Assessment of implicit LES modelling for bypass transition of a boundary layer
The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free strea...
Saved in:
Published in | Computers & fluids Vol. 251; p. 105728 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7930 1879-0747 |
DOI | 10.1016/j.compfluid.2022.105728 |
Cover
Abstract | The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free stream turbulent fluctuations are generated using a recently proposed linear forcing method adapted to control their intensity and length scale. Two configurations are considered, one with the leading edge of the plate taken into account and one without. LES results for the configuration without leading edge are compared with a DNS, and results for the configuration with leading edge are compared with available experimental and numerical reference data from the literature. Global parameters, unconditional and conditional statistics, as well as Reynolds stress budgets are analysed, and good agreements are obtained with reference data, hence confirming the ability of the model to predict accurately transitional flows. In particular, it is shown that, thanks to its action limited to the smallest resolved scales, the model is only active in the transitional and turbulent regions and therefore does not alter the development of the streaks in the laminar region of the boundary layer.
•A recent implicit LES model is assessed for bypass transition.•The model is based on the viscous term discretisation.•The model is shown to be active only in transitional and turbulent regions.•Unconditional and conditional statistics and Reynolds stress budgets are assessed.•Reliable data are obtained at moderate computational cost compared to DNS. |
---|---|
AbstractList | The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free stream turbulent fluctuations are generated using a recently proposed linear forcing method adapted to control their intensity and length scale. Two configurations are considered, one with the leading edge of the plate taken into account and one without. LES results for the configuration without leading edge are compared with a DNS, and results for the configuration with leading edge are compared with available experimental and numerical reference data from the literature. Global parameters, unconditional and conditional statistics, as well as Reynolds stress budgets are analysed, and good agreements are obtained with reference data, hence confirming the ability of the model to predict accurately transitional flows. In particular, it is shown that, thanks to its action limited to the smallest resolved scales, the model is only active in the transitional and turbulent regions and therefore does not alter the development of the streaks in the laminar region of the boundary layer. The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous term, is assessed for the case of a flat plate boundary layer submitted to external turbulence and undergoing bypass transition. The free stream turbulent fluctuations are generated using a recently proposed linear forcing method adapted to control their intensity and length scale. Two configurations are considered, one with the leading edge of the plate taken into account and one without. LES results for the configuration without leading edge are compared with a DNS, and results for the configuration with leading edge are compared with available experimental and numerical reference data from the literature. Global parameters, unconditional and conditional statistics, as well as Reynolds stress budgets are analysed, and good agreements are obtained with reference data, hence confirming the ability of the model to predict accurately transitional flows. In particular, it is shown that, thanks to its action limited to the smallest resolved scales, the model is only active in the transitional and turbulent regions and therefore does not alter the development of the streaks in the laminar region of the boundary layer. •A recent implicit LES model is assessed for bypass transition.•The model is based on the viscous term discretisation.•The model is shown to be active only in transitional and turbulent regions.•Unconditional and conditional statistics and Reynolds stress budgets are assessed.•Reliable data are obtained at moderate computational cost compared to DNS. |
ArticleNumber | 105728 |
Author | Lamballais, Eric Perrin, Rodolphe |
Author_xml | – sequence: 1 givenname: Rodolphe surname: Perrin fullname: Perrin, Rodolphe email: rodolphe@eng.src.ku.ac.th, rodolphe.perrin@univ-poitiers.fr organization: Department of Mechanical Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Sriracha, Chonburi 20230, Thailand – sequence: 2 givenname: Eric surname: Lamballais fullname: Lamballais, Eric organization: Curiosity Group, PPRIME Institut, CNRS - University of Poitiers - ISAE-ENSMA, France |
BackLink | https://hal.science/hal-04268197$$DView record in HAL |
BookMark | eNqFkM1OwzAQhC1UJErhGfCVQ4p_kjo-RlWhSBEcgLPl2BtwlcSRnVbq25MoqFdOq13NjHa-W7TofAcIPVCypoRung5r49u-bo7OrhlhbLxmguVXaElzIRMiUrFAS0LSLBGSkxt0G-OBjDtn6RK9FTFCjC10A_Y1dm3fOOMGXO4-cOstNI3rvnHtA67OvY4RD0F30Q3Od5Ne48ofO6vDGTf6DOEOXde6iXD_N1fo63n3ud0n5fvL67YoE8PTdEj4piI5MybXmnCqa5ZqyLi0xFgJjGdCVxrA1FoAr4yQmbS8qiWVkgKIscYKPc65P7pRfXDt-IHy2ql9UarpRlK2yakUJzpqxaw1wccYoL4YKFETQnVQF4RqQqhmhKOzmJ0wVjk5CCoaB50B6wKYQVnv_s34BaA1gRQ |
Cites_doi | 10.1002/fld.2480 10.1016/j.ijheatfluidflow.2014.08.001 10.1017/jfm.2014.715 10.3390/ijtpp2020004 10.1017/S0022112004002770 10.1017/S0022112010000376 10.1103/PhysRevFluids.4.023902 10.1017/S0022112006001893 10.1017/jfm.2013.287 10.1017/S0022112000002469 10.1007/s10494-015-9622-4 10.2514/1.J057765 10.1115/1.2979230 10.1007/s10494-014-9534-8 10.1115/1.2184352 10.1115/1.2436896 10.1016/j.compfluid.2015.03.026 10.1017/S0022112008003017 10.1016/0021-9991(92)90324-R 10.1017/S0022112000002810 10.2514/6.1996-1732 10.1103/PhysRevFluids.1.043602 10.1017/S0022112010003113 10.1016/j.jcp.2009.05.010 10.1016/0142-727X(94)90013-2 10.1016/j.ijheatfluidflow.2008.03.009 10.1016/j.jcp.2021.110115 10.1145/1362622.1362654 10.1080/10618569708940799 10.1016/j.compfluid.2018.08.015 10.1137/S1064827596310251 10.1016/j.ijheatfluidflow.2015.05.010 10.2514/6.2004-591 10.1017/S0022112004000941 10.1146/annurev.fluid.39.050905.110135 10.1016/j.ijheatfluidflow.2004.02.020 10.1063/1.865649 10.1115/1.4050705 10.1007/s10494-018-0004-6 10.1016/j.jcp.2011.01.040 10.1080/10618562.2014.950046 10.1080/14685240802376389 10.1007/s10494-013-9502-8 10.1007/s10494-021-00263-0 10.1016/j.jcp.2017.02.035 10.1063/1.868473 10.1016/j.compfluid.2021.105019 10.1115/1.1340623 10.1017/jfm.2018.822 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.compfluid.2022.105728 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0747 |
ExternalDocumentID | oai_HAL_hal_04268197v1 10_1016_j_compfluid_2022_105728 S0045793022003218 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 1XC AGCQF VOOES |
ID | FETCH-LOGICAL-c344t-36b082cc8aa031af24ae539d0cd9e2357abaeecfa7e3bc7959d3bf91991ee7793 |
IEDL.DBID | AIKHN |
ISSN | 0045-7930 |
IngestDate | Fri Sep 12 12:30:36 EDT 2025 Thu Sep 25 00:46:00 EDT 2025 Fri Feb 23 02:38:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bypass transition Implicit LES Conditional statistics Reynolds stress budgets |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-36b082cc8aa031af24ae539d0cd9e2357abaeecfa7e3bc7959d3bf91991ee7793 |
ORCID | 0000-0003-2282-5786 |
OpenAccessLink | https://hal.science/hal-04268197 |
ParticipantIDs | hal_primary_oai_HAL_hal_04268197v1 crossref_primary_10_1016_j_compfluid_2022_105728 elsevier_sciencedirect_doi_10_1016_j_compfluid_2022_105728 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-30 |
PublicationDateYYYYMMDD | 2023-01-30 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Computers & fluids |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | von Deyn, Forooghi, Frohnapfel, Schlatter, Hanifi, Henningson (b7) 2020; 58 Menter, Langtry, Likki, Suzen, Huang, Völker (b8) 2006; 128 Fransson, Matsubara, Alfredsson (b56) 2005; 527 Schrader, Brandt, Mavriplis, Henningson (b33) 2010; 653 Steelant, Dick (b57) 2001; 123 Jacobs, Durbin (b1) 2001; 428 Nolan, Zaki (b6) 2013; 728 Menter, Smirnov, Liu, Avancha (b9) 2015; 95 Shur, Spalart, Strelets, Travin (b37) 2014; 93 Lundgren (b38) 2003 Nagarajan, Lele, Ferziger (b45) 2007; 572 Ovchinnikov, Choudhari, Piomelli (b3) 2008; 613 Roach, Brierley (b40) 1990 Ovchinnikov V, Piomelli U, Choudhari M. Inflow conditions for numerical simulations of bypass transition. In: 42nd AIAA aerospace sciences meeting and exhibit. 2004, p. 591. Perlman E, Burns R, Li Y, Meneveau C. Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. 2007, p. 1–11. Dairay, Fortuné, Lamballais, Brizzi (b29) 2015; 764 Nordström, Nordin, Henningson (b31) 1999; 20 Archambeau, Méchitoua, Sakiz (b34) 2004 Matsubara, Alfredsson (b51) 2001; 430 . Xu, Zhao, Lin, Xu (b16) 2015; 54 Johnson, Fashifar (b55) 1994; 15 Kreilos, Khapko, Schlatter, Duguet, Henningson, Eckhardt (b53) 2016; 1 Zaki (b5) 2013; 91 Lardeau, Li, Leschziner (b14) 2007; 129 Laizet, Lamballais (b26) 2009; 228 Voke, Yang, Gao (b48) 1997; 8 Marxen, Zaki (b17) 2019; 860 Durbin, Wu (b4) 2007; 39 Schlatter, Örlü (b46) 2010; 659 Perrin (b35) 2021; 107 Dairay, Lamballais, Laizet, Vassilicos (b21) 2017; 337 Dairay, Fortuné, Lamballais, Brizzi (b22) 2014; 50 Muthu, Bhushan, Keith Walters (b18) 2021; 143 Germano (b39) 1986; 29 Monokrousos, Brandt, Schlatter, Henningson (b15) 2008; 29 Mahfoze, Laizet (b58) 2021 Dick, Kubacki (b11) 2017; 2 Voke, Yang (b13) 1995; 7 Pinto, Lodato (b12) 2019; 103 (b19) 2007 Lee, Zaki (b41) 2018; 175 Narasimha (b54) 1957; 24 Lele (b30) 1992; 103 Gautier, Laizet, Lamballais (b28) 2014; 28 Schlatter, Stolz, Kleiser (b49) 2004; 25 Vicente Cruz, Lamballais, Perrin (b23) 2020; vol. 27 Lamballais, Fortuné, Laizet (b20) 2011; 230 Bailly C, Lafon P, Candel S. Computation of noise generation and propagation for free and confined turbulent flows. In: Aeroacoustics conference. 1996, p. 1732. Walters, Cokljat (b10) 2008; 130 Pope (b47) 2000 Lamballais, Cruz, Perrin (b25) 2021; 431 Kremer, Bogey (b24) 2015; 116 Wu, Lee, Meneveau, Zaki (b52) 2019; 4 Li, Perlman, Wan, Yang, Meneveau, Burns (b42) 2008 Lodato, Tonicello, Pinto (b50) 2021 Brandt, Schlatter, Henningson (b2) 2004; 517 Laizet, Li (b27) 2011; 67 Lee (10.1016/j.compfluid.2022.105728_b41) 2018; 175 Voke (10.1016/j.compfluid.2022.105728_b13) 1995; 7 Narasimha (10.1016/j.compfluid.2022.105728_b54) 1957; 24 Gautier (10.1016/j.compfluid.2022.105728_b28) 2014; 28 Jacobs (10.1016/j.compfluid.2022.105728_b1) 2001; 428 Lardeau (10.1016/j.compfluid.2022.105728_b14) 2007; 129 Steelant (10.1016/j.compfluid.2022.105728_b57) 2001; 123 Nagarajan (10.1016/j.compfluid.2022.105728_b45) 2007; 572 Voke (10.1016/j.compfluid.2022.105728_b48) 1997; 8 Kreilos (10.1016/j.compfluid.2022.105728_b53) 2016; 1 Ovchinnikov (10.1016/j.compfluid.2022.105728_b3) 2008; 613 Lamballais (10.1016/j.compfluid.2022.105728_b25) 2021; 431 Archambeau (10.1016/j.compfluid.2022.105728_b34) 2004 Perrin (10.1016/j.compfluid.2022.105728_b35) 2021; 107 Johnson (10.1016/j.compfluid.2022.105728_b55) 1994; 15 Germano (10.1016/j.compfluid.2022.105728_b39) 1986; 29 Lele (10.1016/j.compfluid.2022.105728_b30) 1992; 103 Marxen (10.1016/j.compfluid.2022.105728_b17) 2019; 860 Lundgren (10.1016/j.compfluid.2022.105728_b38) 2003 Li (10.1016/j.compfluid.2022.105728_b42) 2008 Nolan (10.1016/j.compfluid.2022.105728_b6) 2013; 728 Laizet (10.1016/j.compfluid.2022.105728_b26) 2009; 228 Brandt (10.1016/j.compfluid.2022.105728_b2) 2004; 517 Schlatter (10.1016/j.compfluid.2022.105728_b49) 2004; 25 Dick (10.1016/j.compfluid.2022.105728_b11) 2017; 2 Walters (10.1016/j.compfluid.2022.105728_b10) 2008; 130 Roach (10.1016/j.compfluid.2022.105728_b40) 1990 Pinto (10.1016/j.compfluid.2022.105728_b12) 2019; 103 Xu (10.1016/j.compfluid.2022.105728_b16) 2015; 54 Schrader (10.1016/j.compfluid.2022.105728_b33) 2010; 653 von Deyn (10.1016/j.compfluid.2022.105728_b7) 2020; 58 Mahfoze (10.1016/j.compfluid.2022.105728_b58) 2021 Lodato (10.1016/j.compfluid.2022.105728_b50) 2021 Wu (10.1016/j.compfluid.2022.105728_b52) 2019; 4 Dairay (10.1016/j.compfluid.2022.105728_b29) 2015; 764 Dairay (10.1016/j.compfluid.2022.105728_b22) 2014; 50 Menter (10.1016/j.compfluid.2022.105728_b9) 2015; 95 Schlatter (10.1016/j.compfluid.2022.105728_b46) 2010; 659 Lamballais (10.1016/j.compfluid.2022.105728_b20) 2011; 230 Dairay (10.1016/j.compfluid.2022.105728_b21) 2017; 337 Muthu (10.1016/j.compfluid.2022.105728_b18) 2021; 143 10.1016/j.compfluid.2022.105728_b32 Zaki (10.1016/j.compfluid.2022.105728_b5) 2013; 91 10.1016/j.compfluid.2022.105728_b36 Laizet (10.1016/j.compfluid.2022.105728_b27) 2011; 67 Shur (10.1016/j.compfluid.2022.105728_b37) 2014; 93 Fransson (10.1016/j.compfluid.2022.105728_b56) 2005; 527 Pope (10.1016/j.compfluid.2022.105728_b47) 2000 (10.1016/j.compfluid.2022.105728_b19) 2007 Nordström (10.1016/j.compfluid.2022.105728_b31) 1999; 20 Durbin (10.1016/j.compfluid.2022.105728_b4) 2007; 39 Monokrousos (10.1016/j.compfluid.2022.105728_b15) 2008; 29 Kremer (10.1016/j.compfluid.2022.105728_b24) 2015; 116 10.1016/j.compfluid.2022.105728_b44 10.1016/j.compfluid.2022.105728_b43 Menter (10.1016/j.compfluid.2022.105728_b8) 2006; 128 Vicente Cruz (10.1016/j.compfluid.2022.105728_b23) 2020; vol. 27 Matsubara (10.1016/j.compfluid.2022.105728_b51) 2001; 430 |
References_xml | – year: 2000 ident: b47 article-title: Turbulent flows – volume: 116 start-page: 17 year: 2015 end-page: 28 ident: b24 article-title: Large-eddy simulation of turbulent channel flow using relaxation filtering: Resolution requirement and Reynolds number effects publication-title: Comput & Fluids – volume: 103 start-page: 16 year: 1992 end-page: 42 ident: b30 article-title: Compact finite difference schemes with spectral-like resolution publication-title: J Comput Phys – volume: 123 start-page: 22 year: 2001 end-page: 30 ident: b57 article-title: Modeling of laminar-turbulent transition for high freestream turbulence publication-title: J Fluids Eng – volume: 15 start-page: 283 year: 1994 end-page: 290 ident: b55 article-title: Statistical properties of turbulent bursts in transitional boundary layers publication-title: Int J Heat Fluid Flow – volume: vol. 27 start-page: 425 year: 2020 end-page: 431 ident: b23 article-title: Implicit wall-layer modelling in turbulent pipe flow publication-title: Direct and Large Eddy Simulation XII – year: 2004 ident: b34 article-title: Code saturne: A finite volume code for the computation of turbulent incompressible flows-industrial applications publication-title: Int J Finite Vol – volume: 653 start-page: 245 year: 2010 end-page: 271 ident: b33 article-title: Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge publication-title: J Fluid Mech – volume: 28 start-page: 393 year: 2014 end-page: 410 ident: b28 article-title: A DNS study of jet control with microjets using an immersed boundary method publication-title: Int J Comput Fluid Dyn – reference: Perlman E, Burns R, Li Y, Meneveau C. Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. 2007, p. 1–11. – reference: Ovchinnikov V, Piomelli U, Choudhari M. Inflow conditions for numerical simulations of bypass transition. In: 42nd AIAA aerospace sciences meeting and exhibit. 2004, p. 591. – start-page: 461 year: 2003 end-page: 473 ident: b38 article-title: Linearly forced isotropic turbulence publication-title: Ann Res Briefs Cent Turbul Res – volume: 93 start-page: 63 year: 2014 end-page: 92 ident: b37 article-title: Synthetic turbulence generators for RANS–LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems publication-title: Flow Turbul Combust – volume: 143 year: 2021 ident: b18 article-title: Identification of a pressure–strain correlation-based bypass transition onset marker publication-title: J Fluids Eng – start-page: 1 year: 2021 end-page: 30 ident: b50 article-title: Large-eddy simulation of bypass transition on a zero-pressure-gradient flat plate using the spectral-element dynamic model publication-title: Flow Turbul Combust – volume: 527 start-page: 1 year: 2005 end-page: 25 ident: b56 article-title: Transition induced by free-stream turbulence publication-title: J Fluid Mech – volume: 613 start-page: 135 year: 2008 ident: b3 article-title: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence publication-title: J Fluid Mech – volume: 1 year: 2016 ident: b53 article-title: Bypass transition and spot nucleation in boundary layers publication-title: Phys Rev Fluids – volume: 39 start-page: 107 year: 2007 end-page: 128 ident: b4 article-title: Transition beneath vortical disturbances publication-title: Annu Rev Fluid Mech – year: 2007 ident: b19 article-title: Implicit large eddy simulation: Computing turbulent fluid dynamics – volume: 728 start-page: 306 year: 2013 end-page: 339 ident: b6 article-title: Conditional sampling of transitional boundary layers in pressure gradients publication-title: J Fluid Mech – volume: 175 start-page: 142 year: 2018 end-page: 158 ident: b41 article-title: Detection algorithm for turbulent interfaces and large-scale structures in intermittent flows publication-title: Comput & Fluids – volume: 130 year: 2008 ident: b10 article-title: A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow publication-title: J Fluids Eng – volume: 517 start-page: 167 year: 2004 ident: b2 article-title: Transition in boundary layers subject to free-stream turbulence publication-title: J Fluid Mech – reference: Bailly C, Lafon P, Candel S. Computation of noise generation and propagation for free and confined turbulent flows. In: Aeroacoustics conference. 1996, p. 1732. – volume: 29 start-page: 1755 year: 1986 end-page: 1757 ident: b39 article-title: Differential filters for the large eddy numerical simulation of turbulent flows publication-title: Phys Fluids – volume: 2 start-page: 4 year: 2017 ident: b11 article-title: Transition models for turbomachinery boundary layer flows: A review publication-title: Int J Turbomach Propuls Power – volume: 107 start-page: 811 year: 2021 end-page: 844 ident: b35 article-title: Adapted linear forcing for inlet turbulent fluctuations generation and application to a conical vortex flow publication-title: Flow Turbul Combust – volume: 764 start-page: 362 year: 2015 ident: b29 article-title: Direct numerical simulation of a turbulent jet impinging on a heated wall publication-title: J Fluid Mech – volume: 8 start-page: 115 year: 1997 end-page: 128 ident: b48 article-title: Extracting Reynolds-stress and dissipation budgets from finite-volume simulations of turbulence publication-title: Int J Comput Fluid Dyn – volume: 29 start-page: 841 year: 2008 end-page: 855 ident: b15 article-title: DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence publication-title: Int J Heat Fluid Flow – volume: 20 start-page: 1365 year: 1999 end-page: 1393 ident: b31 article-title: The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows publication-title: SIAM J Sci Comput – volume: 4 year: 2019 ident: b52 article-title: Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow publication-title: Phys Rev Fluids – volume: 431 year: 2021 ident: b25 article-title: Viscous and hyperviscous filtering for direct and large-eddy simulation publication-title: J Comput Phys – year: 1990 ident: b40 article-title: The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development part I: Test cases T3A and T3B publication-title: Numer Simul Unsteady Flows Transit Turbul – volume: 103 year: 2019 ident: b12 article-title: Synthetic freestream disturbance for the numerical reproduction of experimental zero-pressure-gradient bypass transition test cases publication-title: Flow Turbul Combust – volume: 659 start-page: 116 year: 2010 end-page: 126 ident: b46 article-title: Assessment of direct numerical simulation data of turbulent boundary layers publication-title: J Fluid Mech – volume: 95 start-page: 583 year: 2015 end-page: 619 ident: b9 article-title: A one-equation local correlation-based transition model publication-title: Flow Turbul Combust – volume: 91 start-page: 451 year: 2013 end-page: 473 ident: b5 article-title: From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition publication-title: Flow Turbul Combust – volume: 58 start-page: 702 year: 2020 end-page: 711 ident: b7 article-title: Direct numerical simulations of bypass transition over distributed roughness publication-title: AIAA J – start-page: N31 year: 2008 ident: b42 article-title: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence publication-title: J Turbul – volume: 54 start-page: 131 year: 2015 end-page: 142 ident: b16 article-title: Large eddy simulation on the effect of free-stream turbulence on bypass transition publication-title: Int J Heat Fluid Flow – volume: 7 start-page: 2256 year: 1995 end-page: 2264 ident: b13 article-title: Numerical study of bypass transition publication-title: Phys Fluids – volume: 572 start-page: 471 year: 2007 end-page: 504 ident: b45 article-title: Leading-edge effects in bypass transition publication-title: J Fluid Mech – volume: 128 start-page: 413 year: 2006 ident: b8 article-title: A correlation-based transition model using local variables—Part I: Model formulation publication-title: J Turbomach – volume: 25 start-page: 549 year: 2004 end-page: 558 ident: b49 article-title: LES of transitional flows using the approximate deconvolution model publication-title: Int J Heat Fluid Flow – volume: 430 start-page: 149 year: 2001 end-page: 168 ident: b51 article-title: Disturbance growth in boundary layers subjected to free-stream turbulence publication-title: J Fluid Mech – volume: 228 start-page: 5989 year: 2009 end-page: 6015 ident: b26 article-title: High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy publication-title: J Comput Phys – volume: 24 start-page: 711 year: 1957 end-page: 712 ident: b54 article-title: On the distribution of intermittence in the transition region of a boundary layer publication-title: J Aeronaut Sci – volume: 67 start-page: 1735 year: 2011 end-page: 1757 ident: b27 article-title: Incompact3D: A powerful tool to tackle turbulence problems with up to O (105) computational cores publication-title: Internat J Numer Methods Fluids – volume: 230 start-page: 3270 year: 2011 end-page: 3275 ident: b20 article-title: Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation publication-title: J Comput Phys – reference: . – volume: 428 start-page: 185 year: 2001 ident: b1 article-title: Simulations of bypass transition publication-title: J Fluid Mech – volume: 50 start-page: 177 year: 2014 end-page: 187 ident: b22 article-title: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes publication-title: Int J Heat Fluid Flow – volume: 129 start-page: 311 year: 2007 end-page: 317 ident: b14 article-title: Large eddy simulation of transitional boundary layers at high free-stream turbulence intensity and implications for RANS modeling publication-title: J Turbomach – volume: 860 start-page: 350 year: 2019 end-page: 383 ident: b17 article-title: Turbulence in intermittent transitional boundary layers and in turbulence spots publication-title: J Fluid Mech – year: 2021 ident: b58 article-title: Non-explicit large eddy simulations of turbulent channel flows from publication-title: Comput & Fluids – volume: 337 start-page: 252 year: 2017 end-page: 274 ident: b21 article-title: Numerical dissipation vs. subgrid-scale modelling for large eddy simulation publication-title: J Comput Phys – volume: 67 start-page: 1735 issue: 11 year: 2011 ident: 10.1016/j.compfluid.2022.105728_b27 article-title: Incompact3D: A powerful tool to tackle turbulence problems with up to O (105) computational cores publication-title: Internat J Numer Methods Fluids doi: 10.1002/fld.2480 – volume: 50 start-page: 177 year: 2014 ident: 10.1016/j.compfluid.2022.105728_b22 article-title: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2014.08.001 – volume: 764 start-page: 362 year: 2015 ident: 10.1016/j.compfluid.2022.105728_b29 article-title: Direct numerical simulation of a turbulent jet impinging on a heated wall publication-title: J Fluid Mech doi: 10.1017/jfm.2014.715 – volume: 2 start-page: 4 issue: 2 year: 2017 ident: 10.1016/j.compfluid.2022.105728_b11 article-title: Transition models for turbomachinery boundary layer flows: A review publication-title: Int J Turbomach Propuls Power doi: 10.3390/ijtpp2020004 – volume: 527 start-page: 1 year: 2005 ident: 10.1016/j.compfluid.2022.105728_b56 article-title: Transition induced by free-stream turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112004002770 – volume: 653 start-page: 245 year: 2010 ident: 10.1016/j.compfluid.2022.105728_b33 article-title: Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge publication-title: J Fluid Mech doi: 10.1017/S0022112010000376 – volume: 4 issue: 2 year: 2019 ident: 10.1016/j.compfluid.2022.105728_b52 article-title: Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.4.023902 – volume: 572 start-page: 471 year: 2007 ident: 10.1016/j.compfluid.2022.105728_b45 article-title: Leading-edge effects in bypass transition publication-title: J Fluid Mech doi: 10.1017/S0022112006001893 – year: 1990 ident: 10.1016/j.compfluid.2022.105728_b40 article-title: The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development part I: Test cases T3A and T3B publication-title: Numer Simul Unsteady Flows Transit Turbul – volume: 728 start-page: 306 year: 2013 ident: 10.1016/j.compfluid.2022.105728_b6 article-title: Conditional sampling of transitional boundary layers in pressure gradients publication-title: J Fluid Mech doi: 10.1017/jfm.2013.287 – volume: 428 start-page: 185 year: 2001 ident: 10.1016/j.compfluid.2022.105728_b1 article-title: Simulations of bypass transition publication-title: J Fluid Mech doi: 10.1017/S0022112000002469 – volume: 95 start-page: 583 issue: 4 year: 2015 ident: 10.1016/j.compfluid.2022.105728_b9 article-title: A one-equation local correlation-based transition model publication-title: Flow Turbul Combust doi: 10.1007/s10494-015-9622-4 – volume: 58 start-page: 702 issue: 2 year: 2020 ident: 10.1016/j.compfluid.2022.105728_b7 article-title: Direct numerical simulations of bypass transition over distributed roughness publication-title: AIAA J doi: 10.2514/1.J057765 – volume: 130 issue: 12 year: 2008 ident: 10.1016/j.compfluid.2022.105728_b10 article-title: A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow publication-title: J Fluids Eng doi: 10.1115/1.2979230 – volume: 93 start-page: 63 issue: 1 year: 2014 ident: 10.1016/j.compfluid.2022.105728_b37 article-title: Synthetic turbulence generators for RANS–LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems publication-title: Flow Turbul Combust doi: 10.1007/s10494-014-9534-8 – volume: 128 start-page: 413 year: 2006 ident: 10.1016/j.compfluid.2022.105728_b8 article-title: A correlation-based transition model using local variables—Part I: Model formulation publication-title: J Turbomach doi: 10.1115/1.2184352 – volume: 129 start-page: 311 issue: 2 year: 2007 ident: 10.1016/j.compfluid.2022.105728_b14 article-title: Large eddy simulation of transitional boundary layers at high free-stream turbulence intensity and implications for RANS modeling publication-title: J Turbomach doi: 10.1115/1.2436896 – volume: 116 start-page: 17 year: 2015 ident: 10.1016/j.compfluid.2022.105728_b24 article-title: Large-eddy simulation of turbulent channel flow using relaxation filtering: Resolution requirement and Reynolds number effects publication-title: Comput & Fluids doi: 10.1016/j.compfluid.2015.03.026 – volume: 613 start-page: 135 year: 2008 ident: 10.1016/j.compfluid.2022.105728_b3 article-title: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112008003017 – volume: 103 start-page: 16 issue: 1 year: 1992 ident: 10.1016/j.compfluid.2022.105728_b30 article-title: Compact finite difference schemes with spectral-like resolution publication-title: J Comput Phys doi: 10.1016/0021-9991(92)90324-R – volume: 430 start-page: 149 year: 2001 ident: 10.1016/j.compfluid.2022.105728_b51 article-title: Disturbance growth in boundary layers subjected to free-stream turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112000002810 – ident: 10.1016/j.compfluid.2022.105728_b36 doi: 10.2514/6.1996-1732 – year: 2000 ident: 10.1016/j.compfluid.2022.105728_b47 – volume: 1 issue: 4 year: 2016 ident: 10.1016/j.compfluid.2022.105728_b53 article-title: Bypass transition and spot nucleation in boundary layers publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.1.043602 – volume: 659 start-page: 116 year: 2010 ident: 10.1016/j.compfluid.2022.105728_b46 article-title: Assessment of direct numerical simulation data of turbulent boundary layers publication-title: J Fluid Mech doi: 10.1017/S0022112010003113 – volume: 228 start-page: 5989 issue: 16 year: 2009 ident: 10.1016/j.compfluid.2022.105728_b26 article-title: High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy publication-title: J Comput Phys doi: 10.1016/j.jcp.2009.05.010 – volume: 15 start-page: 283 issue: 4 year: 1994 ident: 10.1016/j.compfluid.2022.105728_b55 article-title: Statistical properties of turbulent bursts in transitional boundary layers publication-title: Int J Heat Fluid Flow doi: 10.1016/0142-727X(94)90013-2 – volume: 29 start-page: 841 issue: 3 year: 2008 ident: 10.1016/j.compfluid.2022.105728_b15 article-title: DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2008.03.009 – volume: 431 year: 2021 ident: 10.1016/j.compfluid.2022.105728_b25 article-title: Viscous and hyperviscous filtering for direct and large-eddy simulation publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110115 – ident: 10.1016/j.compfluid.2022.105728_b43 doi: 10.1145/1362622.1362654 – volume: 8 start-page: 115 issue: 2 year: 1997 ident: 10.1016/j.compfluid.2022.105728_b48 article-title: Extracting Reynolds-stress and dissipation budgets from finite-volume simulations of turbulence publication-title: Int J Comput Fluid Dyn doi: 10.1080/10618569708940799 – volume: 175 start-page: 142 year: 2018 ident: 10.1016/j.compfluid.2022.105728_b41 article-title: Detection algorithm for turbulent interfaces and large-scale structures in intermittent flows publication-title: Comput & Fluids doi: 10.1016/j.compfluid.2018.08.015 – start-page: 1 year: 2021 ident: 10.1016/j.compfluid.2022.105728_b50 article-title: Large-eddy simulation of bypass transition on a zero-pressure-gradient flat plate using the spectral-element dynamic model publication-title: Flow Turbul Combust – volume: 20 start-page: 1365 issue: 4 year: 1999 ident: 10.1016/j.compfluid.2022.105728_b31 article-title: The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows publication-title: SIAM J Sci Comput doi: 10.1137/S1064827596310251 – volume: 54 start-page: 131 year: 2015 ident: 10.1016/j.compfluid.2022.105728_b16 article-title: Large eddy simulation on the effect of free-stream turbulence on bypass transition publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2015.05.010 – ident: 10.1016/j.compfluid.2022.105728_b32 doi: 10.2514/6.2004-591 – ident: 10.1016/j.compfluid.2022.105728_b44 – volume: 24 start-page: 711 year: 1957 ident: 10.1016/j.compfluid.2022.105728_b54 article-title: On the distribution of intermittence in the transition region of a boundary layer publication-title: J Aeronaut Sci – volume: 517 start-page: 167 year: 2004 ident: 10.1016/j.compfluid.2022.105728_b2 article-title: Transition in boundary layers subject to free-stream turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112004000941 – volume: 39 start-page: 107 year: 2007 ident: 10.1016/j.compfluid.2022.105728_b4 article-title: Transition beneath vortical disturbances publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.39.050905.110135 – volume: 25 start-page: 549 issue: 3 year: 2004 ident: 10.1016/j.compfluid.2022.105728_b49 article-title: LES of transitional flows using the approximate deconvolution model publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2004.02.020 – year: 2007 ident: 10.1016/j.compfluid.2022.105728_b19 – volume: 29 start-page: 1755 issue: 6 year: 1986 ident: 10.1016/j.compfluid.2022.105728_b39 article-title: Differential filters for the large eddy numerical simulation of turbulent flows publication-title: Phys Fluids doi: 10.1063/1.865649 – volume: 143 issue: 10 year: 2021 ident: 10.1016/j.compfluid.2022.105728_b18 article-title: Identification of a pressure–strain correlation-based bypass transition onset marker publication-title: J Fluids Eng doi: 10.1115/1.4050705 – volume: 103 year: 2019 ident: 10.1016/j.compfluid.2022.105728_b12 article-title: Synthetic freestream disturbance for the numerical reproduction of experimental zero-pressure-gradient bypass transition test cases publication-title: Flow Turbul Combust doi: 10.1007/s10494-018-0004-6 – volume: 230 start-page: 3270 issue: 9 year: 2011 ident: 10.1016/j.compfluid.2022.105728_b20 article-title: Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation publication-title: J Comput Phys doi: 10.1016/j.jcp.2011.01.040 – volume: 28 start-page: 393 issue: 6–10 year: 2014 ident: 10.1016/j.compfluid.2022.105728_b28 article-title: A DNS study of jet control with microjets using an immersed boundary method publication-title: Int J Comput Fluid Dyn doi: 10.1080/10618562.2014.950046 – start-page: 461 year: 2003 ident: 10.1016/j.compfluid.2022.105728_b38 article-title: Linearly forced isotropic turbulence publication-title: Ann Res Briefs Cent Turbul Res – start-page: N31 issue: 9 year: 2008 ident: 10.1016/j.compfluid.2022.105728_b42 article-title: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence publication-title: J Turbul doi: 10.1080/14685240802376389 – volume: 91 start-page: 451 issue: 3 year: 2013 ident: 10.1016/j.compfluid.2022.105728_b5 article-title: From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition publication-title: Flow Turbul Combust doi: 10.1007/s10494-013-9502-8 – year: 2004 ident: 10.1016/j.compfluid.2022.105728_b34 article-title: Code saturne: A finite volume code for the computation of turbulent incompressible flows-industrial applications publication-title: Int J Finite Vol – volume: vol. 27 start-page: 425 year: 2020 ident: 10.1016/j.compfluid.2022.105728_b23 article-title: Implicit wall-layer modelling in turbulent pipe flow – volume: 107 start-page: 811 issue: 4 year: 2021 ident: 10.1016/j.compfluid.2022.105728_b35 article-title: Adapted linear forcing for inlet turbulent fluctuations generation and application to a conical vortex flow publication-title: Flow Turbul Combust doi: 10.1007/s10494-021-00263-0 – volume: 337 start-page: 252 year: 2017 ident: 10.1016/j.compfluid.2022.105728_b21 article-title: Numerical dissipation vs. subgrid-scale modelling for large eddy simulation publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.02.035 – volume: 7 start-page: 2256 issue: 9 year: 1995 ident: 10.1016/j.compfluid.2022.105728_b13 article-title: Numerical study of bypass transition publication-title: Phys Fluids doi: 10.1063/1.868473 – year: 2021 ident: 10.1016/j.compfluid.2022.105728_b58 article-title: Non-explicit large eddy simulations of turbulent channel flows from Reτ=180 up to Reτ=5,200 publication-title: Comput & Fluids doi: 10.1016/j.compfluid.2021.105019 – volume: 123 start-page: 22 issue: 1 year: 2001 ident: 10.1016/j.compfluid.2022.105728_b57 article-title: Modeling of laminar-turbulent transition for high freestream turbulence publication-title: J Fluids Eng doi: 10.1115/1.1340623 – volume: 860 start-page: 350 year: 2019 ident: 10.1016/j.compfluid.2022.105728_b17 article-title: Turbulence in intermittent transitional boundary layers and in turbulence spots publication-title: J Fluid Mech doi: 10.1017/jfm.2018.822 |
SSID | ssj0004324 |
Score | 2.3798456 |
Snippet | The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous... The implicit LES model recently introduced by Dairay et al. (2017), which is based on numerical dissipation introduced via the discretisation of the viscous... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 105728 |
SubjectTerms | Bypass transition Conditional statistics Fluid mechanics Implicit LES Mathematical Physics Mechanics Physics Reynolds stress budgets |
Title | Assessment of implicit LES modelling for bypass transition of a boundary layer |
URI | https://dx.doi.org/10.1016/j.compfluid.2022.105728 https://hal.science/hal-04268197 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL30sdGF-MT6KIO4jU0zk5e7UFqq1m600F2YmcxgpLSlpEI3frtz86gWBBduh4QJJ5O5J8O55wDceoqbuiJcyzbUzWIicSxuWL8VytDVvqeVq7BR-HnsDSfscepOa9CremFQVlnu_cWenu_W5UinRLOzTFPs8WWuWV3YKmpTU6nq0HRMtQ8a0Iwenobj7_ZI6hRmzAzdGam9I_NC5baerVN0DXWcPPYWk9l_L1L1t-q4NS8_g0M4KHkjiYpHO4Kamh_D_g83wRMYR1uXTbLQJM214mlGRv0XkgfeYOc5MSSViM3ScGaSYZ3KJVt4PScij1habciMGyJ-CpNB_7U3tMq4BEtSxjKLesLUcykDzs2XyrXDuHJpmNgyCRW62nDBlZKa-4oKiRnjCRU6RO2TUr4B5gwa88VcnQOhrhIYQ6LcwGba5jwJQs2Eo6XgaBnXArvCJ14WrhhxJRd7j7eQxghpXEDagvsKx3jnBcdm7_775huD_HYqtMQeRqMYx_Af0LAa_6N78Z8ZLmEPg-TxcIXaV9DIVmt1behGJtpQv_vststF9QWu_dVc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwGP3w8rDtYezK3DWMvRa7JrV2byJKndWXKfgWkjZhHaIideC_X75e3ITBHvYaWlJO03yn4XznADy1lDB1RbqWbaibxWTsWMKwfsuPfFd7La1chY3Co3ErmLLXmTurQLfshUFZZbH353t6tlsXI80CzeYqSbDHl7lmdWGrqE1NpapCnWGodQ3qncEwGH-3R1InN2Nm6M5I7T2ZFyq39XyToGuo42Sxt5jM_nuRqr6Xx61Z-emfwHHBG0knf7RTqKjFGRz9cBM8h3Fn57JJlpokmVY8SUnYeyNZ4A12nhNDUoncrgxnJinWqUyyhdcLIrOIpfWWzIUh4hcw7fcm3cAq4hKsiDKWWrQlTT2PorYQ5ksV2mFCudSP7Sj2FbraCCmUirTwFJURZozHVGoftU9KeQaYS6gtlgt1BYS6SmIMiXLbNtO2EHHb10w6OpICLeMaYJf48FXuisFLudgH30HKEVKeQ9qAlxJHvveCudm7_7750SC_mwotsYNOyHEM_wENq_E-n6__M8MDHASTUcjDwXh4A4cYKo8HLdS-hVq63qg7Qz1SeV8srS-6KtdC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+implicit+LES+modelling+for+bypass+transition+of+a+boundary+layer&rft.jtitle=Computers+%26+fluids&rft.au=Perrin%2C+Rodolphe&rft.au=Lamballais%2C+Eric&rft.date=2023-01-30&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=251&rft_id=info:doi/10.1016%2Fj.compfluid.2022.105728&rft.externalDocID=S0045793022003218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |