An evolutionary algorithm-based optimization method for the classification and quantification of steatosis prevalence in liver biopsy images

Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing preva...

Full description

Saved in:
Bibliographic Details
Published inArray (New York) Vol. 11; p. 100078
Main Authors Arjmand, Alexandros, Christou, Vasileios, Tsoulos, Ioannis G., Tsipouras, Markos G., Tzallas, Alexandros T., Gogos, Christos, Glavas, Euripidis, Giannakeas, Nikolaos
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0056
2590-0056
DOI10.1016/j.array.2021.100078

Cover

Abstract Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing prevalence of obesity and other components of metabolic syndrome and is expected to be the main indication for the existence of the liver disease in the coming years. Its eradication has become a major challenge due to the difficulties in clinical diagnosis, complex pathogenesis and the lack of approved therapies. In this study, an automated image analysis method is presented providing quantitative assessments of fat deposition in steatotic liver biopsy specimens. The methodology applies image processing, machine learning and evolutionary algorithm optimization techniques, producing a 1.93% mean classification error compared to the semiquantitative interpretations of specialized hepatologists. •An automated diagnostic tool for the accurate steatosis prevalence quantification in NAFLD biopsy images.•Image processing analysis for determining the liver tissue area and detecting circular objects of interest.•Machine Learning versus Deep Learning in Biopsy Image Analysis.
AbstractList Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing prevalence of obesity and other components of metabolic syndrome and is expected to be the main indication for the existence of the liver disease in the coming years. Its eradication has become a major challenge due to the difficulties in clinical diagnosis, complex pathogenesis and the lack of approved therapies. In this study, an automated image analysis method is presented providing quantitative assessments of fat deposition in steatotic liver biopsy specimens. The methodology applies image processing, machine learning and evolutionary algorithm optimization techniques, producing a 1.93% mean classification error compared to the semiquantitative interpretations of specialized hepatologists.
Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing prevalence of obesity and other components of metabolic syndrome and is expected to be the main indication for the existence of the liver disease in the coming years. Its eradication has become a major challenge due to the difficulties in clinical diagnosis, complex pathogenesis and the lack of approved therapies. In this study, an automated image analysis method is presented providing quantitative assessments of fat deposition in steatotic liver biopsy specimens. The methodology applies image processing, machine learning and evolutionary algorithm optimization techniques, producing a 1.93% mean classification error compared to the semiquantitative interpretations of specialized hepatologists. •An automated diagnostic tool for the accurate steatosis prevalence quantification in NAFLD biopsy images.•Image processing analysis for determining the liver tissue area and detecting circular objects of interest.•Machine Learning versus Deep Learning in Biopsy Image Analysis.
ArticleNumber 100078
Author Tsipouras, Markos G.
Glavas, Euripidis
Gogos, Christos
Tzallas, Alexandros T.
Arjmand, Alexandros
Christou, Vasileios
Tsoulos, Ioannis G.
Giannakeas, Nikolaos
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Arjmand
  fullname: Arjmand, Alexandros
  email: k.arjmand@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
– sequence: 2
  givenname: Vasileios
  orcidid: 0000-0002-3231-8852
  surname: Christou
  fullname: Christou, Vasileios
  email: b.christou@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
– sequence: 3
  givenname: Ioannis G.
  surname: Tsoulos
  fullname: Tsoulos, Ioannis G.
  email: itsoulos@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
– sequence: 4
  givenname: Markos G.
  orcidid: 0000-0002-6757-1698
  surname: Tsipouras
  fullname: Tsipouras, Markos G.
  email: mtsipouras@uowm.gr
  organization: Department of Electrical and Computer Engineering, University of Western Macedonia, GR, 50100, Kozani, Greece
– sequence: 5
  givenname: Alexandros T.
  orcidid: 0000-0001-9043-1290
  surname: Tzallas
  fullname: Tzallas, Alexandros T.
  email: tzallas@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
– sequence: 6
  givenname: Christos
  orcidid: 0000-0003-1113-8462
  surname: Gogos
  fullname: Gogos, Christos
  email: cgogos@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
– sequence: 7
  givenname: Euripidis
  orcidid: 0000-0002-5604-3507
  surname: Glavas
  fullname: Glavas, Euripidis
  email: eglavas@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
– sequence: 8
  givenname: Nikolaos
  surname: Giannakeas
  fullname: Giannakeas, Nikolaos
  email: giannakeas@uoi.gr
  organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece
BookMark eNqNkU2O1DAQhS00SAzDnICNL5DGsZ2_BYvRiJ-RRmIze6tiV7qr5Y6D7W4UzsChSXcQIBbAytYrf6_k916yqzGMyNjrUmxKUdZv9huIEeaNFLJcFCGa9hm7llUnCiGq-uq3-wt2m9J-eSKrsiyr9pp9uxs5noI_ZgojxJmD34ZIeXcoekjoeJgyHegrnOf8gHkXHB9C5HmH3HpIiQay6xRGxz8fYcy_pDDwlBFySJT4FPEEHkeLnEbu6YSR9xSmNHM6wBbTK_Z8AJ_w9sd5w57ev3u6_1g8fvrwcH_3WFildS60Em2v3DDYulESakBQsul1paQbVFvhkkonLSihNHYtiKYZut61TkrrUKkb9rDaugB7M8VleZxNADIXIcStgZjJejRSWdCqclbXSlute2cr5Zyr-7pErPXipVev4zjB_AW8_2lYCnPux-zNpR9z7ses_SxYt2I2hpQiDsZSvkSWI5D_B6v-YP9v49uVwiXYE2E0ydK5C0cRbV6-Tn_lvwOUKcPz
CitedBy_id crossref_primary_10_3390_a16060300
crossref_primary_10_1016_j_bspc_2024_106419
crossref_primary_10_1080_03772063_2023_2217132
Cites_doi 10.48084/etasr.2274
10.1111/apt.14172
10.1136/jcp.54.6.461
10.1002/hep.30986
10.1016/j.cmpb.2020.105614
10.1186/s12916-017-0806-8
10.1148/radiol.2020191160
10.1016/j.humpath.2003.10.029
10.1016/j.softx.2019.100297
10.1016/j.cmpb.2015.05.009
10.1117/1.JMI.3.2.027502
10.1142/S0129183103004759
10.1016/0893-6080(89)90020-8
10.1002/hep.29466
10.1111/liv.13301
10.1097/SLA.0b013e3181bcd6dd
10.1016/j.humpath.2015.01.019
10.1016/j.humpath.2013.11.011
10.1109/4235.942529
10.1002/lt.23782
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.array.2021.100078
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals [Accès libre]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2590-0056
ExternalDocumentID oai_doaj_org_article_23ca435dc4634c44bdc53ddd6b61ee64
10.1016/j.array.2021.100078
10_1016_j_array_2021_100078
S2590005621000266
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c344t-4308b3dffc6732a6aea327b4532df385e01692ca3034e98a077f9bd8d22cde33
IEDL.DBID UNPAY
ISSN 2590-0056
IngestDate Fri Oct 03 12:50:00 EDT 2025
Tue Aug 19 20:57:09 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Tue Jul 01 04:06:16 EDT 2025
Tue Jul 25 20:56:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Liver biopsy
Image analysis
Grammatical evolution
Fatty liver
Steatohepatitis
Machine learning
Evolutionary algorithms
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-4308b3dffc6732a6aea327b4532df385e01692ca3034e98a077f9bd8d22cde33
ORCID 0000-0001-9043-1290
0000-0002-3231-8852
0000-0003-1113-8462
0000-0002-5604-3507
0000-0002-6757-1698
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.array.2021.100078
ParticipantIDs doaj_primary_oai_doaj_org_article_23ca435dc4634c44bdc53ddd6b61ee64
unpaywall_primary_10_1016_j_array_2021_100078
crossref_citationtrail_10_1016_j_array_2021_100078
crossref_primary_10_1016_j_array_2021_100078
elsevier_sciencedirect_doi_10_1016_j_array_2021_100078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Array (New York)
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Homeyer, Schenk, Arlt, Dahmen, Dirsch, Hahn (bib13) 2015; 121
Liu, Goh, Tiniakos, Wee, Leow, Zhao, Rao, Wang, Wang, Wan (bib18) 2020; 71
El-Badry, Breitenstein, Jochum, Washington, Paradis, Rubbia-Brandt, Puhan, Slankamenac, Graf, Clavien (bib6) 2009; 250
Yang, Jia, Lei, He, Xiang, Jiao, Zhou, Qian, Duan (bib22) 2019
Nativ, Chen, Yarmush, Henry, Lefkowitch, Klein, Maguire, Schloss, Guarrera, Berthiaume (bib11) 2014; 20
Estes, Razavi, Loomba, Younossi, Sanyal (bib1) 2018; 67
Liquori, Calamita, Cascella, Mastrodonato, Portincasa, Ferri (bib8) 2009; 24
Giannakeas, Tsipouras, Tzallas, Vavva, Tsimplakidou, Karvounis, Forlano, Manousou (bib10) 2017
Marsman, Matsushita, Dierkhising, Kremers, Rosen, Burgart, Nyberg (bib4) 2004; 35
Sciarabba, Vertemati, Moscheni, Cossa, Vizzotto (bib12) 2009
Koza (bib26) 1992; vol. 1
Brownlee (bib31) 2011
Batool (bib9) 2016
Yip, Ma, Wong, Tse, Chan, Yuen, Wong (bib19) 2017; 46
Hornik, Stinchcombe, White (bib32) 1989; 2
Zaitoun, Al Mardini, Awad, Ukabam, Makadisi, Record (bib3) 2001; 54
Ishikawa, Murakami, Ahi, Yamaguchi, Kobayashi, Kiyuna, Yamashita, Saito, Abe, Hashiguchi (bib17) 2016; 3
Neuschwander-Tetri (bib2) 2017; 15
Arjmand, Giannakeas (bib7) 2018; 8
Roullier, Cavaro-Menard, Guillaume, Aube (bib5) 2007
Koza (bib27) 1994
D. D. McCracken, E. D. Reilly, Backus-Naur Form (BNF); 2003.
Vanderbeck, Bockhorst, Kleiner, Komorowski, Chalasani, Gawrieh (bib16) 2015; 46
T. Teramoto, T. Shinohara, A. Takiyama, Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with nash using persistent homology, Comput Methods Progr Biomed 195 (105614).
Koza, Andre, Keane, Bennett (bib28) 1999; vol. 3
Vicas, Rusu, Al Hajjar, Lupsor-Platon (bib21) 2017
Guo, Wang, Teodoro, Farris, Kong (bib23) 2019
Han, Byra, Heba, Andre, Erdman, Loomba, Sirlin, O'Brien (bib24) 2020; 295
Tsoulos, Tzallas, Tsalikakis (bib25) 2019; 10
Cai, Wang, Chen (bib33) 2003; 14
Roy, Wang, Teodoro, Vos, Farris, Kong (bib14) 2018
Bedossa (bib34) 2017; 37
O'Neill, Ryan (bib29) 2001; 5
Vanderbeck, Bockhorst, Komorowski, Kleiner, Gawrieh (bib15) 2014; 45
Brownlee (10.1016/j.array.2021.100078_bib31) 2011
Zaitoun (10.1016/j.array.2021.100078_bib3) 2001; 54
Estes (10.1016/j.array.2021.100078_bib1) 2018; 67
Neuschwander-Tetri (10.1016/j.array.2021.100078_bib2) 2017; 15
Roy (10.1016/j.array.2021.100078_bib14) 2018
Ishikawa (10.1016/j.array.2021.100078_bib17) 2016; 3
Liquori (10.1016/j.array.2021.100078_bib8) 2009; 24
Koza (10.1016/j.array.2021.100078_bib28) 1999; vol. 3
Arjmand (10.1016/j.array.2021.100078_bib7) 2018; 8
Tsoulos (10.1016/j.array.2021.100078_bib25) 2019; 10
Liu (10.1016/j.array.2021.100078_bib18) 2020; 71
Vanderbeck (10.1016/j.array.2021.100078_bib15) 2014; 45
Roullier (10.1016/j.array.2021.100078_bib5) 2007
Yip (10.1016/j.array.2021.100078_bib19) 2017; 46
10.1016/j.array.2021.100078_bib20
Marsman (10.1016/j.array.2021.100078_bib4) 2004; 35
El-Badry (10.1016/j.array.2021.100078_bib6) 2009; 250
Nativ (10.1016/j.array.2021.100078_bib11) 2014; 20
Vanderbeck (10.1016/j.array.2021.100078_bib16) 2015; 46
Koza (10.1016/j.array.2021.100078_bib27) 1994
Cai (10.1016/j.array.2021.100078_bib33) 2003; 14
Giannakeas (10.1016/j.array.2021.100078_bib10) 2017
Homeyer (10.1016/j.array.2021.100078_bib13) 2015; 121
Sciarabba (10.1016/j.array.2021.100078_bib12) 2009
Koza (10.1016/j.array.2021.100078_bib26) 1992; vol. 1
O'Neill (10.1016/j.array.2021.100078_bib29) 2001; 5
Guo (10.1016/j.array.2021.100078_bib23) 2019
Han (10.1016/j.array.2021.100078_bib24) 2020; 295
Vicas (10.1016/j.array.2021.100078_bib21) 2017
Batool (10.1016/j.array.2021.100078_bib9) 2016
Hornik (10.1016/j.array.2021.100078_bib32) 1989; 2
Bedossa (10.1016/j.array.2021.100078_bib34) 2017; 37
10.1016/j.array.2021.100078_bib30
Yang (10.1016/j.array.2021.100078_bib22) 2019
References_xml – volume: 67
  start-page: 123
  year: 2018
  end-page: 133
  ident: bib1
  article-title: Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease
  publication-title: Hepatology
– volume: 250
  start-page: 691
  year: 2009
  end-page: 697
  ident: bib6
  article-title: Assessment of hepatic steatosis by expert pathologists: the end of a gold standard
  publication-title: Ann Surg
– volume: 5
  start-page: 349
  year: 2001
  end-page: 358
  ident: bib29
  article-title: Grammatical evolution
  publication-title: IEEE Trans Evol Comput
– start-page: 810
  year: 2018
  end-page: 813
  ident: bib14
  article-title: Segmentation of overlapped steatosis in whole-slide liver histopathology microscopy images
  publication-title: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– volume: 46
  start-page: 767
  year: 2015
  end-page: 775
  ident: bib16
  article-title: Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies
  publication-title: Hum Pathol
– start-page: 385
  year: 2017
  end-page: 390
  ident: bib21
  article-title: Deep convolutional neural nets for objective steatosis detection from liver samples
  publication-title: Proceedings of the 13th IEEE international conference on intelligent computer communication and processing (ICCP)
– reference: D. D. McCracken, E. D. Reilly, Backus-Naur Form (BNF); 2003.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib32
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network
– volume: 54
  start-page: 461
  year: 2001
  end-page: 465
  ident: bib3
  article-title: Quantitative assessment of fibrosis and steatosis in liver biopsies from patients with chronic hepatitis c
  publication-title: J Clin Pathol
– start-page: 24
  year: 2019
  end-page: 27
  ident: bib23
  article-title: Liver steatosis segmentation with deep learning methods
  publication-title: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019)
– volume: 45
  start-page: 785
  year: 2014
  end-page: 792
  ident: bib15
  article-title: Automatic classification of white regions in liver biopsies by supervised machine learning
  publication-title: Hum Pathol
– volume: 10
  year: 2019
  ident: bib25
  article-title: A tool based on Grammatical Evolution for data classification and differential equation solving
  publication-title: SoftwareX
– volume: 71
  start-page: 1953
  year: 2020
  end-page: 1966
  ident: bib18
  article-title: qfibs: an automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib9
  article-title: Detection and spatial analysis of hepatic steatosis in histopathology images using sparse linear models
  publication-title: 2016 sixth international conference on image processing theory, tools and applications (IPTA)
– volume: 46
  start-page: 447
  year: 2017
  end-page: 456
  ident: bib19
  article-title: Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (nafld) in the general population
  publication-title: Aliment Pharmacol Therapeut
– volume: vol. 1
  year: 1992
  ident: bib26
  publication-title: Genetic programming: on the programming of computers by means of natural selection
– volume: 121
  start-page: 59
  year: 2015
  end-page: 65
  ident: bib13
  article-title: Fast and accurate identification of fat droplets in histological images
  publication-title: Comput Methods Progr Biomed
– start-page: 40
  year: 2017
  end-page: 44
  ident: bib10
  article-title: Measuring steatosis in liver biopsies using machine learning and morphological imaging
  publication-title: 2017 IEEE 30th international symposium on computer-based medical systems (CBMS)
– year: 1994
  ident: bib27
  article-title: Genetic programming II: automatic discovery of reusable programs
– volume: vol. 3
  year: 1999
  ident: bib28
  publication-title: Genetic programming III: darwinian invention and problem solving
– volume: 20
  start-page: 228
  year: 2014
  end-page: 236
  ident: bib11
  article-title: Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin–stained histology images of human livers
  publication-title: Liver Transplant
– year: 2011
  ident: bib31
  article-title: Clever algorithms: nature-inspired programming recipes
– volume: 37
  start-page: 85
  year: 2017
  end-page: 89
  ident: bib34
  article-title: Pathology of non-alcoholic fatty liver disease
  publication-title: Liver Int
– start-page: 234
  year: 2009
  end-page: 238
  ident: bib12
  article-title: Automated lipid droplets recognition in human steatotic liver: some preliminary results
  publication-title: Medical image understanding and analysis (miua) conference
– start-page: 5575
  year: 2007
  end-page: 5578
  ident: bib5
  article-title: Fuzzy algorithms to extract vacuoles of steatosis on liver histological color images
  publication-title: 2007 29th annual international conference of the IEEE engineering in medicine and biology society
– volume: 295
  start-page: 342
  year: 2020
  end-page: 350
  ident: bib24
  article-title: Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks
  publication-title: Radiology
– volume: 14
  start-page: 575
  year: 2003
  end-page: 585
  ident: bib33
  article-title: Support vector machine classification of physical and biological datasets
  publication-title: Int J Mod Phys C
– volume: 15
  start-page: 45
  year: 2017
  ident: bib2
  article-title: Non-alcoholic fatty liver disease
  publication-title: BMC Med
– volume: 3
  year: 2016
  ident: bib17
  article-title: Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens
  publication-title: J Med Imag
– volume: 8
  start-page: 3550
  year: 2018
  end-page: 3555
  ident: bib7
  article-title: Fat quantitation in liver biopsies using a pretrained classification based system, Engineering
  publication-title: Technology & Applied Science Research
– reference: T. Teramoto, T. Shinohara, A. Takiyama, Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with nash using persistent homology, Comput Methods Progr Biomed 195 (105614).
– volume: 24
  start-page: 49
  year: 2009
  end-page: 60
  ident: bib8
  article-title: An innovative methodology for the automated morphometric and quantitative estimation of liver steatosis
  publication-title: Histol Histopathol
– volume: 35
  start-page: 430
  year: 2004
  end-page: 435
  ident: bib4
  article-title: Assessment of donor liver steatosis: pathologist or automated software?
  publication-title: Hum Pathol
– start-page: 1
  year: 2019
  end-page: 13
  ident: bib22
  article-title: Quantification of hepatic steatosis in histologic images by deep learning method
  publication-title: J X Ray Sci Technol
– volume: 8
  start-page: 3550
  issue: 6
  year: 2018
  ident: 10.1016/j.array.2021.100078_bib7
  article-title: Fat quantitation in liver biopsies using a pretrained classification based system, Engineering
  publication-title: Technology & Applied Science Research
  doi: 10.48084/etasr.2274
– volume: 46
  start-page: 447
  issue: 4
  year: 2017
  ident: 10.1016/j.array.2021.100078_bib19
  article-title: Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (nafld) in the general population
  publication-title: Aliment Pharmacol Therapeut
  doi: 10.1111/apt.14172
– volume: 24
  start-page: 49
  issue: 1
  year: 2009
  ident: 10.1016/j.array.2021.100078_bib8
  article-title: An innovative methodology for the automated morphometric and quantitative estimation of liver steatosis
  publication-title: Histol Histopathol
– start-page: 385
  year: 2017
  ident: 10.1016/j.array.2021.100078_bib21
  article-title: Deep convolutional neural nets for objective steatosis detection from liver samples
– volume: 54
  start-page: 461
  issue: 6
  year: 2001
  ident: 10.1016/j.array.2021.100078_bib3
  article-title: Quantitative assessment of fibrosis and steatosis in liver biopsies from patients with chronic hepatitis c
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.54.6.461
– volume: 71
  start-page: 1953
  issue: 6
  year: 2020
  ident: 10.1016/j.array.2021.100078_bib18
  article-title: qfibs: an automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.30986
– ident: 10.1016/j.array.2021.100078_bib20
  doi: 10.1016/j.cmpb.2020.105614
– year: 1994
  ident: 10.1016/j.array.2021.100078_bib27
– volume: 15
  start-page: 45
  issue: 1
  year: 2017
  ident: 10.1016/j.array.2021.100078_bib2
  article-title: Non-alcoholic fatty liver disease
  publication-title: BMC Med
  doi: 10.1186/s12916-017-0806-8
– volume: 295
  start-page: 342
  issue: 2
  year: 2020
  ident: 10.1016/j.array.2021.100078_bib24
  article-title: Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2020191160
– volume: 35
  start-page: 430
  issue: 4
  year: 2004
  ident: 10.1016/j.array.2021.100078_bib4
  article-title: Assessment of donor liver steatosis: pathologist or automated software?
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2003.10.029
– start-page: 1
  year: 2019
  ident: 10.1016/j.array.2021.100078_bib22
  article-title: Quantification of hepatic steatosis in histologic images by deep learning method
  publication-title: J X Ray Sci Technol
– start-page: 5575
  year: 2007
  ident: 10.1016/j.array.2021.100078_bib5
  article-title: Fuzzy algorithms to extract vacuoles of steatosis on liver histological color images
– volume: 10
  year: 2019
  ident: 10.1016/j.array.2021.100078_bib25
  article-title: A tool based on Grammatical Evolution for data classification and differential equation solving
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2019.100297
– volume: 121
  start-page: 59
  issue: 2
  year: 2015
  ident: 10.1016/j.array.2021.100078_bib13
  article-title: Fast and accurate identification of fat droplets in histological images
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2015.05.009
– volume: 3
  issue: 2
  year: 2016
  ident: 10.1016/j.array.2021.100078_bib17
  article-title: Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens
  publication-title: J Med Imag
  doi: 10.1117/1.JMI.3.2.027502
– start-page: 234
  year: 2009
  ident: 10.1016/j.array.2021.100078_bib12
  article-title: Automated lipid droplets recognition in human steatotic liver: some preliminary results
– volume: 14
  start-page: 575
  issue: 5
  year: 2003
  ident: 10.1016/j.array.2021.100078_bib33
  article-title: Support vector machine classification of physical and biological datasets
  publication-title: Int J Mod Phys C
  doi: 10.1142/S0129183103004759
– volume: vol. 1
  year: 1992
  ident: 10.1016/j.array.2021.100078_bib26
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.array.2021.100078_bib32
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 810
  year: 2018
  ident: 10.1016/j.array.2021.100078_bib14
  article-title: Segmentation of overlapped steatosis in whole-slide liver histopathology microscopy images
– volume: vol. 3
  year: 1999
  ident: 10.1016/j.array.2021.100078_bib28
– start-page: 24
  year: 2019
  ident: 10.1016/j.array.2021.100078_bib23
  article-title: Liver steatosis segmentation with deep learning methods
– year: 2011
  ident: 10.1016/j.array.2021.100078_bib31
– volume: 67
  start-page: 123
  issue: 1
  year: 2018
  ident: 10.1016/j.array.2021.100078_bib1
  article-title: Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease
  publication-title: Hepatology
  doi: 10.1002/hep.29466
– start-page: 40
  year: 2017
  ident: 10.1016/j.array.2021.100078_bib10
  article-title: Measuring steatosis in liver biopsies using machine learning and morphological imaging
– volume: 37
  start-page: 85
  issue: Suppl. 1
  year: 2017
  ident: 10.1016/j.array.2021.100078_bib34
  article-title: Pathology of non-alcoholic fatty liver disease
  publication-title: Liver Int
  doi: 10.1111/liv.13301
– volume: 250
  start-page: 691
  issue: 5
  year: 2009
  ident: 10.1016/j.array.2021.100078_bib6
  article-title: Assessment of hepatic steatosis by expert pathologists: the end of a gold standard
  publication-title: Ann Surg
  doi: 10.1097/SLA.0b013e3181bcd6dd
– volume: 46
  start-page: 767
  issue: 5
  year: 2015
  ident: 10.1016/j.array.2021.100078_bib16
  article-title: Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2015.01.019
– start-page: 1
  year: 2016
  ident: 10.1016/j.array.2021.100078_bib9
  article-title: Detection and spatial analysis of hepatic steatosis in histopathology images using sparse linear models
– ident: 10.1016/j.array.2021.100078_bib30
– volume: 45
  start-page: 785
  issue: 4
  year: 2014
  ident: 10.1016/j.array.2021.100078_bib15
  article-title: Automatic classification of white regions in liver biopsies by supervised machine learning
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2013.11.011
– volume: 5
  start-page: 349
  issue: 4
  year: 2001
  ident: 10.1016/j.array.2021.100078_bib29
  article-title: Grammatical evolution
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.942529
– volume: 20
  start-page: 228
  issue: 2
  year: 2014
  ident: 10.1016/j.array.2021.100078_bib11
  article-title: Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin–stained histology images of human livers
  publication-title: Liver Transplant
  doi: 10.1002/lt.23782
SSID ssj0002511158
Score 2.1872725
Snippet Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100078
SubjectTerms Evolutionary algorithms
Fatty liver
Grammatical evolution
Image analysis
Liver biopsy
Machine learning
Steatohepatitis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQNdDwRiwvTUGJRWI7TlIeiNOJguqQrov8hKBssmR3Qfsf-NHMxMlqaQ4KWsexLc_Y8430-RvGXrs8CFMWOdfaVFzlquBV0DXHezHErIzoBhNB9pO-_Kw-XhfXJ6W-iBOW5IHTxr0V0hkM6d4pLZVTynpXSO-9tjoPQU9KoFlVnyRTdAcTcM6n4pwI7-npdKEXyaGJ3GXG0RwwOxQ50QQyKrJ2EpYm9f4_otPtfb8xh5-m606iz8V9dneGjXCelvuA3Qr9Q3ZvKckA8wl9xH6d9xB-zO5kxgOY7suA-f_XNad45WHAK2I9v72EVD4aELcC4kBwhKSJOpS-mt7D971JbKLUNEQgr9gN23YLm5GkwmleaHvoiOABth022wO0a7ymto_Z1cWHq_eXfC64wJ1UaseVzCorfYxOl1IYbYKRorSqkMJHWRWBpFuEMxj2VKgrk5VlrK2vvBDOBymfsLN-6MNTBjrEwuUR8yUSp8GUziLsshaTxUoaVccVE8t2N24WI6eaGF2zsM6-NZONGrJRk2y0Ym-OP22SFsfN3d-RHY9dSUh7akD3amb3av7mXiumFy9oZkySsAYO1d48Oz_6zL-s9tn_WO1zdoeGTBy4F-xsN-7DSwRNO_tqOh-_Ad_zFcU
  priority: 102
  providerName: Directory of Open Access Journals
Title An evolutionary algorithm-based optimization method for the classification and quantification of steatosis prevalence in liver biopsy images
URI https://dx.doi.org/10.1016/j.array.2021.100078
https://doi.org/10.1016/j.array.2021.100078
https://doaj.org/article/23ca435dc4634c44bdc53ddd6b61ee64
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals [Accès libre]
  customDbUrl:
  eissn: 2590-0056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511158
  issn: 2590-0056
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-0056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511158
  issn: 2590-0056
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEeYpFUPnAkVQbv5IcF9SqQqLi0ErlFPkJgWyyTbKg5cAv4Eczjp0Vi1BVLjk4dmzZY8838cw3CL3SqSUy42kihMwTljKe5FYUCZyL1i0yB2IwOsiei7NL9u6KX0WebR8Ls3d_P_phya6TWzDkSOpv9EGj3UUHggPwnqGDy_MPy48-fRwvfHw0FxOv0L9b7umekaJ_TwXd2zRruf0u6_oPFXN6GGK3-5GZ0HuWfD3eDOpY__iLt_GWo3-A7keoiZdBNh6iO7Z5hA6nNA447urH6NeywfZbFEHZbbGsP7VdNXxeJV7HGdzCsbKK8Zo4pJzGgHUxYEesPfr27kbhrWwMvt7I4IEUilqHvSQNbV_1eN15enHfL64aXHunEKyqdt1vcbWCo61_gi5OTy7eniUxSUOiKWNDwugiV9Q4p0VGiRTSSkoyxTglxtGcW0_3QrQEVclskctFlrlCmdwQoo2l9CmaNW1jnyEsrOM6dWBjeUIbMAMVQDWlwMDMqWSFmyMyrV6pI4G5z6NRl5On2pdynO7ST3cZpnuOXu8arQN_x83V33ix2FX15NtjAaxqGfdySaiWgDKNZoIyzZgymlNjjFAitVawORKTUJURxwR8Ap-qbu492YngbUb7_D_rv0CzodvYlwCjBnU0_n6A5_ufJ0dxK_0G-w0fEQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEy0ssopUPHEm18SvJcUFUVQ8Vh1Yqp8hPCGSTbZIFLb-BH804dlYsQlW5OnZsjceeb-SZbxB6o1NLZMbTRAiZJyxlPMmtKBK4F61bZA7UYAyQvRTn1-ziht9Enm2fC7P3fj_GYcmuk1tw5EjqX_TBoj1EB4ID8J6hg-vLj8tPvnwcL3x-NBcTr9C_R-7ZnpGif88EPdo0a7n9Iev6DxNzdhhyt_uRmdBHlnw73QzqVP_8i7fxnqs_Qo8j1MTLoBtP0APbPEWHUxkHHE_1M_Rr2WD7Paqg7LZY1p_brhq-rBJv4wxu4VpZxXxNHEpOY8C6GLAj1h59-3Cj8FU2Bt9uZIhACk2tw16ThraverzuPL24nxdXDa59UAhWVbvut7hawdXWP0dXZx-u3p8nsUhDoiljQ8LoIlfUOKdFRokU0kpKMsU4JcbRnFtP90K0BFPJbJHLRZa5QpncEKKNpfQFmjVtY18iLKzjOnXgY3lCG3ADFUA1pcDBzKlkhZsjMu1eqSOBua-jUZdTpNrXchR36cVdBnHP0dvdoHXg77i7-zuvFruunnx7bIBdLeNZLgnVElCm0UxQphlTRnNqjBFKpNYKNkdiUqoy4piAT-BX1d2zJzsVvM9qX_1n_9doNnQbewwwalAn8fj8Bpf5HOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+algorithm-based+optimization+method+for+the+classification+and+quantification+of+steatosis+prevalence+in+liver+biopsy+images&rft.jtitle=Array+%28New+York%29&rft.au=Arjmand%2C+Alexandros&rft.au=Christou%2C+Vasileios&rft.au=Tsoulos%2C+Ioannis+G.&rft.au=Tsipouras%2C+Markos+G.&rft.date=2021-09-01&rft.issn=2590-0056&rft.eissn=2590-0056&rft.volume=11&rft.spage=100078&rft_id=info:doi/10.1016%2Fj.array.2021.100078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_array_2021_100078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0056&client=summon