An evolutionary algorithm-based optimization method for the classification and quantification of steatosis prevalence in liver biopsy images
Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing preva...
Saved in:
| Published in | Array (New York) Vol. 11; p. 100078 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.09.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2590-0056 2590-0056 |
| DOI | 10.1016/j.array.2021.100078 |
Cover
| Abstract | Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing prevalence of obesity and other components of metabolic syndrome and is expected to be the main indication for the existence of the liver disease in the coming years. Its eradication has become a major challenge due to the difficulties in clinical diagnosis, complex pathogenesis and the lack of approved therapies. In this study, an automated image analysis method is presented providing quantitative assessments of fat deposition in steatotic liver biopsy specimens. The methodology applies image processing, machine learning and evolutionary algorithm optimization techniques, producing a 1.93% mean classification error compared to the semiquantitative interpretations of specialized hepatologists.
•An automated diagnostic tool for the accurate steatosis prevalence quantification in NAFLD biopsy images.•Image processing analysis for determining the liver tissue area and detecting circular objects of interest.•Machine Learning versus Deep Learning in Biopsy Image Analysis. |
|---|---|
| AbstractList | Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing prevalence of obesity and other components of metabolic syndrome and is expected to be the main indication for the existence of the liver disease in the coming years. Its eradication has become a major challenge due to the difficulties in clinical diagnosis, complex pathogenesis and the lack of approved therapies. In this study, an automated image analysis method is presented providing quantitative assessments of fat deposition in steatotic liver biopsy specimens. The methodology applies image processing, machine learning and evolutionary algorithm optimization techniques, producing a 1.93% mean classification error compared to the semiquantitative interpretations of specialized hepatologists. Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes nonalcoholic steatohepatitis (NASH) to steatosis, as the key element of a nonalcoholic fatty liver (NAFL). It is globally linked to the increasing prevalence of obesity and other components of metabolic syndrome and is expected to be the main indication for the existence of the liver disease in the coming years. Its eradication has become a major challenge due to the difficulties in clinical diagnosis, complex pathogenesis and the lack of approved therapies. In this study, an automated image analysis method is presented providing quantitative assessments of fat deposition in steatotic liver biopsy specimens. The methodology applies image processing, machine learning and evolutionary algorithm optimization techniques, producing a 1.93% mean classification error compared to the semiquantitative interpretations of specialized hepatologists. •An automated diagnostic tool for the accurate steatosis prevalence quantification in NAFLD biopsy images.•Image processing analysis for determining the liver tissue area and detecting circular objects of interest.•Machine Learning versus Deep Learning in Biopsy Image Analysis. |
| ArticleNumber | 100078 |
| Author | Tsipouras, Markos G. Glavas, Euripidis Gogos, Christos Tzallas, Alexandros T. Arjmand, Alexandros Christou, Vasileios Tsoulos, Ioannis G. Giannakeas, Nikolaos |
| Author_xml | – sequence: 1 givenname: Alexandros surname: Arjmand fullname: Arjmand, Alexandros email: k.arjmand@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece – sequence: 2 givenname: Vasileios orcidid: 0000-0002-3231-8852 surname: Christou fullname: Christou, Vasileios email: b.christou@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece – sequence: 3 givenname: Ioannis G. surname: Tsoulos fullname: Tsoulos, Ioannis G. email: itsoulos@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece – sequence: 4 givenname: Markos G. orcidid: 0000-0002-6757-1698 surname: Tsipouras fullname: Tsipouras, Markos G. email: mtsipouras@uowm.gr organization: Department of Electrical and Computer Engineering, University of Western Macedonia, GR, 50100, Kozani, Greece – sequence: 5 givenname: Alexandros T. orcidid: 0000-0001-9043-1290 surname: Tzallas fullname: Tzallas, Alexandros T. email: tzallas@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece – sequence: 6 givenname: Christos orcidid: 0000-0003-1113-8462 surname: Gogos fullname: Gogos, Christos email: cgogos@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece – sequence: 7 givenname: Euripidis orcidid: 0000-0002-5604-3507 surname: Glavas fullname: Glavas, Euripidis email: eglavas@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece – sequence: 8 givenname: Nikolaos surname: Giannakeas fullname: Giannakeas, Nikolaos email: giannakeas@uoi.gr organization: School of Informatics and Telecommunications, Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, GR, 47100, Arta, Greece |
| BookMark | eNqNkU2O1DAQhS00SAzDnICNL5DGsZ2_BYvRiJ-RRmIze6tiV7qr5Y6D7W4UzsChSXcQIBbAytYrf6_k916yqzGMyNjrUmxKUdZv9huIEeaNFLJcFCGa9hm7llUnCiGq-uq3-wt2m9J-eSKrsiyr9pp9uxs5noI_ZgojxJmD34ZIeXcoekjoeJgyHegrnOf8gHkXHB9C5HmH3HpIiQay6xRGxz8fYcy_pDDwlBFySJT4FPEEHkeLnEbu6YSR9xSmNHM6wBbTK_Z8AJ_w9sd5w57ev3u6_1g8fvrwcH_3WFildS60Em2v3DDYulESakBQsul1paQbVFvhkkonLSihNHYtiKYZut61TkrrUKkb9rDaugB7M8VleZxNADIXIcStgZjJejRSWdCqclbXSlute2cr5Zyr-7pErPXipVev4zjB_AW8_2lYCnPux-zNpR9z7ses_SxYt2I2hpQiDsZSvkSWI5D_B6v-YP9v49uVwiXYE2E0ydK5C0cRbV6-Tn_lvwOUKcPz |
| CitedBy_id | crossref_primary_10_3390_a16060300 crossref_primary_10_1016_j_bspc_2024_106419 crossref_primary_10_1080_03772063_2023_2217132 |
| Cites_doi | 10.48084/etasr.2274 10.1111/apt.14172 10.1136/jcp.54.6.461 10.1002/hep.30986 10.1016/j.cmpb.2020.105614 10.1186/s12916-017-0806-8 10.1148/radiol.2020191160 10.1016/j.humpath.2003.10.029 10.1016/j.softx.2019.100297 10.1016/j.cmpb.2015.05.009 10.1117/1.JMI.3.2.027502 10.1142/S0129183103004759 10.1016/0893-6080(89)90020-8 10.1002/hep.29466 10.1111/liv.13301 10.1097/SLA.0b013e3181bcd6dd 10.1016/j.humpath.2015.01.019 10.1016/j.humpath.2013.11.011 10.1109/4235.942529 10.1002/lt.23782 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.array.2021.100078 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals [Accès libre] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2590-0056 |
| ExternalDocumentID | oai_doaj_org_article_23ca435dc4634c44bdc53ddd6b61ee64 10.1016/j.array.2021.100078 10_1016_j_array_2021_100078 S2590005621000266 |
| GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c344t-4308b3dffc6732a6aea327b4532df385e01692ca3034e98a077f9bd8d22cde33 |
| IEDL.DBID | UNPAY |
| ISSN | 2590-0056 |
| IngestDate | Fri Oct 03 12:50:00 EDT 2025 Tue Aug 19 20:57:09 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 04:06:16 EDT 2025 Tue Jul 25 20:56:44 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Liver biopsy Image analysis Grammatical evolution Fatty liver Steatohepatitis Machine learning Evolutionary algorithms |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-4308b3dffc6732a6aea327b4532df385e01692ca3034e98a077f9bd8d22cde33 |
| ORCID | 0000-0001-9043-1290 0000-0002-3231-8852 0000-0003-1113-8462 0000-0002-5604-3507 0000-0002-6757-1698 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.array.2021.100078 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_23ca435dc4634c44bdc53ddd6b61ee64 unpaywall_primary_10_1016_j_array_2021_100078 crossref_citationtrail_10_1016_j_array_2021_100078 crossref_primary_10_1016_j_array_2021_100078 elsevier_sciencedirect_doi_10_1016_j_array_2021_100078 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Array (New York) |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Homeyer, Schenk, Arlt, Dahmen, Dirsch, Hahn (bib13) 2015; 121 Liu, Goh, Tiniakos, Wee, Leow, Zhao, Rao, Wang, Wang, Wan (bib18) 2020; 71 El-Badry, Breitenstein, Jochum, Washington, Paradis, Rubbia-Brandt, Puhan, Slankamenac, Graf, Clavien (bib6) 2009; 250 Yang, Jia, Lei, He, Xiang, Jiao, Zhou, Qian, Duan (bib22) 2019 Nativ, Chen, Yarmush, Henry, Lefkowitch, Klein, Maguire, Schloss, Guarrera, Berthiaume (bib11) 2014; 20 Estes, Razavi, Loomba, Younossi, Sanyal (bib1) 2018; 67 Liquori, Calamita, Cascella, Mastrodonato, Portincasa, Ferri (bib8) 2009; 24 Giannakeas, Tsipouras, Tzallas, Vavva, Tsimplakidou, Karvounis, Forlano, Manousou (bib10) 2017 Marsman, Matsushita, Dierkhising, Kremers, Rosen, Burgart, Nyberg (bib4) 2004; 35 Sciarabba, Vertemati, Moscheni, Cossa, Vizzotto (bib12) 2009 Koza (bib26) 1992; vol. 1 Brownlee (bib31) 2011 Batool (bib9) 2016 Yip, Ma, Wong, Tse, Chan, Yuen, Wong (bib19) 2017; 46 Hornik, Stinchcombe, White (bib32) 1989; 2 Zaitoun, Al Mardini, Awad, Ukabam, Makadisi, Record (bib3) 2001; 54 Ishikawa, Murakami, Ahi, Yamaguchi, Kobayashi, Kiyuna, Yamashita, Saito, Abe, Hashiguchi (bib17) 2016; 3 Neuschwander-Tetri (bib2) 2017; 15 Arjmand, Giannakeas (bib7) 2018; 8 Roullier, Cavaro-Menard, Guillaume, Aube (bib5) 2007 Koza (bib27) 1994 D. D. McCracken, E. D. Reilly, Backus-Naur Form (BNF); 2003. Vanderbeck, Bockhorst, Kleiner, Komorowski, Chalasani, Gawrieh (bib16) 2015; 46 T. Teramoto, T. Shinohara, A. Takiyama, Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with nash using persistent homology, Comput Methods Progr Biomed 195 (105614). Koza, Andre, Keane, Bennett (bib28) 1999; vol. 3 Vicas, Rusu, Al Hajjar, Lupsor-Platon (bib21) 2017 Guo, Wang, Teodoro, Farris, Kong (bib23) 2019 Han, Byra, Heba, Andre, Erdman, Loomba, Sirlin, O'Brien (bib24) 2020; 295 Tsoulos, Tzallas, Tsalikakis (bib25) 2019; 10 Cai, Wang, Chen (bib33) 2003; 14 Roy, Wang, Teodoro, Vos, Farris, Kong (bib14) 2018 Bedossa (bib34) 2017; 37 O'Neill, Ryan (bib29) 2001; 5 Vanderbeck, Bockhorst, Komorowski, Kleiner, Gawrieh (bib15) 2014; 45 Brownlee (10.1016/j.array.2021.100078_bib31) 2011 Zaitoun (10.1016/j.array.2021.100078_bib3) 2001; 54 Estes (10.1016/j.array.2021.100078_bib1) 2018; 67 Neuschwander-Tetri (10.1016/j.array.2021.100078_bib2) 2017; 15 Roy (10.1016/j.array.2021.100078_bib14) 2018 Ishikawa (10.1016/j.array.2021.100078_bib17) 2016; 3 Liquori (10.1016/j.array.2021.100078_bib8) 2009; 24 Koza (10.1016/j.array.2021.100078_bib28) 1999; vol. 3 Arjmand (10.1016/j.array.2021.100078_bib7) 2018; 8 Tsoulos (10.1016/j.array.2021.100078_bib25) 2019; 10 Liu (10.1016/j.array.2021.100078_bib18) 2020; 71 Vanderbeck (10.1016/j.array.2021.100078_bib15) 2014; 45 Roullier (10.1016/j.array.2021.100078_bib5) 2007 Yip (10.1016/j.array.2021.100078_bib19) 2017; 46 10.1016/j.array.2021.100078_bib20 Marsman (10.1016/j.array.2021.100078_bib4) 2004; 35 El-Badry (10.1016/j.array.2021.100078_bib6) 2009; 250 Nativ (10.1016/j.array.2021.100078_bib11) 2014; 20 Vanderbeck (10.1016/j.array.2021.100078_bib16) 2015; 46 Koza (10.1016/j.array.2021.100078_bib27) 1994 Cai (10.1016/j.array.2021.100078_bib33) 2003; 14 Giannakeas (10.1016/j.array.2021.100078_bib10) 2017 Homeyer (10.1016/j.array.2021.100078_bib13) 2015; 121 Sciarabba (10.1016/j.array.2021.100078_bib12) 2009 Koza (10.1016/j.array.2021.100078_bib26) 1992; vol. 1 O'Neill (10.1016/j.array.2021.100078_bib29) 2001; 5 Guo (10.1016/j.array.2021.100078_bib23) 2019 Han (10.1016/j.array.2021.100078_bib24) 2020; 295 Vicas (10.1016/j.array.2021.100078_bib21) 2017 Batool (10.1016/j.array.2021.100078_bib9) 2016 Hornik (10.1016/j.array.2021.100078_bib32) 1989; 2 Bedossa (10.1016/j.array.2021.100078_bib34) 2017; 37 10.1016/j.array.2021.100078_bib30 Yang (10.1016/j.array.2021.100078_bib22) 2019 |
| References_xml | – volume: 67 start-page: 123 year: 2018 end-page: 133 ident: bib1 article-title: Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease publication-title: Hepatology – volume: 250 start-page: 691 year: 2009 end-page: 697 ident: bib6 article-title: Assessment of hepatic steatosis by expert pathologists: the end of a gold standard publication-title: Ann Surg – volume: 5 start-page: 349 year: 2001 end-page: 358 ident: bib29 article-title: Grammatical evolution publication-title: IEEE Trans Evol Comput – start-page: 810 year: 2018 end-page: 813 ident: bib14 article-title: Segmentation of overlapped steatosis in whole-slide liver histopathology microscopy images publication-title: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) – volume: 46 start-page: 767 year: 2015 end-page: 775 ident: bib16 article-title: Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies publication-title: Hum Pathol – start-page: 385 year: 2017 end-page: 390 ident: bib21 article-title: Deep convolutional neural nets for objective steatosis detection from liver samples publication-title: Proceedings of the 13th IEEE international conference on intelligent computer communication and processing (ICCP) – reference: D. D. McCracken, E. D. Reilly, Backus-Naur Form (BNF); 2003. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib32 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network – volume: 54 start-page: 461 year: 2001 end-page: 465 ident: bib3 article-title: Quantitative assessment of fibrosis and steatosis in liver biopsies from patients with chronic hepatitis c publication-title: J Clin Pathol – start-page: 24 year: 2019 end-page: 27 ident: bib23 article-title: Liver steatosis segmentation with deep learning methods publication-title: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019) – volume: 45 start-page: 785 year: 2014 end-page: 792 ident: bib15 article-title: Automatic classification of white regions in liver biopsies by supervised machine learning publication-title: Hum Pathol – volume: 10 year: 2019 ident: bib25 article-title: A tool based on Grammatical Evolution for data classification and differential equation solving publication-title: SoftwareX – volume: 71 start-page: 1953 year: 2020 end-page: 1966 ident: bib18 article-title: qfibs: an automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis publication-title: Hepatology – start-page: 1 year: 2016 end-page: 6 ident: bib9 article-title: Detection and spatial analysis of hepatic steatosis in histopathology images using sparse linear models publication-title: 2016 sixth international conference on image processing theory, tools and applications (IPTA) – volume: 46 start-page: 447 year: 2017 end-page: 456 ident: bib19 article-title: Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (nafld) in the general population publication-title: Aliment Pharmacol Therapeut – volume: vol. 1 year: 1992 ident: bib26 publication-title: Genetic programming: on the programming of computers by means of natural selection – volume: 121 start-page: 59 year: 2015 end-page: 65 ident: bib13 article-title: Fast and accurate identification of fat droplets in histological images publication-title: Comput Methods Progr Biomed – start-page: 40 year: 2017 end-page: 44 ident: bib10 article-title: Measuring steatosis in liver biopsies using machine learning and morphological imaging publication-title: 2017 IEEE 30th international symposium on computer-based medical systems (CBMS) – year: 1994 ident: bib27 article-title: Genetic programming II: automatic discovery of reusable programs – volume: vol. 3 year: 1999 ident: bib28 publication-title: Genetic programming III: darwinian invention and problem solving – volume: 20 start-page: 228 year: 2014 end-page: 236 ident: bib11 article-title: Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin–stained histology images of human livers publication-title: Liver Transplant – year: 2011 ident: bib31 article-title: Clever algorithms: nature-inspired programming recipes – volume: 37 start-page: 85 year: 2017 end-page: 89 ident: bib34 article-title: Pathology of non-alcoholic fatty liver disease publication-title: Liver Int – start-page: 234 year: 2009 end-page: 238 ident: bib12 article-title: Automated lipid droplets recognition in human steatotic liver: some preliminary results publication-title: Medical image understanding and analysis (miua) conference – start-page: 5575 year: 2007 end-page: 5578 ident: bib5 article-title: Fuzzy algorithms to extract vacuoles of steatosis on liver histological color images publication-title: 2007 29th annual international conference of the IEEE engineering in medicine and biology society – volume: 295 start-page: 342 year: 2020 end-page: 350 ident: bib24 article-title: Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks publication-title: Radiology – volume: 14 start-page: 575 year: 2003 end-page: 585 ident: bib33 article-title: Support vector machine classification of physical and biological datasets publication-title: Int J Mod Phys C – volume: 15 start-page: 45 year: 2017 ident: bib2 article-title: Non-alcoholic fatty liver disease publication-title: BMC Med – volume: 3 year: 2016 ident: bib17 article-title: Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens publication-title: J Med Imag – volume: 8 start-page: 3550 year: 2018 end-page: 3555 ident: bib7 article-title: Fat quantitation in liver biopsies using a pretrained classification based system, Engineering publication-title: Technology & Applied Science Research – reference: T. Teramoto, T. Shinohara, A. Takiyama, Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with nash using persistent homology, Comput Methods Progr Biomed 195 (105614). – volume: 24 start-page: 49 year: 2009 end-page: 60 ident: bib8 article-title: An innovative methodology for the automated morphometric and quantitative estimation of liver steatosis publication-title: Histol Histopathol – volume: 35 start-page: 430 year: 2004 end-page: 435 ident: bib4 article-title: Assessment of donor liver steatosis: pathologist or automated software? publication-title: Hum Pathol – start-page: 1 year: 2019 end-page: 13 ident: bib22 article-title: Quantification of hepatic steatosis in histologic images by deep learning method publication-title: J X Ray Sci Technol – volume: 8 start-page: 3550 issue: 6 year: 2018 ident: 10.1016/j.array.2021.100078_bib7 article-title: Fat quantitation in liver biopsies using a pretrained classification based system, Engineering publication-title: Technology & Applied Science Research doi: 10.48084/etasr.2274 – volume: 46 start-page: 447 issue: 4 year: 2017 ident: 10.1016/j.array.2021.100078_bib19 article-title: Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (nafld) in the general population publication-title: Aliment Pharmacol Therapeut doi: 10.1111/apt.14172 – volume: 24 start-page: 49 issue: 1 year: 2009 ident: 10.1016/j.array.2021.100078_bib8 article-title: An innovative methodology for the automated morphometric and quantitative estimation of liver steatosis publication-title: Histol Histopathol – start-page: 385 year: 2017 ident: 10.1016/j.array.2021.100078_bib21 article-title: Deep convolutional neural nets for objective steatosis detection from liver samples – volume: 54 start-page: 461 issue: 6 year: 2001 ident: 10.1016/j.array.2021.100078_bib3 article-title: Quantitative assessment of fibrosis and steatosis in liver biopsies from patients with chronic hepatitis c publication-title: J Clin Pathol doi: 10.1136/jcp.54.6.461 – volume: 71 start-page: 1953 issue: 6 year: 2020 ident: 10.1016/j.array.2021.100078_bib18 article-title: qfibs: an automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.30986 – ident: 10.1016/j.array.2021.100078_bib20 doi: 10.1016/j.cmpb.2020.105614 – year: 1994 ident: 10.1016/j.array.2021.100078_bib27 – volume: 15 start-page: 45 issue: 1 year: 2017 ident: 10.1016/j.array.2021.100078_bib2 article-title: Non-alcoholic fatty liver disease publication-title: BMC Med doi: 10.1186/s12916-017-0806-8 – volume: 295 start-page: 342 issue: 2 year: 2020 ident: 10.1016/j.array.2021.100078_bib24 article-title: Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2020191160 – volume: 35 start-page: 430 issue: 4 year: 2004 ident: 10.1016/j.array.2021.100078_bib4 article-title: Assessment of donor liver steatosis: pathologist or automated software? publication-title: Hum Pathol doi: 10.1016/j.humpath.2003.10.029 – start-page: 1 year: 2019 ident: 10.1016/j.array.2021.100078_bib22 article-title: Quantification of hepatic steatosis in histologic images by deep learning method publication-title: J X Ray Sci Technol – start-page: 5575 year: 2007 ident: 10.1016/j.array.2021.100078_bib5 article-title: Fuzzy algorithms to extract vacuoles of steatosis on liver histological color images – volume: 10 year: 2019 ident: 10.1016/j.array.2021.100078_bib25 article-title: A tool based on Grammatical Evolution for data classification and differential equation solving publication-title: SoftwareX doi: 10.1016/j.softx.2019.100297 – volume: 121 start-page: 59 issue: 2 year: 2015 ident: 10.1016/j.array.2021.100078_bib13 article-title: Fast and accurate identification of fat droplets in histological images publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2015.05.009 – volume: 3 issue: 2 year: 2016 ident: 10.1016/j.array.2021.100078_bib17 article-title: Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens publication-title: J Med Imag doi: 10.1117/1.JMI.3.2.027502 – start-page: 234 year: 2009 ident: 10.1016/j.array.2021.100078_bib12 article-title: Automated lipid droplets recognition in human steatotic liver: some preliminary results – volume: 14 start-page: 575 issue: 5 year: 2003 ident: 10.1016/j.array.2021.100078_bib33 article-title: Support vector machine classification of physical and biological datasets publication-title: Int J Mod Phys C doi: 10.1142/S0129183103004759 – volume: vol. 1 year: 1992 ident: 10.1016/j.array.2021.100078_bib26 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.array.2021.100078_bib32 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network doi: 10.1016/0893-6080(89)90020-8 – start-page: 810 year: 2018 ident: 10.1016/j.array.2021.100078_bib14 article-title: Segmentation of overlapped steatosis in whole-slide liver histopathology microscopy images – volume: vol. 3 year: 1999 ident: 10.1016/j.array.2021.100078_bib28 – start-page: 24 year: 2019 ident: 10.1016/j.array.2021.100078_bib23 article-title: Liver steatosis segmentation with deep learning methods – year: 2011 ident: 10.1016/j.array.2021.100078_bib31 – volume: 67 start-page: 123 issue: 1 year: 2018 ident: 10.1016/j.array.2021.100078_bib1 article-title: Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease publication-title: Hepatology doi: 10.1002/hep.29466 – start-page: 40 year: 2017 ident: 10.1016/j.array.2021.100078_bib10 article-title: Measuring steatosis in liver biopsies using machine learning and morphological imaging – volume: 37 start-page: 85 issue: Suppl. 1 year: 2017 ident: 10.1016/j.array.2021.100078_bib34 article-title: Pathology of non-alcoholic fatty liver disease publication-title: Liver Int doi: 10.1111/liv.13301 – volume: 250 start-page: 691 issue: 5 year: 2009 ident: 10.1016/j.array.2021.100078_bib6 article-title: Assessment of hepatic steatosis by expert pathologists: the end of a gold standard publication-title: Ann Surg doi: 10.1097/SLA.0b013e3181bcd6dd – volume: 46 start-page: 767 issue: 5 year: 2015 ident: 10.1016/j.array.2021.100078_bib16 article-title: Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies publication-title: Hum Pathol doi: 10.1016/j.humpath.2015.01.019 – start-page: 1 year: 2016 ident: 10.1016/j.array.2021.100078_bib9 article-title: Detection and spatial analysis of hepatic steatosis in histopathology images using sparse linear models – ident: 10.1016/j.array.2021.100078_bib30 – volume: 45 start-page: 785 issue: 4 year: 2014 ident: 10.1016/j.array.2021.100078_bib15 article-title: Automatic classification of white regions in liver biopsies by supervised machine learning publication-title: Hum Pathol doi: 10.1016/j.humpath.2013.11.011 – volume: 5 start-page: 349 issue: 4 year: 2001 ident: 10.1016/j.array.2021.100078_bib29 article-title: Grammatical evolution publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.942529 – volume: 20 start-page: 228 issue: 2 year: 2014 ident: 10.1016/j.array.2021.100078_bib11 article-title: Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin–stained histology images of human livers publication-title: Liver Transplant doi: 10.1002/lt.23782 |
| SSID | ssj0002511158 |
| Score | 2.1872725 |
| Snippet | Non-alcoholic fatty liver disease (NAFLD) covers a range of chronic medical conditions varying from hepatocellular inflammation which characterizes... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 100078 |
| SubjectTerms | Evolutionary algorithms Fatty liver Grammatical evolution Image analysis Liver biopsy Machine learning Steatohepatitis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQNdDwRiwvTUGJRWI7TlIeiNOJguqQrov8hKBssmR3Qfsf-NHMxMlqaQ4KWsexLc_Y8430-RvGXrs8CFMWOdfaVFzlquBV0DXHezHErIzoBhNB9pO-_Kw-XhfXJ6W-iBOW5IHTxr0V0hkM6d4pLZVTynpXSO-9tjoPQU9KoFlVnyRTdAcTcM6n4pwI7-npdKEXyaGJ3GXG0RwwOxQ50QQyKrJ2EpYm9f4_otPtfb8xh5-m606iz8V9dneGjXCelvuA3Qr9Q3ZvKckA8wl9xH6d9xB-zO5kxgOY7suA-f_XNad45WHAK2I9v72EVD4aELcC4kBwhKSJOpS-mt7D971JbKLUNEQgr9gN23YLm5GkwmleaHvoiOABth022wO0a7ymto_Z1cWHq_eXfC64wJ1UaseVzCorfYxOl1IYbYKRorSqkMJHWRWBpFuEMxj2VKgrk5VlrK2vvBDOBymfsLN-6MNTBjrEwuUR8yUSp8GUziLsshaTxUoaVccVE8t2N24WI6eaGF2zsM6-NZONGrJRk2y0Ym-OP22SFsfN3d-RHY9dSUh7akD3amb3av7mXiumFy9oZkySsAYO1d48Oz_6zL-s9tn_WO1zdoeGTBy4F-xsN-7DSwRNO_tqOh-_Ad_zFcU priority: 102 providerName: Directory of Open Access Journals |
| Title | An evolutionary algorithm-based optimization method for the classification and quantification of steatosis prevalence in liver biopsy images |
| URI | https://dx.doi.org/10.1016/j.array.2021.100078 https://doi.org/10.1016/j.array.2021.100078 https://doaj.org/article/23ca435dc4634c44bdc53ddd6b61ee64 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals [Accès libre] customDbUrl: eissn: 2590-0056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511158 issn: 2590-0056 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-0056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511158 issn: 2590-0056 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEeYpFUPnAkVQbv5IcF9SqQqLi0ErlFPkJgWyyTbKg5cAv4Eczjp0Vi1BVLjk4dmzZY8838cw3CL3SqSUy42kihMwTljKe5FYUCZyL1i0yB2IwOsiei7NL9u6KX0WebR8Ls3d_P_phya6TWzDkSOpv9EGj3UUHggPwnqGDy_MPy48-fRwvfHw0FxOv0L9b7umekaJ_TwXd2zRruf0u6_oPFXN6GGK3-5GZ0HuWfD3eDOpY__iLt_GWo3-A7keoiZdBNh6iO7Z5hA6nNA447urH6NeywfZbFEHZbbGsP7VdNXxeJV7HGdzCsbKK8Zo4pJzGgHUxYEesPfr27kbhrWwMvt7I4IEUilqHvSQNbV_1eN15enHfL64aXHunEKyqdt1vcbWCo61_gi5OTy7eniUxSUOiKWNDwugiV9Q4p0VGiRTSSkoyxTglxtGcW0_3QrQEVclskctFlrlCmdwQoo2l9CmaNW1jnyEsrOM6dWBjeUIbMAMVQDWlwMDMqWSFmyMyrV6pI4G5z6NRl5On2pdynO7ST3cZpnuOXu8arQN_x83V33ix2FX15NtjAaxqGfdySaiWgDKNZoIyzZgymlNjjFAitVawORKTUJURxwR8Ap-qbu492YngbUb7_D_rv0CzodvYlwCjBnU0_n6A5_ufJ0dxK_0G-w0fEQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEy0ssopUPHEm18SvJcUFUVQ8Vh1Yqp8hPCGSTbZIFLb-BH804dlYsQlW5OnZsjceeb-SZbxB6o1NLZMbTRAiZJyxlPMmtKBK4F61bZA7UYAyQvRTn1-ziht9Enm2fC7P3fj_GYcmuk1tw5EjqX_TBoj1EB4ID8J6hg-vLj8tPvnwcL3x-NBcTr9C_R-7ZnpGif88EPdo0a7n9Iev6DxNzdhhyt_uRmdBHlnw73QzqVP_8i7fxnqs_Qo8j1MTLoBtP0APbPEWHUxkHHE_1M_Rr2WD7Paqg7LZY1p_brhq-rBJv4wxu4VpZxXxNHEpOY8C6GLAj1h59-3Cj8FU2Bt9uZIhACk2tw16ThraverzuPL24nxdXDa59UAhWVbvut7hawdXWP0dXZx-u3p8nsUhDoiljQ8LoIlfUOKdFRokU0kpKMsU4JcbRnFtP90K0BFPJbJHLRZa5QpncEKKNpfQFmjVtY18iLKzjOnXgY3lCG3ADFUA1pcDBzKlkhZsjMu1eqSOBua-jUZdTpNrXchR36cVdBnHP0dvdoHXg77i7-zuvFruunnx7bIBdLeNZLgnVElCm0UxQphlTRnNqjBFKpNYKNkdiUqoy4piAT-BX1d2zJzsVvM9qX_1n_9doNnQbewwwalAn8fj8Bpf5HOs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+algorithm-based+optimization+method+for+the+classification+and+quantification+of+steatosis+prevalence+in+liver+biopsy+images&rft.jtitle=Array+%28New+York%29&rft.au=Arjmand%2C+Alexandros&rft.au=Christou%2C+Vasileios&rft.au=Tsoulos%2C+Ioannis+G.&rft.au=Tsipouras%2C+Markos+G.&rft.date=2021-09-01&rft.issn=2590-0056&rft.eissn=2590-0056&rft.volume=11&rft.spage=100078&rft_id=info:doi/10.1016%2Fj.array.2021.100078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_array_2021_100078 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0056&client=summon |