Spinel-containing alumina-based refractory castables
Due to their high corrosion resistance to basic slags, either pre-formed or in situ spinel (MgAl 2O 4) containing refractory castables are nowadays widely used as steel ladle linings. Nevertheless, whereas the pre-formed spinel castables present high volumetric stability and a well-known processing...
Saved in:
| Published in | Ceramics international Vol. 37; no. 6; pp. 1705 - 1724 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0272-8842 1873-3956 |
| DOI | 10.1016/j.ceramint.2011.03.049 |
Cover
| Abstract | Due to their high corrosion resistance to basic slags, either pre-formed or
in situ spinel (MgAl
2O
4) containing refractory castables are nowadays widely used as steel ladle linings. Nevertheless, whereas the pre-formed spinel castables present high volumetric stability and a well-known processing technology, the
in situ spinel castables still require further understanding due to the challenges related to magnesia hydration and their expansive behaviour at high temperatures. Therefore, the objective of this paper is to review the knowledge already available for high-alumina spinel-containing castables (preformed and
in situ) in order to provide a support for novel technological developments in the area. The main variables considered are the spinel content and grain size, the effect of calcium aluminate cement and hydratable alumina on the general castables’ properties, the influence of different alumina and magnesia sources and the silica fume content. Nowadays research subjects, including the use of mineralising compounds, the addition of nano-scaled particles and the evaluation of the effect of expansion under constraint will also be addressed, pointing out alternatives for the design of high-performance alumina-magnesia refractory castables. |
|---|---|
| AbstractList | Due to their high corrosion resistance to basic slags, either pre-formed or
in situ spinel (MgAl
2O
4) containing refractory castables are nowadays widely used as steel ladle linings. Nevertheless, whereas the pre-formed spinel castables present high volumetric stability and a well-known processing technology, the
in situ spinel castables still require further understanding due to the challenges related to magnesia hydration and their expansive behaviour at high temperatures. Therefore, the objective of this paper is to review the knowledge already available for high-alumina spinel-containing castables (preformed and
in situ) in order to provide a support for novel technological developments in the area. The main variables considered are the spinel content and grain size, the effect of calcium aluminate cement and hydratable alumina on the general castables’ properties, the influence of different alumina and magnesia sources and the silica fume content. Nowadays research subjects, including the use of mineralising compounds, the addition of nano-scaled particles and the evaluation of the effect of expansion under constraint will also be addressed, pointing out alternatives for the design of high-performance alumina-magnesia refractory castables. Due to their high corrosion resistance to basic slags, either pre-formed or in situ spinel (MgAl2O4) containing refractory castables are nowadays widely used as steel ladle linings. Nevertheless, whereas the pre-formed spinel castables present high volumetric stability and a well-known processing technology, the in situ spinel castables still require further understanding due to the challenges related to magnesia hydration and their expansive behaviour at high temperatures. Therefore, the objective of this paper is to review the knowledge already available for high-alumina spinel-containing castables (preformed and in situ) in order to provide a support for novel technological developments in the area. The main variables considered are the spinel content and grain size, the effect of calcium aluminate cement and hydratable alumina on the general castables' properties, the influence of different alumina and magnesia sources and the silica fume content. Nowadays research subjects, including the use of mineralising compounds, the addition of nano-scaled particles and the evaluation of the effect of expansion under constraint will also be addressed, pointing out alternatives for the design of high-performance alumina-magnesia refractory castables. |
| Author | Braulio, M.A.L. Rigaud, M. Parr, C. Pandolfelli, V.C. Buhr, A. |
