Performance analysis of various machine learning algorithms for CO2 leak prediction and characterization in geo-sequestration injection wells
The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decisi...
Saved in:
| Published in | Process Safety and Environmental Protection Vol. 183; pp. 99 - 110 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-5820 1876-4800 0263-8762 1744-3563 1744-3598 1744-3598 |
| DOI | 10.1016/j.psep.2024.01.007 |
Cover
| Abstract | The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data-driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom-hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings reveal crucial insights into the relationships between the variables considered and leakage characteristics. With its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the models compared to leak localization. Overall, the findings obtained can provide valuable insights into the development of efficient data-driven well-bore leak detection systems. |
|---|---|
| AbstractList | The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data-driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom-hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings reveal crucial insights into the relationships between the variables considered and leakage characteristics. With its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the models compared to leak localization. Overall, the findings obtained can provide valuable insights into the development of efficient data-driven well-bore leak detection systems. |
| Author | Hamilton, Matthew Hassan, Ibrahim Hassan, Rashid Harati, Saeed Rahman, Mohammad Azizur Rezaei Gomari, Sina Sleiti, Ahmad K. |
| Author_xml | – sequence: 1 givenname: Saeed orcidid: 0000-0003-1827-0351 surname: Harati fullname: Harati, Saeed organization: School of Computing, Engineering, and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK – sequence: 2 givenname: Sina surname: Rezaei Gomari fullname: Rezaei Gomari, Sina email: s.rezaei-gomari@tees.ac.uk organization: School of Computing, Engineering, and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK – sequence: 3 givenname: Mohammad Azizur surname: Rahman fullname: Rahman, Mohammad Azizur organization: Department Petroleum Engineering, Texas A&M University at Qatar, Doha 23874, Qatar – sequence: 4 givenname: Rashid orcidid: 0009-0008-1113-115X surname: Hassan fullname: Hassan, Rashid organization: Department Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA – sequence: 5 givenname: Ibrahim surname: Hassan fullname: Hassan, Ibrahim organization: Department Mechanical Engineering, Texas A&M University at Qatar, Doha 23874, Qatar – sequence: 6 givenname: Ahmad K. surname: Sleiti fullname: Sleiti, Ahmad K. organization: Department Mechanical Engineering, Qatar University, Doha 2713, Qatar – sequence: 7 givenname: Matthew surname: Hamilton fullname: Hamilton, Matthew organization: Department of Computer Science, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada |
| BookMark | eNqNkc1KAzEQx4NUsK2-gKe8wK5J9hu8SPELCvWg55DNTtrUNFmTbUt9B9_ZbasXD8XTwH_4zTC_GaGBdRYQuqYkpoTmN8u4DdDGjLA0JjQmpDhDQ1qkaZRkVTlAQ1JlRZSVjFygUQhLQghlBR2irxfwyvmVsBKwsMLsgg7YKbwRXrt1wCshF9oCNiC81XaOhZk7r7vFKuAexJMZ2_feceuh0bLTzvZzGiwXwgvZgdef4hBqi-fgogAfawid_w2XcGS2YEy4ROdKmABXP3WM3h7uXydP0XT2-Dy5m0YySdMuYqWo8lpJCqoQWV03Nc1lnrAU6oJlpcoY5ClRSaIYo6WUaZaXFShVUZVDXlTJGCXHuWvbit1WGMNbr1fC7zglfG-UL_neKN8b5YTy3mhPlUdKeheCB8Wl7g539Odocxplf9B_7bs9QtCr2GjwPEgN_aMa7XtrvHH6FP4NBP-pQg |
| CitedBy_id | crossref_primary_10_62051_ijnres_v5n1_07 crossref_primary_10_1016_j_measurement_2025_116857 crossref_primary_10_1016_j_psep_2024_04_118 crossref_primary_10_1016_j_rser_2025_115525 crossref_primary_10_2139_ssrn_4828144 crossref_primary_10_1016_j_ijhydene_2024_10_183 crossref_primary_10_1016_j_psep_2024_12_068 crossref_primary_10_1016_j_psep_2024_10_097 crossref_primary_10_1016_j_tsep_2024_102833 crossref_primary_10_1016_j_cageo_2024_105842 crossref_primary_10_1007_s13202_025_01939_3 |
| Cites_doi | 10.2118/119267-MS 10.1016/j.energy.2019.07.020 10.1016/j.ijggc.2013.06.015 10.1109/ACCESS.2017.2783320 10.1016/j.jngse.2021.104134 10.1016/j.energy.2019.116541 10.1038/ngeo687 10.1016/j.psep.2022.04.029 10.1016/j.measurement.2019.06.050 10.1016/j.psep.2022.10.086 10.1109/2.485891 10.1016/j.neucom.2017.04.018 10.1016/j.asoc.2016.07.007 10.1023/B:STCO.0000035301.49549.88 10.1016/j.petrol.2019.02.045 10.1016/j.psep.2022.03.049 10.1016/j.chemolab.2004.01.002 10.1016/j.ijggc.2012.03.011 10.3390/en13246551 10.2118/142076-MS 10.1016/j.egypro.2009.02.146 10.1016/j.apenergy.2015.08.046 10.2118/122510-MS 10.1002/er.5680 10.1109/28.41257 10.1023/A:1010933404324 10.1016/S0169-7439(97)00061-0 10.1016/j.techfore.2022.121798 10.1016/j.patrec.2017.09.036 10.2523/108906-MS 10.2118/194264-MS 10.1016/j.flowmeasinst.2020.101772 10.1016/j.ijhydene.2023.03.363 10.2118/208214-MS 10.1016/j.measurement.2021.110368 10.1080/10916466.2010.495961 10.1016/j.psep.2020.09.038 10.1016/j.apenergy.2013.07.059 10.1016/j.eswa.2011.08.170 10.1016/j.apenergy.2022.120368 10.1198/tast.2009.08199 10.1016/j.apenergy.2017.09.015 10.1016/j.rser.2015.02.022 10.1109/TCSS.2022.3152091 10.3390/s23063226 10.1029/2000JD900719 10.2118/210406-MS |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.psep.2024.01.007 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1744-3598 |
| EndPage | 110 |
| ExternalDocumentID | 10.1016/j.psep.2024.01.007 10_1016_j_psep_2024_01_007 S0957582024000090 |
| GroupedDBID | --K --M -QF .~1 0R~ 123 1B1 1~. 1~5 3EH 4.4 457 4G. 4P2 53G 5VS 6I. 7-5 71M 8P~ 8WZ A6W AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AHPOS AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CAG COF CS3 DU5 EBS EDH EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KCYFY KOM M41 ML. MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSJ SSR SSZ T5K UNMZH XFK ZE2 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD -~X 29B 5GY 6J9 AAIKC AAMNW ABDBF ACIWK ACUHS ADTOC AFFNX AI. ESX ML- T9H TUS UNPAY VH1 ~02 ~8M |
| ID | FETCH-LOGICAL-c344t-28a96bfc1ef7a5bbdb16c6324eb7258f52e640f33f2218cc45689eff91f6e6793 |
| IEDL.DBID | UNPAY |
| ISSN | 0957-5820 1876-4800 0263-8762 1744-3563 1744-3598 |
| IngestDate | Sun Oct 26 04:10:11 EDT 2025 Sat Oct 25 05:13:31 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Sat Mar 02 16:00:19 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Geological CO2 sequestration Injection well Leak detection Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-28a96bfc1ef7a5bbdb16c6324eb7258f52e640f33f2218cc45689eff91f6e6793 |
| ORCID | 0009-0008-1113-115X 0000-0003-1827-0351 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.psep.2024.01.007 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_psep_2024_01_007 crossref_citationtrail_10_1016_j_psep_2024_01_007 crossref_primary_10_1016_j_psep_2024_01_007 elsevier_sciencedirect_doi_10_1016_j_psep_2024_01_007 |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Process Safety and Environmental Protection |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Abbas, Bashikh, Abbas, Mohammed (bib1) 2019; 183 Ullah, Ahmed, Kim (bib55) 2023; 23 Sabah, Talebkeikhah, Agin, Talebkeikhah, Hasheminasab (bib46) 2019; 177 Xu, Deng (bib58) 2018; 6 Çolak (bib13) 2021; 45 Bachu, Watson (bib4) 2009; 1 Ziabakhsh-Ganji, Kooi (bib62) 2014; 113 Elmaz, Yücel, Mutlu (bib17) 2020; 191 Hong (bib22) 2022; 3 Chi, Qingfeng, Jianhong, Yun, Xiaomin, Yu, Zhaoyang, Chengxu, Pengcheng (bib12) 2023; 169 Sandberg, Holmes, McCoy, Koppitsch (bib47) 1989; 25 Taylor (bib53) 2001; 106 Meribout, Khezzar, Azzi, Ghendour (bib39) 2020; 75 Noy, Holloway, Chadwick, Williams, Hannis, Lahann (bib41) 2012; 9 Johns, Blount, Dethlefs, Loveland, McConnell, Schwartz, Julian (bib25) 2009; 24 Barradas, Garza, Morales-Menendez, Vargas-Martínez (bib6) 2009 Liu, W., Chen, Z., Hu, Y., 2022. Failure Pressure Prediction of Defective Pipeline Using Finite Element Method and Machine Learning Models. In SPE Annual Technical Conference and Exhibition. OnePetro. Eastvedt, Naterer, Duan (bib16) 2022; 161 Harati, Rezaei Gomari, Gasanzade, Bauer, Pak, Orr (bib20) 2023; 48 Chen, Li, Liu, Zhang, Kuang, Jia, Liu (bib11) 2015; 158 Yang, Mostaghimi, Hugo, Park (bib59) 2022; 187 Mahesh (bib36) 2020; 9 . Segal, M.R., 2004. Machine learning benchmarks and random forest regression. Smola, Schölkopf (bib49) 2004; 14 Lemmon, E.W., 2010. Thermophysical properties of fluid systems. NIST chemistry WebBook. Giunta, Nielsen, Bernasconi, Bondi, Korubo (bib18) 2019 Julian, J.Y., King, G.E., Johns, J.E., Sack, J.K., Robertson, D.B., 2007. Detecting Ultra-small Leaks With Ultrasonic Leak Detection-Case Histories From the North Slope, Alaska. In SPE International Oil Conference and Exhibition in Mexico (pp. SPE-108906). SPE. Kampelopoulos, Papastavrou, Kousiopoulos, Karagiorgos, Goudos, Nikolaidis (bib28) 2020 Kim, Chae, Han, Park, Lee (bib29) 2021; 94 Raju, Manasa, Bhavani, Amulya, Shirisha (bib45) 2023 Aminu, Nabavi, Rochelle, Manovic (bib3) 2017; 208 Benge, G., 2009. Improving Wellbore Seal Integrity in CO2 Injection Wells. SPE/IADC Drilling Conference and Exhibition. SPE, 2009. Osarogiagbon, Khan, Venkatesan, Gillard (bib43) 2021; 147 Svozil, Kvasnicka, Pospichal (bib52) 1997; 39 James, A., Baines, S., McCollough, S., 2016. Strategic UK CCS Storage Appraisal - WP5A - Bunter Storage Development Plan. Grömping (bib19) 2009; 63 Bai, Sun, Song, Li, Qiao (bib5) 2015; 45 Bilotu Onoabhagbe, Russell, Ugwu, Rezaei Gomari (bib9) 2020; 13 null, Yadav, Rahman, Mayur (bib42) 2020; 146 Agarap (bib2) 2018; 1803 Pathak, Mishra, Swetapadma (bib44) 2018 Johns, J.E., Aloisio, F., Mayfield, D.R., 2011. Well Integrity Analysis in Gulf of Mexico Wells Using Passive Ultrasonic Leak Detection Method. SPE/ICoTA Well Intervention Conference and Exhibition (pp. SPE-142076). SPE. Le Guen, Y., Meyer, V., Poupard, O., Houdu, E., Chammas, R., 2009. A Risk-Based Approach for Well Integrity Management Over Long Term in a CO2 Geological Storage Project. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-122510). SPE. Moazzeni, Nabaei, Jegarluei (bib40) 2012; 30 Jain, Mao, Mohiuddin (bib23) 1996; 29 Mandal, Chan, Tiwari (bib37) 2012; 39 Zhang, Cheng, Deng, Zong, Deng (bib61) 2018; 109 Kim, Kwon, Ji, Shin, Min (bib30) 2023; 330 Williams, Jin, Bentham, Pickup, Hannis, Mackay (bib56) 2013; 18 Harati, Rezaei Gomari, Ramegowda, Pak (bib21) 2023 Cristianini, Shawe-Taylor (bib14) 2000 Yang, Q., Zhao, J., Rourke, M., 2019. Downhole Leak Detection: Introducing A New Wireline Array Noise Tool. In SPE/ICoTA Well Intervention Conference and Exhibition (p. D022S014R002). SPE. Thissen, Pepers, Üstün, Melssen, Buydens (bib54) 2004; 73 Xiao, Hu, Li (bib57) 2019; 146 Song, Liang, Lu, Zhao (bib50) 2017; 251 Manikonda, K., Hasan, A.R., Obi, C.E., Islam, R., Sleiti, A.K., Abdelrazeq, M.W., Rahman, M.A., 2021. Application of Machine Learning Classification Algorithms for Two-Phase Gas-Liquid Flow Regime Identification., D041S121R004. Bickle (bib8) 2009; 2 Czajkowski, Kretowski (bib15) 2016; 48 Li, Zhang, Song, Li, Lu (bib33) 2022; 10 Li, Wang, Chen (bib34) 2022; 165 Su, Pang, Tao, Shao, Umar (bib51) 2022; 182 Breiman (bib10) 2001; 45 Meribout (10.1016/j.psep.2024.01.007_bib39) 2020; 75 Svozil (10.1016/j.psep.2024.01.007_bib52) 1997; 39 Pathak (10.1016/j.psep.2024.01.007_bib44) 2018 Harati (10.1016/j.psep.2024.01.007_bib20) 2023; 48 Chi (10.1016/j.psep.2024.01.007_bib12) 2023; 169 Mahesh (10.1016/j.psep.2024.01.007_bib36) 2020; 9 Giunta (10.1016/j.psep.2024.01.007_bib18) 2019 Taylor (10.1016/j.psep.2024.01.007_bib53) 2001; 106 Kampelopoulos (10.1016/j.psep.2024.01.007_bib28) 2020 Elmaz (10.1016/j.psep.2024.01.007_bib17) 2020; 191 Harati (10.1016/j.psep.2024.01.007_bib21) 2023 Eastvedt (10.1016/j.psep.2024.01.007_bib16) 2022; 161 Sabah (10.1016/j.psep.2024.01.007_bib46) 2019; 177 10.1016/j.psep.2024.01.007_bib48 Barradas (10.1016/j.psep.2024.01.007_bib6) 2009 null (10.1016/j.psep.2024.01.007_bib42) 2020; 146 Xu (10.1016/j.psep.2024.01.007_bib58) 2018; 6 Agarap (10.1016/j.psep.2024.01.007_bib2) 2018; 1803 Bickle (10.1016/j.psep.2024.01.007_bib8) 2009; 2 Song (10.1016/j.psep.2024.01.007_bib50) 2017; 251 Noy (10.1016/j.psep.2024.01.007_bib41) 2012; 9 Bachu (10.1016/j.psep.2024.01.007_bib4) 2009; 1 Abbas (10.1016/j.psep.2024.01.007_bib1) 2019; 183 Kim (10.1016/j.psep.2024.01.007_bib29) 2021; 94 Bai (10.1016/j.psep.2024.01.007_bib5) 2015; 45 Aminu (10.1016/j.psep.2024.01.007_bib3) 2017; 208 Ullah (10.1016/j.psep.2024.01.007_bib55) 2023; 23 10.1016/j.psep.2024.01.007_bib38 Bilotu Onoabhagbe (10.1016/j.psep.2024.01.007_bib9) 2020; 13 Raju (10.1016/j.psep.2024.01.007_bib45) 2023 10.1016/j.psep.2024.01.007_bib31 Hong (10.1016/j.psep.2024.01.007_bib22) 2022; 3 10.1016/j.psep.2024.01.007_bib32 Kim (10.1016/j.psep.2024.01.007_bib30) 2023; 330 10.1016/j.psep.2024.01.007_bib35 Mandal (10.1016/j.psep.2024.01.007_bib37) 2012; 39 Cristianini (10.1016/j.psep.2024.01.007_bib14) 2000 Zhang (10.1016/j.psep.2024.01.007_bib61) 2018; 109 10.1016/j.psep.2024.01.007_bib7 Williams (10.1016/j.psep.2024.01.007_bib56) 2013; 18 Yang (10.1016/j.psep.2024.01.007_bib59) 2022; 187 Su (10.1016/j.psep.2024.01.007_bib51) 2022; 182 Çolak (10.1016/j.psep.2024.01.007_bib13) 2021; 45 Xiao (10.1016/j.psep.2024.01.007_bib57) 2019; 146 Li (10.1016/j.psep.2024.01.007_bib34) 2022; 165 Johns (10.1016/j.psep.2024.01.007_bib25) 2009; 24 10.1016/j.psep.2024.01.007_bib26 Ziabakhsh-Ganji (10.1016/j.psep.2024.01.007_bib62) 2014; 113 10.1016/j.psep.2024.01.007_bib27 Li (10.1016/j.psep.2024.01.007_bib33) 2022; 10 Sandberg (10.1016/j.psep.2024.01.007_bib47) 1989; 25 Osarogiagbon (10.1016/j.psep.2024.01.007_bib43) 2021; 147 Moazzeni (10.1016/j.psep.2024.01.007_bib40) 2012; 30 10.1016/j.psep.2024.01.007_bib24 Breiman (10.1016/j.psep.2024.01.007_bib10) 2001; 45 Jain (10.1016/j.psep.2024.01.007_bib23) 1996; 29 Smola (10.1016/j.psep.2024.01.007_bib49) 2004; 14 Grömping (10.1016/j.psep.2024.01.007_bib19) 2009; 63 Czajkowski (10.1016/j.psep.2024.01.007_bib15) 2016; 48 10.1016/j.psep.2024.01.007_bib60 Chen (10.1016/j.psep.2024.01.007_bib11) 2015; 158 Thissen (10.1016/j.psep.2024.01.007_bib54) 2004; 73 |
| References_xml | – volume: 2 start-page: 815 year: 2009 end-page: 818 ident: bib8 article-title: Geological carbon storage publication-title: Nat. Geosci. – volume: 191 year: 2020 ident: bib17 article-title: Predictive modeling of biomass gasification with machine learning-based regression methods publication-title: Energy – volume: 24 start-page: 225 year: 2009 end-page: 232 ident: bib25 article-title: Applied ultrasonic technology in wellbore-leak detection and case histories in Alaska North slope wells publication-title: SPE Prod. Oper. – volume: 187 year: 2022 ident: bib59 article-title: Pipeline leak and volume rate detections through artificial intelligence and vibration analysis publication-title: Measurement – year: 2023 ident: bib21 article-title: Multi-criteria site selection workflow for geological storage of hydrogen in depleted gas fields: a case for the UK publication-title: Int J. Hydrog. Energy – volume: 251 start-page: 26 year: 2017 end-page: 34 ident: bib50 article-title: An efficient instance selection algorithm for k nearest neighbor regression publication-title: Neurocomputing – volume: 73 start-page: 169 year: 2004 end-page: 179 ident: bib54 article-title: Comparing support vector machines to PLS for spectral regression applications publication-title: Chemom. Intell. Lab. Syst. – reference: Julian, J.Y., King, G.E., Johns, J.E., Sack, J.K., Robertson, D.B., 2007. Detecting Ultra-small Leaks With Ultrasonic Leak Detection-Case Histories From the North Slope, Alaska. In SPE International Oil Conference and Exhibition in Mexico (pp. SPE-108906). SPE. – volume: 182 year: 2022 ident: bib51 article-title: Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions? publication-title: Technol. Forecast. Soc. Change – volume: 146 start-page: 479 year: 2019 end-page: 489 ident: bib57 article-title: Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine publication-title: Measurement – volume: 1 start-page: 3531 year: 2009 end-page: 3537 ident: bib4 article-title: Review of failures for wells used for CO publication-title: Energy Procedia – volume: 169 start-page: 398 year: 2023 end-page: 417 ident: bib12 article-title: An intelligent model for early kick detection based on cost-sensitive learning publication-title: Process Saf. Environ. Prot. – volume: 183 start-page: 1104 year: 2019 end-page: 1113 ident: bib1 article-title: Intelligent decisions to stop or mitigate lost circulation based on machine learning publication-title: Energy – volume: 158 start-page: 366 year: 2015 end-page: 377 ident: bib11 article-title: A large national survey of public perceptions of CCS technology in China publication-title: Appl. Energy – reference: James, A., Baines, S., McCollough, S., 2016. Strategic UK CCS Storage Appraisal - WP5A - Bunter Storage Development Plan. – volume: 75 year: 2020 ident: bib39 article-title: Leak detection systems in oil and gas fields: present trends and future prospects publication-title: Flow. Meas. Instrum. – volume: 9 start-page: 220 year: 2012 end-page: 233 ident: bib41 article-title: Modelling large-scale carbon dioxide injection into the Bunter Sandstone in the UK Southern North Sea publication-title: Int. J. Greenh. Gas. Control – reference: Le Guen, Y., Meyer, V., Poupard, O., Houdu, E., Chammas, R., 2009. A Risk-Based Approach for Well Integrity Management Over Long Term in a CO2 Geological Storage Project. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-122510). SPE. – volume: 39 start-page: 3071 year: 2012 end-page: 3080 ident: bib37 article-title: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM publication-title: Expert Syst. Appl. – reference: Lemmon, E.W., 2010. Thermophysical properties of fluid systems. NIST chemistry WebBook. – volume: 177 start-page: 236 year: 2019 end-page: 249 ident: bib46 article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field publication-title: J. Pet. Sci. Eng. – volume: 45 start-page: 556 year: 2015 end-page: 564 ident: bib5 article-title: Well completion and integrity evaluation for CO publication-title: Renew. Sustain. Energy Rev. – volume: 13 start-page: 6551 year: 2020 ident: bib9 article-title: Application of phase change tracking approach in predicting condensate blockage in tight, low, and high permeability reservoirs publication-title: Energies – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: bib49 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 10 start-page: 131 year: 2022 end-page: 141 ident: bib33 article-title: A clinical-oriented non-severe depression diagnosis method based on cognitive behavior of emotional conflict publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 39 start-page: 43 year: 1997 end-page: 62 ident: bib52 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. – volume: 9 start-page: 381 year: 2020 end-page: 386 ident: bib36 article-title: Machine learning algorithms-a review publication-title: Int. J. Sci. Res. – reference: Liu, W., Chen, Z., Hu, Y., 2022. Failure Pressure Prediction of Defective Pipeline Using Finite Element Method and Machine Learning Models. In SPE Annual Technical Conference and Exhibition. OnePetro. – volume: 45 start-page: 478 year: 2021 end-page: 500 ident: bib13 article-title: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks publication-title: Int. J. Energy Res. – volume: 1803 start-page: 08375 year: 2018 ident: bib2 article-title: Deep learning using rectified linear units (relu) publication-title: arXiv Prepr. arXiv – start-page: 92 year: 2018 end-page: 95 ident: bib44 article-title: An assessment of decision tree based classification and regression algorithms publication-title: 2018 3rd Int. Conf. Invent. Comput. Technol. (ICICT) – volume: 25 start-page: 906 year: 1989 end-page: 909 ident: bib47 article-title: The application of a continuous leak detection system to pipelines and associated equipment publication-title: IEEE Trans. Ind. Appl. – volume: 330 year: 2023 ident: bib30 article-title: Multi-lateral horizontal well with dual-tubing system to improve CO publication-title: Appl. Energy – volume: 109 start-page: 44 year: 2018 end-page: 54 ident: bib61 article-title: A novel kNN algorithm with data-driven k parameter computation publication-title: Pattern Recog. Lett. – volume: 18 start-page: 38 year: 2013 end-page: 50 ident: bib56 article-title: Modelling carbon dioxide storage within closed structures in the UK Bunter Sandstone Formation publication-title: Int. J. Greenh. Gas. Control – start-page: 2009 year: 2009 ident: bib6 article-title: Leaks detection in a pipeline using artificial neural networks. " progress in pattern recognition, image analysis, computer vision, and applications: 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, Guadalajara, Jalisco, Mexico, November 15-18, 2009 publication-title: Proc. 14. Springe Berl. Heidelb. – volume: 94 year: 2021 ident: bib29 article-title: The development of leak detection model in subsea gas pipeline using machine learning publication-title: J. Nat. Gas. Sci. Eng. – volume: 23 start-page: 3226 year: 2023 ident: bib55 article-title: Pipeline leakage detection using acoustic emission and machine learning algorithms publication-title: Sensors – volume: 6 start-page: 11634 year: 2018 end-page: 11640 ident: bib58 article-title: Dependent evidence combination based on shearman coefficient and pearson coefficient publication-title: IEEE Access – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib10 article-title: Random forests publication-title: Mach. Learn. – volume: 48 start-page: 26894 year: 2023 end-page: 26910 ident: bib20 article-title: Underground hydrogen storage to balance seasonal variations in energy demand: Impact of well configuration on storage performance in deep saline aquifers publication-title: Int. J. Hydrog. Energy – volume: 29 start-page: 31 year: 1996 end-page: 44 ident: bib23 article-title: Artificial neural networks: A tutorial publication-title: Computer – year: 2019 ident: bib18 article-title: Data driven smart monitoring for pipeline integrity assessment publication-title: Abu Dhabi Int. Pet. Exhib. Conf. OnePetro – volume: 165 start-page: 959 year: 2022 end-page: 968 ident: bib34 article-title: A machine learning methodology for probabilistic risk assessment of process operations: a case of subsea gas pipeline leak accidents publication-title: Process Saf. Environ. Prot. – reference: Yang, Q., Zhao, J., Rourke, M., 2019. Downhole Leak Detection: Introducing A New Wireline Array Noise Tool. In SPE/ICoTA Well Intervention Conference and Exhibition (p. D022S014R002). SPE. – volume: 161 start-page: 409 year: 2022 end-page: 420 ident: bib16 article-title: Detection of faults in subsea pipelines by flow monitoring with regression supervised machine learning publication-title: Process Saf. Environ. Prot. – reference: Segal, M.R., 2004. Machine learning benchmarks and random forest regression. – volume: 113 start-page: 434 year: 2014 end-page: 451 ident: bib62 article-title: Sensitivity of Joule–Thomson cooling to impure CO publication-title: Appl. Energy – start-page: 104 year: 2023 end-page: 109 ident: bib45 article-title: Comparative analysis of different machine learning algorithms on different datasets publication-title: 7th Int. Conf. Intell. Comput. Control Syst. (ICICCS) – volume: 3 year: 2022 ident: bib22 article-title: A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO publication-title: Carbon Capture Sci. Technol. – volume: 147 start-page: 367 year: 2021 end-page: 384 ident: bib43 article-title: Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations publication-title: Process Saf. Environ. Prot. – volume: 106 start-page: 7183 year: 2001 end-page: 7192 ident: bib53 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. – volume: 63 start-page: 308 year: 2009 end-page: 319 ident: bib19 article-title: Variable importance assessment in regression: linear regression versus random forest publication-title: Am. Stat. – reference: Manikonda, K., Hasan, A.R., Obi, C.E., Islam, R., Sleiti, A.K., Abdelrazeq, M.W., Rahman, M.A., 2021. Application of Machine Learning Classification Algorithms for Two-Phase Gas-Liquid Flow Regime Identification., D041S121R004. – volume: 30 start-page: 2097 year: 2012 end-page: 2107 ident: bib40 article-title: Decision making for reduction of nonproductive time through an integrated lost circulation prediction publication-title: Pet. Sci. Technol. – volume: 48 start-page: 458 year: 2016 end-page: 475 ident: bib15 article-title: The role of decision tree representation in regression problems – an evolutionary perspective publication-title: Appl. Soft Comput. – start-page: 1 year: 2020 end-page: 4 ident: bib28 article-title: Machine learning model comparison for leak detection in noisy industrial pipelines publication-title: 9th Int. Conf. Mod. Circuits Syst. Technol. (MOCAST) – reference: Johns, J.E., Aloisio, F., Mayfield, D.R., 2011. Well Integrity Analysis in Gulf of Mexico Wells Using Passive Ultrasonic Leak Detection Method. SPE/ICoTA Well Intervention Conference and Exhibition (pp. SPE-142076). SPE. – reference: . – year: 2000 ident: bib14 article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods – reference: Benge, G., 2009. Improving Wellbore Seal Integrity in CO2 Injection Wells. SPE/IADC Drilling Conference and Exhibition. SPE, 2009. – volume: 146 year: 2020 ident: bib42 article-title: Migration of CO publication-title: J. Environ. Eng. – volume: 208 start-page: 1389 year: 2017 end-page: 1419 ident: bib3 article-title: A review of developments in carbon dioxide storage publication-title: Appl. Energy – ident: 10.1016/j.psep.2024.01.007_bib24 – ident: 10.1016/j.psep.2024.01.007_bib7 doi: 10.2118/119267-MS – volume: 183 start-page: 1104 year: 2019 ident: 10.1016/j.psep.2024.01.007_bib1 article-title: Intelligent decisions to stop or mitigate lost circulation based on machine learning publication-title: Energy doi: 10.1016/j.energy.2019.07.020 – year: 2023 ident: 10.1016/j.psep.2024.01.007_bib21 article-title: Multi-criteria site selection workflow for geological storage of hydrogen in depleted gas fields: a case for the UK publication-title: Int J. Hydrog. Energy – volume: 18 start-page: 38 year: 2013 ident: 10.1016/j.psep.2024.01.007_bib56 article-title: Modelling carbon dioxide storage within closed structures in the UK Bunter Sandstone Formation publication-title: Int. J. Greenh. Gas. Control doi: 10.1016/j.ijggc.2013.06.015 – start-page: 104 year: 2023 ident: 10.1016/j.psep.2024.01.007_bib45 article-title: Comparative analysis of different machine learning algorithms on different datasets publication-title: 7th Int. Conf. Intell. Comput. Control Syst. (ICICCS) – volume: 6 start-page: 11634 year: 2018 ident: 10.1016/j.psep.2024.01.007_bib58 article-title: Dependent evidence combination based on shearman coefficient and pearson coefficient publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2783320 – volume: 94 year: 2021 ident: 10.1016/j.psep.2024.01.007_bib29 article-title: The development of leak detection model in subsea gas pipeline using machine learning publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2021.104134 – volume: 191 year: 2020 ident: 10.1016/j.psep.2024.01.007_bib17 article-title: Predictive modeling of biomass gasification with machine learning-based regression methods publication-title: Energy doi: 10.1016/j.energy.2019.116541 – volume: 2 start-page: 815 year: 2009 ident: 10.1016/j.psep.2024.01.007_bib8 article-title: Geological carbon storage publication-title: Nat. Geosci. doi: 10.1038/ngeo687 – volume: 165 start-page: 959 year: 2022 ident: 10.1016/j.psep.2024.01.007_bib34 article-title: A machine learning methodology for probabilistic risk assessment of process operations: a case of subsea gas pipeline leak accidents publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.029 – volume: 146 start-page: 479 year: 2019 ident: 10.1016/j.psep.2024.01.007_bib57 article-title: Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2019.06.050 – volume: 169 start-page: 398 year: 2023 ident: 10.1016/j.psep.2024.01.007_bib12 article-title: An intelligent model for early kick detection based on cost-sensitive learning publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.10.086 – volume: 29 start-page: 31 year: 1996 ident: 10.1016/j.psep.2024.01.007_bib23 article-title: Artificial neural networks: A tutorial publication-title: Computer doi: 10.1109/2.485891 – volume: 251 start-page: 26 year: 2017 ident: 10.1016/j.psep.2024.01.007_bib50 article-title: An efficient instance selection algorithm for k nearest neighbor regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.018 – start-page: 1 year: 2020 ident: 10.1016/j.psep.2024.01.007_bib28 article-title: Machine learning model comparison for leak detection in noisy industrial pipelines publication-title: 9th Int. Conf. Mod. Circuits Syst. Technol. (MOCAST) – volume: 48 start-page: 458 year: 2016 ident: 10.1016/j.psep.2024.01.007_bib15 article-title: The role of decision tree representation in regression problems – an evolutionary perspective publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.007 – year: 2000 ident: 10.1016/j.psep.2024.01.007_bib14 – year: 2019 ident: 10.1016/j.psep.2024.01.007_bib18 article-title: Data driven smart monitoring for pipeline integrity assessment publication-title: Abu Dhabi Int. Pet. Exhib. Conf. OnePetro – ident: 10.1016/j.psep.2024.01.007_bib48 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.psep.2024.01.007_bib49 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 24 start-page: 225 year: 2009 ident: 10.1016/j.psep.2024.01.007_bib25 article-title: Applied ultrasonic technology in wellbore-leak detection and case histories in Alaska North slope wells publication-title: SPE Prod. Oper. – start-page: 92 year: 2018 ident: 10.1016/j.psep.2024.01.007_bib44 article-title: An assessment of decision tree based classification and regression algorithms publication-title: 2018 3rd Int. Conf. Invent. Comput. Technol. (ICICT) – volume: 177 start-page: 236 year: 2019 ident: 10.1016/j.psep.2024.01.007_bib46 article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.02.045 – volume: 161 start-page: 409 year: 2022 ident: 10.1016/j.psep.2024.01.007_bib16 article-title: Detection of faults in subsea pipelines by flow monitoring with regression supervised machine learning publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.03.049 – volume: 73 start-page: 169 year: 2004 ident: 10.1016/j.psep.2024.01.007_bib54 article-title: Comparing support vector machines to PLS for spectral regression applications publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.01.002 – volume: 9 start-page: 220 year: 2012 ident: 10.1016/j.psep.2024.01.007_bib41 article-title: Modelling large-scale carbon dioxide injection into the Bunter Sandstone in the UK Southern North Sea publication-title: Int. J. Greenh. Gas. Control doi: 10.1016/j.ijggc.2012.03.011 – volume: 13 start-page: 6551 issue: 24 year: 2020 ident: 10.1016/j.psep.2024.01.007_bib9 article-title: Application of phase change tracking approach in predicting condensate blockage in tight, low, and high permeability reservoirs publication-title: Energies doi: 10.3390/en13246551 – ident: 10.1016/j.psep.2024.01.007_bib26 doi: 10.2118/142076-MS – volume: 1 start-page: 3531 year: 2009 ident: 10.1016/j.psep.2024.01.007_bib4 article-title: Review of failures for wells used for CO2 and acid gas injection in Alberta, Canada publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.02.146 – volume: 158 start-page: 366 year: 2015 ident: 10.1016/j.psep.2024.01.007_bib11 article-title: A large national survey of public perceptions of CCS technology in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.046 – ident: 10.1016/j.psep.2024.01.007_bib31 doi: 10.2118/122510-MS – volume: 45 start-page: 478 year: 2021 ident: 10.1016/j.psep.2024.01.007_bib13 article-title: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks publication-title: Int. J. Energy Res. doi: 10.1002/er.5680 – volume: 9 start-page: 381 year: 2020 ident: 10.1016/j.psep.2024.01.007_bib36 article-title: Machine learning algorithms-a review publication-title: Int. J. Sci. Res. – volume: 25 start-page: 906 year: 1989 ident: 10.1016/j.psep.2024.01.007_bib47 article-title: The application of a continuous leak detection system to pipelines and associated equipment publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.41257 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.psep.2024.01.007_bib10 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 39 start-page: 43 year: 1997 ident: 10.1016/j.psep.2024.01.007_bib52 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – volume: 182 year: 2022 ident: 10.1016/j.psep.2024.01.007_bib51 article-title: Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions? publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2022.121798 – volume: 1803 start-page: 08375 year: 2018 ident: 10.1016/j.psep.2024.01.007_bib2 article-title: Deep learning using rectified linear units (relu) publication-title: arXiv Prepr. arXiv – volume: 109 start-page: 44 year: 2018 ident: 10.1016/j.psep.2024.01.007_bib61 article-title: A novel kNN algorithm with data-driven k parameter computation publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2017.09.036 – ident: 10.1016/j.psep.2024.01.007_bib27 doi: 10.2523/108906-MS – ident: 10.1016/j.psep.2024.01.007_bib60 doi: 10.2118/194264-MS – volume: 75 year: 2020 ident: 10.1016/j.psep.2024.01.007_bib39 article-title: Leak detection systems in oil and gas fields: present trends and future prospects publication-title: Flow. Meas. Instrum. doi: 10.1016/j.flowmeasinst.2020.101772 – volume: 48 start-page: 26894 year: 2023 ident: 10.1016/j.psep.2024.01.007_bib20 article-title: Underground hydrogen storage to balance seasonal variations in energy demand: Impact of well configuration on storage performance in deep saline aquifers publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2023.03.363 – volume: 146 year: 2020 ident: 10.1016/j.psep.2024.01.007_bib42 article-title: Migration of CO2 through carbonate cores: effect of salinity, pressure, and cyclic brine-CO2 injection publication-title: J. Environ. Eng. – ident: 10.1016/j.psep.2024.01.007_bib38 doi: 10.2118/208214-MS – volume: 187 year: 2022 ident: 10.1016/j.psep.2024.01.007_bib59 article-title: Pipeline leak and volume rate detections through artificial intelligence and vibration analysis publication-title: Measurement doi: 10.1016/j.measurement.2021.110368 – start-page: 2009 year: 2009 ident: 10.1016/j.psep.2024.01.007_bib6 publication-title: Proc. 14. Springe Berl. Heidelb. – volume: 30 start-page: 2097 year: 2012 ident: 10.1016/j.psep.2024.01.007_bib40 article-title: Decision making for reduction of nonproductive time through an integrated lost circulation prediction publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2010.495961 – volume: 147 start-page: 367 year: 2021 ident: 10.1016/j.psep.2024.01.007_bib43 article-title: Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.09.038 – volume: 113 start-page: 434 year: 2014 ident: 10.1016/j.psep.2024.01.007_bib62 article-title: Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.07.059 – volume: 39 start-page: 3071 year: 2012 ident: 10.1016/j.psep.2024.01.007_bib37 article-title: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.170 – volume: 330 year: 2023 ident: 10.1016/j.psep.2024.01.007_bib30 article-title: Multi-lateral horizontal well with dual-tubing system to improve CO2 storage security and reduce CCS cost publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120368 – ident: 10.1016/j.psep.2024.01.007_bib32 – volume: 3 year: 2022 ident: 10.1016/j.psep.2024.01.007_bib22 article-title: A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future publication-title: Carbon Capture Sci. Technol. – volume: 63 start-page: 308 year: 2009 ident: 10.1016/j.psep.2024.01.007_bib19 article-title: Variable importance assessment in regression: linear regression versus random forest publication-title: Am. Stat. doi: 10.1198/tast.2009.08199 – volume: 208 start-page: 1389 year: 2017 ident: 10.1016/j.psep.2024.01.007_bib3 article-title: A review of developments in carbon dioxide storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.09.015 – volume: 45 start-page: 556 year: 2015 ident: 10.1016/j.psep.2024.01.007_bib5 article-title: Well completion and integrity evaluation for CO2 injection wells publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.02.022 – volume: 10 start-page: 131 year: 2022 ident: 10.1016/j.psep.2024.01.007_bib33 article-title: A clinical-oriented non-severe depression diagnosis method based on cognitive behavior of emotional conflict publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2022.3152091 – volume: 23 start-page: 3226 issue: 6 year: 2023 ident: 10.1016/j.psep.2024.01.007_bib55 article-title: Pipeline leakage detection using acoustic emission and machine learning algorithms publication-title: Sensors doi: 10.3390/s23063226 – volume: 106 start-page: 7183 year: 2001 ident: 10.1016/j.psep.2024.01.007_bib53 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900719 – ident: 10.1016/j.psep.2024.01.007_bib35 doi: 10.2118/210406-MS |
| SSID | ssj0001271 |
| Score | 2.5003047 |
| Snippet | The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 99 |
| SubjectTerms | Geological CO2 sequestration Injection well Leak detection Machine learning |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QLsAB8Zp4KwduULYmadoe0QRCSDwkQOJWpWkyBqOrtgHiwj_gP2O36QYSmhDHpHZTxUlsp_ZnQvYlT0FrSuUxzUJwUDjzYuZDk0cmVkHGlY_ZyBeX8uxOnN8H93OkU-fCYFilO_urM708rV1Py81mq-j1WjdgHICxyxCkCy0F9NuFCLGKwdHHNMzDZ6XThcQeUrvEmSrGqxgZxKxkooTuxJKyvyun-Ze8UO9vqt__pnxOl8mSsxrpcfVhK2TO5Ktk8RuW4CppnkxT1oDU7dnRGvm8nuYGUOUwSOjA0ldwk8Hvp89lPKWhroBEl6p-dzDsjR-eRxQYaeeK4bMnWgzxrw5KEt6TUT3Beq5SOWkvp10z8Mro7BqOFzofTcWD14SjdXJ3enLbOfNcEQZPcyHGHotULFOrfWNDFaRplvpSI8a7SUMWRDZgRoq25dwysBa0BoMsio21sW-lkbD7m6SRD3KzQSh4eqnIBEfMepFlKlJaZTIIQ9CePFZ2k_j17CfaIZRjoYx-UoeiPSYosQQllrT9BCS2SQ4mPEWFzzGTOqiFmvxYZQkokJl8h5MV8Idhtv45zDZZwFYV4rZDGuPhi9kFm2ec7pWL-gswlwIX priority: 102 providerName: Elsevier |
| Title | Performance analysis of various machine learning algorithms for CO2 leak prediction and characterization in geo-sequestration injection wells |
| URI | https://dx.doi.org/10.1016/j.psep.2024.01.007 https://doi.org/10.1016/j.psep.2024.01.007 |
| UnpaywallVersion | publishedVersion |
| Volume | 183 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1744-3598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001271 issn: 1744-3598 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1744-3598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001271 issn: 1744-3598 databaseCode: ACRLP dateStart: 19961101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1744-3598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001271 issn: 1744-3598 databaseCode: .~1 dateStart: 19961101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1744-3598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001271 issn: 1744-3598 databaseCode: AIKHN dateStart: 19961101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1744-3598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001271 issn: 1744-3598 databaseCode: AKRWK dateStart: 19961101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegPSAOMAYTQ6zygRu4WvyV5FhVm7oBpUJUGqfIduzuo0uqJmUaB_4D_meeE7cbCKZxytd7saL3HP9sv_d7CL2RTMOoKRWhhsYwQWGUpDSCS5bYVImcqchnI38cy9GUH5-Ik0CT43Nhftu_b-KwFpX1vJKUN_SaPnG8KwXg7g7qTseTwdd2EYU13bol1ouJSGjIhOSEiaacWjhviuNGIEs4QKWQRfP3hv41Uj1aFQt1faXm81sj0eHTtqRR1RAY-gCUi_6q1n3z_Q96x_t95BZ6EgApHrQe9Aw9sMU2enyLpnAb7RzcZMOBaPgdVM_Rz8lN2gFWgd4Elw5_gxl4uarwZROqaXGoTTHDaj4rl2f16WWFQREPP1H_7AIvln7DyDsJvCfHZkMj3WaJ4rMCz2xJmsDvNdMv3Dy3rY5fgaxeoOnhwZfhiIT6DsQwzmtCE5VK7UxkXayE1rmOpPH08VbHVCROUCv5vmPMUQAixgDWS1LrXBo5aSX8WHZQpygL-xJhmERqnnPm6fB5nqtEGZVLEccwMLNUuV0UrW2ZmUB-7mtwzLN1lNt55m2QeRtk-1EGNthFbzc6i5b6405psXaRLICXFpRkYO079d5t_Okezbz6P_HXqFMvV3YPgFOte-hh_0fUQ93B8POHiT8evR-Ne6Ef_QJXfhTR |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHIBDRXkICrQ-cKPpEttxkiNagba8pYLEzXIce1lYstHuAuql_4D_zEzi7IKEUMUx9kwceWzPjDPzDSE7kmegNaUOmGExOCicBSkL4ZEnNtVRznWI2cinZ7JzJY6uo-sZ0m5yYTCs0p_99Zlenda-peVns1X2eq0_YByAscsQpAstBfDb50TEYvTAfv2bxnmErPK6kDpAcp85Uwd5lSOLoJVMVNidWFP2fe00_1CU-u-T7vdfaZ_DJfLFm410v_6yr2TGFstk8RWY4DJZO5jmrAGp37SjFfJ8MU0OoNqDkNCBo4_gJ4PjT--rgEpLfQWJLtX97mDYG9_cjygw0vY5w747Wg7xtw6KEt6TUzMBe65zOWmvoF07CKrw7AaPFxpvbc2D94SjVXJ1eHDZ7gS-CkNguBDjgCU6lZkzoXWxjrIsz0JpEOTdZjGLEhcxK8We49wxMBeMAYssSa1zaeiklbD918hsMSjsOqHg6mUiFxxB60We60QbncsojkF98lS7DRI2s6-MhyjHShl91cSi3SqUmEKJqb1QgcQ2yO6Ep6wBOj6kjhqhqjfLTIEG-ZDv52QF_Mcw3z45zA8y37k8PVEnv8-ON8kC9tTxbltkdjx8sNtgAI2z79UCfwEzqQU6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swELZQOSAOj-U99ECAfOAGRsRbkiNCIITEcqASnCLbsctSkqpJQfAf-M-ME7csAgS3LDOxohnbY3u-bxDakEzDrCkVoYbGsEBhlKQ0gluW2FSJnKnIo5GPT-Rhlx9diItAk-OxMO_O75s8rEFlPa8k5Q29pgeOT0sBcXcHTXdPznYv200U1nTrllgvJiKhAQnJCRNNObVw3RTHjUCWcAiVAorm84a-mqlmRsVAPT6ofv_NTHQw15Y0qhoCQ5-Acrs9qvW2efpA7_izn5xHf0JAindbD1pAU7ZYRLNvaAoX0dL-KxoORMNwUP1Fz2evsAOsAr0JLh2-hxV4OarwXZOqaXGoTdHDqt8rh9f11V2FQRHvnVL_7hYPhv7AyDsJfCfHZkIj3aJE8XWBe7YkTeL3mOkXHt7YVsfvQFb_UPdg_3zvkIT6DsQwzmtCE5VK7UxkXayE1rmOpPH08VbHVCROUCv5jmPMUQhEjIFYL0mtc2nkpJUwsCyhTlEW9j_CsIjUPOfM0-HzPFeJMiqXIo5hYmapcssoGtsyM4H83Nfg6GfjLLebzNsg8zbIdqIMbLCMNic6g5b641tpMXaRLAQvbVCSgbW_1dua-NMPmln5nfgq6tTDkV2DwKnW66HHvADC5hCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+various+machine+learning+algorithms+for+CO2+leak+prediction+and+characterization+in+geo-sequestration+injection+wells&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Harati%2C+Saeed&rft.au=Rezaei+Gomari%2C+Sina&rft.au=Rahman%2C+Mohammad+Azizur&rft.au=Hassan%2C+Rashid&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-5820&rft.eissn=1744-3598&rft.volume=183&rft.spage=99&rft.epage=110&rft_id=info:doi/10.1016%2Fj.psep.2024.01.007&rft.externalDocID=S0957582024000090 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon |