Assessment of implicit LES modelling for bypass transition of a boundary layer

The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free strea...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 251; p. 105728
Main Authors Perrin, Rodolphe, Lamballais, Eric
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.01.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2022.105728

Cover

Abstract The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free stream turbulent fluctuations are generated using a recently proposed linear forcing method adapted to control their intensity and length scale. Two configurations are considered, one with the leading edge of the plate taken into account and one without. LES results for the configuration without leading edge are compared with a DNS, and results for the configuration with leading edge are compared with available experimental and numerical reference data from the literature. Global parameters, unconditional and conditional statistics, as well as Reynolds stress budgets are analysed, and good agreements are obtained with reference data, hence confirming the ability of the model to predict accurately transitional flows. In particular, it is shown that, thanks to its action limited to the smallest resolved scales, the model is only active in the transitional and turbulent regions and therefore does not alter the development of the streaks in the laminar region of the boundary layer. •A recent implicit LES model is assessed for bypass transition.•The model is based on the viscous term discretisation.•The model is shown to be active only in transitional and turbulent regions.•Unconditional and conditional statistics and Reynolds stress budgets are assessed.•Reliable data are obtained at moderate computational cost compared to DNS.
AbstractList The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free stream turbulent fluctuations are generated using a recently proposed linear forcing method adapted to control their intensity and length scale. Two configurations are considered, one with the leading edge of the plate taken into account and one without. LES results for the configuration without leading edge are compared with a DNS, and results for the configuration with leading edge are compared with available experimental and numerical reference data from the literature. Global parameters, unconditional and conditional statistics, as well as Reynolds stress budgets are analysed, and good agreements are obtained with reference data, hence confirming the ability of the model to predict accurately transitional flows. In particular, it is shown that, thanks to its action limited to the smallest resolved scales, the model is only active in the transitional and turbulent regions and therefore does not alter the development of the streaks in the laminar region of the boundary layer.
The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free stream turbulent fluctuations are generated using a recently proposed linear forcing method adapted to control their intensity and length scale. Two configurations are considered, one with the leading edge of the plate taken into account and one without. LES results for the configuration without leading edge are compared with a DNS, and results for the configuration with leading edge are compared with available experimental and numerical reference data from the literature. Global parameters, unconditional and conditional statistics, as well as Reynolds stress budgets are analysed, and good agreements are obtained with reference data, hence confirming the ability of the model to predict accurately transitional flows. In particular, it is shown that, thanks to its action limited to the smallest resolved scales, the model is only active in the transitional and turbulent regions and therefore does not alter the development of the streaks in the laminar region of the boundary layer. •A recent implicit LES model is assessed for bypass transition.•The model is based on the viscous term discretisation.•The model is shown to be active only in transitional and turbulent regions.•Unconditional and conditional statistics and Reynolds stress budgets are assessed.•Reliable data are obtained at moderate computational cost compared to DNS.
ArticleNumber 105728
Author Lamballais, Eric
Perrin, Rodolphe
Author_xml – sequence: 1
  givenname: Rodolphe
  surname: Perrin
  fullname: Perrin, Rodolphe
  email: rodolphe@eng.src.ku.ac.th, rodolphe.perrin@univ-poitiers.fr
  organization: Department of Mechanical Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Sriracha, Chonburi 20230, Thailand
– sequence: 2
  givenname: Eric
  surname: Lamballais
  fullname: Lamballais, Eric
  organization: Curiosity Group, PPRIME Institut, CNRS - University of Poitiers - ISAE-ENSMA, France
BackLink https://hal.science/hal-04268197$$DView record in HAL
