Accelerating materials discovery using integrated deep machine learning approaches

We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La-Si-P ternary system as a proof-of-concept, we ac...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 47; pp. 25973 - 25982
Main Authors Xia, Weiyi, Tang, Ling, Sun, Huaijun, Zhang, Chao, Ho, Kai-Ming, Viswanathan, Gayatri, Kovnir, Kirill, Wang, Cai-Zhuang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 05.12.2023
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d3ta03771a

Cover

Abstract We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La-Si-P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La 2 SiP 3 phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP 3 . Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties. Our work introduces an innovative deep machine learning framework to significantly accelerate novel materials discovery, as demonstrated by its application to the La-Si-P system where new ternary and quaternary compounds were successfully identified.
AbstractList We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La–Si–P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La 2 SiP 3 phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP 3 . Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties.
We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La-Si-P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La 2 SiP 3 phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP 3 . Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties. Our work introduces an innovative deep machine learning framework to significantly accelerate novel materials discovery, as demonstrated by its application to the La-Si-P system where new ternary and quaternary compounds were successfully identified.
We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La–Si–P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La2SiP3 phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP3. Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties.
Author Viswanathan, Gayatri
Kovnir, Kirill
Zhang, Chao
Tang, Ling
Ho, Kai-Ming
Sun, Huaijun
Wang, Cai-Zhuang
Xia, Weiyi
AuthorAffiliation Department of Chemistry
U.S. Department of Energy
Ames National Laboratory
Zhejiang University of Technology
Yantai University
College of Science
Jiyang College of Zhejiang Agriculture and Forestry University
Department of Physics and Astronomy
Department of Applied Physics
Iowa State University
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: U.S. Department of Energy
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: Iowa State University
– sequence: 0
  name: Zhejiang University of Technology
– sequence: 0
  name: Jiyang College of Zhejiang Agriculture and Forestry University
– sequence: 0
  name: Department of Physics and Astronomy
– sequence: 0
  name: Ames National Laboratory
– sequence: 0
  name: Department of Applied Physics
– sequence: 0
  name: College of Science
– sequence: 0
  name: Yantai University
Author_xml – sequence: 1
  givenname: Weiyi
  surname: Xia
  fullname: Xia, Weiyi
– sequence: 2
  givenname: Ling
  surname: Tang
  fullname: Tang, Ling
– sequence: 3
  givenname: Huaijun
  surname: Sun
  fullname: Sun, Huaijun
– sequence: 4
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
– sequence: 5
  givenname: Kai-Ming
  surname: Ho
  fullname: Ho, Kai-Ming
– sequence: 6
  givenname: Gayatri
  surname: Viswanathan
  fullname: Viswanathan, Gayatri
– sequence: 7
  givenname: Kirill
  surname: Kovnir
  fullname: Kovnir, Kirill
– sequence: 8
  givenname: Cai-Zhuang
  surname: Wang
  fullname: Wang, Cai-Zhuang
BackLink https://www.osti.gov/biblio/2007579$$D View this record in Osti.gov
BookMark eNptkFFLHDEUhUNRqF196bsw2LeW1SSTmUweF1ursFAo9nm4e_dGI7OZMcla9t-bdWQVNS8JN989h3O-sD3fe2Lsq-CngpfmbFkm4KXWAj6xA8krPtXK1Hu7d9N8Zkcx3vF8Gs5rYw7Y3xkidRQgOX9TrCBRcNDFYuki9g8UNsU6bn-cT3STKVoWS6Ihk3jrPBUdQfBbAIYh9HlI8ZDt2yxBR8_3hP27-HV9fjmd__l9dT6bT7FUKk0VgEVTSVspWgigxgoka-uqXlRK29poA6UBiUJJKFUtF5JQkG0MaDQWywn7Mequ_QCb_9B17RDcCsKmFbzdNtK-NJLpk5HuY3JtRJcIb7H3njC1knNdaZOhbyOUs9yvKab2rl8Hn1O0sjFaSSN0k6nvI4WhjzGQfef7s7yePfnOMszfwNk6t937FMB1H68cjysh4k76VZRHJ-eWtg
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40750
crossref_primary_10_1039_D3TA07457A
crossref_primary_10_1088_2515_7655_adba87
Cites_doi 10.1103/PhysRevB.54.11169
10.1038/ncomms5411
10.1021/jp5010852
10.1103/PhysRevB.13.5188
10.1038/s41524-020-0300-2
10.1063/1.447334
10.1007/978-3-642-24624-1
10.1103/PhysRevLett.120.145301
10.1016/j.cpc.2012.05.008
10.1103/PhysRevLett.112.045502
10.1063/5.0043300
10.1007/978-3-319-68280-8_8
10.1063/1.5004979
10.1002/pssb.202000600
10.1038/s41598-020-72811-z
10.1038/srep06367
10.1016/j.cpc.2018.03.016
10.1016/0022-3697(90)90021-7
10.1088/2516-1075/abbb25
10.1063/1.3512900
10.1006/jssc.1996.0248
10.1016/0927-0256(96)00008-0
10.1103/PhysRevLett.77.3865
10.1103/PhysRevMaterials.4.063801
10.1103/PhysRevB.50.17953
10.1016/S0022-4596(03)00343-8
10.1103/PhysRevMaterials.7.034410
10.1103/PhysRevMaterials.6.063802
10.1103/PhysRevA.31.1695
10.1016/j.physc.2015.02.016
10.1038/s41524-022-00950-0
10.1126/sciadv.aar7969
10.1088/2515-7639/ab084b
10.1088/1361-6633/80/3/036501
10.1016/j.cpc.2012.12.009
10.1016/S0081-1947(01)80005-9
10.1063/1.4812323
10.1002/zaac.202000378
10.1016/j.scriptamat.2015.07.021
10.1002/advs.201900808
10.1073/pnas.2204485119
10.1038/s41524-020-00428-x
10.1039/D0NA00388C
10.1021/acs.inorgchem.2c02431
10.1039/D1DT00845E
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
CorporateAuthor Ames Laboratory (AMES), Ames, IA (United States)
CorporateAuthor_xml – name: Ames Laboratory (AMES), Ames, IA (United States)
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
OTOTI
ADTOC
UNPAY
DOI 10.1039/d3ta03771a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef


Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 25982
ExternalDocumentID 10.1039/d3ta03771a
2007579
10_1039_D3TA03771A
d3ta03771a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
OTOTI
ADTOC
ANBJS
EJD
J3G
J3H
ROL
UNPAY
ID FETCH-LOGICAL-c344t-4aafc952f54eb1ae8f1ceff656b547f6979a39a2c142a3462b2ec1ef89a7c9fc3
IEDL.DBID UNPAY
ISSN 2050-7488
2050-7496
IngestDate Sun Oct 26 03:46:42 EDT 2025
Mon Apr 29 05:37:02 EDT 2024
Mon Jun 30 12:10:52 EDT 2025
Tue Jul 01 01:13:46 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Dec 17 20:58:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-4aafc952f54eb1ae8f1ceff656b547f6979a39a2c142a3462b2ec1ef89a7c9fc3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3ta03771a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
AC02-07CH11358
IS-J-11,175
ORCID 0000-0003-1152-1912
0000-0002-9241-4328
0000-0001-7669-6305
0000-0002-9693-8225
0000-0002-0269-4785
0000-0002-5957-2287
0000000296938225
0000000176696305
0000000292414328
0000000259572287
0000000311521912
0000000202694785
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/ta/d3ta03771a
PQID 2897429178
PQPubID 2047523
PageCount 1
ParticipantIDs crossref_primary_10_1039_D3TA03771A
rsc_primary_d3ta03771a
unpaywall_primary_10_1039_d3ta03771a
crossref_citationtrail_10_1039_D3TA03771A
osti_scitechconnect_2007579
proquest_journals_2897429178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231205
PublicationDateYYYYMMDD 2023-12-05
PublicationDate_xml – month: 12
  year: 2023
  text: 20231205
  day: 5
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United Kingdom
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Wang (D3TA03771A/cit6/1) 2012; 83
Zhang (D3TA03771A/cit13/1) 2021; 3
Carnicom (D3TA03771A/cit29/1) 2018; 4
Kresse (D3TA03771A/cit40/1) 1996; 54
Yamamuro (D3TA03771A/cit47/1) 1990; 51
Sun (D3TA03771A/cit27/1) 2022; 61
Akopov (D3TA03771A/cit34/1) 2021; 647
Kabiraj (D3TA03771A/cit18/1) 2020; 6
Liao (D3TA03771A/cit36/1) 2023; 7
Planes (D3TA03771A/cit48/1) 2001; 55
Zhang (D3TA03771A/cit37/1) 2022; 6
Pickard (D3TA03771A/cit7/1) 2011; 23
Kneidinger (D3TA03771A/cit31/1) 2015; 514
Kresse (D3TA03771A/cit39/1) 1996; 6
Bauer (D3TA03771A/cit28/1) 2012
Smidman (D3TA03771A/cit30/1) 2017; 80
Kaiser (D3TA03771A/cit32/1) 1996; 124
Wang (D3TA03771A/cit44/1) 2018; 228
Arapan (D3TA03771A/cit9/1) 2018; 123
Katsikas (D3TA03771A/cit20/1) 2021; 258
Gubernatis (D3TA03771A/cit15/1) 2021; 129
Hoover (D3TA03771A/cit46/1) 1985; 31
Amsler (D3TA03771A/cit8/1) 2010; 133
Vela (D3TA03771A/cit49/1) 2014; 5
Lyakhov (D3TA03771A/cit5/1) 2013; 184
Himanen (D3TA03771A/cit12/1) 2019; 6
Xia (D3TA03771A/cit25/1) 2022; 119
Monkhorst (D3TA03771A/cit42/1) 1976; 13
Perdew (D3TA03771A/cit41/1) 1996; 77
Xie (D3TA03771A/cit23/1) 2018; 120
Rhone (D3TA03771A/cit21/1) 2020; 10
Togo (D3TA03771A/cit43/1) 2015; 108
Chen (D3TA03771A/cit11/1) 2018
Landrum (D3TA03771A/cit22/1) 2003; 176
Schleder (D3TA03771A/cit10/1) 2019; 2
Nosé (D3TA03771A/cit45/1) 1984; 81
Cai (D3TA03771A/cit19/1) 2020; 2
Zhao (D3TA03771A/cit2/1) 2014; 112
Park (D3TA03771A/cit24/1) 2020; 4
Blöchl (D3TA03771A/cit38/1) 1994; 50
Torelli (D3TA03771A/cit14/1) 2020; 6
Zhao (D3TA03771A/cit3/1) 2014; 118
Kusne (D3TA03771A/cit17/1) 2014; 4
Akopov (D3TA03771A/cit33/1) 2021; 50
Wang (D3TA03771A/cit26/1) 2022; 8
Oganov (D3TA03771A/cit4/1) 2008; 20
Wu (D3TA03771A/cit1/1) 2014; 26
Vasudevan (D3TA03771A/cit16/1) 2021; 129
Jain (D3TA03771A/cit35/1) 2013; 1
References_xml – issn: 2018
  volume-title: High-throughput computing for accelerated materials discovery
  end-page: 169
  publication-title: Computational Materials System Design
  doi: Chen
– issn: 2012
  publication-title: Non-Centrosymmetric Superconductors: Introduction and Overview
  doi: Bauer Sigrist
– volume: 54
  start-page: 11169
  year: 1996
  ident: D3TA03771A/cit40/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 5
  start-page: 4411
  year: 2014
  ident: D3TA03771A/cit49/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5411
– volume: 118
  start-page: 9524
  year: 2014
  ident: D3TA03771A/cit3/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5010852
– volume: 13
  start-page: 5188
  year: 1976
  ident: D3TA03771A/cit42/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 6
  start-page: 35
  year: 2020
  ident: D3TA03771A/cit18/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0300-2
– volume: 81
  start-page: 511
  year: 1984
  ident: D3TA03771A/cit45/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume-title: Non-Centrosymmetric Superconductors: Introduction and Overview
  year: 2012
  ident: D3TA03771A/cit28/1
  doi: 10.1007/978-3-642-24624-1
– volume: 23
  start-page: 053201
  year: 2011
  ident: D3TA03771A/cit7/1
  publication-title: J. Phys.: Condens.Matter
– volume: 120
  start-page: 145301
  year: 2018
  ident: D3TA03771A/cit23/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
– volume: 83
  start-page: 2063
  year: 2012
  ident: D3TA03771A/cit6/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.05.008
– volume: 112
  start-page: 045502
  year: 2014
  ident: D3TA03771A/cit2/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.045502
– volume: 129
  start-page: 070401
  year: 2021
  ident: D3TA03771A/cit16/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0043300
– volume: 26
  start-page: 035402
  year: 2014
  ident: D3TA03771A/cit1/1
  publication-title: J. Phys.: Condens.Matter
– start-page: 169
  volume-title: Computational Materials System Design
  year: 2018
  ident: D3TA03771A/cit11/1
  doi: 10.1007/978-3-319-68280-8_8
– volume: 123
  start-page: 083904
  year: 2018
  ident: D3TA03771A/cit9/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5004979
– volume: 258
  start-page: 2000600
  year: 2021
  ident: D3TA03771A/cit20/1
  publication-title: Phys. Status Solidi (B)
  doi: 10.1002/pssb.202000600
– volume: 10
  start-page: 15795
  year: 2020
  ident: D3TA03771A/cit21/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72811-z
– volume: 4
  start-page: 6367
  year: 2014
  ident: D3TA03771A/cit17/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep06367
– volume: 228
  start-page: 178
  year: 2018
  ident: D3TA03771A/cit44/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.03.016
– volume: 51
  start-page: 1383
  year: 1990
  ident: D3TA03771A/cit47/1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(90)90021-7
– volume: 3
  start-page: 033001
  year: 2021
  ident: D3TA03771A/cit13/1
  publication-title: Electron. Struct.
  doi: 10.1088/2516-1075/abbb25
– volume: 133
  start-page: 224104
  year: 2010
  ident: D3TA03771A/cit8/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3512900
– volume: 124
  start-page: 346
  year: 1996
  ident: D3TA03771A/cit32/1
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1996.0248
– volume: 6
  start-page: 15
  year: 1996
  ident: D3TA03771A/cit39/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 77
  start-page: 3865
  year: 1996
  ident: D3TA03771A/cit41/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 4
  start-page: 063801
  year: 2020
  ident: D3TA03771A/cit24/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.4.063801
– volume: 50
  start-page: 17953
  year: 1994
  ident: D3TA03771A/cit38/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 176
  start-page: 587
  year: 2003
  ident: D3TA03771A/cit22/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/S0022-4596(03)00343-8
– volume: 7
  start-page: 034410
  year: 2023
  ident: D3TA03771A/cit36/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.7.034410
– volume: 6
  start-page: 063802
  year: 2022
  ident: D3TA03771A/cit37/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.6.063802
– volume: 31
  start-page: 1695
  year: 1985
  ident: D3TA03771A/cit46/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 514
  start-page: 388
  year: 2015
  ident: D3TA03771A/cit31/1
  publication-title: Phys. C
  doi: 10.1016/j.physc.2015.02.016
– volume: 8
  start-page: 258
  year: 2022
  ident: D3TA03771A/cit26/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00950-0
– volume: 4
  start-page: eaar7969
  year: 2018
  ident: D3TA03771A/cit29/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar7969
– volume: 20
  start-page: 064210
  year: 2008
  ident: D3TA03771A/cit4/1
  publication-title: J. Phys.: Condens.Matter
– volume: 2
  start-page: 032001
  year: 2019
  ident: D3TA03771A/cit10/1
  publication-title: J. Phys. Mater.
  doi: 10.1088/2515-7639/ab084b
– volume: 80
  start-page: 036501
  year: 2017
  ident: D3TA03771A/cit30/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/80/3/036501
– volume: 129
  start-page: 070401
  year: 2021
  ident: D3TA03771A/cit15/1
  publication-title: Phys. Rev. Mater.
– volume: 184
  start-page: 1172
  year: 2013
  ident: D3TA03771A/cit5/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.12.009
– volume: 55
  start-page: 159
  year: 2001
  ident: D3TA03771A/cit48/1
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(01)80005-9
– volume: 1
  start-page: 011002
  year: 2013
  ident: D3TA03771A/cit35/1
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 647
  start-page: 91
  year: 2021
  ident: D3TA03771A/cit34/1
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.202000378
– volume: 108
  start-page: 1
  year: 2015
  ident: D3TA03771A/cit43/1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
– volume: 6
  start-page: 1900808
  year: 2019
  ident: D3TA03771A/cit12/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900808
– volume: 119
  start-page: e2204485119
  year: 2022
  ident: D3TA03771A/cit25/1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2204485119
– volume: 6
  start-page: 158
  year: 2020
  ident: D3TA03771A/cit14/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00428-x
– volume: 2
  start-page: 3115
  year: 2020
  ident: D3TA03771A/cit19/1
  publication-title: Nanoscale Advances
  doi: 10.1039/D0NA00388C
– volume: 61
  start-page: 16699
  year: 2022
  ident: D3TA03771A/cit27/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02431
– volume: 50
  start-page: 6463
  issue: 19
  year: 2021
  ident: D3TA03771A/cit33/1
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT00845E
SSID ssj0000800699
Score 2.4634774
Snippet We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation...
SourceID unpaywall
osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25973
SubjectTerms Artificial neural networks
Convexity
Energy of formation
First principles
Free energy
Genetic algorithms
Graph neural networks
Heat of formation
Learning algorithms
Machine learning
Material properties
MATERIALS SCIENCE
Neural networks
Ternary systems
Title Accelerating materials discovery using integrated deep machine learning approaches
URI https://www.proquest.com/docview/2897429178
https://www.osti.gov/biblio/2007579
https://pubs.rsc.org/en/content/articlepdf/2023/ta/d3ta03771a
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry P&R
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7496
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800699
  issn: 2050-7496
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcoAeeFeYlmoleuHgJPa-jxa0KggqhBKpnKz1PnIgcqPGESq_nlnbeRQ4IG4-jO31zuzOt_I33wCccl4pZ3KbGilEyoynqXKx2N06WQVnsszEQuHPl-Jixj5e8auemxNrYXAQq9HNqpMI9nh8jxpNdTPu53HpQjyu03Fjxo42ZkKlzBAeDQVHKD6A4ezyS_EtNpSb8EnUyVS7ay028qRU7918JyENrnFh3QGb93EwB_BgXS_N7Q-zWOxln_PHXYvVdtwt6eT7aN1UI_vzN0nH__6wJ_Cox6Wk6Oyewj1fP4ODPbXC5_C1sBaTVAyZek4Q6XbBS2JhbySC3pJIop-TrQKFI877JVpGvqYnfYOKOdnomPvVC5idn03fXaR9S4bUUsYadKYJVvM8cIabvPEqZNaHgKCw4kwGoaU2VKPvM5YbykRe5d5mPihtpNXB0kMY1Ne1fwkkSK-4wq_ELZcFxEXCVcpMpOBB5ogKE3i78Utpe73y2DZjUbb_zaku39Np0c5TkcCbre2yU-n4q9VRdG-J2CIK5NrIJLJNbMQpudQJHG-8XvbreFXicVRixs6kSuAQvbd9-s5HCZxug-OPl-_MXv2b2RE8jGHQEmb4MQyam7V_jbCnqU5gWJxNP3w66YP8FyOUAvM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98K4ILcgSvXDI7ia2Y_sYAVWFRIVQVyqnyPFjD6zSVTcrVH49M0n2UeCAuOUwSRzP2PNZ-eYbgFMpa-1t7lKriiIVNvBUeyp2d17V0dsss1Qo_PmiOJ-JT1fyauDmUC0MDmI1vln1EsEBj--k0dS0k2Eelz7ScZ1PWjvxvLVTrlSG8OigkAjFR3Awu_hSfqOGclM5JZ1Mvbs2xUaelJu9m-8kpNE1Lqw7YPM-DuYQHqybpb39YReLvexz9rhvsdqNuyOdfB-v23rsfv4m6fjfH_YEHg24lJW93VO4F5pncLinVvgcvpbOYZKikGnmDJFuH7yMCnuJCHrLiEQ_Z1sFCs98CEu0JL5mYEODijnb6JiH1QuYnX28fH-eDi0ZUseFaNGZNjoj8ygFbvI26Ji5ECOCwloKFQujjOUGfZ-J3HJR5HUeXBaiNlY5Ex0_glFz3YSXwKIKWmr8StxyRURcVPha26kqZFQ5osIE3m38UrlBr5zaZiyq7r85N9UHfll281Qm8HZru-xVOv5qdUzurRBbkECuIyaRa6kRp5LKJHCy8Xo1rONVhcdRhRk7UzqBI_Te9uk7HyVwug2OP16-M3v1b2bH8JDCoCPMyBMYtTfr8BphT1u_GYL7FxQ7AWE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+materials+discovery+using+integrated+deep+machine+learning+approaches&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xia%2C+Weiyi&rft.au=Tang%2C+Ling&rft.au=Sun%2C+Huaijun&rft.au=Zhang%2C+Chao&rft.date=2023-12-05&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=47&rft.spage=25973&rft.epage=25982&rft_id=info:doi/10.1039%2Fd3ta03771a&rft.externalDocID=d3ta03771a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon