An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes
Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud and default payments, which can result in substantial financial losses, have become more common as the usage of credit cards in online purch...
Saved in:
| Published in | Journal of information security and applications Vol. 78; p. 103618 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2214-2126 2214-2134 |
| DOI | 10.1016/j.jisa.2023.103618 |
Cover
| Abstract | Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud and default payments, which can result in substantial financial losses, have become more common as the usage of credit cards in online purchases has increased. To address this issue, researchers have explored various machine learning models and their ensemble techniques for detecting anomalies in credit card transaction data. However, detecting anomalies in this data can be challenging due to overlapping class samples and an imbalanced class distribution. Therefore, the detection rate of anomalies from minority class samples is relatively low, and general learning algorithms can be biased towards the majority class samples. In this paper, we propose a model called Credit Card Anomaly Detection (CCAD) that leverages the base learners paradigm and meta-learning ensemble techniques to improve the detection rate of credit card anomalies. We utilize four outlier detection algorithms as base learners and XGBoost algorithm as meta learner in the proposed stacked ensemble approach to detect anomaly in credit card transactions. We apply stratified sampling technique and k-fold cross-validation process to address the issues of data imbalance and overfitting. In addition, the discordance rate is calculated to enhance the accuracy of ensemble learning performances. The proposed model is trained and tested using two datasets: CCF (Credit Card Fraud) and CCDP (Credit Card Default Payment). Experimental results demonstrate that our approach outperforms existing approaches, particularly in detecting anomalies from the minority class instances of these datasets. |
|---|---|
| AbstractList | Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud and default payments, which can result in substantial financial losses, have become more common as the usage of credit cards in online purchases has increased. To address this issue, researchers have explored various machine learning models and their ensemble techniques for detecting anomalies in credit card transaction data. However, detecting anomalies in this data can be challenging due to overlapping class samples and an imbalanced class distribution. Therefore, the detection rate of anomalies from minority class samples is relatively low, and general learning algorithms can be biased towards the majority class samples. In this paper, we propose a model called Credit Card Anomaly Detection (CCAD) that leverages the base learners paradigm and meta-learning ensemble techniques to improve the detection rate of credit card anomalies. We utilize four outlier detection algorithms as base learners and XGBoost algorithm as meta learner in the proposed stacked ensemble approach to detect anomaly in credit card transactions. We apply stratified sampling technique and k-fold cross-validation process to address the issues of data imbalance and overfitting. In addition, the discordance rate is calculated to enhance the accuracy of ensemble learning performances. The proposed model is trained and tested using two datasets: CCF (Credit Card Fraud) and CCDP (Credit Card Default Payment). Experimental results demonstrate that our approach outperforms existing approaches, particularly in detecting anomalies from the minority class instances of these datasets. |
| ArticleNumber | 103618 |
| Author | Stea, Giovanni Aryal, Sunil Uddin, Md Ashraf Islam, Md Amirul |
| Author_xml | – sequence: 1 givenname: Md Amirul surname: Islam fullname: Islam, Md Amirul email: mdamirul.islam@phd.unipi.it organization: Department of Information Engineering, University of Pisa, Italy – sequence: 2 givenname: Md Ashraf orcidid: 0000-0002-4316-4975 surname: Uddin fullname: Uddin, Md Ashraf email: ashraf.uddin@deakin.edu.au organization: School of Information Technology, Deakin University, Australia – sequence: 3 givenname: Sunil surname: Aryal fullname: Aryal, Sunil email: sunil.aryal@deakin.edu.au organization: School of Information Technology, Deakin University, Australia – sequence: 4 givenname: Giovanni orcidid: 0000-0001-5310-6763 surname: Stea fullname: Stea, Giovanni email: giovanni.stea@unipi.it organization: Department of Information Engineering, University of Pisa, Italy |
| BookMark | eNqNkMtqwzAQRbVIoWmbH-hKP-BUD78C3YTQFwS6addiLI0bGVk2kpuQv6-Nu-oidDXMDOcOc27IwnceCbnnbM0Zzx-adWMjrAUTchzInJcLshSCp4ngIr8mqxgbxhgXfJMJuSR-6yn6iG3lkDqE4K3_otD3oQN9oHUXKPiuBXemBgfUg-08tZ7qgMYOVEMw1MAA9GSHA7VtBQ68RjNShnZHDG7MGlvtIEaMd-SqBhdx9Vtvyefz08fuNdm_v7zttvtEyzQdktRkeal1gZiWOt_ojZGZ5lJiwdPC1DWmLOfjqpBVxao8K2TGQFYZSkAj60LeEjnnfvsezidwTvXBthDOijM1mVKNmkypyZSaTY1UOVM6dDEGrJW2A0wvDwGsu4yKP-i_7j3OEI4qjhaDitripM-GUbUynb2E_wCLXJpd |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3362831 crossref_primary_10_1109_ACCESS_2024_3426955 crossref_primary_10_1109_ACCESS_2024_3516376 crossref_primary_10_1186_s40537_024_01059_5 crossref_primary_10_1109_TIA_2024_3427712 crossref_primary_10_1109_ACCESS_2024_3502542 crossref_primary_10_1007_s11042_024_19353_y crossref_primary_10_1088_1361_6501_ad480f |
| Cites_doi | 10.1016/j.dss.2017.01.002 10.1145/3338840.3355641 10.3390/math10091480 10.1162/089976601750264965 10.1016/j.eswa.2017.02.017 10.1016/j.patrec.2020.05.035 10.1109/ACCESS.2020.2972009 10.1016/j.procs.2015.04.201 10.3390/electronics11040662 10.1016/j.gltp.2021.01.006 10.1016/j.procs.2020.06.014 10.1109/ICCV.2017.205 10.1093/jamia/ocaa096 10.1016/j.patrec.2005.10.010 10.1145/3152494.3156815 10.1016/j.ins.2019.05.023 10.1016/j.procs.2020.01.057 10.1016/j.eswa.2019.03.042 10.1145/342009.335388 10.1016/j.eswa.2018.01.037 10.1109/TKDE.2008.239 10.1109/TNNLS.2017.2751612 10.1016/j.dss.2010.08.008 10.1109/ACCESS.2018.2806420 10.1016/j.ins.2019.05.042 10.1186/s13040-021-00244-z 10.1145/2939672.2939785 10.1016/j.eswa.2013.05.021 10.1145/1541880.1541882 10.1016/j.neucom.2015.10.042 10.1016/j.dss.2014.07.003 10.1016/j.asoc.2020.106883 10.1093/mnras/stv1551 10.1016/j.engappai.2018.07.002 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.jisa.2023.103618 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10.1016/j.jisa.2023.103618 10_1016_j_jisa_2023_103618 S2214212623002028 |
| GroupedDBID | --M .~1 1~. 4.4 457 4G. 5VS 6I. 7-5 8P~ AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD AVARZ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ KOM M41 MO0 OAUVE P-8 P-9 PC. PRBVW RIG ROL SPC SPCBC SSB SSO SSV SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c344t-4d568cc7ee48c69c9d35c133e7147dffe406148c73bb0b657350a3b5e3aed3f73 |
| IEDL.DBID | UNPAY |
| ISSN | 2214-2126 2214-2134 |
| IngestDate | Sun Oct 26 03:51:57 EDT 2025 Wed Oct 01 03:30:10 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Fri Feb 23 02:35:07 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Credit card Base learner Meta-learning Anomaly detection Ensemble Classification |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-4d568cc7ee48c69c9d35c133e7147dffe406148c73bb0b657350a3b5e3aed3f73 |
| ORCID | 0000-0001-5310-6763 0000-0002-4316-4975 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jisa.2023.103618 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jisa_2023_103618 crossref_citationtrail_10_1016_j_jisa_2023_103618 crossref_primary_10_1016_j_jisa_2023_103618 elsevier_sciencedirect_doi_10_1016_j_jisa_2023_103618 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of information security and applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Khatri, Arora, Agrawal (b30) 2020 Fu, Cheng, Tu, Zhang (b14) 2016 Feng (b59) 2021 Gao, Gong, Wang, Mo (b2) 2018 Rout (b16) 2021 Carta, Fenu, Recupero, Saia (b72) 2019; 46 Cheng Z, Zou C, Dong J. Outlier detection using isolation forest and local outlier factor. In: Proceedings of the conference on research in adaptive and convergent systems. 2019, p. 161–8. MoneyTransfers.com (b3) 2022 Zareapoor, Shamsolmoali (b15) 2015; 48 Vishwakarma, Rasool, Hajela (b63) 2021 Deepanath, Prasad (b20) 2019 Itoo, Singh (b28) 2021; 13 Wang, Deng, Wang (b56) 2020; 136 Da Silva, Hruschka, Hruschka Jr. (b57) 2014; 66 Dong Q, Gong S, Zhu X. Class rectification hard mining for imbalanced deep learning. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1851–60. Zhenya, Zhang (b65) 2021; 21 Sohony I, Pratap R, Nambiar U. Ensemble learning for credit card fraud detection. In: Proceedings of the ACM India joint international conference on data science and management of data. 2018, p. 289–94. Alfaiz, Fati (b18) 2022; 11 Randhawa, Loo, Seera, Lim, Nandi (b34) 2018; 6 Chandola, Banerjee, Kumar (b51) 2009; 41 Singh (b39) 2017 Sahin, Bulkan, Duman (b11) 2013; 40 Xia, Liu, Li, Liu (b38) 2017; 78 Bey, Goussault, Grolleau, Benchoufi, Porcher (b61) 2020; 27 Liu, Ting, Zhou (b47) 2008 Dornadula, Geetha (b32) 2019; 165 Wang (b50) 2005 Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b52) 1999 Ceicdata (b7) 2018 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b45) 2011; 12 Forough, Momtazi (b25) 2021; 99 Dal Pozzolo, Caelen, Johnson, Bontempi (b62) 2015 Chargebacks911.com (b4) 2023 Asha, KR (b26) 2021; 2 Kalid, Ng, Tong, Khor (b31) 2020; 8 Lokman (b6) 2017 Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data. 2000, p. 93–104. Carneiro, Figueira, Costa (b42) 2017; 95 legaljobs.io (b5) 2022 Zakaryazad, Duman (b12) 2016; 175 Save, Tiwarekar, Jain, Mahyavanshi (b37) 2017; 161 Raghuwanshi, Shukla (b67) 2018; 74 Seera, Lim, Kumar, Dhamotharan, Tan (b27) 2021 Khaldy, Kambhampati (b69) 2018; 4 Charleonnan (b40) 2016 Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (b53) 2001; 13 Chicco, Tötsch, Jurman (b68) 2021; 14 Bagga, Goyal, Gupta, Goyal (b58) 2020; 173 Jurgovsky, Granitzer, Ziegler, Calabretto, Portier, He-Guelton (b13) 2018; 100 Karthik, Mishra, Reddy (b24) 2021 He, Garcia (b66) 2009; 21 Mathew, Pang, Luo, Leong (b9) 2017; 29 Xenopoulos (b36) 2017 Fawcett (b71) 2006; 27 Malik, Khaw, Belaton, Wong, Chew (b19) 2022; 10 Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining. 2016, p. 785–94. Carcillo, Le Borgne, Caelen, Kessaci, Oblé, Bontempi (b22) 2021; 557 Olowookere, Adewale (b29) 2020; 8 Yeh, Lien (b43) 2016 Venkatesh, Jacob (b41) 2016; 145 Zhang, Lu, Lin, Qiao, Zheng (b21) 2022; 2022 Flennerhag, Moreno, Lawrence, Damianou (b60) 2018 Powers (b64) 2020 Vuttipittayamongkol, Elyan, Petrovski, Jayne (b8) 2018 Kim, Lee, Shin, Yang, Cho, Nam (b17) 2019; 128 Hoyle, Rau, Paech, Bonnett, Seitz, Weller (b46) 2015; 452 Li, Chen, Tang, Xu (b44) 2018 Trisanto, Rismawati, Mulya, Kurniadi (b55) 2021; 14 Ram, Gupta, Agarwal (b35) 2018; 21 Müller, Guido (b70) 2016 Bhattacharyya, Jha, Tharakunnel, Westland (b10) 2011; 50 Zhang, Han, Xu, Wang (b23) 2021; 557 Zhenya (10.1016/j.jisa.2023.103618_b65) 2021; 21 Dal Pozzolo (10.1016/j.jisa.2023.103618_b62) 2015 Xia (10.1016/j.jisa.2023.103618_b38) 2017; 78 Fawcett (10.1016/j.jisa.2023.103618_b71) 2006; 27 Gao (10.1016/j.jisa.2023.103618_b2) 2018 Khaldy (10.1016/j.jisa.2023.103618_b69) 2018; 4 Ceicdata (10.1016/j.jisa.2023.103618_b7) 2018 Bhattacharyya (10.1016/j.jisa.2023.103618_b10) 2011; 50 Ram (10.1016/j.jisa.2023.103618_b35) 2018; 21 Charleonnan (10.1016/j.jisa.2023.103618_b40) 2016 Zakaryazad (10.1016/j.jisa.2023.103618_b12) 2016; 175 Sahin (10.1016/j.jisa.2023.103618_b11) 2013; 40 Bey (10.1016/j.jisa.2023.103618_b61) 2020; 27 Zareapoor (10.1016/j.jisa.2023.103618_b15) 2015; 48 10.1016/j.jisa.2023.103618_b33 Kim (10.1016/j.jisa.2023.103618_b17) 2019; 128 Raghuwanshi (10.1016/j.jisa.2023.103618_b67) 2018; 74 Müller (10.1016/j.jisa.2023.103618_b70) 2016 Seera (10.1016/j.jisa.2023.103618_b27) 2021 Wang (10.1016/j.jisa.2023.103618_b50) 2005 Vishwakarma (10.1016/j.jisa.2023.103618_b63) 2021 Venkatesh (10.1016/j.jisa.2023.103618_b41) 2016; 145 Pedregosa (10.1016/j.jisa.2023.103618_b45) 2011; 12 Flennerhag (10.1016/j.jisa.2023.103618_b60) 2018 Forough (10.1016/j.jisa.2023.103618_b25) 2021; 99 Da Silva (10.1016/j.jisa.2023.103618_b57) 2014; 66 Alfaiz (10.1016/j.jisa.2023.103618_b18) 2022; 11 Randhawa (10.1016/j.jisa.2023.103618_b34) 2018; 6 Schölkopf (10.1016/j.jisa.2023.103618_b53) 2001; 13 Itoo (10.1016/j.jisa.2023.103618_b28) 2021; 13 Vuttipittayamongkol (10.1016/j.jisa.2023.103618_b8) 2018 Rout (10.1016/j.jisa.2023.103618_b16) 2021 Zhang (10.1016/j.jisa.2023.103618_b21) 2022; 2022 Li (10.1016/j.jisa.2023.103618_b44) 2018 Fu (10.1016/j.jisa.2023.103618_b14) 2016 Dornadula (10.1016/j.jisa.2023.103618_b32) 2019; 165 legaljobs.io (10.1016/j.jisa.2023.103618_b5) 2022 MoneyTransfers.com (10.1016/j.jisa.2023.103618_b3) 2022 Lokman (10.1016/j.jisa.2023.103618_b6) 2017 Hoyle (10.1016/j.jisa.2023.103618_b46) 2015; 452 Chicco (10.1016/j.jisa.2023.103618_b68) 2021; 14 Mathew (10.1016/j.jisa.2023.103618_b9) 2017; 29 10.1016/j.jisa.2023.103618_b49 10.1016/j.jisa.2023.103618_b48 Chandola (10.1016/j.jisa.2023.103618_b51) 2009; 41 Carcillo (10.1016/j.jisa.2023.103618_b22) 2021; 557 Schölkopf (10.1016/j.jisa.2023.103618_b52) 1999 Khatri (10.1016/j.jisa.2023.103618_b30) 2020 Karthik (10.1016/j.jisa.2023.103618_b24) 2021 Liu (10.1016/j.jisa.2023.103618_b47) 2008 Powers (10.1016/j.jisa.2023.103618_b64) 2020 Singh (10.1016/j.jisa.2023.103618_b39) 2017 Xenopoulos (10.1016/j.jisa.2023.103618_b36) 2017 10.1016/j.jisa.2023.103618_b1 Save (10.1016/j.jisa.2023.103618_b37) 2017; 161 Feng (10.1016/j.jisa.2023.103618_b59) 2021 Trisanto (10.1016/j.jisa.2023.103618_b55) 2021; 14 Deepanath (10.1016/j.jisa.2023.103618_b20) 2019 Zhang (10.1016/j.jisa.2023.103618_b23) 2021; 557 Asha (10.1016/j.jisa.2023.103618_b26) 2021; 2 Olowookere (10.1016/j.jisa.2023.103618_b29) 2020; 8 10.1016/j.jisa.2023.103618_b54 Wang (10.1016/j.jisa.2023.103618_b56) 2020; 136 Jurgovsky (10.1016/j.jisa.2023.103618_b13) 2018; 100 Carneiro (10.1016/j.jisa.2023.103618_b42) 2017; 95 Chargebacks911.com (10.1016/j.jisa.2023.103618_b4) 2023 He (10.1016/j.jisa.2023.103618_b66) 2009; 21 Kalid (10.1016/j.jisa.2023.103618_b31) 2020; 8 Bagga (10.1016/j.jisa.2023.103618_b58) 2020; 173 Malik (10.1016/j.jisa.2023.103618_b19) 2022; 10 Yeh (10.1016/j.jisa.2023.103618_b43) 2016 Carta (10.1016/j.jisa.2023.103618_b72) 2019; 46 |
| References_xml | – volume: 136 start-page: 190 year: 2020 end-page: 197 ident: b56 article-title: Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost publication-title: Pattern Recognit Lett – volume: 41 start-page: 1 year: 2009 end-page: 58 ident: b51 article-title: Anomaly detection: A survey publication-title: ACM Comput Surv (CSUR) – reference: Cheng Z, Zou C, Dong J. Outlier detection using isolation forest and local outlier factor. In: Proceedings of the conference on research in adaptive and convergent systems. 2019, p. 161–8. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b66 article-title: Learning from imbalanced data publication-title: IEEE Trans Knowl Data Eng – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b71 article-title: An introduction to ROC analysis publication-title: Pattern Recognit Lett – volume: 557 start-page: 317 year: 2021 end-page: 331 ident: b22 article-title: Combining unsupervised and supervised learning in credit card fraud detection publication-title: Inf Sci – volume: 173 start-page: 104 year: 2020 end-page: 112 ident: b58 article-title: Credit card fraud detection using pipeling and ensemble learning publication-title: Procedia Comput Sci – start-page: 968 year: 2017 end-page: 972 ident: b39 article-title: Comparative study of individual and ensemble methods of classification for credit scoring publication-title: 2017 International conference on inventive computing and informatics – volume: 2022 year: 2022 ident: b21 article-title: The optimized anomaly detection models based on an approach of dealing with imbalanced dataset for credit card fraud detection publication-title: Mob Inf Syst – volume: 21 start-page: 1 year: 2021 end-page: 18 ident: b65 article-title: A hybrid cost-sensitive ensemble for heart disease prediction publication-title: BMC Med Inf Decis Mak – volume: 14 start-page: 350 year: 2021 end-page: 358 ident: b55 article-title: Modified focal loss in imbalanced XGBoost for credit card fraud detection publication-title: Int J Intell Eng Syst – volume: 27 start-page: 1244 year: 2020 end-page: 1251 ident: b61 article-title: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning publication-title: J Am Med Inf Assoc – reference: Dong Q, Gong S, Zhu X. Class rectification hard mining for imbalanced deep learning. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1851–60. – start-page: 141 year: 2021 end-page: 149 ident: b63 article-title: Machine learning algorithms for prediction of credit card defaulters—A comparative study publication-title: Proceedings of international conference on sustainable expert systems – volume: 145 year: 2016 ident: b41 article-title: Prediction of credit-card defaulters: A comparative study on performance of classifiers publication-title: Int J Comput Appl – volume: 50 start-page: 602 year: 2011 end-page: 613 ident: b10 article-title: Data mining for credit card fraud: A comparative study publication-title: Decis Support Syst – start-page: 680 year: 2020 end-page: 683 ident: b30 article-title: Supervised machine learning algorithms for credit card fraud detection: A comparison publication-title: 2020 10th International conference on cloud computing, data science & engineering – start-page: 1538 year: 2018 end-page: 1542 ident: b2 article-title: Study on unbalanced binary classification with unknown misclassification costs publication-title: 2018 IEEE international conference on industrial engineering and engineering management – year: 2016 ident: b43 article-title: Default of credit card clients data set – start-page: 7 year: 2021 end-page: 11 ident: b59 article-title: Ensemble learning in credit card fraud detection using boosting methods publication-title: 2021 2nd International conference on computing and data science – year: 2017 ident: b6 article-title: 3.6 Million credit card holders have RM36.9 billion outstanding balance – year: 1999 ident: b52 article-title: Support vector method for novelty detection publication-title: Advances in neural information processing systems. Vol. 12 – reference: Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data. 2000, p. 93–104. – start-page: 689 year: 2018 end-page: 697 ident: b8 article-title: Overlap-based undersampling for improving imbalanced data classification publication-title: Intelligent data engineering and automated learning–IDEAL 2018: 19th international conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part I. Vol. 19 – year: 2020 ident: b64 article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation – volume: 175 start-page: 121 year: 2016 end-page: 131 ident: b12 article-title: A profit-driven artificial neural network (ANN) with applications to fraud detection and direct marketing publication-title: Neurocomputing – volume: 14 start-page: 1 year: 2021 end-page: 22 ident: b68 article-title: The matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation publication-title: BioData Min – volume: 40 start-page: 5916 year: 2013 end-page: 5923 ident: b11 article-title: A cost-sensitive decision tree approach for fraud detection publication-title: Expert Syst Appl – start-page: 1 year: 2021 end-page: 11 ident: b24 article-title: Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model publication-title: Arab J Sci Eng – volume: 10 start-page: 1480 year: 2022 ident: b19 article-title: Credit card fraud detection using a new hybrid machine learning architecture publication-title: Mathematics – reference: Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining. 2016, p. 785–94. – start-page: 483 year: 2016 end-page: 490 ident: b14 article-title: Credit card fraud detection using convolutional neural networks publication-title: Neural information processing: 23rd International conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part III. Vol. 23 – year: 2019 ident: b20 article-title: IEEE-CIS fraud detection – volume: 78 start-page: 225 year: 2017 end-page: 241 ident: b38 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Syst Appl – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b45 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – start-page: 159 year: 2015 end-page: 166 ident: b62 article-title: Calibrating probability with undersampling for unbalanced classification publication-title: 2015 IEEE symposium series on computational intelligence – volume: 46 start-page: 13 year: 2019 end-page: 22 ident: b72 article-title: Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model publication-title: J Inf Secur Appl – volume: 48 start-page: 679 year: 2015 end-page: 685 ident: b15 article-title: Application of credit card fraud detection: Based on bagging ensemble classifier publication-title: Procedia Comput Sci – volume: 128 start-page: 214 year: 2019 end-page: 224 ident: b17 article-title: Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning publication-title: Expert Syst Appl – volume: 99 year: 2021 ident: b25 article-title: Ensemble of deep sequential models for credit card fraud detection publication-title: Appl Soft Comput – volume: 165 start-page: 631 year: 2019 end-page: 641 ident: b32 article-title: Credit card fraud detection using machine learning algorithms publication-title: Procedia Comput Sci – year: 2023 ident: b4 article-title: Credit card fraud statistics – volume: 8 year: 2020 ident: b29 article-title: A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach publication-title: Sci Afr – volume: 100 start-page: 234 year: 2018 end-page: 245 ident: b13 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Syst Appl – start-page: MIT year: 2016 end-page: 73 ident: b40 article-title: Credit card fraud detection using RUS and MRN algorithms publication-title: 2016 Management and innovation technology international conference – year: 2016 ident: b70 article-title: Introduction to machine learning with python: A guide for data scientists – start-page: 1 year: 2021 end-page: 23 ident: b27 article-title: An intelligent payment card fraud detection system publication-title: Ann Oper Res – volume: 4 start-page: 1 year: 2018 end-page: 10 ident: b69 article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset publication-title: Int Robot Autom J – start-page: 33 year: 2021 end-page: 40 ident: b16 article-title: Analysis and comparison of credit card fraud detection using machine learning publication-title: Advances in electronics, communication and computing: Select proceedings of ETAEERE 2020 – volume: 66 start-page: 170 year: 2014 end-page: 179 ident: b57 article-title: Tweet sentiment analysis with classifier ensembles publication-title: Decis Support Syst – volume: 557 start-page: 302 year: 2021 end-page: 316 ident: b23 article-title: HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture publication-title: Inform Sci – year: 2018 ident: b60 article-title: Transferring knowledge across learning processes – volume: 95 start-page: 91 year: 2017 end-page: 101 ident: b42 article-title: A data mining based system for credit-card fraud detection in e-tail publication-title: Decis Support Syst – year: 2005 ident: b50 article-title: Support vector machines: Theory and applications. Vol. 177 – year: 2022 ident: b5 article-title: 20 Most fascinating credit card fraud statistics – volume: 11 start-page: 662 year: 2022 ident: b18 article-title: Enhanced credit card fraud detection model using machine learning publication-title: Electronics – volume: 13 start-page: 1443 year: 2001 end-page: 1471 ident: b53 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput – volume: 29 start-page: 4065 year: 2017 end-page: 4076 ident: b9 article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines publication-title: IEEE Trans Neural Netw Learn Syst – volume: 2 start-page: 35 year: 2021 end-page: 41 ident: b26 article-title: Credit card fraud detection using artificial neural network publication-title: Glob Trans Proc – reference: Sohony I, Pratap R, Nambiar U. Ensemble learning for credit card fraud detection. In: Proceedings of the ACM India joint international conference on data science and management of data. 2018, p. 289–94. – volume: 6 start-page: 14277 year: 2018 end-page: 14284 ident: b34 article-title: Credit card fraud detection using AdaBoost and majority voting publication-title: IEEE Access – start-page: 413 year: 2008 end-page: 422 ident: b47 article-title: Isolation forest publication-title: 2008 Eighth IEEE international conference on data mining – volume: 21 start-page: 593 year: 2018 end-page: 599 ident: b35 article-title: Devanagri character recognition model using deep convolution neural network publication-title: J Stat Manag Syst – volume: 452 start-page: 4183 year: 2015 end-page: 4194 ident: b46 article-title: Anomaly detection for machine learning redshifts applied to SDSS galaxies publication-title: Mon Not R Astron Soc – volume: 8 start-page: 28210 year: 2020 end-page: 28221 ident: b31 article-title: A multiple classifiers system for anomaly detection in credit card data with unbalanced and overlapped classes publication-title: IEEE Access – volume: 161 year: 2017 ident: b37 article-title: A novel idea for credit card fraud detection using decision tree publication-title: Int J Comput Appl – volume: 74 start-page: 252 year: 2018 end-page: 270 ident: b67 article-title: Underbagging based reduced kernelized weighted extreme learning machine for class imbalance learning publication-title: Eng Appl Artif Intell – volume: 13 start-page: 1503 year: 2021 end-page: 1511 ident: b28 article-title: Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection publication-title: Int J Inf Technol – year: 2022 ident: b3 article-title: 15 Shocking credit card fraud statistics & facts for 2022 – year: 2018 ident: b7 article-title: Malaysia credit card statistics – start-page: 3684 year: 2017 end-page: 3689 ident: b36 article-title: Introducing DeepBalance: Random deep belief network ensembles to address class imbalance publication-title: 2017 IEEE international conference on big data – start-page: 536 year: 2018 end-page: 544 ident: b44 article-title: Identification of the normal/abnormal heart sounds based on energy features and Xgboost publication-title: Chinese conference on biometric recognition – year: 2017 ident: 10.1016/j.jisa.2023.103618_b6 – volume: 95 start-page: 91 year: 2017 ident: 10.1016/j.jisa.2023.103618_b42 article-title: A data mining based system for credit-card fraud detection in e-tail publication-title: Decis Support Syst doi: 10.1016/j.dss.2017.01.002 – ident: 10.1016/j.jisa.2023.103618_b48 doi: 10.1145/3338840.3355641 – start-page: 1538 year: 2018 ident: 10.1016/j.jisa.2023.103618_b2 article-title: Study on unbalanced binary classification with unknown misclassification costs – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jisa.2023.103618_b45 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – volume: 8 year: 2020 ident: 10.1016/j.jisa.2023.103618_b29 article-title: A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach publication-title: Sci Afr – volume: 10 start-page: 1480 issue: 9 year: 2022 ident: 10.1016/j.jisa.2023.103618_b19 article-title: Credit card fraud detection using a new hybrid machine learning architecture publication-title: Mathematics doi: 10.3390/math10091480 – volume: 13 start-page: 1443 issue: 7 year: 2001 ident: 10.1016/j.jisa.2023.103618_b53 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput doi: 10.1162/089976601750264965 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.jisa.2023.103618_b65 article-title: A hybrid cost-sensitive ensemble for heart disease prediction publication-title: BMC Med Inf Decis Mak – start-page: 1 year: 2021 ident: 10.1016/j.jisa.2023.103618_b24 article-title: Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model publication-title: Arab J Sci Eng – volume: 78 start-page: 225 year: 2017 ident: 10.1016/j.jisa.2023.103618_b38 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.02.017 – volume: 136 start-page: 190 year: 2020 ident: 10.1016/j.jisa.2023.103618_b56 article-title: Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2020.05.035 – volume: 8 start-page: 28210 year: 2020 ident: 10.1016/j.jisa.2023.103618_b31 article-title: A multiple classifiers system for anomaly detection in credit card data with unbalanced and overlapped classes publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972009 – volume: 48 start-page: 679 issue: 2015 year: 2015 ident: 10.1016/j.jisa.2023.103618_b15 article-title: Application of credit card fraud detection: Based on bagging ensemble classifier publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.04.201 – volume: 11 start-page: 662 issue: 4 year: 2022 ident: 10.1016/j.jisa.2023.103618_b18 article-title: Enhanced credit card fraud detection model using machine learning publication-title: Electronics doi: 10.3390/electronics11040662 – volume: 145 issue: 7 year: 2016 ident: 10.1016/j.jisa.2023.103618_b41 article-title: Prediction of credit-card defaulters: A comparative study on performance of classifiers publication-title: Int J Comput Appl – year: 2019 ident: 10.1016/j.jisa.2023.103618_b20 – start-page: 3684 year: 2017 ident: 10.1016/j.jisa.2023.103618_b36 article-title: Introducing DeepBalance: Random deep belief network ensembles to address class imbalance – volume: 2 start-page: 35 issue: 1 year: 2021 ident: 10.1016/j.jisa.2023.103618_b26 article-title: Credit card fraud detection using artificial neural network publication-title: Glob Trans Proc doi: 10.1016/j.gltp.2021.01.006 – volume: 173 start-page: 104 year: 2020 ident: 10.1016/j.jisa.2023.103618_b58 article-title: Credit card fraud detection using pipeling and ensemble learning publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.06.014 – ident: 10.1016/j.jisa.2023.103618_b1 doi: 10.1109/ICCV.2017.205 – start-page: MIT year: 2016 ident: 10.1016/j.jisa.2023.103618_b40 article-title: Credit card fraud detection using RUS and MRN algorithms – volume: 27 start-page: 1244 issue: 8 year: 2020 ident: 10.1016/j.jisa.2023.103618_b61 article-title: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning publication-title: J Am Med Inf Assoc doi: 10.1093/jamia/ocaa096 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.jisa.2023.103618_b71 article-title: An introduction to ROC analysis publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.10.010 – ident: 10.1016/j.jisa.2023.103618_b33 doi: 10.1145/3152494.3156815 – volume: 557 start-page: 302 year: 2021 ident: 10.1016/j.jisa.2023.103618_b23 article-title: HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture publication-title: Inform Sci doi: 10.1016/j.ins.2019.05.023 – volume: 165 start-page: 631 year: 2019 ident: 10.1016/j.jisa.2023.103618_b32 article-title: Credit card fraud detection using machine learning algorithms publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.01.057 – volume: 21 start-page: 593 issue: 4 year: 2018 ident: 10.1016/j.jisa.2023.103618_b35 article-title: Devanagri character recognition model using deep convolution neural network publication-title: J Stat Manag Syst – volume: 161 issue: 13 year: 2017 ident: 10.1016/j.jisa.2023.103618_b37 article-title: A novel idea for credit card fraud detection using decision tree publication-title: Int J Comput Appl – year: 2018 ident: 10.1016/j.jisa.2023.103618_b60 – year: 2016 ident: 10.1016/j.jisa.2023.103618_b43 – volume: 128 start-page: 214 year: 2019 ident: 10.1016/j.jisa.2023.103618_b17 article-title: Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.03.042 – ident: 10.1016/j.jisa.2023.103618_b49 doi: 10.1145/342009.335388 – volume: 100 start-page: 234 year: 2018 ident: 10.1016/j.jisa.2023.103618_b13 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.01.037 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.jisa.2023.103618_b66 article-title: Learning from imbalanced data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.239 – volume: 29 start-page: 4065 issue: 9 year: 2017 ident: 10.1016/j.jisa.2023.103618_b9 article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2751612 – start-page: 483 year: 2016 ident: 10.1016/j.jisa.2023.103618_b14 article-title: Credit card fraud detection using convolutional neural networks – year: 2020 ident: 10.1016/j.jisa.2023.103618_b64 – volume: 50 start-page: 602 issue: 3 year: 2011 ident: 10.1016/j.jisa.2023.103618_b10 article-title: Data mining for credit card fraud: A comparative study publication-title: Decis Support Syst doi: 10.1016/j.dss.2010.08.008 – volume: 6 start-page: 14277 year: 2018 ident: 10.1016/j.jisa.2023.103618_b34 article-title: Credit card fraud detection using AdaBoost and majority voting publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2806420 – start-page: 33 year: 2021 ident: 10.1016/j.jisa.2023.103618_b16 article-title: Analysis and comparison of credit card fraud detection using machine learning – start-page: 680 year: 2020 ident: 10.1016/j.jisa.2023.103618_b30 article-title: Supervised machine learning algorithms for credit card fraud detection: A comparison – year: 2005 ident: 10.1016/j.jisa.2023.103618_b50 – year: 2023 ident: 10.1016/j.jisa.2023.103618_b4 – volume: 557 start-page: 317 year: 2021 ident: 10.1016/j.jisa.2023.103618_b22 article-title: Combining unsupervised and supervised learning in credit card fraud detection publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.042 – volume: 13 start-page: 1503 year: 2021 ident: 10.1016/j.jisa.2023.103618_b28 article-title: Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection publication-title: Int J Inf Technol – start-page: 413 year: 2008 ident: 10.1016/j.jisa.2023.103618_b47 article-title: Isolation forest – volume: 14 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jisa.2023.103618_b68 article-title: The matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation publication-title: BioData Min doi: 10.1186/s13040-021-00244-z – volume: 2022 year: 2022 ident: 10.1016/j.jisa.2023.103618_b21 article-title: The optimized anomaly detection models based on an approach of dealing with imbalanced dataset for credit card fraud detection publication-title: Mob Inf Syst – start-page: 689 year: 2018 ident: 10.1016/j.jisa.2023.103618_b8 article-title: Overlap-based undersampling for improving imbalanced data classification – start-page: 536 year: 2018 ident: 10.1016/j.jisa.2023.103618_b44 article-title: Identification of the normal/abnormal heart sounds based on energy features and Xgboost – ident: 10.1016/j.jisa.2023.103618_b54 doi: 10.1145/2939672.2939785 – volume: 40 start-page: 5916 issue: 15 year: 2013 ident: 10.1016/j.jisa.2023.103618_b11 article-title: A cost-sensitive decision tree approach for fraud detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.05.021 – volume: 14 start-page: 350 year: 2021 ident: 10.1016/j.jisa.2023.103618_b55 article-title: Modified focal loss in imbalanced XGBoost for credit card fraud detection publication-title: Int J Intell Eng Syst – start-page: 7 year: 2021 ident: 10.1016/j.jisa.2023.103618_b59 article-title: Ensemble learning in credit card fraud detection using boosting methods – year: 2016 ident: 10.1016/j.jisa.2023.103618_b70 – start-page: 1 year: 2021 ident: 10.1016/j.jisa.2023.103618_b27 article-title: An intelligent payment card fraud detection system publication-title: Ann Oper Res – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jisa.2023.103618_b69 article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset publication-title: Int Robot Autom J – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.jisa.2023.103618_b51 article-title: Anomaly detection: A survey publication-title: ACM Comput Surv (CSUR) doi: 10.1145/1541880.1541882 – year: 2022 ident: 10.1016/j.jisa.2023.103618_b5 – volume: 46 start-page: 13 year: 2019 ident: 10.1016/j.jisa.2023.103618_b72 article-title: Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model publication-title: J Inf Secur Appl – year: 2018 ident: 10.1016/j.jisa.2023.103618_b7 – volume: 175 start-page: 121 year: 2016 ident: 10.1016/j.jisa.2023.103618_b12 article-title: A profit-driven artificial neural network (ANN) with applications to fraud detection and direct marketing publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.042 – start-page: 968 year: 2017 ident: 10.1016/j.jisa.2023.103618_b39 article-title: Comparative study of individual and ensemble methods of classification for credit scoring – volume: 66 start-page: 170 year: 2014 ident: 10.1016/j.jisa.2023.103618_b57 article-title: Tweet sentiment analysis with classifier ensembles publication-title: Decis Support Syst doi: 10.1016/j.dss.2014.07.003 – start-page: 159 year: 2015 ident: 10.1016/j.jisa.2023.103618_b62 article-title: Calibrating probability with undersampling for unbalanced classification – year: 2022 ident: 10.1016/j.jisa.2023.103618_b3 – volume: 99 year: 2021 ident: 10.1016/j.jisa.2023.103618_b25 article-title: Ensemble of deep sequential models for credit card fraud detection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106883 – volume: 452 start-page: 4183 issue: 4 year: 2015 ident: 10.1016/j.jisa.2023.103618_b46 article-title: Anomaly detection for machine learning redshifts applied to SDSS galaxies publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/stv1551 – start-page: 141 year: 2021 ident: 10.1016/j.jisa.2023.103618_b63 article-title: Machine learning algorithms for prediction of credit card defaulters—A comparative study – year: 1999 ident: 10.1016/j.jisa.2023.103618_b52 article-title: Support vector method for novelty detection – volume: 74 start-page: 252 year: 2018 ident: 10.1016/j.jisa.2023.103618_b67 article-title: Underbagging based reduced kernelized weighted extreme learning machine for class imbalance learning publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.07.002 |
| SSID | ssj0001219523 |
| Score | 2.382728 |
| Snippet | Electronic payment methods have become increasingly popular for business transactions, both online and in-person, across the globe. Anomalies like online fraud... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 103618 |
| SubjectTerms | Anomaly detection Base learner Classification Credit card Ensemble Meta-learning |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LF734FtcXOXjTurZJmvYoi7IIelHBW0nSqXTpZhftIl787WbadFlBRDymzTRlkmZm0m_mI-Q0AuQklGmQGmkCDgULUqnDgEGRgtZJkTSsJXf38eiJ3z6L5x4ZdrkwCKv0e3-7pze7tb8y8NoczMpy8BBhtbAwcvYbfZ4IE345l8hicPEZLp2zhKloWN6wf4ACPnemhXmN8Z8xcohj-nmM3B8_26fVuZ2pj3dVVUv252aTrHvHkV6177ZFemC3yUZHykD9N7pD7JWlLjSFia6Aek6IF9qVDqfOR6XKTieq-qA51A0Qy9LSUqwcWtbUuBVDETZK8YSWlhON2EenJieVU8R7Vu5ZrmnQ7Ya3XfJ0c_04HAWeVCEwjPM64LmIE2MkAE9MnJo0Z8K4QBVkyGVeFIAW3t2STOtLHQvJxKViWgBTkLNCsj2yYqcW9glVWFggMjlLc-CFUVolceziuTAWhrsh-iTsVJkZX3EciS-qrIOWjTNUf4bqz1r198nZQmbW1tv4tbfoZij7tmoyZxB-lTtfTOcfhjn45zCHZA1bberiEVmpX-dw7HyYWp80i_QL2C_vSQ priority: 102 providerName: Elsevier |
| Title | An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes |
| URI | https://dx.doi.org/10.1016/j.jisa.2023.103618 https://doi.org/10.1016/j.jisa.2023.103618 |
| UnpaywallVersion | publishedVersion |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2214-2126 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001219523 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] issn: 2214-2126 databaseCode: ACRLP dateStart: 20130701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001219523 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 2214-2126 databaseCode: .~1 dateStart: 20130701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001219523 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 2214-2126 databaseCode: AIKHN dateStart: 20130701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001219523 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2214-2126 databaseCode: AKRWK dateStart: 20130701 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001219523 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9swGLZGe9iJjwGCCSofuG2pSP2VHCsEKiCqHVaJnSJ_vJkKqUGQaoIDvx2_jcM2BAhuieIPxX4TP7YfPw8hewNAT0KVJ7lVNuFQsiRXJk0YlDkYk5XZwrXkbCxHE35yLs6jTA6ehflv_37Bw7rATV00-cbz4TLNlkhXioC7O6Q7Gf8Y_kL3uEHKk_APln-vGY8nZF4u5LVR6PPcX-u7P7qq_hlljlYau6LbhTghkksu-_Pa9O39M-nG973AKlmOYJMOm-hYI5_AfyErrZEDjd_1OvFDT8N0FmamAhp9JH7TVm6cBlxLtb-a6eqOOqgX5C1Pp56i2ui0pjZEGUWqKcVVXTqdGeRLWnAhl6PIEa1CWeHWIlSH2w0yOTr8eTBKohFDYhnndcKdkJm1CoBnVuY2d0zYMLkFlXLlyhIQFYRHihmzb6RQTOxrZgQwDY6Vim2Sjr_ysEWoRjGCgXUsd8BLq43OpAxzwFQKy0MV2yRtO6awUaUczTKqoqWjXRTYoAU2aNE06Db59pTnutHoeDO1aPu7iCijQQ9F6Lo3831_Co53VPP1Y8l3SKe-mcNuQDi16ZGl_kPaI93h8elo3IuB_ghxePom |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG50PejFt_FtD94UV2hL4WiMZn1e1MQbactgMGzdKMbsxd9uB4rRxBjjEcrQZlo6M-Wb-QjZjQA5CWUapEaagEPBglTqMGBQpKB1UiQNa8nVdTy44-f34n6CHHe5MAir9Ht_u6c3u7W_0_fa7I_Ksn8TYbWwMHL2G32eKJkkU1xEEiOwg_fwy0FLmIqG5g0FApTwyTMtzusRfxojiTjmn8dI_vGzgZp-tSM1flNV9cUAnc6TWe850qN2cAtkAuwimetYGaj_SJeIPbLUxaYw1BVQTwrxQLva4dQ5qVTZp6GqxjSHukFiWVpaiqVDy5oat2Qo4kYpHtHScqgR_Oj05KRyioDPyr3LXRr0u-FlmdydntweDwLPqhAYxnkd8FzEiTESgCcmTk2aM2FcpAoy5DIvCkAT75ok0_pQx0IycaiYFsAU5KyQbIX07JOFVUIVVhaITM7SHHhhlFZJHLuALoyF4a6LNRJ2qsyMLzmOzBdV1mHLHjNUf4bqz1r1r5G9T5lRW3Dj16dFN0PZt2WTOYvwq9z-53T-oZv1f3azQ6YHt1eX2eXZ9cUGmcGWNo9xk_Tq51fYcg5NrbebBfsB8HDybA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGA06Hjy5i4pKDt60YidbexxEEUHx4ICeSpavMtrJiHYQ_fXmm6ZuqOitpVlo8rV5SV7eI2SnC-hJqPIkt8omHEqW5MqkCYMyB2OyMpu4lpydy5M-P70SV1EmB8_CfNq_n_CwbnFTF02-8Xy4TLNpMiNFwN0dMtM_v-hdo3tcN-VJ-AfL92vG4wmZ7wv5aRSaHft7_fykq-rDKHM839gVPU7ECZFccrc_rs2-ffki3fi3F1ggcxFs0l4THYtkCvwSmW-NHGj8rpeJ73kaprMwNBXQ6CNxQ1u5cRpwLdV-NNTVM3VQT8hbng48RbXRQU1tiDKKVFOKq7p0MDTIl7TgQi5HkSNahbLCrUWoDo8rpH98dHl4kkQjhsQyzuuEOyEzaxUAz6zMbe6YsGFyCyrlypUlICoIjxQz5sBIoZg40MwIYBocKxVbJR0_8rBGqEYxgq51LHfAS6uNzqQMc8BUCstDFeskbTumsFGlHM0yqqKlo90W2KAFNmjRNOg62X3Lc99odPyaWrT9XUSU0aCHInTdr_n23oLjD9Vs_C_5JunUD2PYCginNtsxtF8B2d33mg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+approach+for+anomaly+detection+in+credit+card+data+with+imbalanced+and+overlapped+classes&rft.jtitle=Journal+of+information+security+and+applications&rft.au=Islam%2C+Md+Amirul&rft.au=Uddin%2C+Md+Ashraf&rft.au=Aryal%2C+Sunil&rft.au=Stea%2C+Giovanni&rft.date=2023-11-01&rft.issn=2214-2126&rft.volume=78&rft.spage=103618&rft_id=info:doi/10.1016%2Fj.jisa.2023.103618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jisa_2023_103618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-2126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-2126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-2126&client=summon |