BookMark eNqFkM1OwzAQhC1UJErhGfCVQ4p_kjo-RlWhSBEcgLPl2BtwlcSRnVbq25MoqFdOq13NjHa-W7TofAcIPVCypoRung5r49u-bo7OrhlhbLxmguVXaElzIRMiUrFAS0LSLBGSkxt0G-OBjDtn6RK9FTFCjC10A_Y1dm3fOOMGXO4-cOstNI3rvnHtA67OvY4RD0F30Q3Od5Ne48ofO6vDGTf6DOEOXde6iXD_N1fo63n3ud0n5fvL67YoE8PTdEj4piI5MybXmnCqa5ZqyLi0xFgJjGdCVxrA1FoAr4yQmbS8qiWVkgKIscYKPc65P7pRfXDt-IHy2ql9UarpRlK2yakUJzpqxaw1wccYoL4YKFETQnVQF4RqQqhmhKOzmJ0wVjk5CCoaB50B6wKYQVnv_s34BaA1gRQ
Cites_doi 10.1002/fld.2480
10.1016/j.ijheatfluidflow.2014.08.001
10.1017/jfm.2014.715
10.3390/ijtpp2020004
10.1017/S0022112004002770
10.1017/S0022112010000376
10.1103/PhysRevFluids.4.023902
10.1017/S0022112006001893
10.1017/jfm.2013.287
10.1017/S0022112000002469
10.1007/s10494-015-9622-4
10.2514/1.J057765
10.1115/1.2979230
10.1007/s10494-014-9534-8
10.1115/1.2184352
10.1115/1.2436896
10.1016/j.compfluid.2015.03.026
10.1017/S0022112008003017
10.1016/0021-9991(92)90324-R
10.1017/S0022112000002810
10.2514/6.1996-1732
10.1103/PhysRevFluids.1.043602
10.1017/S0022112010003113
10.1016/j.jcp.2009.05.010
10.1016/0142-727X(94)90013-2
10.1016/j.ijheatfluidflow.2008.03.009
10.1016/j.jcp.2021.110115
10.1145/1362622.1362654
10.1080/10618569708940799
10.1016/j.compfluid.2018.08.015
10.1137/S1064827596310251
10.1016/j.ijheatfluidflow.2015.05.010
10.2514/6.2004-591
10.1017/S0022112004000941
10.1146/annurev.fluid.39.050905.110135
10.1016/j.ijheatfluidflow.2004.02.020
10.1063/1.865649
10.1115/1.4050705
10.1007/s10494-018-0004-6
10.1016/j.jcp.2011.01.040
10.1080/10618562.2014.950046
10.1080/14685240802376389
10.1007/s10494-013-9502-8
10.1007/s10494-021-00263-0
10.1016/j.jcp.2017.02.035
10.1063/1.868473
10.1016/j.compfluid.2021.105019
10.1115/1.1340623
10.1017/jfm.2018.822
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.compfluid.2022.105728
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0747
ExternalDocumentID oai_HAL_hal_04268197v1
10_1016_j_compfluid_2022_105728
S0045793022003218
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
1XC
AGCQF
VOOES
ID FETCH-LOGICAL-c344t-36b082cc8aa031af24ae539d0cd9e2357abaeecfa7e3bc7959d3bf91991ee7793
IEDL.DBID AIKHN
ISSN 0045-7930
IngestDate Fri Sep 12 12:30:36 EDT 2025
Thu Sep 25 00:46:00 EDT 2025
Fri Feb 23 02:38:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bypass transition
Implicit LES
Conditional statistics
Reynolds stress budgets
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-36b082cc8aa031af24ae539d0cd9e2357abaeecfa7e3bc7959d3bf91991ee7793
ORCID 0000-0003-2282-5786
OpenAccessLink https://hal.science/hal-04268197
ParticipantIDs hal_primary_oai_HAL_hal_04268197v1
crossref_primary_10_1016_j_compfluid_2022_105728
elsevier_sciencedirect_doi_10_1016_j_compfluid_2022_105728
PublicationCentury 2000
PublicationDate 2023-01-30
PublicationDateYYYYMMDD 2023-01-30
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-30
  day: 30
PublicationDecade 2020
PublicationTitle Computers & fluids
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References von Deyn, Forooghi, Frohnapfel, Schlatter, Hanifi, Henningson (b7) 2020; 58
Menter, Langtry, Likki, Suzen, Huang, Völker (b8) 2006; 128
Fransson, Matsubara, Alfredsson (b56) 2005; 527
Schrader, Brandt, Mavriplis, Henningson (b33) 2010; 653
Steelant, Dick (b57) 2001; 123
Jacobs, Durbin (b1) 2001; 428
Nolan, Zaki (b6) 2013; 728
Menter, Smirnov, Liu, Avancha (b9) 2015; 95
Shur, Spalart, Strelets, Travin (b37) 2014; 93
Lundgren (b38) 2003
Nagarajan, Lele, Ferziger (b45) 2007; 572
Ovchinnikov, Choudhari, Piomelli (b3) 2008; 613
Roach, Brierley (b40) 1990
Ovchinnikov V, Piomelli U, Choudhari M. Inflow conditions for numerical simulations of bypass transition. In: 42nd AIAA aerospace sciences meeting and exhibit. 2004, p. 591.
Perlman E, Burns R, Li Y, Meneveau C. Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. 2007, p. 1–11.
Dairay, Fortuné, Lamballais, Brizzi (b29) 2015; 764
Nordström, Nordin, Henningson (b31) 1999; 20
Archambeau, Méchitoua, Sakiz (b34) 2004
Matsubara, Alfredsson (b51) 2001; 430
.
Xu, Zhao, Lin, Xu (b16) 2015; 54
Johnson, Fashifar (b55) 1994; 15
Kreilos, Khapko, Schlatter, Duguet, Henningson, Eckhardt (b53) 2016; 1
Zaki (b5) 2013; 91
Lardeau, Li, Leschziner (b14) 2007; 129
Laizet, Lamballais (b26) 2009; 228
Voke, Yang, Gao (b48) 1997; 8
Marxen, Zaki (b17) 2019; 860
Durbin, Wu (b4) 2007; 39
Schlatter, Örlü (b46) 2010; 659
Perrin (b35) 2021; 107
Dairay, Lamballais, Laizet, Vassilicos (b21) 2017; 337
Dairay, Fortuné, Lamballais, Brizzi (b22) 2014; 50
Muthu, Bhushan, Keith Walters (b18) 2021; 143
Germano (b39) 1986; 29
Monokrousos, Brandt, Schlatter, Henningson (b15) 2008; 29
Mahfoze, Laizet (b58) 2021
Dick, Kubacki (b11) 2017; 2
Voke, Yang (b13) 1995; 7
Pinto, Lodato (b12) 2019; 103
(b19) 2007
Lee, Zaki (b41) 2018; 175
Narasimha (b54) 1957; 24
Lele (b30) 1992; 103
Gautier, Laizet, Lamballais (b28) 2014; 28
Schlatter, Stolz, Kleiser (b49) 2004; 25
Vicente Cruz, Lamballais, Perrin (b23) 2020; vol. 27
Lamballais, Fortuné, Laizet (b20) 2011; 230
Bailly C, Lafon P, Candel S. Computation of noise generation and propagation for free and confined turbulent flows. In: Aeroacoustics conference. 1996, p. 1732.
Walters, Cokljat (b10) 2008; 130
Pope (b47) 2000
Lamballais, Cruz, Perrin (b25) 2021; 431
Kremer, Bogey (b24) 2015; 116
Wu, Lee, Meneveau, Zaki (b52) 2019; 4
Li, Perlman, Wan, Yang, Meneveau, Burns (b42) 2008
Lodato, Tonicello, Pinto (b50) 2021
Brandt, Schlatter, Henningson (b2) 2004; 517
Laizet, Li (b27) 2011; 67
Lee (10.1016/j.compfluid.2022.105728_b41) 2018; 175
Voke (10.1016/j.compfluid.2022.105728_b13) 1995; 7
Narasimha (10.1016/j.compfluid.2022.105728_b54) 1957; 24
Gautier (10.1016/j.compfluid.2022.105728_b28) 2014; 28
Jacobs (10.1016/j.compfluid.2022.105728_b1) 2001; 428
Lardeau (10.1016/j.compfluid.2022.105728_b14) 2007; 129
Steelant (10.1016/j.compfluid.2022.105728_b57) 2001; 123
Nagarajan (10.1016/j.compfluid.2022.105728_b45) 2007; 572
Voke (10.1016/j.compfluid.2022.105728_b48) 1997; 8
Kreilos (10.1016/j.compfluid.2022.105728_b53) 2016; 1
Ovchinnikov (10.1016/j.compfluid.2022.105728_b3) 2008; 613
Lamballais (10.1016/j.compfluid.2022.105728_b25) 2021; 431
Archambeau (10.1016/j.compfluid.2022.105728_b34) 2004
Perrin (10.1016/j.compfluid.2022.105728_b35) 2021; 107
Johnson (10.1016/j.compfluid.2022.105728_b55) 1994; 15
Germano (10.1016/j.compfluid.2022.105728_b39) 1986; 29
Lele (10.1016/j.compfluid.2022.105728_b30) 1992; 103
Marxen (10.1016/j.compfluid.2022.105728_b17) 2019; 860
Lundgren (10.1016/j.compfluid.2022.105728_b38) 2003
Li (10.1016/j.compfluid.2022.105728_b42) 2008
Nolan (10.1016/j.compfluid.2022.105728_b6) 2013; 728
Laizet (10.1016/j.compfluid.2022.105728_b26) 2009; 228
Brandt (10.1016/j.compfluid.2022.105728_b2) 2004; 517
Schlatter (10.1016/j.compfluid.2022.105728_b49) 2004; 25
Dick (10.1016/j.compfluid.2022.105728_b11) 2017; 2
Walters (10.1016/j.compfluid.2022.105728_b10) 2008; 130
Roach (10.1016/j.compfluid.2022.105728_b40) 1990
Pinto (10.1016/j.compfluid.2022.105728_b12) 2019; 103
Xu (10.1016/j.compfluid.2022.105728_b16) 2015; 54
Schrader (10.1016/j.compfluid.2022.105728_b33) 2010; 653
von Deyn (10.1016/j.compfluid.2022.105728_b7) 2020; 58
Mahfoze (10.1016/j.compfluid.2022.105728_b58) 2021
Lodato (10.1016/j.compfluid.2022.105728_b50) 2021
Wu (10.1016/j.compfluid.2022.105728_b52) 2019; 4
Dairay (10.1016/j.compfluid.2022.105728_b29) 2015; 764
Dairay (10.1016/j.compfluid.2022.105728_b22) 2014; 50
Menter (10.1016/j.compfluid.2022.105728_b9) 2015; 95
Schlatter (10.1016/j.compfluid.2022.105728_b46) 2010; 659
Lamballais (10.1016/j.compfluid.2022.105728_b20) 2011; 230
Dairay (10.1016/j.compfluid.2022.105728_b21) 2017; 337
Muthu (10.1016/j.compfluid.2022.105728_b18) 2021; 143
10.1016/j.compfluid.2022.105728_b32
Zaki (10.1016/j.compfluid.2022.105728_b5) 2013; 91
10.1016/j.compfluid.2022.105728_b36
Laizet (10.1016/j.compfluid.2022.105728_b27) 2011; 67
Shur (10.1016/j.compfluid.2022.105728_b37) 2014; 93
Fransson (10.1016/j.compfluid.2022.105728_b56) 2005; 527
Pope (10.1016/j.compfluid.2022.105728_b47) 2000
(10.1016/j.compfluid.2022.105728_b19) 2007
Nordström (10.1016/j.compfluid.2022.105728_b31) 1999; 20
Durbin (10.1016/j.compfluid.2022.105728_b4) 2007; 39
Monokrousos (10.1016/j.compfluid.2022.105728_b15) 2008; 29
Kremer (10.1016/j.compfluid.2022.105728_b24) 2015; 116
10.1016/j.compfluid.2022.105728_b44
10.1016/j.compfluid.2022.105728_b43
Menter (10.1016/j.compfluid.2022.105728_b8) 2006; 128
Vicente Cruz (10.1016/j.compfluid.2022.105728_b23) 2020; vol. 27
Matsubara (10.1016/j.compfluid.2022.105728_b51) 2001; 430
References_xml – year: 2000
  ident: b47
  article-title: Turbulent flows
– volume: 116
  start-page: 17
  year: 2015
  end-page: 28
  ident: b24
  article-title: Large-eddy simulation of turbulent channel flow using relaxation filtering: Resolution requirement and Reynolds number effects
  publication-title: Comput & Fluids
– volume: 103
  start-page: 16
  year: 1992
  end-page: 42
  ident: b30
  article-title: Compact finite difference schemes with spectral-like resolution
  publication-title: J Comput Phys
– volume: 123
  start-page: 22
  year: 2001
  end-page: 30
  ident: b57
  article-title: Modeling of laminar-turbulent transition for high freestream turbulence
  publication-title: J Fluids Eng
– volume: 15
  start-page: 283
  year: 1994
  end-page: 290
  ident: b55
  article-title: Statistical properties of turbulent bursts in transitional boundary layers
  publication-title: Int J Heat Fluid Flow
– volume: vol. 27
  start-page: 425
  year: 2020
  end-page: 431
  ident: b23
  article-title: Implicit wall-layer modelling in turbulent pipe flow
  publication-title: Direct and Large Eddy Simulation XII
– year: 2004
  ident: b34
  article-title: Code saturne: A finite volume code for the computation of turbulent incompressible flows-industrial applications
  publication-title: Int J Finite Vol
– volume: 653
  start-page: 245
  year: 2010
  end-page: 271
  ident: b33
  article-title: Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge
  publication-title: J Fluid Mech
– volume: 28
  start-page: 393
  year: 2014
  end-page: 410
  ident: b28
  article-title: A DNS study of jet control with microjets using an immersed boundary method
  publication-title: Int J Comput Fluid Dyn
– reference: Perlman E, Burns R, Li Y, Meneveau C. Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. 2007, p. 1–11.
– reference: Ovchinnikov V, Piomelli U, Choudhari M. Inflow conditions for numerical simulations of bypass transition. In: 42nd AIAA aerospace sciences meeting and exhibit. 2004, p. 591.
– start-page: 461
  year: 2003
  end-page: 473
  ident: b38
  article-title: Linearly forced isotropic turbulence
  publication-title: Ann Res Briefs Cent Turbul Res
– volume: 93
  start-page: 63
  year: 2014
  end-page: 92
  ident: b37
  article-title: Synthetic turbulence generators for RANS–LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems
  publication-title: Flow Turbul Combust
– volume: 143
  year: 2021
  ident: b18
  article-title: Identification of a pressure–strain correlation-based bypass transition onset marker
  publication-title: J Fluids Eng
– start-page: 1
  year: 2021
  end-page: 30
  ident: b50
  article-title: Large-eddy simulation of bypass transition on a zero-pressure-gradient flat plate using the spectral-element dynamic model
  publication-title: Flow Turbul Combust
– volume: 527
  start-page: 1
  year: 2005
  end-page: 25
  ident: b56
  article-title: Transition induced by free-stream turbulence
  publication-title: J Fluid Mech
– volume: 613
  start-page: 135
  year: 2008
  ident: b3
  article-title: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence
  publication-title: J Fluid Mech
– volume: 1
  year: 2016
  ident: b53
  article-title: Bypass transition and spot nucleation in boundary layers
  publication-title: Phys Rev Fluids
– volume: 39
  start-page: 107
  year: 2007
  end-page: 128
  ident: b4
  article-title: Transition beneath vortical disturbances
  publication-title: Annu Rev Fluid Mech
– year: 2007
  ident: b19
  article-title: Implicit large eddy simulation: Computing turbulent fluid dynamics
– volume: 728
  start-page: 306
  year: 2013
  end-page: 339
  ident: b6
  article-title: Conditional sampling of transitional boundary layers in pressure gradients
  publication-title: J Fluid Mech
– volume: 175
  start-page: 142
  year: 2018
  end-page: 158
  ident: b41
  article-title: Detection algorithm for turbulent interfaces and large-scale structures in intermittent flows
  publication-title: Comput & Fluids
– volume: 130
  year: 2008
  ident: b10
  article-title: A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow
  publication-title: J Fluids Eng
– volume: 517
  start-page: 167
  year: 2004
  ident: b2
  article-title: Transition in boundary layers subject to free-stream turbulence
  publication-title: J Fluid Mech
– reference: Bailly C, Lafon P, Candel S. Computation of noise generation and propagation for free and confined turbulent flows. In: Aeroacoustics conference. 1996, p. 1732.
– volume: 29
  start-page: 1755
  year: 1986
  end-page: 1757
  ident: b39
  article-title: Differential filters for the large eddy numerical simulation of turbulent flows
  publication-title: Phys Fluids
– volume: 2
  start-page: 4
  year: 2017
  ident: b11
  article-title: Transition models for turbomachinery boundary layer flows: A review
  publication-title: Int J Turbomach Propuls Power
– volume: 107
  start-page: 811
  year: 2021
  end-page: 844
  ident: b35
  article-title: Adapted linear forcing for inlet turbulent fluctuations generation and application to a conical vortex flow
  publication-title: Flow Turbul Combust
– volume: 764
  start-page: 362
  year: 2015
  ident: b29
  article-title: Direct numerical simulation of a turbulent jet impinging on a heated wall
  publication-title: J Fluid Mech
– volume: 8
  start-page: 115
  year: 1997
  end-page: 128
  ident: b48
  article-title: Extracting Reynolds-stress and dissipation budgets from finite-volume simulations of turbulence
  publication-title: Int J Comput Fluid Dyn
– volume: 29
  start-page: 841
  year: 2008
  end-page: 855
  ident: b15
  article-title: DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence
  publication-title: Int J Heat Fluid Flow
– volume: 20
  start-page: 1365
  year: 1999
  end-page: 1393
  ident: b31
  article-title: The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows
  publication-title: SIAM J Sci Comput
– volume: 4
  year: 2019
  ident: b52
  article-title: Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow
  publication-title: Phys Rev Fluids
– volume: 431
  year: 2021
  ident: b25
  article-title: Viscous and hyperviscous filtering for direct and large-eddy simulation
  publication-title: J Comput Phys
– year: 1990
  ident: b40
  article-title: The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development part I: Test cases T3A and T3B
  publication-title: Numer Simul Unsteady Flows Transit Turbul
– volume: 103
  year: 2019
  ident: b12
  article-title: Synthetic freestream disturbance for the numerical reproduction of experimental zero-pressure-gradient bypass transition test cases
  publication-title: Flow Turbul Combust
– volume: 659
  start-page: 116
  year: 2010
  end-page: 126
  ident: b46
  article-title: Assessment of direct numerical simulation data of turbulent boundary layers
  publication-title: J Fluid Mech
– volume: 95
  start-page: 583
  year: 2015
  end-page: 619
  ident: b9
  article-title: A one-equation local correlation-based transition model
  publication-title: Flow Turbul Combust
– volume: 91
  start-page: 451
  year: 2013
  end-page: 473
  ident: b5
  article-title: From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition
  publication-title: Flow Turbul Combust
– volume: 58
  start-page: 702
  year: 2020
  end-page: 711
  ident: b7
  article-title: Direct numerical simulations of bypass transition over distributed roughness
  publication-title: AIAA J
– start-page: N31
  year: 2008
  ident: b42
  article-title: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence
  publication-title: J Turbul
– volume: 54
  start-page: 131
  year: 2015
  end-page: 142
  ident: b16
  article-title: Large eddy simulation on the effect of free-stream turbulence on bypass transition
  publication-title: Int J Heat Fluid Flow
– volume: 7
  start-page: 2256
  year: 1995
  end-page: 2264
  ident: b13
  article-title: Numerical study of bypass transition
  publication-title: Phys Fluids
– volume: 572
  start-page: 471
  year: 2007
  end-page: 504
  ident: b45
  article-title: Leading-edge effects in bypass transition
  publication-title: J Fluid Mech
– volume: 128
  start-page: 413
  year: 2006
  ident: b8
  article-title: A correlation-based transition model using local variables—Part I: Model formulation
  publication-title: J Turbomach
– volume: 25
  start-page: 549
  year: 2004
  end-page: 558
  ident: b49
  article-title: LES of transitional flows using the approximate deconvolution model
  publication-title: Int J Heat Fluid Flow
– volume: 430
  start-page: 149
  year: 2001
  end-page: 168
  ident: b51
  article-title: Disturbance growth in boundary layers subjected to free-stream turbulence
  publication-title: J Fluid Mech
– volume: 228
  start-page: 5989
  year: 2009
  end-page: 6015
  ident: b26
  article-title: High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
  publication-title: J Comput Phys
– volume: 24
  start-page: 711
  year: 1957
  end-page: 712
  ident: b54
  article-title: On the distribution of intermittence in the transition region of a boundary layer
  publication-title: J Aeronaut Sci
– volume: 67
  start-page: 1735
  year: 2011
  end-page: 1757
  ident: b27
  article-title: Incompact3D: A powerful tool to tackle turbulence problems with up to O (105) computational cores
  publication-title: Internat J Numer Methods Fluids
– volume: 230
  start-page: 3270
  year: 2011
  end-page: 3275
  ident: b20
  article-title: Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation
  publication-title: J Comput Phys
– reference: .
– volume: 428
  start-page: 185
  year: 2001
  ident: b1
  article-title: Simulations of bypass transition
  publication-title: J Fluid Mech
– volume: 50
  start-page: 177
  year: 2014
  end-page: 187
  ident: b22
  article-title: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes
  publication-title: Int J Heat Fluid Flow
– volume: 129
  start-page: 311
  year: 2007
  end-page: 317
  ident: b14
  article-title: Large eddy simulation of transitional boundary layers at high free-stream turbulence intensity and implications for RANS modeling
  publication-title: J Turbomach
– volume: 860
  start-page: 350
  year: 2019
  end-page: 383
  ident: b17
  article-title: Turbulence in intermittent transitional boundary layers and in turbulence spots
  publication-title: J Fluid Mech
– year: 2021
  ident: b58
  article-title: Non-explicit large eddy simulations of turbulent channel flows from
  publication-title: Comput & Fluids
– volume: 337
  start-page: 252
  year: 2017
  end-page: 274
  ident: b21
  article-title: Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
  publication-title: J Comput Phys
– volume: 67
  start-page: 1735
  issue: 11
  year: 2011
  ident: 10.1016/j.compfluid.2022.105728_b27
  article-title: Incompact3D: A powerful tool to tackle turbulence problems with up to O (105) computational cores
  publication-title: Internat J Numer Methods Fluids
  doi: 10.1002/fld.2480
– volume: 50
  start-page: 177
  year: 2014
  ident: 10.1016/j.compfluid.2022.105728_b22
  article-title: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2014.08.001
– volume: 764
  start-page: 362
  year: 2015
  ident: 10.1016/j.compfluid.2022.105728_b29
  article-title: Direct numerical simulation of a turbulent jet impinging on a heated wall
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2014.715
– volume: 2
  start-page: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.compfluid.2022.105728_b11
  article-title: Transition models for turbomachinery boundary layer flows: A review
  publication-title: Int J Turbomach Propuls Power
  doi: 10.3390/ijtpp2020004
– volume: 527
  start-page: 1
  year: 2005
  ident: 10.1016/j.compfluid.2022.105728_b56
  article-title: Transition induced by free-stream turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112004002770
– volume: 653
  start-page: 245
  year: 2010
  ident: 10.1016/j.compfluid.2022.105728_b33
  article-title: Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112010000376
– volume: 4
  issue: 2
  year: 2019
  ident: 10.1016/j.compfluid.2022.105728_b52
  article-title: Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.4.023902
– volume: 572
  start-page: 471
  year: 2007
  ident: 10.1016/j.compfluid.2022.105728_b45
  article-title: Leading-edge effects in bypass transition
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112006001893
– year: 1990
  ident: 10.1016/j.compfluid.2022.105728_b40
  article-title: The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development part I: Test cases T3A and T3B
  publication-title: Numer Simul Unsteady Flows Transit Turbul
– volume: 728
  start-page: 306
  year: 2013
  ident: 10.1016/j.compfluid.2022.105728_b6
  article-title: Conditional sampling of transitional boundary layers in pressure gradients
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.287
– volume: 428
  start-page: 185
  year: 2001
  ident: 10.1016/j.compfluid.2022.105728_b1
  article-title: Simulations of bypass transition
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112000002469
– volume: 95
  start-page: 583
  issue: 4
  year: 2015
  ident: 10.1016/j.compfluid.2022.105728_b9
  article-title: A one-equation local correlation-based transition model
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-015-9622-4
– volume: 58
  start-page: 702
  issue: 2
  year: 2020
  ident: 10.1016/j.compfluid.2022.105728_b7
  article-title: Direct numerical simulations of bypass transition over distributed roughness
  publication-title: AIAA J
  doi: 10.2514/1.J057765
– volume: 130
  issue: 12
  year: 2008
  ident: 10.1016/j.compfluid.2022.105728_b10
  article-title: A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow
  publication-title: J Fluids Eng
  doi: 10.1115/1.2979230
– volume: 93
  start-page: 63
  issue: 1
  year: 2014
  ident: 10.1016/j.compfluid.2022.105728_b37
  article-title: Synthetic turbulence generators for RANS–LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-014-9534-8
– volume: 128
  start-page: 413
  year: 2006
  ident: 10.1016/j.compfluid.2022.105728_b8
  article-title: A correlation-based transition model using local variables—Part I: Model formulation
  publication-title: J Turbomach
  doi: 10.1115/1.2184352
– volume: 129
  start-page: 311
  issue: 2
  year: 2007
  ident: 10.1016/j.compfluid.2022.105728_b14
  article-title: Large eddy simulation of transitional boundary layers at high free-stream turbulence intensity and implications for RANS modeling
  publication-title: J Turbomach
  doi: 10.1115/1.2436896
– volume: 116
  start-page: 17
  year: 2015
  ident: 10.1016/j.compfluid.2022.105728_b24
  article-title: Large-eddy simulation of turbulent channel flow using relaxation filtering: Resolution requirement and Reynolds number effects
  publication-title: Comput & Fluids
  doi: 10.1016/j.compfluid.2015.03.026
– volume: 613
  start-page: 135
  year: 2008
  ident: 10.1016/j.compfluid.2022.105728_b3
  article-title: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112008003017
– volume: 103
  start-page: 16
  issue: 1
  year: 1992
  ident: 10.1016/j.compfluid.2022.105728_b30
  article-title: Compact finite difference schemes with spectral-like resolution
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(92)90324-R
– volume: 430
  start-page: 149
  year: 2001
  ident: 10.1016/j.compfluid.2022.105728_b51
  article-title: Disturbance growth in boundary layers subjected to free-stream turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112000002810
– ident: 10.1016/j.compfluid.2022.105728_b36
  doi: 10.2514/6.1996-1732
– year: 2000
  ident: 10.1016/j.compfluid.2022.105728_b47
– volume: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.compfluid.2022.105728_b53
  article-title: Bypass transition and spot nucleation in boundary layers
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.1.043602
– volume: 659
  start-page: 116
  year: 2010
  ident: 10.1016/j.compfluid.2022.105728_b46
  article-title: Assessment of direct numerical simulation data of turbulent boundary layers
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112010003113
– volume: 228
  start-page: 5989
  issue: 16
  year: 2009
  ident: 10.1016/j.compfluid.2022.105728_b26
  article-title: High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.05.010
– volume: 15
  start-page: 283
  issue: 4
  year: 1994
  ident: 10.1016/j.compfluid.2022.105728_b55
  article-title: Statistical properties of turbulent bursts in transitional boundary layers
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/0142-727X(94)90013-2
– volume: 29
  start-page: 841
  issue: 3
  year: 2008
  ident: 10.1016/j.compfluid.2022.105728_b15
  article-title: DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.03.009
– volume: 431
  year: 2021
  ident: 10.1016/j.compfluid.2022.105728_b25
  article-title: Viscous and hyperviscous filtering for direct and large-eddy simulation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110115
– ident: 10.1016/j.compfluid.2022.105728_b43
  doi: 10.1145/1362622.1362654
– volume: 8
  start-page: 115
  issue: 2
  year: 1997
  ident: 10.1016/j.compfluid.2022.105728_b48
  article-title: Extracting Reynolds-stress and dissipation budgets from finite-volume simulations of turbulence
  publication-title: Int J Comput Fluid Dyn
  doi: 10.1080/10618569708940799
– volume: 175
  start-page: 142
  year: 2018
  ident: 10.1016/j.compfluid.2022.105728_b41
  article-title: Detection algorithm for turbulent interfaces and large-scale structures in intermittent flows
  publication-title: Comput & Fluids
  doi: 10.1016/j.compfluid.2018.08.015
– start-page: 1
  year: 2021
  ident: 10.1016/j.compfluid.2022.105728_b50
  article-title: Large-eddy simulation of bypass transition on a zero-pressure-gradient flat plate using the spectral-element dynamic model
  publication-title: Flow Turbul Combust
– volume: 20
  start-page: 1365
  issue: 4
  year: 1999
  ident: 10.1016/j.compfluid.2022.105728_b31
  article-title: The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827596310251
– volume: 54
  start-page: 131
  year: 2015
  ident: 10.1016/j.compfluid.2022.105728_b16
  article-title: Large eddy simulation on the effect of free-stream turbulence on bypass transition
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2015.05.010
– ident: 10.1016/j.compfluid.2022.105728_b32
  doi: 10.2514/6.2004-591
– ident: 10.1016/j.compfluid.2022.105728_b44
– volume: 24
  start-page: 711
  year: 1957
  ident: 10.1016/j.compfluid.2022.105728_b54
  article-title: On the distribution of intermittence in the transition region of a boundary layer
  publication-title: J Aeronaut Sci
– volume: 517
  start-page: 167
  year: 2004
  ident: 10.1016/j.compfluid.2022.105728_b2
  article-title: Transition in boundary layers subject to free-stream turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112004000941
– volume: 39
  start-page: 107
  year: 2007
  ident: 10.1016/j.compfluid.2022.105728_b4
  article-title: Transition beneath vortical disturbances
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.39.050905.110135
– volume: 25
  start-page: 549
  issue: 3
  year: 2004
  ident: 10.1016/j.compfluid.2022.105728_b49
  article-title: LES of transitional flows using the approximate deconvolution model
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2004.02.020
– year: 2007
  ident: 10.1016/j.compfluid.2022.105728_b19
– volume: 29
  start-page: 1755
  issue: 6
  year: 1986
  ident: 10.1016/j.compfluid.2022.105728_b39
  article-title: Differential filters for the large eddy numerical simulation of turbulent flows
  publication-title: Phys Fluids
  doi: 10.1063/1.865649
– volume: 143
  issue: 10
  year: 2021
  ident: 10.1016/j.compfluid.2022.105728_b18
  article-title: Identification of a pressure–strain correlation-based bypass transition onset marker
  publication-title: J Fluids Eng
  doi: 10.1115/1.4050705
– volume: 103
  year: 2019
  ident: 10.1016/j.compfluid.2022.105728_b12
  article-title: Synthetic freestream disturbance for the numerical reproduction of experimental zero-pressure-gradient bypass transition test cases
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-018-0004-6
– volume: 230
  start-page: 3270
  issue: 9
  year: 2011
  ident: 10.1016/j.compfluid.2022.105728_b20
  article-title: Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2011.01.040
– volume: 28
  start-page: 393
  issue: 6–10
  year: 2014
  ident: 10.1016/j.compfluid.2022.105728_b28
  article-title: A DNS study of jet control with microjets using an immersed boundary method
  publication-title: Int J Comput Fluid Dyn
  doi: 10.1080/10618562.2014.950046
– start-page: 461
  year: 2003
  ident: 10.1016/j.compfluid.2022.105728_b38
  article-title: Linearly forced isotropic turbulence
  publication-title: Ann Res Briefs Cent Turbul Res
– start-page: N31
  issue: 9
  year: 2008
  ident: 10.1016/j.compfluid.2022.105728_b42
  article-title: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence
  publication-title: J Turbul
  doi: 10.1080/14685240802376389
– volume: 91
  start-page: 451
  issue: 3
  year: 2013
  ident: 10.1016/j.compfluid.2022.105728_b5
  article-title: From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-013-9502-8
– year: 2004
  ident: 10.1016/j.compfluid.2022.105728_b34
  article-title: Code saturne: A finite volume code for the computation of turbulent incompressible flows-industrial applications
  publication-title: Int J Finite Vol
– volume: vol. 27
  start-page: 425
  year: 2020
  ident: 10.1016/j.compfluid.2022.105728_b23
  article-title: Implicit wall-layer modelling in turbulent pipe flow
– volume: 107
  start-page: 811
  issue: 4
  year: 2021
  ident: 10.1016/j.compfluid.2022.105728_b35
  article-title: Adapted linear forcing for inlet turbulent fluctuations generation and application to a conical vortex flow
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-021-00263-0
– volume: 337
  start-page: 252
  year: 2017
  ident: 10.1016/j.compfluid.2022.105728_b21
  article-title: Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.02.035
– volume: 7
  start-page: 2256
  issue: 9
  year: 1995
  ident: 10.1016/j.compfluid.2022.105728_b13
  article-title: Numerical study of bypass transition
  publication-title: Phys Fluids
  doi: 10.1063/1.868473
– year: 2021
  ident: 10.1016/j.compfluid.2022.105728_b58
  article-title: Non-explicit large eddy simulations of turbulent channel flows from Reτ=180 up to Reτ=5,200
  publication-title: Comput & Fluids
  doi: 10.1016/j.compfluid.2021.105019
– volume: 123
  start-page: 22
  issue: 1
  year: 2001
  ident: 10.1016/j.compfluid.2022.105728_b57
  article-title: Modeling of laminar-turbulent transition for high freestream turbulence
  publication-title: J Fluids Eng
  doi: 10.1115/1.1340623
– volume: 860
  start-page: 350
  year: 2019
  ident: 10.1016/j.compfluid.2022.105728_b17
  article-title: Turbulence in intermittent transitional boundary layers and in turbulence spots
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2018.822
SSID ssj0004324
Score 2.3798456
Snippet The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous...
The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 105728
SubjectTerms Bypass transition
Conditional statistics
Fluid mechanics
Implicit LES
Mathematical Physics
Mechanics
Physics
Reynolds stress budgets
Title Assessment of implicit LES modelling for bypass transition of a boundary layer
URI https://dx.doi.org/10.1016/j.compfluid.2022.105728
https://hal.science/hal-04268197
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL30sdGF-MT6KIO4jU0zk5e7UFqq1m600F2YmcxgpLSlpEI3frtz86gWBBduh4QJJ5O5J8O55wDceoqbuiJcyzbUzWIicSxuWL8VytDVvqeVq7BR-HnsDSfscepOa9CremFQVlnu_cWenu_W5UinRLOzTFPs8WWuWV3YKmpTU6nq0HRMtQ8a0Iwenobj7_ZI6hRmzAzdGam9I_NC5baerVN0DXWcPPYWk9l_L1L1t-q4NS8_g0M4KHkjiYpHO4Kamh_D_g83wRMYR1uXTbLQJM214mlGRv0XkgfeYOc5MSSViM3ScGaSYZ3KJVt4PScij1habciMGyJ-CpNB_7U3tMq4BEtSxjKLesLUcykDzs2XyrXDuHJpmNgyCRW62nDBlZKa-4oKiRnjCRU6RO2TUr4B5gwa88VcnQOhrhIYQ6LcwGba5jwJQs2Eo6XgaBnXArvCJ14WrhhxJRd7j7eQxghpXEDagvsKx3jnBcdm7_775huD_HYqtMQeRqMYx_Af0LAa_6N78Z8ZLmEPg-TxcIXaV9DIVmt1behGJtpQv_vststF9QWu_dVc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwGP3w8rDtYezK3DWMvRa7JrV2byJKndWXKfgWkjZhHaIideC_X75e3ITBHvYaWlJO03yn4XznADy1lDB1RbqWbaibxWTsWMKwfsuPfFd7La1chY3Co3ErmLLXmTurQLfshUFZZbH353t6tlsXI80CzeYqSbDHl7lmdWGrqE1NpapCnWGodQ3qncEwGH-3R1InN2Nm6M5I7T2ZFyq39XyToGuo42Sxt5jM_nuRqr6Xx61Z-emfwHHBG0knf7RTqKjFGRz9cBM8h3Fn57JJlpokmVY8SUnYeyNZ4A12nhNDUoncrgxnJinWqUyyhdcLIrOIpfWWzIUh4hcw7fcm3cAq4hKsiDKWWrQlTT2PorYQ5ksV2mFCudSP7Sj2FbraCCmUirTwFJURZozHVGoftU9KeQaYS6gtlgt1BYS6SmIMiXLbNtO2EHHb10w6OpICLeMaYJf48FXuisFLudgH30HKEVKeQ9qAlxJHvveCudm7_7750SC_mwotsYNOyHEM_wENq_E-n6__M8MDHASTUcjDwXh4A4cYKo8HLdS-hVq63qg7Qz1SeV8srS-6KtdC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+implicit+LES+modelling+for+bypass+transition+of+a+boundary+layer&rft.jtitle=Computers+%26+fluids&rft.au=Perrin%2C+Rodolphe&rft.au=Lamballais%2C+Eric&rft.date=2023-01-30&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=251&rft_id=info:doi/10.1016%2Fj.compfluid.2022.105728&rft.externalDocID=S0045793022003218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon