Accelerating materials discovery using integrated deep machine learning approaches
We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La-Si-P ternary system as a proof-of-concept, we ac...
Saved in:
| Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 47; pp. 25973 - 25982 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Royal Society of Chemistry
05.12.2023
Royal Society of Chemistry (RSC) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2050-7488 2050-7496 2050-7496 |
| DOI | 10.1039/d3ta03771a |
Cover
| Abstract | We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La-Si-P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La
2
SiP
3
phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP
3
. Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties.
Our work introduces an innovative deep machine learning framework to significantly accelerate novel materials discovery, as demonstrated by its application to the La-Si-P system where new ternary and quaternary compounds were successfully identified. |
|---|---|
| AbstractList | We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La–Si–P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La
2
SiP
3
phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP
3
. Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties. We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La-Si-P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La 2 SiP 3 phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP 3 . Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties. Our work introduces an innovative deep machine learning framework to significantly accelerate novel materials discovery, as demonstrated by its application to the La-Si-P system where new ternary and quaternary compounds were successfully identified. We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation energies and artificial neural networks (ANN) for constructing interatomic potentials. Using the La–Si–P ternary system as a proof-of-concept, we achieve a remarkable speed-up of at least 100 times compared to high-throughput first-principles calculations. The ML approach successfully identifies known compounds and uncovers 16 new P-rich compounds with formation energies within 100 meV per atom above the convex hull, including a stable La2SiP3 phase. We also employ the developed ML interatomic potential in a genetic algorithm for efficient structure search, leading to the discovery of more metastable compounds. Moreover, substitution of La atoms with Ba reveals a new stable quaternary compound, BaLaSiP3. Our generic and robust approach holds great promise for accelerating materials discovery in various compounds, enabling more efficient exploration of complex chemical spaces and enhancing the prediction of material properties. |
| Author | Viswanathan, Gayatri Kovnir, Kirill Zhang, Chao Tang, Ling Ho, Kai-Ming Sun, Huaijun Wang, Cai-Zhuang Xia, Weiyi |
| AuthorAffiliation | Department of Chemistry U.S. Department of Energy Ames National Laboratory Zhejiang University of Technology Yantai University College of Science Jiyang College of Zhejiang Agriculture and Forestry University Department of Physics and Astronomy Department of Applied Physics Iowa State University Department of Physics |
| AuthorAffiliation_xml | – sequence: 0 name: U.S. Department of Energy – sequence: 0 name: Department of Chemistry – sequence: 0 name: Department of Physics – sequence: 0 name: Iowa State University – sequence: 0 name: Zhejiang University of Technology – sequence: 0 name: Jiyang College of Zhejiang Agriculture and Forestry University – sequence: 0 name: Department of Physics and Astronomy – sequence: 0 name: Ames National Laboratory – sequence: 0 name: Department of Applied Physics – sequence: 0 name: College of Science – sequence: 0 name: Yantai University |
| Author_xml | – sequence: 1 givenname: Weiyi surname: Xia fullname: Xia, Weiyi – sequence: 2 givenname: Ling surname: Tang fullname: Tang, Ling – sequence: 3 givenname: Huaijun surname: Sun fullname: Sun, Huaijun – sequence: 4 givenname: Chao surname: Zhang fullname: Zhang, Chao – sequence: 5 givenname: Kai-Ming surname: Ho fullname: Ho, Kai-Ming – sequence: 6 givenname: Gayatri surname: Viswanathan fullname: Viswanathan, Gayatri – sequence: 7 givenname: Kirill surname: Kovnir fullname: Kovnir, Kirill – sequence: 8 givenname: Cai-Zhuang surname: Wang fullname: Wang, Cai-Zhuang |
| BackLink | https://www.osti.gov/biblio/2007579$$D View this record in Osti.gov |
| BookMark | eNptkFFLHDEUhUNRqF196bsw2LeW1SSTmUweF1ursFAo9nm4e_dGI7OZMcla9t-bdWQVNS8JN989h3O-sD3fe2Lsq-CngpfmbFkm4KXWAj6xA8krPtXK1Hu7d9N8Zkcx3vF8Gs5rYw7Y3xkidRQgOX9TrCBRcNDFYuki9g8UNsU6bn-cT3STKVoWS6Ihk3jrPBUdQfBbAIYh9HlI8ZDt2yxBR8_3hP27-HV9fjmd__l9dT6bT7FUKk0VgEVTSVspWgigxgoka-uqXlRK29poA6UBiUJJKFUtF5JQkG0MaDQWywn7Mequ_QCb_9B17RDcCsKmFbzdNtK-NJLpk5HuY3JtRJcIb7H3njC1knNdaZOhbyOUs9yvKab2rl8Hn1O0sjFaSSN0k6nvI4WhjzGQfef7s7yePfnOMszfwNk6t937FMB1H68cjysh4k76VZRHJ-eWtg |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40750 crossref_primary_10_1039_D3TA07457A crossref_primary_10_1088_2515_7655_adba87 |
| Cites_doi | 10.1103/PhysRevB.54.11169 10.1038/ncomms5411 10.1021/jp5010852 10.1103/PhysRevB.13.5188 10.1038/s41524-020-0300-2 10.1063/1.447334 10.1007/978-3-642-24624-1 10.1103/PhysRevLett.120.145301 10.1016/j.cpc.2012.05.008 10.1103/PhysRevLett.112.045502 10.1063/5.0043300 10.1007/978-3-319-68280-8_8 10.1063/1.5004979 10.1002/pssb.202000600 10.1038/s41598-020-72811-z 10.1038/srep06367 10.1016/j.cpc.2018.03.016 10.1016/0022-3697(90)90021-7 10.1088/2516-1075/abbb25 10.1063/1.3512900 10.1006/jssc.1996.0248 10.1016/0927-0256(96)00008-0 10.1103/PhysRevLett.77.3865 10.1103/PhysRevMaterials.4.063801 10.1103/PhysRevB.50.17953 10.1016/S0022-4596(03)00343-8 10.1103/PhysRevMaterials.7.034410 10.1103/PhysRevMaterials.6.063802 10.1103/PhysRevA.31.1695 10.1016/j.physc.2015.02.016 10.1038/s41524-022-00950-0 10.1126/sciadv.aar7969 10.1088/2515-7639/ab084b 10.1088/1361-6633/80/3/036501 10.1016/j.cpc.2012.12.009 10.1016/S0081-1947(01)80005-9 10.1063/1.4812323 10.1002/zaac.202000378 10.1016/j.scriptamat.2015.07.021 10.1002/advs.201900808 10.1073/pnas.2204485119 10.1038/s41524-020-00428-x 10.1039/D0NA00388C 10.1021/acs.inorgchem.2c02431 10.1039/D1DT00845E |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2023 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
| CorporateAuthor | Ames Laboratory (AMES), Ames, IA (United States) |
| CorporateAuthor_xml | – name: Ames Laboratory (AMES), Ames, IA (United States) |
| DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI OTOTI ADTOC UNPAY |
| DOI | 10.1039/d3ta03771a |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2050-7496 |
| EndPage | 25982 |
| ExternalDocumentID | 10.1039/d3ta03771a 2007579 10_1039_D3TA03771A d3ta03771a |
| GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI OTOTI ADTOC ANBJS EJD J3G J3H ROL UNPAY |
| ID | FETCH-LOGICAL-c344t-4aafc952f54eb1ae8f1ceff656b547f6979a39a2c142a3462b2ec1ef89a7c9fc3 |
| IEDL.DBID | UNPAY |
| ISSN | 2050-7488 2050-7496 |
| IngestDate | Sun Oct 26 03:46:42 EDT 2025 Mon Apr 29 05:37:02 EDT 2024 Mon Jun 30 12:10:52 EDT 2025 Tue Jul 01 01:13:46 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Dec 17 20:58:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 47 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-4aafc952f54eb1ae8f1ceff656b547f6979a39a2c142a3462b2ec1ef89a7c9fc3 |
| Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3ta03771a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE) AC02-07CH11358 IS-J-11,175 |
| ORCID | 0000-0003-1152-1912 0000-0002-9241-4328 0000-0001-7669-6305 0000-0002-9693-8225 0000-0002-0269-4785 0000-0002-5957-2287 0000000296938225 0000000176696305 0000000292414328 0000000259572287 0000000311521912 0000000202694785 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/ta/d3ta03771a |
| PQID | 2897429178 |
| PQPubID | 2047523 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1039_D3TA03771A rsc_primary_d3ta03771a unpaywall_primary_10_1039_d3ta03771a crossref_citationtrail_10_1039_D3TA03771A osti_scitechconnect_2007579 proquest_journals_2897429178 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231205 |
| PublicationDateYYYYMMDD | 2023-12-05 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231205 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge – name: United Kingdom |
| PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
| PublicationYear | 2023 |
| Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
| Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
| References | Wang (D3TA03771A/cit6/1) 2012; 83 Zhang (D3TA03771A/cit13/1) 2021; 3 Carnicom (D3TA03771A/cit29/1) 2018; 4 Kresse (D3TA03771A/cit40/1) 1996; 54 Yamamuro (D3TA03771A/cit47/1) 1990; 51 Sun (D3TA03771A/cit27/1) 2022; 61 Akopov (D3TA03771A/cit34/1) 2021; 647 Kabiraj (D3TA03771A/cit18/1) 2020; 6 Liao (D3TA03771A/cit36/1) 2023; 7 Planes (D3TA03771A/cit48/1) 2001; 55 Zhang (D3TA03771A/cit37/1) 2022; 6 Pickard (D3TA03771A/cit7/1) 2011; 23 Kneidinger (D3TA03771A/cit31/1) 2015; 514 Kresse (D3TA03771A/cit39/1) 1996; 6 Bauer (D3TA03771A/cit28/1) 2012 Smidman (D3TA03771A/cit30/1) 2017; 80 Kaiser (D3TA03771A/cit32/1) 1996; 124 Wang (D3TA03771A/cit44/1) 2018; 228 Arapan (D3TA03771A/cit9/1) 2018; 123 Katsikas (D3TA03771A/cit20/1) 2021; 258 Gubernatis (D3TA03771A/cit15/1) 2021; 129 Hoover (D3TA03771A/cit46/1) 1985; 31 Amsler (D3TA03771A/cit8/1) 2010; 133 Vela (D3TA03771A/cit49/1) 2014; 5 Lyakhov (D3TA03771A/cit5/1) 2013; 184 Himanen (D3TA03771A/cit12/1) 2019; 6 Xia (D3TA03771A/cit25/1) 2022; 119 Monkhorst (D3TA03771A/cit42/1) 1976; 13 Perdew (D3TA03771A/cit41/1) 1996; 77 Xie (D3TA03771A/cit23/1) 2018; 120 Rhone (D3TA03771A/cit21/1) 2020; 10 Togo (D3TA03771A/cit43/1) 2015; 108 Chen (D3TA03771A/cit11/1) 2018 Landrum (D3TA03771A/cit22/1) 2003; 176 Schleder (D3TA03771A/cit10/1) 2019; 2 Nosé (D3TA03771A/cit45/1) 1984; 81 Cai (D3TA03771A/cit19/1) 2020; 2 Zhao (D3TA03771A/cit2/1) 2014; 112 Park (D3TA03771A/cit24/1) 2020; 4 Blöchl (D3TA03771A/cit38/1) 1994; 50 Torelli (D3TA03771A/cit14/1) 2020; 6 Zhao (D3TA03771A/cit3/1) 2014; 118 Kusne (D3TA03771A/cit17/1) 2014; 4 Akopov (D3TA03771A/cit33/1) 2021; 50 Wang (D3TA03771A/cit26/1) 2022; 8 Oganov (D3TA03771A/cit4/1) 2008; 20 Wu (D3TA03771A/cit1/1) 2014; 26 Vasudevan (D3TA03771A/cit16/1) 2021; 129 Jain (D3TA03771A/cit35/1) 2013; 1 |
| References_xml | – issn: 2018 volume-title: High-throughput computing for accelerated materials discovery end-page: 169 publication-title: Computational Materials System Design doi: Chen – issn: 2012 publication-title: Non-Centrosymmetric Superconductors: Introduction and Overview doi: Bauer Sigrist – volume: 54 start-page: 11169 year: 1996 ident: D3TA03771A/cit40/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 5 start-page: 4411 year: 2014 ident: D3TA03771A/cit49/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5411 – volume: 118 start-page: 9524 year: 2014 ident: D3TA03771A/cit3/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp5010852 – volume: 13 start-page: 5188 year: 1976 ident: D3TA03771A/cit42/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 6 start-page: 35 year: 2020 ident: D3TA03771A/cit18/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0300-2 – volume: 81 start-page: 511 year: 1984 ident: D3TA03771A/cit45/1 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume-title: Non-Centrosymmetric Superconductors: Introduction and Overview year: 2012 ident: D3TA03771A/cit28/1 doi: 10.1007/978-3-642-24624-1 – volume: 23 start-page: 053201 year: 2011 ident: D3TA03771A/cit7/1 publication-title: J. Phys.: Condens.Matter – volume: 120 start-page: 145301 year: 2018 ident: D3TA03771A/cit23/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.145301 – volume: 83 start-page: 2063 year: 2012 ident: D3TA03771A/cit6/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 112 start-page: 045502 year: 2014 ident: D3TA03771A/cit2/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.045502 – volume: 129 start-page: 070401 year: 2021 ident: D3TA03771A/cit16/1 publication-title: J. Appl. Phys. doi: 10.1063/5.0043300 – volume: 26 start-page: 035402 year: 2014 ident: D3TA03771A/cit1/1 publication-title: J. Phys.: Condens.Matter – start-page: 169 volume-title: Computational Materials System Design year: 2018 ident: D3TA03771A/cit11/1 doi: 10.1007/978-3-319-68280-8_8 – volume: 123 start-page: 083904 year: 2018 ident: D3TA03771A/cit9/1 publication-title: J. Appl. Phys. doi: 10.1063/1.5004979 – volume: 258 start-page: 2000600 year: 2021 ident: D3TA03771A/cit20/1 publication-title: Phys. Status Solidi (B) doi: 10.1002/pssb.202000600 – volume: 10 start-page: 15795 year: 2020 ident: D3TA03771A/cit21/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-72811-z – volume: 4 start-page: 6367 year: 2014 ident: D3TA03771A/cit17/1 publication-title: Sci. Rep. doi: 10.1038/srep06367 – volume: 228 start-page: 178 year: 2018 ident: D3TA03771A/cit44/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.03.016 – volume: 51 start-page: 1383 year: 1990 ident: D3TA03771A/cit47/1 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(90)90021-7 – volume: 3 start-page: 033001 year: 2021 ident: D3TA03771A/cit13/1 publication-title: Electron. Struct. doi: 10.1088/2516-1075/abbb25 – volume: 133 start-page: 224104 year: 2010 ident: D3TA03771A/cit8/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3512900 – volume: 124 start-page: 346 year: 1996 ident: D3TA03771A/cit32/1 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1996.0248 – volume: 6 start-page: 15 year: 1996 ident: D3TA03771A/cit39/1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 77 start-page: 3865 year: 1996 ident: D3TA03771A/cit41/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 4 start-page: 063801 year: 2020 ident: D3TA03771A/cit24/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.4.063801 – volume: 50 start-page: 17953 year: 1994 ident: D3TA03771A/cit38/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 176 start-page: 587 year: 2003 ident: D3TA03771A/cit22/1 publication-title: J. Solid State Chem. doi: 10.1016/S0022-4596(03)00343-8 – volume: 7 start-page: 034410 year: 2023 ident: D3TA03771A/cit36/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.7.034410 – volume: 6 start-page: 063802 year: 2022 ident: D3TA03771A/cit37/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.6.063802 – volume: 31 start-page: 1695 year: 1985 ident: D3TA03771A/cit46/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 514 start-page: 388 year: 2015 ident: D3TA03771A/cit31/1 publication-title: Phys. C doi: 10.1016/j.physc.2015.02.016 – volume: 8 start-page: 258 year: 2022 ident: D3TA03771A/cit26/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00950-0 – volume: 4 start-page: eaar7969 year: 2018 ident: D3TA03771A/cit29/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar7969 – volume: 20 start-page: 064210 year: 2008 ident: D3TA03771A/cit4/1 publication-title: J. Phys.: Condens.Matter – volume: 2 start-page: 032001 year: 2019 ident: D3TA03771A/cit10/1 publication-title: J. Phys. Mater. doi: 10.1088/2515-7639/ab084b – volume: 80 start-page: 036501 year: 2017 ident: D3TA03771A/cit30/1 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/80/3/036501 – volume: 129 start-page: 070401 year: 2021 ident: D3TA03771A/cit15/1 publication-title: Phys. Rev. Mater. – volume: 184 start-page: 1172 year: 2013 ident: D3TA03771A/cit5/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.12.009 – volume: 55 start-page: 159 year: 2001 ident: D3TA03771A/cit48/1 publication-title: Solid State Phys. doi: 10.1016/S0081-1947(01)80005-9 – volume: 1 start-page: 011002 year: 2013 ident: D3TA03771A/cit35/1 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 647 start-page: 91 year: 2021 ident: D3TA03771A/cit34/1 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.202000378 – volume: 108 start-page: 1 year: 2015 ident: D3TA03771A/cit43/1 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 6 start-page: 1900808 year: 2019 ident: D3TA03771A/cit12/1 publication-title: Adv. Sci. doi: 10.1002/advs.201900808 – volume: 119 start-page: e2204485119 year: 2022 ident: D3TA03771A/cit25/1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2204485119 – volume: 6 start-page: 158 year: 2020 ident: D3TA03771A/cit14/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00428-x – volume: 2 start-page: 3115 year: 2020 ident: D3TA03771A/cit19/1 publication-title: Nanoscale Advances doi: 10.1039/D0NA00388C – volume: 61 start-page: 16699 year: 2022 ident: D3TA03771A/cit27/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02431 – volume: 50 start-page: 6463 issue: 19 year: 2021 ident: D3TA03771A/cit33/1 publication-title: Dalton Trans. doi: 10.1039/D1DT00845E |
| SSID | ssj0000800699 |
| Score | 2.4634774 |
| Snippet | We present an integrated deep machine learning (ML) approach that combines crystal graph convolutional neural networks (CGCNN) for predicting formation... |
| SourceID | unpaywall osti proquest crossref rsc |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 25973 |
| SubjectTerms | Artificial neural networks Convexity Energy of formation First principles Free energy Genetic algorithms Graph neural networks Heat of formation Learning algorithms Machine learning Material properties MATERIALS SCIENCE Neural networks Ternary systems |
| Title | Accelerating materials discovery using integrated deep machine learning approaches |
| URI | https://www.proquest.com/docview/2897429178 https://www.osti.gov/biblio/2007579 https://pubs.rsc.org/en/content/articlepdf/2023/ta/d3ta03771a |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry P&R customDbUrl: https://pubs.rsc.org eissn: 2050-7496 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800699 issn: 2050-7496 databaseCode: AETIL dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcoAeeFeYlmoleuHgJPa-jxa0KggqhBKpnKz1PnIgcqPGESq_nlnbeRQ4IG4-jO31zuzOt_I33wCccl4pZ3KbGilEyoynqXKx2N06WQVnsszEQuHPl-Jixj5e8auemxNrYXAQq9HNqpMI9nh8jxpNdTPu53HpQjyu03Fjxo42ZkKlzBAeDQVHKD6A4ezyS_EtNpSb8EnUyVS7ay028qRU7918JyENrnFh3QGb93EwB_BgXS_N7Q-zWOxln_PHXYvVdtwt6eT7aN1UI_vzN0nH__6wJ_Cox6Wk6Oyewj1fP4ODPbXC5_C1sBaTVAyZek4Q6XbBS2JhbySC3pJIop-TrQKFI877JVpGvqYnfYOKOdnomPvVC5idn03fXaR9S4bUUsYadKYJVvM8cIabvPEqZNaHgKCw4kwGoaU2VKPvM5YbykRe5d5mPihtpNXB0kMY1Ne1fwkkSK-4wq_ELZcFxEXCVcpMpOBB5ogKE3i78Utpe73y2DZjUbb_zaku39Np0c5TkcCbre2yU-n4q9VRdG-J2CIK5NrIJLJNbMQpudQJHG-8XvbreFXicVRixs6kSuAQvbd9-s5HCZxug-OPl-_MXv2b2RE8jGHQEmb4MQyam7V_jbCnqU5gWJxNP3w66YP8FyOUAvM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gA98K4ILcgSvXDI7ia2Y_sYAVWFRIVQVyqnyPFjD6zSVTcrVH49M0n2UeCAuOUwSRzP2PNZ-eYbgFMpa-1t7lKriiIVNvBUeyp2d17V0dsss1Qo_PmiOJ-JT1fyauDmUC0MDmI1vln1EsEBj--k0dS0k2Eelz7ScZ1PWjvxvLVTrlSG8OigkAjFR3Awu_hSfqOGclM5JZ1Mvbs2xUaelJu9m-8kpNE1Lqw7YPM-DuYQHqybpb39YReLvexz9rhvsdqNuyOdfB-v23rsfv4m6fjfH_YEHg24lJW93VO4F5pncLinVvgcvpbOYZKikGnmDJFuH7yMCnuJCHrLiEQ_Z1sFCs98CEu0JL5mYEODijnb6JiH1QuYnX28fH-eDi0ZUseFaNGZNjoj8ygFbvI26Ji5ECOCwloKFQujjOUGfZ-J3HJR5HUeXBaiNlY5Ex0_glFz3YSXwKIKWmr8StxyRURcVPha26kqZFQ5osIE3m38UrlBr5zaZiyq7r85N9UHfll281Qm8HZru-xVOv5qdUzurRBbkECuIyaRa6kRp5LKJHCy8Xo1rONVhcdRhRk7UzqBI_Te9uk7HyVwug2OP16-M3v1b2bH8JDCoCPMyBMYtTfr8BphT1u_GYL7FxQ7AWE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+materials+discovery+using+integrated+deep+machine+learning+approaches&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xia%2C+Weiyi&rft.au=Tang%2C+Ling&rft.au=Sun%2C+Huaijun&rft.au=Zhang%2C+Chao&rft.date=2023-12-05&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=47&rft.spage=25973&rft.epage=25982&rft_id=info:doi/10.1039%2Fd3ta03771a&rft.externalDocID=d3ta03771a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |