Performance analysis of various machine learning algorithms for CO2 leak prediction and characterization in geo-sequestration injection wells

The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decisi...

Full description

Saved in:
Bibliographic Details
Published inProcess Safety and Environmental Protection Vol. 183; pp. 99 - 110
Main Authors Harati, Saeed, Rezaei Gomari, Sina, Rahman, Mohammad Azizur, Hassan, Rashid, Hassan, Ibrahim, Sleiti, Ahmad K., Hamilton, Matthew
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text
ISSN0957-5820
1876-4800
0263-8762
1744-3563
1744-3598
1744-3598
DOI10.1016/j.psep.2024.01.007

Cover

Abstract The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data-driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom-hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings reveal crucial insights into the relationships between the variables considered and leakage characteristics. With its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the models compared to leak localization. Overall, the findings obtained can provide valuable insights into the development of efficient data-driven well-bore leak detection systems.
AbstractList The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data-driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom-hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings reveal crucial insights into the relationships between the variables considered and leakage characteristics. With its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the models compared to leak localization. Overall, the findings obtained can provide valuable insights into the development of efficient data-driven well-bore leak detection systems.
Author Hamilton, Matthew
Hassan, Ibrahim
Hassan, Rashid
Harati, Saeed
Rahman, Mohammad Azizur
Rezaei Gomari, Sina
Sleiti, Ahmad K.
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0003-1827-0351
  surname: Harati
  fullname: Harati, Saeed
  organization: School of Computing, Engineering, and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
– sequence: 2
  givenname: Sina
  surname: Rezaei Gomari
  fullname: Rezaei Gomari, Sina
  email: s.rezaei-gomari@tees.ac.uk
  organization: School of Computing, Engineering, and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
– sequence: 3
  givenname: Mohammad Azizur
  surname: Rahman
  fullname: Rahman, Mohammad Azizur
  organization: Department Petroleum Engineering, Texas A&M University at Qatar, Doha 23874, Qatar
– sequence: 4
  givenname: Rashid
  orcidid: 0009-0008-1113-115X
  surname: Hassan
  fullname: Hassan, Rashid
  organization: Department Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA
– sequence: 5
  givenname: Ibrahim
  surname: Hassan
  fullname: Hassan, Ibrahim
  organization: Department Mechanical Engineering, Texas A&M University at Qatar, Doha 23874, Qatar
– sequence: 6
  givenname: Ahmad K.
  surname: Sleiti
  fullname: Sleiti, Ahmad K.
  organization: Department Mechanical Engineering, Qatar University, Doha 2713, Qatar
– sequence: 7
  givenname: Matthew
  surname: Hamilton
  fullname: Hamilton, Matthew
  organization: Department of Computer Science, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
BookMark eNqNkc1KAzEQx4NUsK2-gKe8wK5J9hu8SPELCvWg55DNTtrUNFmTbUt9B9_ZbasXD8XTwH_4zTC_GaGBdRYQuqYkpoTmN8u4DdDGjLA0JjQmpDhDQ1qkaZRkVTlAQ1JlRZSVjFygUQhLQghlBR2irxfwyvmVsBKwsMLsgg7YKbwRXrt1wCshF9oCNiC81XaOhZk7r7vFKuAexJMZ2_feceuh0bLTzvZzGiwXwgvZgdef4hBqi-fgogAfawid_w2XcGS2YEy4ROdKmABXP3WM3h7uXydP0XT2-Dy5m0YySdMuYqWo8lpJCqoQWV03Nc1lnrAU6oJlpcoY5ClRSaIYo6WUaZaXFShVUZVDXlTJGCXHuWvbit1WGMNbr1fC7zglfG-UL_neKN8b5YTy3mhPlUdKeheCB8Wl7g539Odocxplf9B_7bs9QtCr2GjwPEgN_aMa7XtrvHH6FP4NBP-pQg
CitedBy_id crossref_primary_10_62051_ijnres_v5n1_07
crossref_primary_10_1016_j_measurement_2025_116857
crossref_primary_10_1016_j_psep_2024_04_118
crossref_primary_10_1016_j_rser_2025_115525
crossref_primary_10_2139_ssrn_4828144
crossref_primary_10_1016_j_ijhydene_2024_10_183
crossref_primary_10_1016_j_psep_2024_12_068
crossref_primary_10_1016_j_psep_2024_10_097
crossref_primary_10_1016_j_tsep_2024_102833
crossref_primary_10_1016_j_cageo_2024_105842
crossref_primary_10_1007_s13202_025_01939_3
Cites_doi 10.2118/119267-MS
10.1016/j.energy.2019.07.020
10.1016/j.ijggc.2013.06.015
10.1109/ACCESS.2017.2783320
10.1016/j.jngse.2021.104134
10.1016/j.energy.2019.116541
10.1038/ngeo687
10.1016/j.psep.2022.04.029
10.1016/j.measurement.2019.06.050
10.1016/j.psep.2022.10.086
10.1109/2.485891
10.1016/j.neucom.2017.04.018
10.1016/j.asoc.2016.07.007
10.1023/B:STCO.0000035301.49549.88
10.1016/j.petrol.2019.02.045
10.1016/j.psep.2022.03.049
10.1016/j.chemolab.2004.01.002
10.1016/j.ijggc.2012.03.011
10.3390/en13246551
10.2118/142076-MS
10.1016/j.egypro.2009.02.146
10.1016/j.apenergy.2015.08.046
10.2118/122510-MS
10.1002/er.5680
10.1109/28.41257
10.1023/A:1010933404324
10.1016/S0169-7439(97)00061-0
10.1016/j.techfore.2022.121798
10.1016/j.patrec.2017.09.036
10.2523/108906-MS
10.2118/194264-MS
10.1016/j.flowmeasinst.2020.101772
10.1016/j.ijhydene.2023.03.363
10.2118/208214-MS
10.1016/j.measurement.2021.110368
10.1080/10916466.2010.495961
10.1016/j.psep.2020.09.038
10.1016/j.apenergy.2013.07.059
10.1016/j.eswa.2011.08.170
10.1016/j.apenergy.2022.120368
10.1198/tast.2009.08199
10.1016/j.apenergy.2017.09.015
10.1016/j.rser.2015.02.022
10.1109/TCSS.2022.3152091
10.3390/s23063226
10.1029/2000JD900719
10.2118/210406-MS
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.psep.2024.01.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 110
ExternalDocumentID 10.1016/j.psep.2024.01.007
10_1016_j_psep_2024_01_007
S0957582024000090
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
6I.
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
-~X
29B
5GY
6J9
AAIKC
AAMNW
ABDBF
ACIWK
ACUHS
ADTOC
AFFNX
AI.
ESX
ML-
T9H
TUS
UNPAY
VH1
~02
~8M
ID FETCH-LOGICAL-c344t-28a96bfc1ef7a5bbdb16c6324eb7258f52e640f33f2218cc45689eff91f6e6793
IEDL.DBID UNPAY
ISSN 0957-5820
1876-4800
0263-8762
1744-3563
1744-3598
IngestDate Sun Oct 26 04:10:11 EDT 2025
Sat Oct 25 05:13:31 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Sat Mar 02 16:00:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Geological CO2 sequestration
Injection well
Leak detection
Machine learning
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-28a96bfc1ef7a5bbdb16c6324eb7258f52e640f33f2218cc45689eff91f6e6793
ORCID 0009-0008-1113-115X
0000-0003-1827-0351
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.psep.2024.01.007
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_psep_2024_01_007
crossref_citationtrail_10_1016_j_psep_2024_01_007
crossref_primary_10_1016_j_psep_2024_01_007
elsevier_sciencedirect_doi_10_1016_j_psep_2024_01_007
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Process Safety and Environmental Protection
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abbas, Bashikh, Abbas, Mohammed (bib1) 2019; 183
Ullah, Ahmed, Kim (bib55) 2023; 23
Sabah, Talebkeikhah, Agin, Talebkeikhah, Hasheminasab (bib46) 2019; 177
Xu, Deng (bib58) 2018; 6
Çolak (bib13) 2021; 45
Bachu, Watson (bib4) 2009; 1
Ziabakhsh-Ganji, Kooi (bib62) 2014; 113
Elmaz, Yücel, Mutlu (bib17) 2020; 191
Hong (bib22) 2022; 3
Chi, Qingfeng, Jianhong, Yun, Xiaomin, Yu, Zhaoyang, Chengxu, Pengcheng (bib12) 2023; 169
Sandberg, Holmes, McCoy, Koppitsch (bib47) 1989; 25
Taylor (bib53) 2001; 106
Meribout, Khezzar, Azzi, Ghendour (bib39) 2020; 75
Noy, Holloway, Chadwick, Williams, Hannis, Lahann (bib41) 2012; 9
Johns, Blount, Dethlefs, Loveland, McConnell, Schwartz, Julian (bib25) 2009; 24
Barradas, Garza, Morales-Menendez, Vargas-Martínez (bib6) 2009
Liu, W., Chen, Z., Hu, Y., 2022. Failure Pressure Prediction of Defective Pipeline Using Finite Element Method and Machine Learning Models. In SPE Annual Technical Conference and Exhibition. OnePetro.
Eastvedt, Naterer, Duan (bib16) 2022; 161
Harati, Rezaei Gomari, Gasanzade, Bauer, Pak, Orr (bib20) 2023; 48
Chen, Li, Liu, Zhang, Kuang, Jia, Liu (bib11) 2015; 158
Yang, Mostaghimi, Hugo, Park (bib59) 2022; 187
Mahesh (bib36) 2020; 9
.
Segal, M.R., 2004. Machine learning benchmarks and random forest regression.
Smola, Schölkopf (bib49) 2004; 14
Lemmon, E.W., 2010. Thermophysical properties of fluid systems. NIST chemistry WebBook.
Giunta, Nielsen, Bernasconi, Bondi, Korubo (bib18) 2019
Julian, J.Y., King, G.E., Johns, J.E., Sack, J.K., Robertson, D.B., 2007. Detecting Ultra-small Leaks With Ultrasonic Leak Detection-Case Histories From the North Slope, Alaska. In SPE International Oil Conference and Exhibition in Mexico (pp. SPE-108906). SPE.
Kampelopoulos, Papastavrou, Kousiopoulos, Karagiorgos, Goudos, Nikolaidis (bib28) 2020
Kim, Chae, Han, Park, Lee (bib29) 2021; 94
Raju, Manasa, Bhavani, Amulya, Shirisha (bib45) 2023
Aminu, Nabavi, Rochelle, Manovic (bib3) 2017; 208
Benge, G., 2009. Improving Wellbore Seal Integrity in CO2 Injection Wells. SPE/IADC Drilling Conference and Exhibition. SPE, 2009.
Osarogiagbon, Khan, Venkatesan, Gillard (bib43) 2021; 147
Svozil, Kvasnicka, Pospichal (bib52) 1997; 39
James, A., Baines, S., McCollough, S., 2016. Strategic UK CCS Storage Appraisal - WP5A - Bunter Storage Development Plan.
Grömping (bib19) 2009; 63
Bai, Sun, Song, Li, Qiao (bib5) 2015; 45
Bilotu Onoabhagbe, Russell, Ugwu, Rezaei Gomari (bib9) 2020; 13
null, Yadav, Rahman, Mayur (bib42) 2020; 146
Agarap (bib2) 2018; 1803
Pathak, Mishra, Swetapadma (bib44) 2018
Johns, J.E., Aloisio, F., Mayfield, D.R., 2011. Well Integrity Analysis in Gulf of Mexico Wells Using Passive Ultrasonic Leak Detection Method. SPE/ICoTA Well Intervention Conference and Exhibition (pp. SPE-142076). SPE.
Le Guen, Y., Meyer, V., Poupard, O., Houdu, E., Chammas, R., 2009. A Risk-Based Approach for Well Integrity Management Over Long Term in a CO2 Geological Storage Project. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-122510). SPE.
Moazzeni, Nabaei, Jegarluei (bib40) 2012; 30
Jain, Mao, Mohiuddin (bib23) 1996; 29
Mandal, Chan, Tiwari (bib37) 2012; 39
Zhang, Cheng, Deng, Zong, Deng (bib61) 2018; 109
Kim, Kwon, Ji, Shin, Min (bib30) 2023; 330
Williams, Jin, Bentham, Pickup, Hannis, Mackay (bib56) 2013; 18
Harati, Rezaei Gomari, Ramegowda, Pak (bib21) 2023
Cristianini, Shawe-Taylor (bib14) 2000
Yang, Q., Zhao, J., Rourke, M., 2019. Downhole Leak Detection: Introducing A New Wireline Array Noise Tool. In SPE/ICoTA Well Intervention Conference and Exhibition (p. D022S014R002). SPE.
Thissen, Pepers, Üstün, Melssen, Buydens (bib54) 2004; 73
Xiao, Hu, Li (bib57) 2019; 146
Song, Liang, Lu, Zhao (bib50) 2017; 251
Manikonda, K., Hasan, A.R., Obi, C.E., Islam, R., Sleiti, A.K., Abdelrazeq, M.W., Rahman, M.A., 2021. Application of Machine Learning Classification Algorithms for Two-Phase Gas-Liquid Flow Regime Identification., D041S121R004.
Bickle (bib8) 2009; 2
Czajkowski, Kretowski (bib15) 2016; 48
Li, Zhang, Song, Li, Lu (bib33) 2022; 10
Li, Wang, Chen (bib34) 2022; 165
Su, Pang, Tao, Shao, Umar (bib51) 2022; 182
Breiman (bib10) 2001; 45
Meribout (10.1016/j.psep.2024.01.007_bib39) 2020; 75
Svozil (10.1016/j.psep.2024.01.007_bib52) 1997; 39
Pathak (10.1016/j.psep.2024.01.007_bib44) 2018
Harati (10.1016/j.psep.2024.01.007_bib20) 2023; 48
Chi (10.1016/j.psep.2024.01.007_bib12) 2023; 169
Mahesh (10.1016/j.psep.2024.01.007_bib36) 2020; 9
Giunta (10.1016/j.psep.2024.01.007_bib18) 2019
Taylor (10.1016/j.psep.2024.01.007_bib53) 2001; 106
Kampelopoulos (10.1016/j.psep.2024.01.007_bib28) 2020
Elmaz (10.1016/j.psep.2024.01.007_bib17) 2020; 191
Harati (10.1016/j.psep.2024.01.007_bib21) 2023
Eastvedt (10.1016/j.psep.2024.01.007_bib16) 2022; 161
Sabah (10.1016/j.psep.2024.01.007_bib46) 2019; 177
10.1016/j.psep.2024.01.007_bib48
Barradas (10.1016/j.psep.2024.01.007_bib6) 2009
null (10.1016/j.psep.2024.01.007_bib42) 2020; 146
Xu (10.1016/j.psep.2024.01.007_bib58) 2018; 6
Agarap (10.1016/j.psep.2024.01.007_bib2) 2018; 1803
Bickle (10.1016/j.psep.2024.01.007_bib8) 2009; 2
Song (10.1016/j.psep.2024.01.007_bib50) 2017; 251
Noy (10.1016/j.psep.2024.01.007_bib41) 2012; 9
Bachu (10.1016/j.psep.2024.01.007_bib4) 2009; 1
Abbas (10.1016/j.psep.2024.01.007_bib1) 2019; 183
Kim (10.1016/j.psep.2024.01.007_bib29) 2021; 94
Bai (10.1016/j.psep.2024.01.007_bib5) 2015; 45
Aminu (10.1016/j.psep.2024.01.007_bib3) 2017; 208
Ullah (10.1016/j.psep.2024.01.007_bib55) 2023; 23
10.1016/j.psep.2024.01.007_bib38
Bilotu Onoabhagbe (10.1016/j.psep.2024.01.007_bib9) 2020; 13
Raju (10.1016/j.psep.2024.01.007_bib45) 2023
10.1016/j.psep.2024.01.007_bib31
Hong (10.1016/j.psep.2024.01.007_bib22) 2022; 3
10.1016/j.psep.2024.01.007_bib32
Kim (10.1016/j.psep.2024.01.007_bib30) 2023; 330
10.1016/j.psep.2024.01.007_bib35
Mandal (10.1016/j.psep.2024.01.007_bib37) 2012; 39
Cristianini (10.1016/j.psep.2024.01.007_bib14) 2000
Zhang (10.1016/j.psep.2024.01.007_bib61) 2018; 109
10.1016/j.psep.2024.01.007_bib7
Williams (10.1016/j.psep.2024.01.007_bib56) 2013; 18
Yang (10.1016/j.psep.2024.01.007_bib59) 2022; 187
Su (10.1016/j.psep.2024.01.007_bib51) 2022; 182
Çolak (10.1016/j.psep.2024.01.007_bib13) 2021; 45
Xiao (10.1016/j.psep.2024.01.007_bib57) 2019; 146
Li (10.1016/j.psep.2024.01.007_bib34) 2022; 165
Johns (10.1016/j.psep.2024.01.007_bib25) 2009; 24
10.1016/j.psep.2024.01.007_bib26
Ziabakhsh-Ganji (10.1016/j.psep.2024.01.007_bib62) 2014; 113
10.1016/j.psep.2024.01.007_bib27
Li (10.1016/j.psep.2024.01.007_bib33) 2022; 10
Sandberg (10.1016/j.psep.2024.01.007_bib47) 1989; 25
Osarogiagbon (10.1016/j.psep.2024.01.007_bib43) 2021; 147
Moazzeni (10.1016/j.psep.2024.01.007_bib40) 2012; 30
10.1016/j.psep.2024.01.007_bib24
Breiman (10.1016/j.psep.2024.01.007_bib10) 2001; 45
Jain (10.1016/j.psep.2024.01.007_bib23) 1996; 29
Smola (10.1016/j.psep.2024.01.007_bib49) 2004; 14
Grömping (10.1016/j.psep.2024.01.007_bib19) 2009; 63
Czajkowski (10.1016/j.psep.2024.01.007_bib15) 2016; 48
10.1016/j.psep.2024.01.007_bib60
Chen (10.1016/j.psep.2024.01.007_bib11) 2015; 158
Thissen (10.1016/j.psep.2024.01.007_bib54) 2004; 73
References_xml – volume: 2
  start-page: 815
  year: 2009
  end-page: 818
  ident: bib8
  article-title: Geological carbon storage
  publication-title: Nat. Geosci.
– volume: 191
  year: 2020
  ident: bib17
  article-title: Predictive modeling of biomass gasification with machine learning-based regression methods
  publication-title: Energy
– volume: 24
  start-page: 225
  year: 2009
  end-page: 232
  ident: bib25
  article-title: Applied ultrasonic technology in wellbore-leak detection and case histories in Alaska North slope wells
  publication-title: SPE Prod. Oper.
– volume: 187
  year: 2022
  ident: bib59
  article-title: Pipeline leak and volume rate detections through artificial intelligence and vibration analysis
  publication-title: Measurement
– year: 2023
  ident: bib21
  article-title: Multi-criteria site selection workflow for geological storage of hydrogen in depleted gas fields: a case for the UK
  publication-title: Int J. Hydrog. Energy
– volume: 251
  start-page: 26
  year: 2017
  end-page: 34
  ident: bib50
  article-title: An efficient instance selection algorithm for k nearest neighbor regression
  publication-title: Neurocomputing
– volume: 73
  start-page: 169
  year: 2004
  end-page: 179
  ident: bib54
  article-title: Comparing support vector machines to PLS for spectral regression applications
  publication-title: Chemom. Intell. Lab. Syst.
– reference: Julian, J.Y., King, G.E., Johns, J.E., Sack, J.K., Robertson, D.B., 2007. Detecting Ultra-small Leaks With Ultrasonic Leak Detection-Case Histories From the North Slope, Alaska. In SPE International Oil Conference and Exhibition in Mexico (pp. SPE-108906). SPE.
– volume: 182
  year: 2022
  ident: bib51
  article-title: Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?
  publication-title: Technol. Forecast. Soc. Change
– volume: 146
  start-page: 479
  year: 2019
  end-page: 489
  ident: bib57
  article-title: Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine
  publication-title: Measurement
– volume: 1
  start-page: 3531
  year: 2009
  end-page: 3537
  ident: bib4
  article-title: Review of failures for wells used for CO
  publication-title: Energy Procedia
– volume: 169
  start-page: 398
  year: 2023
  end-page: 417
  ident: bib12
  article-title: An intelligent model for early kick detection based on cost-sensitive learning
  publication-title: Process Saf. Environ. Prot.
– volume: 183
  start-page: 1104
  year: 2019
  end-page: 1113
  ident: bib1
  article-title: Intelligent decisions to stop or mitigate lost circulation based on machine learning
  publication-title: Energy
– volume: 158
  start-page: 366
  year: 2015
  end-page: 377
  ident: bib11
  article-title: A large national survey of public perceptions of CCS technology in China
  publication-title: Appl. Energy
– reference: James, A., Baines, S., McCollough, S., 2016. Strategic UK CCS Storage Appraisal - WP5A - Bunter Storage Development Plan.
– volume: 75
  year: 2020
  ident: bib39
  article-title: Leak detection systems in oil and gas fields: present trends and future prospects
  publication-title: Flow. Meas. Instrum.
– volume: 9
  start-page: 220
  year: 2012
  end-page: 233
  ident: bib41
  article-title: Modelling large-scale carbon dioxide injection into the Bunter Sandstone in the UK Southern North Sea
  publication-title: Int. J. Greenh. Gas. Control
– reference: Le Guen, Y., Meyer, V., Poupard, O., Houdu, E., Chammas, R., 2009. A Risk-Based Approach for Well Integrity Management Over Long Term in a CO2 Geological Storage Project. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-122510). SPE.
– volume: 39
  start-page: 3071
  year: 2012
  end-page: 3080
  ident: bib37
  article-title: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM
  publication-title: Expert Syst. Appl.
– reference: Lemmon, E.W., 2010. Thermophysical properties of fluid systems. NIST chemistry WebBook.
– volume: 177
  start-page: 236
  year: 2019
  end-page: 249
  ident: bib46
  article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field
  publication-title: J. Pet. Sci. Eng.
– volume: 45
  start-page: 556
  year: 2015
  end-page: 564
  ident: bib5
  article-title: Well completion and integrity evaluation for CO
  publication-title: Renew. Sustain. Energy Rev.
– volume: 13
  start-page: 6551
  year: 2020
  ident: bib9
  article-title: Application of phase change tracking approach in predicting condensate blockage in tight, low, and high permeability reservoirs
  publication-title: Energies
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib49
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 10
  start-page: 131
  year: 2022
  end-page: 141
  ident: bib33
  article-title: A clinical-oriented non-severe depression diagnosis method based on cognitive behavior of emotional conflict
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: bib52
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 9
  start-page: 381
  year: 2020
  end-page: 386
  ident: bib36
  article-title: Machine learning algorithms-a review
  publication-title: Int. J. Sci. Res.
– reference: Liu, W., Chen, Z., Hu, Y., 2022. Failure Pressure Prediction of Defective Pipeline Using Finite Element Method and Machine Learning Models. In SPE Annual Technical Conference and Exhibition. OnePetro.
– volume: 45
  start-page: 478
  year: 2021
  end-page: 500
  ident: bib13
  article-title: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks
  publication-title: Int. J. Energy Res.
– volume: 1803
  start-page: 08375
  year: 2018
  ident: bib2
  article-title: Deep learning using rectified linear units (relu)
  publication-title: arXiv Prepr. arXiv
– start-page: 92
  year: 2018
  end-page: 95
  ident: bib44
  article-title: An assessment of decision tree based classification and regression algorithms
  publication-title: 2018 3rd Int. Conf. Invent. Comput. Technol. (ICICT)
– volume: 25
  start-page: 906
  year: 1989
  end-page: 909
  ident: bib47
  article-title: The application of a continuous leak detection system to pipelines and associated equipment
  publication-title: IEEE Trans. Ind. Appl.
– volume: 330
  year: 2023
  ident: bib30
  article-title: Multi-lateral horizontal well with dual-tubing system to improve CO
  publication-title: Appl. Energy
– volume: 109
  start-page: 44
  year: 2018
  end-page: 54
  ident: bib61
  article-title: A novel kNN algorithm with data-driven k parameter computation
  publication-title: Pattern Recog. Lett.
– volume: 18
  start-page: 38
  year: 2013
  end-page: 50
  ident: bib56
  article-title: Modelling carbon dioxide storage within closed structures in the UK Bunter Sandstone Formation
  publication-title: Int. J. Greenh. Gas. Control
– start-page: 2009
  year: 2009
  ident: bib6
  article-title: Leaks detection in a pipeline using artificial neural networks. " progress in pattern recognition, image analysis, computer vision, and applications: 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, Guadalajara, Jalisco, Mexico, November 15-18, 2009
  publication-title: Proc. 14. Springe Berl. Heidelb.
– volume: 94
  year: 2021
  ident: bib29
  article-title: The development of leak detection model in subsea gas pipeline using machine learning
  publication-title: J. Nat. Gas. Sci. Eng.
– volume: 23
  start-page: 3226
  year: 2023
  ident: bib55
  article-title: Pipeline leakage detection using acoustic emission and machine learning algorithms
  publication-title: Sensors
– volume: 6
  start-page: 11634
  year: 2018
  end-page: 11640
  ident: bib58
  article-title: Dependent evidence combination based on shearman coefficient and pearson coefficient
  publication-title: IEEE Access
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib10
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 48
  start-page: 26894
  year: 2023
  end-page: 26910
  ident: bib20
  article-title: Underground hydrogen storage to balance seasonal variations in energy demand: Impact of well configuration on storage performance in deep saline aquifers
  publication-title: Int. J. Hydrog. Energy
– volume: 29
  start-page: 31
  year: 1996
  end-page: 44
  ident: bib23
  article-title: Artificial neural networks: A tutorial
  publication-title: Computer
– year: 2019
  ident: bib18
  article-title: Data driven smart monitoring for pipeline integrity assessment
  publication-title: Abu Dhabi Int. Pet. Exhib. Conf. OnePetro
– volume: 165
  start-page: 959
  year: 2022
  end-page: 968
  ident: bib34
  article-title: A machine learning methodology for probabilistic risk assessment of process operations: a case of subsea gas pipeline leak accidents
  publication-title: Process Saf. Environ. Prot.
– reference: Yang, Q., Zhao, J., Rourke, M., 2019. Downhole Leak Detection: Introducing A New Wireline Array Noise Tool. In SPE/ICoTA Well Intervention Conference and Exhibition (p. D022S014R002). SPE.
– volume: 161
  start-page: 409
  year: 2022
  end-page: 420
  ident: bib16
  article-title: Detection of faults in subsea pipelines by flow monitoring with regression supervised machine learning
  publication-title: Process Saf. Environ. Prot.
– reference: Segal, M.R., 2004. Machine learning benchmarks and random forest regression.
– volume: 113
  start-page: 434
  year: 2014
  end-page: 451
  ident: bib62
  article-title: Sensitivity of Joule–Thomson cooling to impure CO
  publication-title: Appl. Energy
– start-page: 104
  year: 2023
  end-page: 109
  ident: bib45
  article-title: Comparative analysis of different machine learning algorithms on different datasets
  publication-title: 7th Int. Conf. Intell. Comput. Control Syst. (ICICCS)
– volume: 3
  year: 2022
  ident: bib22
  article-title: A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO
  publication-title: Carbon Capture Sci. Technol.
– volume: 147
  start-page: 367
  year: 2021
  end-page: 384
  ident: bib43
  article-title: Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations
  publication-title: Process Saf. Environ. Prot.
– volume: 106
  start-page: 7183
  year: 2001
  end-page: 7192
  ident: bib53
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res. Atmos.
– volume: 63
  start-page: 308
  year: 2009
  end-page: 319
  ident: bib19
  article-title: Variable importance assessment in regression: linear regression versus random forest
  publication-title: Am. Stat.
– reference: Manikonda, K., Hasan, A.R., Obi, C.E., Islam, R., Sleiti, A.K., Abdelrazeq, M.W., Rahman, M.A., 2021. Application of Machine Learning Classification Algorithms for Two-Phase Gas-Liquid Flow Regime Identification., D041S121R004.
– volume: 30
  start-page: 2097
  year: 2012
  end-page: 2107
  ident: bib40
  article-title: Decision making for reduction of nonproductive time through an integrated lost circulation prediction
  publication-title: Pet. Sci. Technol.
– volume: 48
  start-page: 458
  year: 2016
  end-page: 475
  ident: bib15
  article-title: The role of decision tree representation in regression problems – an evolutionary perspective
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2020
  end-page: 4
  ident: bib28
  article-title: Machine learning model comparison for leak detection in noisy industrial pipelines
  publication-title: 9th Int. Conf. Mod. Circuits Syst. Technol. (MOCAST)
– reference: Johns, J.E., Aloisio, F., Mayfield, D.R., 2011. Well Integrity Analysis in Gulf of Mexico Wells Using Passive Ultrasonic Leak Detection Method. SPE/ICoTA Well Intervention Conference and Exhibition (pp. SPE-142076). SPE.
– reference: .
– year: 2000
  ident: bib14
  article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
– reference: Benge, G., 2009. Improving Wellbore Seal Integrity in CO2 Injection Wells. SPE/IADC Drilling Conference and Exhibition. SPE, 2009.
– volume: 146
  year: 2020
  ident: bib42
  article-title: Migration of CO
  publication-title: J. Environ. Eng.
– volume: 208
  start-page: 1389
  year: 2017
  end-page: 1419
  ident: bib3
  article-title: A review of developments in carbon dioxide storage
  publication-title: Appl. Energy
– ident: 10.1016/j.psep.2024.01.007_bib24
– ident: 10.1016/j.psep.2024.01.007_bib7
  doi: 10.2118/119267-MS
– volume: 183
  start-page: 1104
  year: 2019
  ident: 10.1016/j.psep.2024.01.007_bib1
  article-title: Intelligent decisions to stop or mitigate lost circulation based on machine learning
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.020
– year: 2023
  ident: 10.1016/j.psep.2024.01.007_bib21
  article-title: Multi-criteria site selection workflow for geological storage of hydrogen in depleted gas fields: a case for the UK
  publication-title: Int J. Hydrog. Energy
– volume: 18
  start-page: 38
  year: 2013
  ident: 10.1016/j.psep.2024.01.007_bib56
  article-title: Modelling carbon dioxide storage within closed structures in the UK Bunter Sandstone Formation
  publication-title: Int. J. Greenh. Gas. Control
  doi: 10.1016/j.ijggc.2013.06.015
– start-page: 104
  year: 2023
  ident: 10.1016/j.psep.2024.01.007_bib45
  article-title: Comparative analysis of different machine learning algorithms on different datasets
  publication-title: 7th Int. Conf. Intell. Comput. Control Syst. (ICICCS)
– volume: 6
  start-page: 11634
  year: 2018
  ident: 10.1016/j.psep.2024.01.007_bib58
  article-title: Dependent evidence combination based on shearman coefficient and pearson coefficient
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2783320
– volume: 94
  year: 2021
  ident: 10.1016/j.psep.2024.01.007_bib29
  article-title: The development of leak detection model in subsea gas pipeline using machine learning
  publication-title: J. Nat. Gas. Sci. Eng.
  doi: 10.1016/j.jngse.2021.104134
– volume: 191
  year: 2020
  ident: 10.1016/j.psep.2024.01.007_bib17
  article-title: Predictive modeling of biomass gasification with machine learning-based regression methods
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116541
– volume: 2
  start-page: 815
  year: 2009
  ident: 10.1016/j.psep.2024.01.007_bib8
  article-title: Geological carbon storage
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo687
– volume: 165
  start-page: 959
  year: 2022
  ident: 10.1016/j.psep.2024.01.007_bib34
  article-title: A machine learning methodology for probabilistic risk assessment of process operations: a case of subsea gas pipeline leak accidents
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.04.029
– volume: 146
  start-page: 479
  year: 2019
  ident: 10.1016/j.psep.2024.01.007_bib57
  article-title: Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.050
– volume: 169
  start-page: 398
  year: 2023
  ident: 10.1016/j.psep.2024.01.007_bib12
  article-title: An intelligent model for early kick detection based on cost-sensitive learning
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.10.086
– volume: 29
  start-page: 31
  year: 1996
  ident: 10.1016/j.psep.2024.01.007_bib23
  article-title: Artificial neural networks: A tutorial
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 251
  start-page: 26
  year: 2017
  ident: 10.1016/j.psep.2024.01.007_bib50
  article-title: An efficient instance selection algorithm for k nearest neighbor regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.018
– start-page: 1
  year: 2020
  ident: 10.1016/j.psep.2024.01.007_bib28
  article-title: Machine learning model comparison for leak detection in noisy industrial pipelines
  publication-title: 9th Int. Conf. Mod. Circuits Syst. Technol. (MOCAST)
– volume: 48
  start-page: 458
  year: 2016
  ident: 10.1016/j.psep.2024.01.007_bib15
  article-title: The role of decision tree representation in regression problems – an evolutionary perspective
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.007
– year: 2000
  ident: 10.1016/j.psep.2024.01.007_bib14
– year: 2019
  ident: 10.1016/j.psep.2024.01.007_bib18
  article-title: Data driven smart monitoring for pipeline integrity assessment
  publication-title: Abu Dhabi Int. Pet. Exhib. Conf. OnePetro
– ident: 10.1016/j.psep.2024.01.007_bib48
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.psep.2024.01.007_bib49
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 24
  start-page: 225
  year: 2009
  ident: 10.1016/j.psep.2024.01.007_bib25
  article-title: Applied ultrasonic technology in wellbore-leak detection and case histories in Alaska North slope wells
  publication-title: SPE Prod. Oper.
– start-page: 92
  year: 2018
  ident: 10.1016/j.psep.2024.01.007_bib44
  article-title: An assessment of decision tree based classification and regression algorithms
  publication-title: 2018 3rd Int. Conf. Invent. Comput. Technol. (ICICT)
– volume: 177
  start-page: 236
  year: 2019
  ident: 10.1016/j.psep.2024.01.007_bib46
  article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.02.045
– volume: 161
  start-page: 409
  year: 2022
  ident: 10.1016/j.psep.2024.01.007_bib16
  article-title: Detection of faults in subsea pipelines by flow monitoring with regression supervised machine learning
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.03.049
– volume: 73
  start-page: 169
  year: 2004
  ident: 10.1016/j.psep.2024.01.007_bib54
  article-title: Comparing support vector machines to PLS for spectral regression applications
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.01.002
– volume: 9
  start-page: 220
  year: 2012
  ident: 10.1016/j.psep.2024.01.007_bib41
  article-title: Modelling large-scale carbon dioxide injection into the Bunter Sandstone in the UK Southern North Sea
  publication-title: Int. J. Greenh. Gas. Control
  doi: 10.1016/j.ijggc.2012.03.011
– volume: 13
  start-page: 6551
  issue: 24
  year: 2020
  ident: 10.1016/j.psep.2024.01.007_bib9
  article-title: Application of phase change tracking approach in predicting condensate blockage in tight, low, and high permeability reservoirs
  publication-title: Energies
  doi: 10.3390/en13246551
– ident: 10.1016/j.psep.2024.01.007_bib26
  doi: 10.2118/142076-MS
– volume: 1
  start-page: 3531
  year: 2009
  ident: 10.1016/j.psep.2024.01.007_bib4
  article-title: Review of failures for wells used for CO2 and acid gas injection in Alberta, Canada
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.02.146
– volume: 158
  start-page: 366
  year: 2015
  ident: 10.1016/j.psep.2024.01.007_bib11
  article-title: A large national survey of public perceptions of CCS technology in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.046
– ident: 10.1016/j.psep.2024.01.007_bib31
  doi: 10.2118/122510-MS
– volume: 45
  start-page: 478
  year: 2021
  ident: 10.1016/j.psep.2024.01.007_bib13
  article-title: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5680
– volume: 9
  start-page: 381
  year: 2020
  ident: 10.1016/j.psep.2024.01.007_bib36
  article-title: Machine learning algorithms-a review
  publication-title: Int. J. Sci. Res.
– volume: 25
  start-page: 906
  year: 1989
  ident: 10.1016/j.psep.2024.01.007_bib47
  article-title: The application of a continuous leak detection system to pipelines and associated equipment
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.41257
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.psep.2024.01.007_bib10
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 39
  start-page: 43
  year: 1997
  ident: 10.1016/j.psep.2024.01.007_bib52
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 182
  year: 2022
  ident: 10.1016/j.psep.2024.01.007_bib51
  article-title: Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2022.121798
– volume: 1803
  start-page: 08375
  year: 2018
  ident: 10.1016/j.psep.2024.01.007_bib2
  article-title: Deep learning using rectified linear units (relu)
  publication-title: arXiv Prepr. arXiv
– volume: 109
  start-page: 44
  year: 2018
  ident: 10.1016/j.psep.2024.01.007_bib61
  article-title: A novel kNN algorithm with data-driven k parameter computation
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2017.09.036
– ident: 10.1016/j.psep.2024.01.007_bib27
  doi: 10.2523/108906-MS
– ident: 10.1016/j.psep.2024.01.007_bib60
  doi: 10.2118/194264-MS
– volume: 75
  year: 2020
  ident: 10.1016/j.psep.2024.01.007_bib39
  article-title: Leak detection systems in oil and gas fields: present trends and future prospects
  publication-title: Flow. Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2020.101772
– volume: 48
  start-page: 26894
  year: 2023
  ident: 10.1016/j.psep.2024.01.007_bib20
  article-title: Underground hydrogen storage to balance seasonal variations in energy demand: Impact of well configuration on storage performance in deep saline aquifers
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2023.03.363
– volume: 146
  year: 2020
  ident: 10.1016/j.psep.2024.01.007_bib42
  article-title: Migration of CO2 through carbonate cores: effect of salinity, pressure, and cyclic brine-CO2 injection
  publication-title: J. Environ. Eng.
– ident: 10.1016/j.psep.2024.01.007_bib38
  doi: 10.2118/208214-MS
– volume: 187
  year: 2022
  ident: 10.1016/j.psep.2024.01.007_bib59
  article-title: Pipeline leak and volume rate detections through artificial intelligence and vibration analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110368
– start-page: 2009
  year: 2009
  ident: 10.1016/j.psep.2024.01.007_bib6
  publication-title: Proc. 14. Springe Berl. Heidelb.
– volume: 30
  start-page: 2097
  year: 2012
  ident: 10.1016/j.psep.2024.01.007_bib40
  article-title: Decision making for reduction of nonproductive time through an integrated lost circulation prediction
  publication-title: Pet. Sci. Technol.
  doi: 10.1080/10916466.2010.495961
– volume: 147
  start-page: 367
  year: 2021
  ident: 10.1016/j.psep.2024.01.007_bib43
  article-title: Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.09.038
– volume: 113
  start-page: 434
  year: 2014
  ident: 10.1016/j.psep.2024.01.007_bib62
  article-title: Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.059
– volume: 39
  start-page: 3071
  year: 2012
  ident: 10.1016/j.psep.2024.01.007_bib37
  article-title: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.170
– volume: 330
  year: 2023
  ident: 10.1016/j.psep.2024.01.007_bib30
  article-title: Multi-lateral horizontal well with dual-tubing system to improve CO2 storage security and reduce CCS cost
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120368
– ident: 10.1016/j.psep.2024.01.007_bib32
– volume: 3
  year: 2022
  ident: 10.1016/j.psep.2024.01.007_bib22
  article-title: A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future
  publication-title: Carbon Capture Sci. Technol.
– volume: 63
  start-page: 308
  year: 2009
  ident: 10.1016/j.psep.2024.01.007_bib19
  article-title: Variable importance assessment in regression: linear regression versus random forest
  publication-title: Am. Stat.
  doi: 10.1198/tast.2009.08199
– volume: 208
  start-page: 1389
  year: 2017
  ident: 10.1016/j.psep.2024.01.007_bib3
  article-title: A review of developments in carbon dioxide storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.015
– volume: 45
  start-page: 556
  year: 2015
  ident: 10.1016/j.psep.2024.01.007_bib5
  article-title: Well completion and integrity evaluation for CO2 injection wells
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.02.022
– volume: 10
  start-page: 131
  year: 2022
  ident: 10.1016/j.psep.2024.01.007_bib33
  article-title: A clinical-oriented non-severe depression diagnosis method based on cognitive behavior of emotional conflict
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3152091
– volume: 23
  start-page: 3226
  issue: 6
  year: 2023
  ident: 10.1016/j.psep.2024.01.007_bib55
  article-title: Pipeline leakage detection using acoustic emission and machine learning algorithms
  publication-title: Sensors
  doi: 10.3390/s23063226
– volume: 106
  start-page: 7183
  year: 2001
  ident: 10.1016/j.psep.2024.01.007_bib53
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD900719
– ident: 10.1016/j.psep.2024.01.007_bib35
  doi: 10.2118/210406-MS
SSID ssj0001271
Score 2.5003047
Snippet The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Geological CO2 sequestration
Injection well
Leak detection
Machine learning
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QLsAB8Zp4KwduULYmadoe0QRCSDwkQOJWpWkyBqOrtgHiwj_gP2O36QYSmhDHpHZTxUlsp_ZnQvYlT0FrSuUxzUJwUDjzYuZDk0cmVkHGlY_ZyBeX8uxOnN8H93OkU-fCYFilO_urM708rV1Py81mq-j1WjdgHICxyxCkCy0F9NuFCLGKwdHHNMzDZ6XThcQeUrvEmSrGqxgZxKxkooTuxJKyvyun-Ze8UO9vqt__pnxOl8mSsxrpcfVhK2TO5Ktk8RuW4CppnkxT1oDU7dnRGvm8nuYGUOUwSOjA0ldwk8Hvp89lPKWhroBEl6p-dzDsjR-eRxQYaeeK4bMnWgzxrw5KEt6TUT3Beq5SOWkvp10z8Mro7BqOFzofTcWD14SjdXJ3enLbOfNcEQZPcyHGHotULFOrfWNDFaRplvpSI8a7SUMWRDZgRoq25dwysBa0BoMsio21sW-lkbD7m6SRD3KzQSh4eqnIBEfMepFlKlJaZTIIQ9CePFZ2k_j17CfaIZRjoYx-UoeiPSYosQQllrT9BCS2SQ4mPEWFzzGTOqiFmvxYZQkokJl8h5MV8Idhtv45zDZZwFYV4rZDGuPhi9kFm2ec7pWL-gswlwIX
  priority: 102
  providerName: Elsevier
Title Performance analysis of various machine learning algorithms for CO2 leak prediction and characterization in geo-sequestration injection wells
URI https://dx.doi.org/10.1016/j.psep.2024.01.007
https://doi.org/10.1016/j.psep.2024.01.007
UnpaywallVersion publishedVersion
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001271
  issn: 1744-3598
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001271
  issn: 1744-3598
  databaseCode: ACRLP
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001271
  issn: 1744-3598
  databaseCode: .~1
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001271
  issn: 1744-3598
  databaseCode: AIKHN
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001271
  issn: 1744-3598
  databaseCode: AKRWK
  dateStart: 19961101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegPSAOMAYTQ6zygRu4WvyV5FhVm7oBpUJUGqfIduzuo0uqJmUaB_4D_meeE7cbCKZxytd7saL3HP9sv_d7CL2RTMOoKRWhhsYwQWGUpDSCS5bYVImcqchnI38cy9GUH5-Ik0CT43Nhftu_b-KwFpX1vJKUN_SaPnG8KwXg7g7qTseTwdd2EYU13bol1ouJSGjIhOSEiaacWjhviuNGIEs4QKWQRfP3hv41Uj1aFQt1faXm81sj0eHTtqRR1RAY-gCUi_6q1n3z_Q96x_t95BZ6EgApHrQe9Aw9sMU2enyLpnAb7RzcZMOBaPgdVM_Rz8lN2gFWgd4Elw5_gxl4uarwZROqaXGoTTHDaj4rl2f16WWFQREPP1H_7AIvln7DyDsJvCfHZkMj3WaJ4rMCz2xJmsDvNdMv3Dy3rY5fgaxeoOnhwZfhiIT6DsQwzmtCE5VK7UxkXayE1rmOpPH08VbHVCROUCv5vmPMUQAixgDWS1LrXBo5aSX8WHZQpygL-xJhmERqnnPm6fB5nqtEGZVLEccwMLNUuV0UrW2ZmUB-7mtwzLN1lNt55m2QeRtk-1EGNthFbzc6i5b6405psXaRLICXFpRkYO079d5t_Okezbz6P_HXqFMvV3YPgFOte-hh_0fUQ93B8POHiT8evR-Ne6Ef_QJXfhTR
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHIBDRXkICrQ-cKPpEttxkiNagba8pYLEzXIce1lYstHuAuql_4D_zEzi7IKEUMUx9kwceWzPjDPzDSE7kmegNaUOmGExOCicBSkL4ZEnNtVRznWI2cinZ7JzJY6uo-sZ0m5yYTCs0p_99Zlenda-peVns1X2eq0_YByAscsQpAstBfDb50TEYvTAfv2bxnmErPK6kDpAcp85Uwd5lSOLoJVMVNidWFP2fe00_1CU-u-T7vdfaZ_DJfLFm410v_6yr2TGFstk8RWY4DJZO5jmrAGp37SjFfJ8MU0OoNqDkNCBo4_gJ4PjT--rgEpLfQWJLtX97mDYG9_cjygw0vY5w747Wg7xtw6KEt6TUzMBe65zOWmvoF07CKrw7AaPFxpvbc2D94SjVXJ1eHDZ7gS-CkNguBDjgCU6lZkzoXWxjrIsz0JpEOTdZjGLEhcxK8We49wxMBeMAYssSa1zaeiklbD918hsMSjsOqHg6mUiFxxB60We60QbncsojkF98lS7DRI2s6-MhyjHShl91cSi3SqUmEKJqb1QgcQ2yO6Ep6wBOj6kjhqhqjfLTIEG-ZDv52QF_Mcw3z45zA8y37k8PVEnv8-ON8kC9tTxbltkdjx8sNtgAI2z79UCfwEzqQU6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swELZQOSAOj-U99ECAfOAGRsRbkiNCIITEcqASnCLbsctSkqpJQfAf-M-ME7csAgS3LDOxohnbY3u-bxDakEzDrCkVoYbGsEBhlKQ0gluW2FSJnKnIo5GPT-Rhlx9diItAk-OxMO_O75s8rEFlPa8k5Q29pgeOT0sBcXcHTXdPznYv200U1nTrllgvJiKhAQnJCRNNObVw3RTHjUCWcAiVAorm84a-mqlmRsVAPT6ofv_NTHQw15Y0qhoCQ5-Acrs9qvW2efpA7_izn5xHf0JAindbD1pAU7ZYRLNvaAoX0dL-KxoORMNwUP1Fz2evsAOsAr0JLh2-hxV4OarwXZOqaXGoTdHDqt8rh9f11V2FQRHvnVL_7hYPhv7AyDsJfCfHZkIj3aJE8XWBe7YkTeL3mOkXHt7YVsfvQFb_UPdg_3zvkIT6DsQwzmtCE5VK7UxkXayE1rmOpPH08VbHVCROUCv5jmPMUQhEjIFYL0mtc2nkpJUwsCyhTlEW9j_CsIjUPOfM0-HzPFeJMiqXIo5hYmapcssoGtsyM4H83Nfg6GfjLLebzNsg8zbIdqIMbLCMNic6g5b641tpMXaRLAQvbVCSgbW_1dua-NMPmln5nfgq6tTDkV2DwKnW66HHvADC5hCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+various+machine+learning+algorithms+for+CO2+leak+prediction+and+characterization+in+geo-sequestration+injection+wells&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Harati%2C+Saeed&rft.au=Rezaei+Gomari%2C+Sina&rft.au=Rahman%2C+Mohammad+Azizur&rft.au=Hassan%2C+Rashid&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-5820&rft.eissn=1744-3598&rft.volume=183&rft.spage=99&rft.epage=110&rft_id=info:doi/10.1016%2Fj.psep.2024.01.007&rft.externalDocID=S0957582024000090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon