j.jisa.2023.103618_b39) 2017
Xenopoulos (10.1016/j.jisa.2023.103618_b36) 2017
10.1016/j.jisa.2023.103618_b1
Save (10.1016/j.jisa.2023.103618_b37) 2017; 161
Feng (10.1016/j.jisa.2023.103618_b59) 2021
Trisanto (10.1016/j.jisa.2023.103618_b55) 2021; 14
Deepanath (10.1016/j.jisa.2023.103618_b20) 2019
Zhang (10.1016/j.jisa.2023.103618_b23) 2021; 557
Asha (10.1016/j.jisa.2023.103618_b26) 2021; 2
Olowookere (10.1016/j.jisa.2023.103618_b29) 2020; 8
10.1016/j.jisa.2023.103618_b54
Wang (10.1016/j.jisa.2023.103618_b56) 2020; 136
Jurgovsky (10.1016/j.jisa.2023.103618_b13) 2018; 100
Carneiro (10.1016/j.jisa.2023.103618_b42) 2017; 95
Chargebacks911.com (10.1016/j.jisa.2023.103618_b4) 2023
He (10.1016/j.jisa.2023.103618_b66) 2009; 21
Kalid (10.1016/j.jisa.2023.103618_b31) 2020; 8
Bagga (10.1016/j.jisa.2023.103618_b58) 2020; 173
Malik (10.1016/j.jisa.2023.103618_b19) 2022; 10
Yeh (10.1016/j.jisa.2023.103618_b43) 2016
Carta (10.1016/j.jisa.2023.103618_b72) 2019; 46
References_xml – volume: 136
  start-page: 190
  year: 2020
  end-page: 197
  ident: b56
  article-title: Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost
  publication-title: Pattern Recognit Lett
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: b51
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput Surv (CSUR)
– reference: Cheng Z, Zou C, Dong J. Outlier detection using isolation forest and local outlier factor. In: Proceedings of the conference on research in adaptive and convergent systems. 2019, p. 161–8.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b66
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b71
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
– volume: 557
  start-page: 317
  year: 2021
  end-page: 331
  ident: b22
  article-title: Combining unsupervised and supervised learning in credit card fraud detection
  publication-title: Inf Sci
– volume: 173
  start-page: 104
  year: 2020
  end-page: 112
  ident: b58
  article-title: Credit card fraud detection using pipeling and ensemble learning
  publication-title: Procedia Comput Sci
– start-page: 968
  year: 2017
  end-page: 972
  ident: b39
  article-title: Comparative study of individual and ensemble methods of classification for credit scoring
  publication-title: 2017 International conference on inventive computing and informatics
– volume: 2022
  year: 2022
  ident: b21
  article-title: The optimized anomaly detection models based on an approach of dealing with imbalanced dataset for credit card fraud detection
  publication-title: Mob Inf Syst
– volume: 21
  start-page: 1
  year: 2021
  end-page: 18
  ident: b65
  article-title: A hybrid cost-sensitive ensemble for heart disease prediction
  publication-title: BMC Med Inf Decis Mak
– volume: 14
  start-page: 350
  year: 2021
  end-page: 358
  ident: b55
  article-title: Modified focal loss in imbalanced XGBoost for credit card fraud detection
  publication-title: Int J Intell Eng Syst
– volume: 27
  start-page: 1244
  year: 2020
  end-page: 1251
  ident: b61
  article-title: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning
  publication-title: J Am Med Inf Assoc
– reference: Dong Q, Gong S, Zhu X. Class rectification hard mining for imbalanced deep learning. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1851–60.
– start-page: 141
  year: 2021
  end-page: 149
  ident: b63
  article-title: Machine learning algorithms for prediction of credit card defaulters—A comparative study
  publication-title: Proceedings of international conference on sustainable expert systems
– volume: 145
  year: 2016
  ident: b41
  article-title: Prediction of credit-card defaulters: A comparative study on performance of classifiers
  publication-title: Int J Comput Appl
– volume: 50
  start-page: 602
  year: 2011
  end-page: 613
  ident: b10
  article-title: Data mining for credit card fraud: A comparative study
  publication-title: Decis Support Syst
– start-page: 680
  year: 2020
  end-page: 683
  ident: b30
  article-title: Supervised machine learning algorithms for credit card fraud detection: A comparison
  publication-title: 2020 10th International conference on cloud computing, data science & engineering
– start-page: 1538
  year: 2018
  end-page: 1542
  ident: b2
  article-title: Study on unbalanced binary classification with unknown misclassification costs
  publication-title: 2018 IEEE international conference on industrial engineering and engineering management
– year: 2016
  ident: b43
  article-title: Default of credit card clients data set
– start-page: 7
  year: 2021
  end-page: 11
  ident: b59
  article-title: Ensemble learning in credit card fraud detection using boosting methods
  publication-title: 2021 2nd International conference on computing and data science
– year: 2017
  ident: b6
  article-title: 3.6 Million credit card holders have RM36.9 billion outstanding balance
– year: 1999
  ident: b52
  article-title: Support vector method for novelty detection
  publication-title: Advances in neural information processing systems. Vol. 12
– reference: Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data. 2000, p. 93–104.
– start-page: 689
  year: 2018
  end-page: 697
  ident: b8
  article-title: Overlap-based undersampling for improving imbalanced data classification
  publication-title: Intelligent data engineering and automated learning–IDEAL 2018: 19th international conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part I. Vol. 19
– year: 2020
  ident: b64
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
– volume: 175
  start-page: 121
  year: 2016
  end-page: 131
  ident: b12
  article-title: A profit-driven artificial neural network (ANN) with applications to fraud detection and direct marketing
  publication-title: Neurocomputing
– volume: 14
  start-page: 1
  year: 2021
  end-page: 22
  ident: b68
  article-title: The matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
  publication-title: BioData Min
– volume: 40
  start-page: 5916
  year: 2013
  end-page: 5923
  ident: b11
  article-title: A cost-sensitive decision tree approach for fraud detection
  publication-title: Expert Syst Appl
– start-page: 1
  year: 2021
  end-page: 11
  ident: b24
  article-title: Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model
  publication-title: Arab J Sci Eng
– volume: 10
  start-page: 1480
  year: 2022
  ident: b19
  article-title: Credit card fraud detection using a new hybrid machine learning architecture
  publication-title: Mathematics
– reference: Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining. 2016, p. 785–94.
– start-page: 483
  year: 2016
  end-page: 490
  ident: b14
  article-title: Credit card fraud detection using convolutional neural networks
  publication-title: Neural information processing: 23rd International conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part III. Vol. 23
– year: 2019
  ident: b20
  article-title: IEEE-CIS fraud detection
– volume: 78
  start-page: 225
  year: 2017
  end-page: 241
  ident: b38
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– start-page: 159
  year: 2015
  end-page: 166
  ident: b62
  article-title: Calibrating probability with undersampling for unbalanced classification
  publication-title: 2015 IEEE symposium series on computational intelligence
– volume: 46
  start-page: 13
  year: 2019
  end-page: 22
  ident: b72
  article-title: Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model
  publication-title: J Inf Secur Appl
– volume: 48
  start-page: 679
  year: 2015
  end-page: 685
  ident: b15
  article-title: Application of credit card fraud detection: Based on bagging ensemble classifier
  publication-title: Procedia Comput Sci
– volume: 128
  start-page: 214
  year: 2019
  end-page: 224
  ident: b17
  article-title: Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning
  publication-title: Expert Syst Appl
– volume: 99
  year: 2021
  ident: b25
  article-title: Ensemble of deep sequential models for credit card fraud detection
  publication-title: Appl Soft Comput
– volume: 165
  start-page: 631
  year: 2019
  end-page: 641
  ident: b32
  article-title: Credit card fraud detection using machine learning algorithms
  publication-title: Procedia Comput Sci
– year: 2023
  ident: b4
  article-title: Credit card fraud statistics
– volume: 8
  year: 2020
  ident: b29
  article-title: A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach
  publication-title: Sci Afr
– volume: 100
  start-page: 234
  year: 2018
  end-page: 245
  ident: b13
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Syst Appl
– start-page: MIT
  year: 2016
  end-page: 73
  ident: b40
  article-title: Credit card fraud detection using RUS and MRN algorithms
  publication-title: 2016 Management and innovation technology international conference
– year: 2016
  ident: b70
  article-title: Introduction to machine learning with python: A guide for data scientists
– start-page: 1
  year: 2021
  end-page: 23
  ident: b27
  article-title: An intelligent payment card fraud detection system
  publication-title: Ann Oper Res
– volume: 4
  start-page: 1
  year: 2018
  end-page: 10
  ident: b69
  article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset
  publication-title: Int Robot Autom J
– start-page: 33
  year: 2021
  end-page: 40
  ident: b16
  article-title: Analysis and comparison of credit card fraud detection using machine learning
  publication-title: Advances in electronics, communication and computing: Select proceedings of ETAEERE 2020
– volume: 66
  start-page: 170
  year: 2014
  end-page: 179
  ident: b57
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decis Support Syst
– volume: 557
  start-page: 302
  year: 2021
  end-page: 316
  ident: b23
  article-title: HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture
  publication-title: Inform Sci
– year: 2018
  ident: b60
  article-title: Transferring knowledge across learning processes
– volume: 95
  start-page: 91
  year: 2017
  end-page: 101
  ident: b42
  article-title: A data mining based system for credit-card fraud detection in e-tail
  publication-title: Decis Support Syst
– year: 2005
  ident: b50
  article-title: Support vector machines: Theory and applications. Vol. 177
– year: 2022
  ident: b5
  article-title: 20 Most fascinating credit card fraud statistics
– volume: 11
  start-page: 662
  year: 2022
  ident: b18
  article-title: Enhanced credit card fraud detection model using machine learning
  publication-title: Electronics
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: b53
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput
– volume: 29
  start-page: 4065
  year: 2017
  end-page: 4076
  ident: b9
  article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 2
  start-page: 35
  year: 2021
  end-page: 41
  ident: b26
  article-title: Credit card fraud detection using artificial neural network
  publication-title: Glob Trans Proc
– reference: Sohony I, Pratap R, Nambiar U. Ensemble learning for credit card fraud detection. In: Proceedings of the ACM India joint international conference on data science and management of data. 2018, p. 289–94.
– volume: 6
  start-page: 14277
  year: 2018
  end-page: 14284
  ident: b34
  article-title: Credit card fraud detection using AdaBoost and majority voting
  publication-title: IEEE Access
– start-page: 413
  year: 2008
  end-page: 422
  ident: b47
  article-title: Isolation forest
  publication-title: 2008 Eighth IEEE international conference on data mining
– volume: 21
  start-page: 593
  year: 2018
  end-page: 599
  ident: b35
  article-title: Devanagri character recognition model using deep convolution neural network
  publication-title: J Stat Manag Syst
– volume: 452
  start-page: 4183
  year: 2015
  end-page: 4194
  ident: b46
  article-title: Anomaly detection for machine learning redshifts applied to SDSS galaxies
  publication-title: Mon Not R Astron Soc
– volume: 8
  start-page: 28210
  year: 2020
  end-page: 28221
  ident: b31
  article-title: A multiple classifiers system for anomaly detection in credit card data with unbalanced and overlapped classes
  publication-title: IEEE Access
– volume: 161
  year: 2017
  ident: b37
  article-title: A novel idea for credit card fraud detection using decision tree
  publication-title: Int J Comput Appl
– volume: 74
  start-page: 252
  year: 2018
  end-page: 270
  ident: b67
  article-title: Underbagging based reduced kernelized weighted extreme learning machine for class imbalance learning
  publication-title: Eng Appl Artif Intell
– volume: 13
  start-page: 1503
  year: 2021
  end-page: 1511
  ident: b28
  article-title: Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection
  publication-title: Int J Inf Technol
– year: 2022
  ident: b3
  article-title: 15 Shocking credit card fraud statistics & facts for 2022
– year: 2018
  ident: b7
  article-title: Malaysia credit card statistics
– start-page: 3684
  year: 2017
  end-page: 3689
  ident: b36
  article-title: Introducing DeepBalance: Random deep belief network ensembles to address class imbalance
  publication-title: 2017 IEEE international conference on big data
– start-page: 536
  year: 2018
  end-page: 544
  ident: b44
  article-title: Identification of the normal/abnormal heart sounds based on energy features and Xgboost
  publication-title: Chinese conference on biometric recognition
– year: 2017
  ident: 10.1016/j.jisa.2023.103618_b6
– volume: 95
  start-page: 91
  year: 2017
  ident: 10.1016/j.jisa.2023.103618_b42
  article-title: A data mining based system for credit-card fraud detection in e-tail
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2017.01.002
– ident: 10.1016/j.jisa.2023.103618_b48
  doi: 10.1145/3338840.3355641
– start-page: 1538
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b2
  article-title: Study on unbalanced binary classification with unknown misclassification costs
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jisa.2023.103618_b45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– volume: 8
  year: 2020
  ident: 10.1016/j.jisa.2023.103618_b29
  article-title: A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach
  publication-title: Sci Afr
– volume: 10
  start-page: 1480
  issue: 9
  year: 2022
  ident: 10.1016/j.jisa.2023.103618_b19
  article-title: Credit card fraud detection using a new hybrid machine learning architecture
  publication-title: Mathematics
  doi: 10.3390/math10091480
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.jisa.2023.103618_b53
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput
  doi: 10.1162/089976601750264965
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b65
  article-title: A hybrid cost-sensitive ensemble for heart disease prediction
  publication-title: BMC Med Inf Decis Mak
– start-page: 1
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b24
  article-title: Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model
  publication-title: Arab J Sci Eng
– volume: 78
  start-page: 225
  year: 2017
  ident: 10.1016/j.jisa.2023.103618_b38
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.02.017
– volume: 136
  start-page: 190
  year: 2020
  ident: 10.1016/j.jisa.2023.103618_b56
  article-title: Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.05.035
– volume: 8
  start-page: 28210
  year: 2020
  ident: 10.1016/j.jisa.2023.103618_b31
  article-title: A multiple classifiers system for anomaly detection in credit card data with unbalanced and overlapped classes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972009
– volume: 48
  start-page: 679
  issue: 2015
  year: 2015
  ident: 10.1016/j.jisa.2023.103618_b15
  article-title: Application of credit card fraud detection: Based on bagging ensemble classifier
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.04.201
– volume: 11
  start-page: 662
  issue: 4
  year: 2022
  ident: 10.1016/j.jisa.2023.103618_b18
  article-title: Enhanced credit card fraud detection model using machine learning
  publication-title: Electronics
  doi: 10.3390/electronics11040662
– volume: 145
  issue: 7
  year: 2016
  ident: 10.1016/j.jisa.2023.103618_b41
  article-title: Prediction of credit-card defaulters: A comparative study on performance of classifiers
  publication-title: Int J Comput Appl
– year: 2019
  ident: 10.1016/j.jisa.2023.103618_b20
– start-page: 3684
  year: 2017
  ident: 10.1016/j.jisa.2023.103618_b36
  article-title: Introducing DeepBalance: Random deep belief network ensembles to address class imbalance
– volume: 2
  start-page: 35
  issue: 1
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b26
  article-title: Credit card fraud detection using artificial neural network
  publication-title: Glob Trans Proc
  doi: 10.1016/j.gltp.2021.01.006
– volume: 173
  start-page: 104
  year: 2020
  ident: 10.1016/j.jisa.2023.103618_b58
  article-title: Credit card fraud detection using pipeling and ensemble learning
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.06.014
– ident: 10.1016/j.jisa.2023.103618_b1
  doi: 10.1109/ICCV.2017.205
– start-page: MIT
  year: 2016
  ident: 10.1016/j.jisa.2023.103618_b40
  article-title: Credit card fraud detection using RUS and MRN algorithms
– volume: 27
  start-page: 1244
  issue: 8
  year: 2020
  ident: 10.1016/j.jisa.2023.103618_b61
  article-title: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning
  publication-title: J Am Med Inf Assoc
  doi: 10.1093/jamia/ocaa096
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.jisa.2023.103618_b71
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– ident: 10.1016/j.jisa.2023.103618_b33
  doi: 10.1145/3152494.3156815
– volume: 557
  start-page: 302
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b23
  article-title: HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.05.023
– volume: 165
  start-page: 631
  year: 2019
  ident: 10.1016/j.jisa.2023.103618_b32
  article-title: Credit card fraud detection using machine learning algorithms
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.01.057
– volume: 21
  start-page: 593
  issue: 4
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b35
  article-title: Devanagri character recognition model using deep convolution neural network
  publication-title: J Stat Manag Syst
– volume: 161
  issue: 13
  year: 2017
  ident: 10.1016/j.jisa.2023.103618_b37
  article-title: A novel idea for credit card fraud detection using decision tree
  publication-title: Int J Comput Appl
– year: 2018
  ident: 10.1016/j.jisa.2023.103618_b60
– year: 2016
  ident: 10.1016/j.jisa.2023.103618_b43
– volume: 128
  start-page: 214
  year: 2019
  ident: 10.1016/j.jisa.2023.103618_b17
  article-title: Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.03.042
– ident: 10.1016/j.jisa.2023.103618_b49
  doi: 10.1145/342009.335388
– volume: 100
  start-page: 234
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b13
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.01.037
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.jisa.2023.103618_b66
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.239
– volume: 29
  start-page: 4065
  issue: 9
  year: 2017
  ident: 10.1016/j.jisa.2023.103618_b9
  article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2751612
– start-page: 483
  year: 2016
  ident: 10.1016/j.jisa.2023.103618_b14
  article-title: Credit card fraud detection using convolutional neural networks
– year: 2020
  ident: 10.1016/j.jisa.2023.103618_b64
– volume: 50
  start-page: 602
  issue: 3
  year: 2011
  ident: 10.1016/j.jisa.2023.103618_b10
  article-title: Data mining for credit card fraud: A comparative study
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2010.08.008
– volume: 6
  start-page: 14277
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b34
  article-title: Credit card fraud detection using AdaBoost and majority voting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2806420
– start-page: 33
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b16
  article-title: Analysis and comparison of credit card fraud detection using machine learning
– start-page: 680
  year: 2020
  ident: 10.1016/j.jisa.2023.103618_b30
  article-title: Supervised machine learning algorithms for credit card fraud detection: A comparison
– year: 2005
  ident: 10.1016/j.jisa.2023.103618_b50
– year: 2023
  ident: 10.1016/j.jisa.2023.103618_b4
– volume: 557
  start-page: 317
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b22
  article-title: Combining unsupervised and supervised learning in credit card fraud detection
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.042
– volume: 13
  start-page: 1503
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b28
  article-title: Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection
  publication-title: Int J Inf Technol
– start-page: 413
  year: 2008
  ident: 10.1016/j.jisa.2023.103618_b47
  article-title: Isolation forest
– volume: 14
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b68
  article-title: The matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
  publication-title: BioData Min
  doi: 10.1186/s13040-021-00244-z
– volume: 2022
  year: 2022
  ident: 10.1016/j.jisa.2023.103618_b21
  article-title: The optimized anomaly detection models based on an approach of dealing with imbalanced dataset for credit card fraud detection
  publication-title: Mob Inf Syst
– start-page: 689
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b8
  article-title: Overlap-based undersampling for improving imbalanced data classification
– start-page: 536
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b44
  article-title: Identification of the normal/abnormal heart sounds based on energy features and Xgboost
– ident: 10.1016/j.jisa.2023.103618_b54
  doi: 10.1145/2939672.2939785
– volume: 40
  start-page: 5916
  issue: 15
  year: 2013
  ident: 10.1016/j.jisa.2023.103618_b11
  article-title: A cost-sensitive decision tree approach for fraud detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.05.021
– volume: 14
  start-page: 350
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b55
  article-title: Modified focal loss in imbalanced XGBoost for credit card fraud detection
  publication-title: Int J Intell Eng Syst
– start-page: 7
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b59
  article-title: Ensemble learning in credit card fraud detection using boosting methods
– year: 2016
  ident: 10.1016/j.jisa.2023.103618_b70
– start-page: 1
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b27
  article-title: An intelligent payment card fraud detection system
  publication-title: Ann Oper Res
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b69
  article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset
  publication-title: Int Robot Autom J
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.jisa.2023.103618_b51
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/1541880.1541882
– year: 2022
  ident: 10.1016/j.jisa.2023.103618_b5
– volume: 46
  start-page: 13
  year: 2019
  ident: 10.1016/j.jisa.2023.103618_b72
  article-title: Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model
  publication-title: J Inf Secur Appl
– year: 2018
  ident: 10.1016/j.jisa.2023.103618_b7
– volume: 175
  start-page: 121
  year: 2016
  ident: 10.1016/j.jisa.2023.103618_b12
  article-title: A profit-driven artificial neural network (ANN) with applications to fraud detection and direct marketing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.042
– start-page: 968
  year: 2017
  ident: 10.1016/j.jisa.2023.103618_b39
  article-title: Comparative study of individual and ensemble methods of classification for credit scoring
– volume: 66
  start-page: 170
  year: 2014
  ident: 10.1016/j.jisa.2023.103618_b57
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2014.07.003
– start-page: 159
  year: 2015
  ident: 10.1016/j.jisa.2023.103618_b62
  article-title: Calibrating probability with undersampling for unbalanced classification
– year: 2022
  ident: 10.1016/j.jisa.2023.103618_b3
– volume: 99
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b25
  article-title: Ensemble of deep sequential models for credit card fraud detection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106883
– volume: 452
  start-page: 4183
  issue: 4
  year: 2015
  ident: 10.1016/j.jisa.2023.103618_b46
  article-title: Anomaly detection for machine learning redshifts applied to SDSS galaxies
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/stv1551
– start-page: 141
  year: 2021
  ident: 10.1016/j.jisa.2023.103618_b63
  article-title: Machine learning algorithms for prediction of credit card defaulters—A comparative study
– year: 1999
  ident: 10.1016/j.jisa.2023.103618_b52
  article-title: Support vector method for novelty detection
– volume: 74
  start-page: 252
  year: 2018
  ident: 10.1016/j.jisa.2023.103618_b67
  article-title: Underbagging based reduced kernelized weighted extreme learning machine for class imbalance learning
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.07.002
SSID ssj0001219523
Score 2.382728
Snippet Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103618
SubjectTerms Anomaly detection
Base learner
Classification
Credit card
Ensemble
Meta-learning
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LF734FtcXOXjTurZJmvYoi7IIelHBW0nSqXTpZhftIl787WbadFlBRDymzTRlkmZm0m_mI-Q0AuQklGmQGmkCDgULUqnDgEGRgtZJkTSsJXf38eiJ3z6L5x4ZdrkwCKv0e3-7pze7tb8y8NoczMpy8BBhtbAwcvYbfZ4IE345l8hicPEZLp2zhKloWN6wf4ACPnemhXmN8Z8xcohj-nmM3B8_26fVuZ2pj3dVVUv252aTrHvHkV6177ZFemC3yUZHykD9N7pD7JWlLjSFia6Aek6IF9qVDqfOR6XKTieq-qA51A0Qy9LSUqwcWtbUuBVDETZK8YSWlhON2EenJieVU8R7Vu5ZrmnQ7Ya3XfJ0c_04HAWeVCEwjPM64LmIE2MkAE9MnJo0Z8K4QBVkyGVeFIAW3t2STOtLHQvJxKViWgBTkLNCsj2yYqcW9glVWFggMjlLc-CFUVolceziuTAWhrsh-iTsVJkZX3EciS-qrIOWjTNUf4bqz1r198nZQmbW1tv4tbfoZij7tmoyZxB-lTtfTOcfhjn45zCHZA1bberiEVmpX-dw7HyYWp80i_QL2C_vSQ
  priority: 102
  providerName: Elsevier
Title An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes
URI https://dx.doi.org/10.1016/j.jisa.2023.103618
https://doi.org/10.1016/j.jisa.2023.103618
UnpaywallVersion publishedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2214-2126
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001219523
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  issn: 2214-2126
  databaseCode: ACRLP
  dateStart: 20130701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001219523
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 2214-2126
  databaseCode: .~1
  dateStart: 20130701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001219523
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 2214-2126
  databaseCode: AIKHN
  dateStart: 20130701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001219523
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2214-2126
  databaseCode: AKRWK
  dateStart: 20130701
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001219523
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9swGLZGe9iJjwGCCSofuG2pSP2VHCsEKiCqHVaJnSJ_vJkKqUGQaoIDvx2_jcM2BAhuieIPxX4TP7YfPw8hewNAT0KVJ7lVNuFQsiRXJk0YlDkYk5XZwrXkbCxHE35yLs6jTA6ehflv_37Bw7rATV00-cbz4TLNlkhXioC7O6Q7Gf8Y_kL3uEHKk_APln-vGY8nZF4u5LVR6PPcX-u7P7qq_hlljlYau6LbhTghkksu-_Pa9O39M-nG973AKlmOYJMOm-hYI5_AfyErrZEDjd_1OvFDT8N0FmamAhp9JH7TVm6cBlxLtb-a6eqOOqgX5C1Pp56i2ui0pjZEGUWqKcVVXTqdGeRLWnAhl6PIEa1CWeHWIlSH2w0yOTr8eTBKohFDYhnndcKdkJm1CoBnVuY2d0zYMLkFlXLlyhIQFYRHihmzb6RQTOxrZgQwDY6Vim2Sjr_ysEWoRjGCgXUsd8BLq43OpAxzwFQKy0MV2yRtO6awUaUczTKqoqWjXRTYoAU2aNE06Db59pTnutHoeDO1aPu7iCijQQ9F6Lo3831_Co53VPP1Y8l3SKe-mcNuQDi16ZGl_kPaI93h8elo3IuB_ghxePom
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG50PejFt_FtD94UV2hL4WiMZn1e1MQbactgMGzdKMbsxd9uB4rRxBjjEcrQZlo6M-Wb-QjZjQA5CWUapEaagEPBglTqMGBQpKB1UiQNa8nVdTy44-f34n6CHHe5MAir9Ht_u6c3u7W_0_fa7I_Ksn8TYbWwMHL2G32eKJkkU1xEEiOwg_fwy0FLmIqG5g0FApTwyTMtzusRfxojiTjmn8dI_vGzgZp-tSM1flNV9cUAnc6TWe850qN2cAtkAuwimetYGaj_SJeIPbLUxaYw1BVQTwrxQLva4dQ5qVTZp6GqxjSHukFiWVpaiqVDy5oat2Qo4kYpHtHScqgR_Oj05KRyioDPyr3LXRr0u-FlmdydntweDwLPqhAYxnkd8FzEiTESgCcmTk2aM2FcpAoy5DIvCkAT75ok0_pQx0IycaiYFsAU5KyQbIX07JOFVUIVVhaITM7SHHhhlFZJHLuALoyF4a6LNRJ2qsyMLzmOzBdV1mHLHjNUf4bqz1r1r5G9T5lRW3Dj16dFN0PZt2WTOYvwq9z-53T-oZv1f3azQ6YHt1eX2eXZ9cUGmcGWNo9xk_Tq51fYcg5NrbebBfsB8HDybA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGA06Hjy5i4pKDt60YidbexxEEUHx4ICeSpavMtrJiHYQ_fXmm6ZuqOitpVlo8rV5SV7eI2SnC-hJqPIkt8omHEqW5MqkCYMyB2OyMpu4lpydy5M-P70SV1EmB8_CfNq_n_CwbnFTF02-8Xy4TLNpMiNFwN0dMtM_v-hdo3tcN-VJ-AfL92vG4wmZ7wv5aRSaHft7_fykq-rDKHM839gVPU7ECZFccrc_rs2-ffki3fi3F1ggcxFs0l4THYtkCvwSmW-NHGj8rpeJ73kaprMwNBXQ6CNxQ1u5cRpwLdV-NNTVM3VQT8hbng48RbXRQU1tiDKKVFOKq7p0MDTIl7TgQi5HkSNahbLCrUWoDo8rpH98dHl4kkQjhsQyzuuEOyEzaxUAz6zMbe6YsGFyCyrlypUlICoIjxQz5sBIoZg40MwIYBocKxVbJR0_8rBGqEYxgq51LHfAS6uNzqQMc8BUCstDFeskbTumsFGlHM0yqqKlo90W2KAFNmjRNOg62X3Lc99odPyaWrT9XUSU0aCHInTdr_n23oLjD9Vs_C_5JunUD2PYCginNtsxtF8B2d33mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+approach+for+anomaly+detection+in+credit+card+data+with+imbalanced+and+overlapped+classes&rft.jtitle=Journal+of+information+security+and+applications&rft.au=Islam%2C+Md+Amirul&rft.au=Uddin%2C+Md+Ashraf&rft.au=Aryal%2C+Sunil&rft.au=Stea%2C+Giovanni&rft.date=2023-11-01&rft.issn=2214-2126&rft.volume=78&rft.spage=103618&rft_id=info:doi/10.1016%2Fj.jisa.2023.103618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jisa_2023_103618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-2126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-2126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-2126&client=summon