| Author_xml | – sequence: 1 givenname: M.A.L. surname: Braulio fullname: Braulio, M.A.L. organization: Federal University of São Carlos Materials Engineering Department Materials Microstructure Engineering Group km 235, Rod. Washington Luís, 13565-905, São Carlos, SP, Brazil (FIRE Associate Laboratory) – sequence: 2 givenname: M. surname: Rigaud fullname: Rigaud, M. organization: École Polytechnique, Campus Université de Montréal Montréal, QC, H3C 3A7, Canada – sequence: 3 givenname: A. surname: Buhr fullname: Buhr, A. organization: Almatis GmbH, Frankfurt Main, Germany – sequence: 4 givenname: C. surname: Parr fullname: Parr, C. organization: Kerneos, Paris, France – sequence: 5 givenname: V.C. surname: Pandolfelli fullname: Pandolfelli, V.C. email: vicpando@power.ufscar.br organization: Federal University of São Carlos Materials Engineering Department Materials Microstructure Engineering Group km 235, Rod. Washington Luís, 13565-905, São Carlos, SP, Brazil (FIRE Associate Laboratory) |
| BookMark | eNqFkE1LAzEQhoNUsFb_gvTmadd87Gaz4EEpfkHBg3oOs8mspGyzNUmF_ntTqhcvPQ0M7_My85yTiR89EnLFaMkokzer0mCAtfOp5JSxkoqSVu0JmTLViEK0tZyQKeUNL5Sq-Bk5j3FFM9hWdEqqt43zOBRm9Amcd_5zDsM2l0HRQUQ7D9gHMGkMu7mBmKAbMF6Q0x6GiJe_c0Y-Hh_eF8_F8vXpZXG_LIyoqlQwaw10pldMUeQUAXnLbdv2WIua2Zp3yAx2QlBlm15SCdzIJi9l23SS1WJGrg-9mzB-bTEmvXbR4DCAx3EbtWola7hiNCdvD0kTxhjzzdq4BMnlrwK4QTOq9670Sv-50ntXmgqdXWVc_sM3wa0h7I6DdwcQs4Zvh0FH49AbtC6gSdqO7ljFDxCrivY |
| CitedBy_id | crossref_primary_10_1007_s40831_024_00804_7 crossref_primary_10_1016_j_ceramint_2024_12_417 crossref_primary_10_1016_j_jeurceramsoc_2024_117099 crossref_primary_10_1016_j_matchemphys_2015_01_060 crossref_primary_10_1016_j_jeurceramsoc_2023_01_023 crossref_primary_10_3390_ma18020405 crossref_primary_10_1016_j_ceramint_2011_08_011 crossref_primary_10_1016_j_matchemphys_2015_06_047 crossref_primary_10_1007_s13762_021_03553_2 crossref_primary_10_1007_s41779_018_0281_5 crossref_primary_10_4028_p_600l3p crossref_primary_10_1016_j_ceramint_2020_10_001 crossref_primary_10_1016_j_ceramint_2016_04_118 crossref_primary_10_1016_j_ceramint_2019_04_088 crossref_primary_10_1016_j_ceramint_2025_02_251 crossref_primary_10_1016_j_ceramint_2024_12_410 crossref_primary_10_1016_j_jeurceramsoc_2012_11_011 crossref_primary_10_1111_jace_18009 crossref_primary_10_1016_j_ceramint_2012_02_066 crossref_primary_10_1016_j_oceram_2023_100453 crossref_primary_10_3390_ceramics3010015 crossref_primary_10_1016_j_ceramint_2012_11_028 crossref_primary_10_1016_j_ceramint_2024_12_140 crossref_primary_10_1016_j_ceramint_2014_06_092 crossref_primary_10_1016_j_jmrt_2022_09_089 crossref_primary_10_1016_j_conbuildmat_2018_04_200 crossref_primary_10_1080_21870764_2018_1484621 crossref_primary_10_1016_j_jeurceramsoc_2016_11_018 crossref_primary_10_4028_www_scientific_net_SSP_325_181 crossref_primary_10_1016_j_ceramint_2020_07_102 crossref_primary_10_1016_j_ceramint_2019_10_193 crossref_primary_10_1016_j_jcou_2017_12_015 crossref_primary_10_1016_j_ceramint_2017_05_330 crossref_primary_10_1038_srep04333 crossref_primary_10_1016_j_ceramint_2024_06_159 crossref_primary_10_1016_j_ceramint_2021_12_363 crossref_primary_10_1016_j_matdes_2017_03_054 crossref_primary_10_1016_j_ceramint_2020_04_084 crossref_primary_10_1080_21870764_2019_1597957 crossref_primary_10_3390_min10090835 crossref_primary_10_1111_ijac_14271 crossref_primary_10_1016_j_ceramint_2021_02_198 crossref_primary_10_1016_j_jmrt_2021_09_077 crossref_primary_10_1007_s12540_024_01820_8 crossref_primary_10_1016_j_jmrt_2023_06_044 crossref_primary_10_1016_j_ceramint_2016_05_027 crossref_primary_10_1016_j_ceramint_2018_09_165 crossref_primary_10_1016_j_ceramint_2021_11_056 crossref_primary_10_1016_j_ceramint_2016_12_091 crossref_primary_10_1111_ijac_14036 crossref_primary_10_1016_j_ijrmhm_2013_05_020 crossref_primary_10_3390_min14111097 crossref_primary_10_1007_s11666_022_01395_z crossref_primary_10_3390_ma15030793 crossref_primary_10_1016_j_ceramint_2015_05_063 crossref_primary_10_1016_j_ceramint_2019_07_350 crossref_primary_10_1111_ijac_14936 crossref_primary_10_4028_www_scientific_net_SSP_281_137 crossref_primary_10_1016_j_ceramint_2021_10_103 crossref_primary_10_1016_j_ceramint_2021_01_227 crossref_primary_10_1016_j_jmrt_2024_01_227 crossref_primary_10_1016_j_jallcom_2018_05_095 crossref_primary_10_3390_ma17246173 crossref_primary_10_1016_j_ceramint_2022_07_321 crossref_primary_10_1016_j_ceramint_2017_12_100 crossref_primary_10_1016_j_jeurceramsoc_2021_11_016 crossref_primary_10_3390_su151813952 crossref_primary_10_1016_j_ceramint_2020_08_218 crossref_primary_10_1016_j_ceramint_2016_08_041 crossref_primary_10_1016_j_ceramint_2024_10_190 crossref_primary_10_3390_ma16041707 crossref_primary_10_1016_j_ceramint_2018_07_265 crossref_primary_10_3390_app12020704 crossref_primary_10_1016_j_ceramint_2017_02_082 crossref_primary_10_1007_BF03401109 crossref_primary_10_1016_j_ceramint_2015_12_008 crossref_primary_10_1016_j_ceramint_2024_03_269 crossref_primary_10_1016_j_prostr_2022_04_019 crossref_primary_10_3390_ceramics5010013 crossref_primary_10_1016_j_jeurceramsoc_2023_04_043 crossref_primary_10_1016_j_cemconres_2015_09_019 crossref_primary_10_1007_s11665_021_06292_0 crossref_primary_10_1016_j_ceramint_2015_12_134 crossref_primary_10_2139_ssrn_4200032 crossref_primary_10_1111_ijac_13167 crossref_primary_10_1111_ijac_14894 crossref_primary_10_1007_s41779_017_0067_1 crossref_primary_10_4028_www_scientific_net_SSP_325_174 crossref_primary_10_1111_ijac_14770 crossref_primary_10_1016_j_ceramint_2018_03_056 crossref_primary_10_1016_j_ceramint_2018_05_201 crossref_primary_10_1016_j_ceramint_2023_11_117 crossref_primary_10_4028_www_scientific_net_MSF_820_143 crossref_primary_10_1016_j_ceramint_2024_08_114 crossref_primary_10_1016_j_ceramint_2023_11_371 crossref_primary_10_1016_j_ceramint_2011_12_039 crossref_primary_10_1515_znb_2017_0079 crossref_primary_10_1016_j_ceramint_2012_03_070 crossref_primary_10_1016_j_ceramint_2018_09_261 crossref_primary_10_1002_adem_201100222 crossref_primary_10_1016_j_ceramint_2020_04_298 crossref_primary_10_1016_j_jeurceramsoc_2024_04_037 crossref_primary_10_1111_jace_15337 crossref_primary_10_1016_j_ceramint_2023_08_077 crossref_primary_10_1088_1757_899X_1091_1_012057 crossref_primary_10_1016_j_ceramint_2020_05_016 crossref_primary_10_1080_03019233_2023_2167368 crossref_primary_10_17073_1683_4518_2019_5_69_73 crossref_primary_10_1111_jace_18683 crossref_primary_10_1016_j_ceramint_2014_11_104 crossref_primary_10_1111_ijac_14127 crossref_primary_10_1016_j_ceramint_2016_03_121 crossref_primary_10_1051_metal_2013081 crossref_primary_10_1007_s42461_020_00344_0 crossref_primary_10_1016_j_ceramint_2019_05_135 crossref_primary_10_1002_srin_202400202 crossref_primary_10_1016_j_ceramint_2015_08_103 crossref_primary_10_1016_j_ceramint_2021_08_087 crossref_primary_10_1016_j_ceramint_2019_03_007 crossref_primary_10_1016_j_ceramint_2020_01_134 crossref_primary_10_1149_1945_7111_ab6b0d crossref_primary_10_1007_s42243_022_00858_5 crossref_primary_10_1016_j_ceramint_2017_04_053 crossref_primary_10_1016_j_ceramint_2017_04_174 crossref_primary_10_1016_j_ceramint_2024_08_065 crossref_primary_10_1111_ijac_14907 crossref_primary_10_1016_j_ceramint_2014_09_090 crossref_primary_10_1016_j_conbuildmat_2023_131736 crossref_primary_10_1111_ijac_12608 crossref_primary_10_4028_www_scientific_net_SSP_321_131 crossref_primary_10_1111_ijac_15040 crossref_primary_10_1016_j_ceramint_2021_10_065 crossref_primary_10_1016_j_ceramint_2012_01_082 crossref_primary_10_1016_j_matdes_2016_07_095 crossref_primary_10_1016_j_ceramint_2016_09_005 crossref_primary_10_1016_j_jeurceramsoc_2023_09_036 crossref_primary_10_3390_ma14113050 crossref_primary_10_1016_j_ceramint_2024_11_353 crossref_primary_10_1016_j_jeurceramsoc_2018_05_002 crossref_primary_10_1007_s10854_015_3796_3 crossref_primary_10_1016_j_ceramint_2021_11_196 crossref_primary_10_1016_j_jeurceramsoc_2020_12_014 crossref_primary_10_1016_j_matpr_2022_07_108 crossref_primary_10_3390_ma15196809 crossref_primary_10_1016_j_ceramint_2023_10_227 crossref_primary_10_1016_j_ceramint_2024_08_492 crossref_primary_10_1016_j_conbuildmat_2024_136219 crossref_primary_10_1016_j_ceramint_2019_08_282 crossref_primary_10_3390_ma15041363 crossref_primary_10_1016_j_ceramint_2025_01_271 crossref_primary_10_1007_s42411_020_0096_6 crossref_primary_10_1016_j_corsci_2016_04_007 crossref_primary_10_1111_ijac_12322 crossref_primary_10_1007_s40145_018_0274_4 crossref_primary_10_1016_j_ceramint_2022_05_153 crossref_primary_10_1016_j_ceramint_2021_06_159 crossref_primary_10_1016_j_ceramint_2023_06_119 crossref_primary_10_1088_1742_6596_1393_1_012134 crossref_primary_10_1016_j_ceramint_2024_06_419 crossref_primary_10_1111_ijac_12427 crossref_primary_10_1016_j_ceramint_2019_05_019 crossref_primary_10_1111_ijac_12701 crossref_primary_10_1016_j_ceramint_2024_03_225 crossref_primary_10_1016_j_ceramint_2023_01_211 crossref_primary_10_1016_j_oceram_2023_100503 crossref_primary_10_3389_fchem_2022_945596 crossref_primary_10_1007_s12649_022_01677_1 crossref_primary_10_1016_j_jeurceramsoc_2019_11_081 crossref_primary_10_1016_j_jeurceramsoc_2017_02_025 crossref_primary_10_1016_j_oceram_2023_100467 crossref_primary_10_1088_2053_1591_aaf967 crossref_primary_10_1016_j_finel_2022_103762 crossref_primary_10_1016_j_matchemphys_2020_123844 crossref_primary_10_3390_ceramics3010004 crossref_primary_10_1016_j_ceramint_2022_10_061 crossref_primary_10_1007_s10973_018_7618_8 crossref_primary_10_1016_j_ceramint_2022_02_077 crossref_primary_10_1016_j_ceramint_2022_02_236 crossref_primary_10_1016_j_jeurceramsoc_2017_10_018 crossref_primary_10_1111_jace_17980 crossref_primary_10_3390_ma15103425 crossref_primary_10_1016_j_renene_2020_11_077 crossref_primary_10_1111_ijac_14699 crossref_primary_10_1016_j_ceramint_2016_05_206 crossref_primary_10_1111_ijac_14213 crossref_primary_10_1111_ijac_13881 crossref_primary_10_1016_j_apacoust_2024_109964 crossref_primary_10_1016_j_ceramint_2014_12_151 crossref_primary_10_1016_j_ceramint_2021_07_110 |
| Cites_doi | 10.1179/095066001101528439 10.1016/S0272-8842(02)00047-0 10.1179/174328008X254358 10.1111/j.1151-2916.2003.tb03589.x 10.1111/j.1151-2916.2003.tb03630.x 10.1016/S0022-0248(01)02217-5 10.1111/j.1551-2916.2009.02934.x 10.1111/j.1151-2916.2000.tb01650.x 10.1111/j.1151-2916.1998.tb02719.x 10.1016/S0955-2219(97)00182-9 10.1016/j.jeurceramsoc.2007.01.016 10.1111/j.1551-2916.2006.00932.x 10.1016/j.jeurceramsoc.2007.03.027 10.1016/j.jeurceramsoc.2008.05.014 10.1007/BF00808060 10.1016/j.ceramint.2009.05.031 10.1111/j.1151-2916.1996.tb08150.x 10.1021/j150566a006 10.1179/096797804225012666 10.1016/S0272-8842(02)00046-9 10.1007/BF00354672 10.1016/j.jeurceramsoc.2009.03.024 10.1016/S0032-5910(00)00208-4 10.1201/9780203026328.ch5 10.1016/S0272-8842(01)00071-2 10.1016/j.ceramint.2004.06.025 10.1111/j.1151-2916.1957.tb12540.x 10.1016/j.msea.2004.05.074 10.1016/j.ceramint.2004.03.046 10.1111/j.1151-2916.1961.tb13724.x 10.1016/S0955-2219(02)00166-8 10.1111/j.1151-2916.2002.tb00569.x 10.1111/j.1551-2916.2008.02566.x 10.1016/j.jmatprotec.2009.05.013 10.1111/j.1151-2916.1996.tb08088.x 10.1016/S0167-577X(02)00447-0 10.1111/j.1151-2916.2000.tb01579.x 10.1179/096797801225000888 10.1111/j.1551-2916.2005.00372.x 10.1016/S0272-8842(01)00121-3 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ltd and Techna Group S.r.l. |
| Copyright_xml | – notice: 2011 Elsevier Ltd and Techna Group S.r.l. |
| DBID | AAYXX CITATION 7QF 7QQ 7SE 7SR 8FD JG9 |
| DOI | 10.1016/j.ceramint.2011.03.049 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Ceramic Abstracts Technology Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3956 |
| EndPage | 1724 |
| ExternalDocumentID | 10_1016_j_ceramint_2011_03_049 S0272884211001714 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QQ 7SE 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c344t-1ddcabcf8180e20eae292d99fe5351d52be1ceb3308d7f606a2c67be1697b6153 |
| IEDL.DBID | .~1 |
| ISSN | 0272-8842 |
| IngestDate | Sat Sep 27 22:38:03 EDT 2025 Wed Oct 01 01:44:55 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Fri Feb 23 02:16:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Spinels (D) Refractories (E) |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-1ddcabcf8180e20eae292d99fe5351d52be1ceb3308d7f606a2c67be1697b6153 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 896172810 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_896172810 crossref_citationtrail_10_1016_j_ceramint_2011_03_049 crossref_primary_10_1016_j_ceramint_2011_03_049 elsevier_sciencedirect_doi_10_1016_j_ceramint_2011_03_049 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-08-01 |
| PublicationDateYYYYMMDD | 2011-08-01 |
| PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Ceramics international |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lu (bib0435) 2008; 53 An, Chan, Soni (bib0255) 1996; 31 de Sá, Lee (bib0430) 2007 Zhang, Lee (bib0115) 2004 Cunha-Duncan, Bradt (bib0390) 2002; 85 Sarpoolaky, Ahari, Lee (bib0380) 2002; 28 Rigaud, Palco, wang (bib0175) 1995 Jayaseelan, Zhang, Hashimoto, Lee (bib0200) 2007; 27 T. R. Lipinski, C. Tontrup, The use of nano-scaled alumina in alumina-based refractory materials, in Buhr (bib0140) 1996; 116 Kiyota (bib0180) 2007 Klan, Köster, Reuter, Wethkamp (bib0065) 1992 Myhre, Sandberg, Hundere (bib0385) 1997 Sugawara, Asano (bib0510) 2005 Kriechbaum, Gnauck, Routschka (bib0145) 1994 Lee, Vieira, Zhang, Ahari, Sarpoolaky, Parr (bib0465) 2001; 46 Dresden, Germany, 2007, pp. 290-293. Nanba, Kaneshige, Hamazaki, Nishio, Ebisawa (bib0495) 1996; 16 Callister (bib0010) 2000 Oliveira, Studart, Pileggi, Pandolfelli (bib0445) 2000 Dekkers, Woensdregt (bib0185) 2002; 236 E. Y. Sako, M. A. L. Braulio, P. O. Brant, V. C. Pandolfelli, Cement bonded high alumina refractory castables containing pre-formed and in situ spinel, accepted for publication in Ceram. Int. Kiyoto, Japan, 1995, pp. 171-178. Soudier (bib0335) 2005 Zawrah, Kheshen (bib0350) 2002; 101 Kriechbaum, Wöhrmeyer, Routschka (bib0050) 1992 Nagai, Matsumoto, Isobe (bib0470) 1990; 10 Fujii, Furusato, Takita (bib0045) 1999; 12 Kockegey-Lorenz, Büchel, Buhr, Aroni, Racher (bib0290) 2004 Vázquez, Caballero, Pena (bib0480) 2003; 86 Khalil (bib0285) 2004; 103 Dresden, Germany, 2007, pp. 391-393. Zhang, Jayaseelan, Bhattacharya, Lee (bib0205) 2006; 89 Bradt (bib0020) 2004; 9 O Zhang, Li (bib0410) 2005; 31 Ko (bib0150) 2002; 28 Naigai, Matsumoto, Isobe, Nishiumi (bib0100) 1992; 12 Nandi, Grag, Chattoraj, Mukhopahyay (bib0475) 2000; 31 Braulio, Bittencourt, Pandolfelli (bib0215) 2008; 28 Mori, Watanabe, Yoshimura, Oguchi, Kawakami, Matsuo (bib0125) 1990; 69 Fujiyoshi (bib0190) 2002; 22 Bartha (bib0035) 1984 Sako, Braulio, Milanez, Brant, Pandolfelli (bib0300) 2009; 209 Chan, Ko (bib0260) 1998; 81 Braulio, Milanez, Sako, Bittencourt, Pandolfelli (bib0220) 2007; 86 Eitel (bib0055) 1990 Na, Chan (bib0270) 1996; 79 Yamamura, Kubota, Kaneshige, Nanba (bib0110) 1994; 13 Ko, Lay (bib0250) 2000; 83 nano-powder by mechanical alloying,, in J. Mori, Y. Toritani, S. Tanaka, Development of alumina-magnesia castable for steel ladle, in Sato, Takata, Koga, Iwamoto (bib0275) 1999; 19 Moore, Monton, Caballero (bib0030) 1993 Mori (bib0075) 1995; 15 B. Myhre, Microsilica in refractory castables - How does microsilica quality influence performance?, in Kopanda, MacZura (bib0225) 1990 K. Changming, N. Yuee, L. Yangzhen, L. Nan, Preparation of MgAl Nakagawa, Enomoto, Yi, Asano (bib0165) 1995 Jono, Mori, Toritani (bib0400) 1996; 16 Auvray, Gault, Huger (bib0235) 2007; 27 Nagasoe, Tsurumoto, Kitamura (bib0090) 1991; 11 Vázquez, Caballero, Pena (bib0485) 2005; 88 Molin, Molin, Podworny (bib0155) 2005 Zawrah (bib0355) 2004; 382 Razouk, Mikhail (bib0310) 1958; 62 Kobayashi, Kataoka, Sakamoto, Kifune (bib0085) 1997; 17 Braulio, Piva, Silva, Pandolfelli (bib0420) 2009; 92 Ko (bib0120) 2002; 6 Bhaduri, Bhaduri (bib0345) 2002; 28 R. A. Landy, Magnesia refractories, Refractories Handbook, C.A. Schacht, Marcel Dekker, Monticello, 2004, pp. 109-149. Aksel, Kasap, Sesver (bib0330) 2005; 31 Ide, Suzuki, Asano, Nishi, Ichikawa (bib0295) 2005; 25 Braulio, Castro, Pagliosa, Bittencourt, Pandolfelli (bib0340) 2008; 91 Carter (bib0170) 1997; 44 Kitamura, Onizuka, Tanaka (bib0315) 1995; 16 Chen, Cheng, Lin, Ko (bib0160) 2002; 28 Reisinger, Preßlinger, Pissenberger, Posch (bib0130) 1998; 1 Rigaud, Landy (bib0015) 1996; vol. 3 Odegard, Chen, Myhre (bib0460) 2003 Alasaarela, Eitel (bib0060) 1991 Büchel, Buhr, Gierisch (bib0265) 2005 Fuhrer, Hey, Lee (bib0245) 1998; 18 Braulio, Bittencourt, Pandolfelli (bib0280) 2009; 29 Kärja, Nevalaà (bib0070) 1993 Lima, Peru 1998, p. 8. Orlando, USA, 2005, 191-195. Schnabel, Buhr, Exenberger, Rampitsch (bib0515) 2010; 2 Antigua, Guatemala, 2004, p. 11. Braulio, Bittencourt, Poirier, Pandolfelli (bib0240) 2008; 28 Braulio, Brant, Bittencourt, Pandolfelli (bib0505) 2009; 35 Tawara, Fuji, Taniguchi, Hagiwara, kibayashi, Tanaka (bib0395) 1996; 16 Itose, Nakashima, Isobe, Shimizu (bib0080) 2002; 22 Kingery (bib0005) 1960 Mori, Yoshimura, Oguchi, Kawakami, Ohishi (bib0095) 1992; 12 Hashimoto, Zhang, Lee, Yamaguchi (bib0210) 2003; 86 Kim, Saito (bib0365) 2000; 113 Risbud, Pask (bib0415) 1978; 13 Shirama, Murakami, Shimizu (bib0500) 2002; 22 Sato, Joguchi, Hiroki (bib0105) 1992; 12 Simonin, Olagnon, Maximilien, Fantozzi, Diaz, Torrecillas (bib0230) 2000; 83 Kong, Ma, Huang (bib0360) 2002; 56 Devries, Osborn (bib0490) 1957; 40 Racher, McConnell, Buhr (bib0025) 2004 T. A. Bier, C. Parr, C. Revais, M. Vialle, H. Fryda, Chemical interaction of MgO in spinel forming castables, in de Aza, Pena, Rodriguez, Torrecillas, de Aza (bib0450) 2003; 23 Sumimura, Yamamura, Kubota, Kaneshige (bib0040) 1999 C. Odegard, B. Myhre, N. Zhou, S. Zhang, Flow and properties of MgO based castables, in Yamamura, Hamazaki, Kaneshige, Toyoda, Nishi, Kato (bib0135) 1992; 12 Zargar, Golestani Fard, Rezaie (bib0405) 2008; 9 Hashimoto, Yamaguchi (bib0195) 1996; 79 Nagasoe (10.1016/j.ceramint.2011.03.049_bib0090) 1991; 11 Zargar (10.1016/j.ceramint.2011.03.049_bib0405) 2008; 9 Chen (10.1016/j.ceramint.2011.03.049_bib0160) 2002; 28 Rigaud (10.1016/j.ceramint.2011.03.049_bib0175) 1995 Nakagawa (10.1016/j.ceramint.2011.03.049_bib0165) 1995 An (10.1016/j.ceramint.2011.03.049_bib0255) 1996; 31 Oliveira (10.1016/j.ceramint.2011.03.049_bib0445) 2000 Ko (10.1016/j.ceramint.2011.03.049_bib0150) 2002; 28 Odegard (10.1016/j.ceramint.2011.03.049_bib0460) 2003 Zawrah (10.1016/j.ceramint.2011.03.049_bib0355) 2004; 382 Sumimura (10.1016/j.ceramint.2011.03.049_bib0040) 1999 Schnabel (10.1016/j.ceramint.2011.03.049_bib0515) 2010; 2 Braulio (10.1016/j.ceramint.2011.03.049_bib0340) 2008; 91 Vázquez (10.1016/j.ceramint.2011.03.049_bib0480) 2003; 86 10.1016/j.ceramint.2011.03.049_bib0325 Nagai (10.1016/j.ceramint.2011.03.049_bib0470) 1990; 10 Ko (10.1016/j.ceramint.2011.03.049_bib0120) 2002; 6 Callister (10.1016/j.ceramint.2011.03.049_bib0010) 2000 Kockegey-Lorenz (10.1016/j.ceramint.2011.03.049_bib0290) 2004 de Sá (10.1016/j.ceramint.2011.03.049_bib0430) 2007 Hashimoto (10.1016/j.ceramint.2011.03.049_bib0210) 2003; 86 Yamamura (10.1016/j.ceramint.2011.03.049_bib0110) 1994; 13 10.1016/j.ceramint.2011.03.049_bib0455 Kopanda (10.1016/j.ceramint.2011.03.049_bib0225) 1990 Devries (10.1016/j.ceramint.2011.03.049_bib0490) 1957; 40 Kitamura (10.1016/j.ceramint.2011.03.049_bib0315) 1995; 16 Sato (10.1016/j.ceramint.2011.03.049_bib0275) 1999; 19 Carter (10.1016/j.ceramint.2011.03.049_bib0170) 1997; 44 Racher (10.1016/j.ceramint.2011.03.049_bib0025) 2004 Razouk (10.1016/j.ceramint.2011.03.049_bib0310) 1958; 62 Moore (10.1016/j.ceramint.2011.03.049_bib0030) 1993 Chan (10.1016/j.ceramint.2011.03.049_bib0260) 1998; 81 10.1016/j.ceramint.2011.03.049_bib0440 Molin (10.1016/j.ceramint.2011.03.049_bib0155) 2005 Zhang (10.1016/j.ceramint.2011.03.049_bib0205) 2006; 89 10.1016/j.ceramint.2011.03.049_bib0320 10.1016/j.ceramint.2011.03.049_bib0305 Itose (10.1016/j.ceramint.2011.03.049_bib0080) 2002; 22 10.1016/j.ceramint.2011.03.049_bib0425 Buhr (10.1016/j.ceramint.2011.03.049_bib0140) 1996; 116 Dekkers (10.1016/j.ceramint.2011.03.049_bib0185) 2002; 236 Hashimoto (10.1016/j.ceramint.2011.03.049_bib0195) 1996; 79 Cunha-Duncan (10.1016/j.ceramint.2011.03.049_bib0390) 2002; 85 Bradt (10.1016/j.ceramint.2011.03.049_bib0020) 2004; 9 Reisinger (10.1016/j.ceramint.2011.03.049_bib0130) 1998; 1 Lee (10.1016/j.ceramint.2011.03.049_bib0465) 2001; 46 Yamamura (10.1016/j.ceramint.2011.03.049_bib0135) 1992; 12 Shirama (10.1016/j.ceramint.2011.03.049_bib0500) 2002; 22 Braulio (10.1016/j.ceramint.2011.03.049_bib0280) 2009; 29 Jono (10.1016/j.ceramint.2011.03.049_bib0400) 1996; 16 Mori (10.1016/j.ceramint.2011.03.049_bib0095) 1992; 12 Bhaduri (10.1016/j.ceramint.2011.03.049_bib0345) 2002; 28 Soudier (10.1016/j.ceramint.2011.03.049_bib0335) 2005 Braulio (10.1016/j.ceramint.2011.03.049_bib0505) 2009; 35 Braulio (10.1016/j.ceramint.2011.03.049_bib0215) 2008; 28 Risbud (10.1016/j.ceramint.2011.03.049_bib0415) 1978; 13 Kim (10.1016/j.ceramint.2011.03.049_bib0365) 2000; 113 Kong (10.1016/j.ceramint.2011.03.049_bib0360) 2002; 56 Naigai (10.1016/j.ceramint.2011.03.049_bib0100) 1992; 12 Sako (10.1016/j.ceramint.2011.03.049_bib0300) 2009; 209 Fujii (10.1016/j.ceramint.2011.03.049_bib0045) 1999; 12 Sarpoolaky (10.1016/j.ceramint.2011.03.049_bib0380) 2002; 28 Bartha (10.1016/j.ceramint.2011.03.049_bib0035) 1984 Ide (10.1016/j.ceramint.2011.03.049_bib0295) 2005; 25 Zhang (10.1016/j.ceramint.2011.03.049_bib0410) 2005; 31 10.1016/j.ceramint.2011.03.049_bib0370 Mori (10.1016/j.ceramint.2011.03.049_bib0125) 1990; 69 Mori (10.1016/j.ceramint.2011.03.049_bib0075) 1995; 15 Kriechbaum (10.1016/j.ceramint.2011.03.049_bib0050) 1992 Eitel (10.1016/j.ceramint.2011.03.049_bib0055) 1990 Ko (10.1016/j.ceramint.2011.03.049_bib0250) 2000; 83 Aksel (10.1016/j.ceramint.2011.03.049_bib0330) 2005; 31 Myhre (10.1016/j.ceramint.2011.03.049_bib0385) 1997 Kiyota (10.1016/j.ceramint.2011.03.049_bib0180) 2007 10.1016/j.ceramint.2011.03.049_bib0375 Khalil (10.1016/j.ceramint.2011.03.049_bib0285) 2004; 103 Nandi (10.1016/j.ceramint.2011.03.049_bib0475) 2000; 31 Braulio (10.1016/j.ceramint.2011.03.049_bib0220) 2007; 86 Na (10.1016/j.ceramint.2011.03.049_bib0270) 1996; 79 Rigaud (10.1016/j.ceramint.2011.03.049_bib0015) 1996; vol. 3 Büchel (10.1016/j.ceramint.2011.03.049_bib0265) 2005 Fujiyoshi (10.1016/j.ceramint.2011.03.049_bib0190) 2002; 22 Fuhrer (10.1016/j.ceramint.2011.03.049_bib0245) 1998; 18 Zawrah (10.1016/j.ceramint.2011.03.049_bib0350) 2002; 101 Braulio (10.1016/j.ceramint.2011.03.049_bib0420) 2009; 92 Jayaseelan (10.1016/j.ceramint.2011.03.049_bib0200) 2007; 27 Kärja (10.1016/j.ceramint.2011.03.049_bib0070) 1993 Braulio (10.1016/j.ceramint.2011.03.049_bib0240) 2008; 28 Klan (10.1016/j.ceramint.2011.03.049_bib0065) 1992 Sugawara (10.1016/j.ceramint.2011.03.049_bib0510) 2005 Kingery (10.1016/j.ceramint.2011.03.049_bib0005) 1960 Alasaarela (10.1016/j.ceramint.2011.03.049_bib0060) 1991 Kobayashi (10.1016/j.ceramint.2011.03.049_bib0085) 1997; 17 Tawara (10.1016/j.ceramint.2011.03.049_bib0395) 1996; 16 Kriechbaum (10.1016/j.ceramint.2011.03.049_bib0145) 1994 Sato (10.1016/j.ceramint.2011.03.049_bib0105) 1992; 12 Lu (10.1016/j.ceramint.2011.03.049_bib0435) 2008; 53 Simonin (10.1016/j.ceramint.2011.03.049_bib0230) 2000; 83 Auvray (10.1016/j.ceramint.2011.03.049_bib0235) 2007; 27 de Aza (10.1016/j.ceramint.2011.03.049_bib0450) 2003; 23 Vázquez (10.1016/j.ceramint.2011.03.049_bib0485) 2005; 88 Nanba (10.1016/j.ceramint.2011.03.049_bib0495) 1996; 16 Zhang (10.1016/j.ceramint.2011.03.049_bib0115) 2004 |
| References_xml | – start-page: 420 year: 1990 end-page: 435 ident: bib0055 article-title: Monolithic, environment-conscious refractory lining of ladles, in: publication-title: Aachen, Germany – start-page: p10 year: 1997 ident: bib0385 article-title: Castables with MgO-SiO publication-title: San Juan, Porto Rico – volume: 12 start-page: 4 year: 1999 end-page: 9 ident: bib0045 article-title: Composition of spinel clinker for teeming ladle casting materials publication-title: Taik. Ov. – volume: 103 start-page: 37 year: 2004 end-page: 41 ident: bib0285 article-title: Heat resistance and thermomechanical behaviour of ultralow and zero cement castables publication-title: Brit. Ceram. Trans. – year: 2004 ident: bib0025 article-title: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles, in: publication-title: Hamilton, Canada – volume: 29 start-page: 2727 year: 2009 end-page: 2735 ident: bib0280 article-title: Selection of binders for in situ spinel refractory castables publication-title: J. Eur. Ceram. Soc. – volume: 69 start-page: 1172 year: 1990 end-page: 1176 ident: bib0125 article-title: Material design of monolithic refractories for steel ladle publication-title: Am. Ceram. Soc. Bull. – volume: 40 start-page: 6 year: 1957 end-page: 15 ident: bib0490 article-title: Phase equilibria in high-alumina part of the system CaO-MgO Al publication-title: J. Am. Ceram. Soc. – volume: 28 start-page: 487 year: 2002 end-page: 493 ident: bib0380 article-title: Influence of publication-title: Ceram. Int. – start-page: p9 year: 2003 ident: bib0460 article-title: MgO-SiO publication-title: Dalian, China – year: 1992 ident: bib0050 article-title: Neue Spinell-Rohstoffe für Feuerfestauskleidungen im Stahlbereich, in: publication-title: Aachen, Germany – volume: 209 start-page: 5552 year: 2009 end-page: 5557 ident: bib0300 article-title: Microsilica role in the CA publication-title: J. Mat. Proc. Techn. – reference: K. Changming, N. Yuee, L. Yangzhen, L. Nan, Preparation of MgAl – reference: , Dresden, Germany, 2007, pp. 391-393. – start-page: 150 year: 1994 end-page: 159 ident: bib0145 article-title: The influence of SiO publication-title: Aachen, Germany – volume: 28 start-page: 811 year: 2002 end-page: 817 ident: bib0160 article-title: Thermal characteristics of Al publication-title: Ceram. Int. – year: 1991 ident: bib0060 article-title: How infinite is endless lining of ladles?, in: publication-title: Aachen, Germany – volume: vol. 3 start-page: 68 year: 1996 end-page: 70 ident: bib0015 article-title: Pneumatic steelmaking publication-title: Refractories Iron & Steel Society – year: 1990 ident: bib0225 article-title: Alumina Chemicals Science and Technology Handbook – volume: 27 start-page: 3489 year: 2007 end-page: 3496 ident: bib0235 article-title: Evolution of elastic properties and microstructural changes versus temperature in bonding phases of alumina and alumina-magnesia refractory castables publication-title: J. Eur. Ceram. Soc. – reference: T. A. Bier, C. Parr, C. Revais, M. Vialle, H. Fryda, Chemical interaction of MgO in spinel forming castables, in: – reference: nano-powder by mechanical alloying,, in: – year: 2000 ident: bib0445 article-title: Dispersão e Empacotamento de Partículas - Princípios e Aplicações em Processamento Cerâmico (Dispersion and Particle Packing - Principles and Applications in Ceramic Processing) publication-title: Fazendo Arte Editiorial São Paulo – year: 2000 ident: bib0010 article-title: Materials Science and Engineering – volume: 28 start-page: 805 year: 2002 end-page: 810 ident: bib0150 article-title: Role of spinel composition in the slag resistance of Al publication-title: Ceram. Int. – volume: 86 start-page: 1959 year: 2003 end-page: 1961 ident: bib0210 article-title: Synthesis of magnesium aluminate spinel platelet and magnesium sulfate precursors publication-title: J. Am. Ceram. Soc. – reference: , Orlando, USA, 2005, 191-195. – volume: 16 start-page: 17 year: 1996 end-page: 21 ident: bib0495 article-title: Thermal characteristics of castables for teeming ladle publication-title: Taik. Overs. – volume: 18 start-page: 813 year: 1998 end-page: 820 ident: bib0245 article-title: Microstructural evolution in self-forming spinel/calcium aluminate castable refractories publication-title: J. Eur. Ceram. Soc. – start-page: 57 year: 2005 end-page: 62 ident: bib0155 article-title: Corrosion mechanism of spinel forming and spinel containing refractory castables in lab and plant conditions, in: publication-title: Orlando, USA – volume: 28 start-page: 153 year: 2002 end-page: 158 ident: bib0345 article-title: Microstructural and mechanical properties of nanocrystalline spinel and related composites publication-title: Ceram. Int. – start-page: 30 year: 2005 end-page: 34 ident: bib0510 article-title: The recent developments of castable technology in Japan,? publication-title: in: – start-page: 113 year: 1984 end-page: 133 ident: bib0035 article-title: Spinell und spinellhaltige feuerfeste Werkstoffe, Berichtsband Feuerfesttechnik, Werkstoffe, Rohstoffe, Neue Entwicklungen, Verlag Stahleisen mbH, Düsseldorf publication-title: Germany – volume: 83 start-page: 2481 year: 2000 end-page: 2490 ident: bib0230 article-title: Thermomechanical behavior of high-alumina refractory castables with synthetic spinel additions publication-title: J. Am. Ceram. Soc. – volume: 79 start-page: 3142 year: 1996 end-page: 3148 ident: bib0270 article-title: R-curve behavior of in-situ toughened Al publication-title: J. Am. Ceram. Soc. – volume: 83 start-page: 2872 year: 2000 end-page: 2874 ident: bib0250 article-title: Thermal expansion characteristics of alumina-magnesia and alumina-spinel castables in the temperature range 800̊-1650̊C publication-title: J. Am. Ceram. Soc. – start-page: 97 year: 1999 end-page: 101 ident: bib0040 article-title: Study on slag penetration of alumina-spinel castable, in: publication-title: Berlin, Germany – start-page: 1312 year: 1995 end-page: 1319 ident: bib0165 article-title: Effect of corundum/periclase sizes on expansion behavior during synthesis of spinel, in: publication-title: Kyoto, Japan – start-page: 12 year: 2007 end-page: 19 ident: bib0430 article-title: Nanotechnology for the refractories industry – a foresight perspective publication-title: The Refract. Eng., May Issue – volume: 23 start-page: 737 year: 2003 end-page: 744 ident: bib0450 article-title: New spinel containing refractory cements publication-title: J. Eur. Ceram. Soc. – reference: , Dresden, Germany, 2007, pp. 290-293. – volume: 6 start-page: 51 year: 2002 end-page: 56 ident: bib0120 article-title: Properties and production of Al publication-title: Ceram. Int. – reference: O – volume: 13 start-page: 2449 year: 1978 end-page: 2454 ident: bib0415 article-title: SiO publication-title: J. Mat. Sc. – start-page: 546 year: 2007 end-page: 549 ident: bib0180 article-title: Reduction of permanent linear change of Al publication-title: Dresden, Germany – volume: 11 start-page: 20 year: 1991 end-page: 28 ident: bib0090 article-title: Refractory characteristics of spinels with various MgO contents publication-title: Taik. Ov. – volume: 31 start-page: 3223 year: 1996 end-page: 3229 ident: bib0255 article-title: Control of calcium hexaluminate grain morphology in publication-title: J. Mat. Sc. – volume: 101 start-page: 71 year: 2002 end-page: 74 ident: bib0350 article-title: Synthesis and characterization of nanocrystalline MgAl publication-title: Br. Ceram. Trans. – volume: 12 start-page: 15 year: 1992 end-page: 20 ident: bib0100 article-title: Wear mechanism of castasble for steel ladle by slag publication-title: Taik. Ov. – volume: 22 start-page: 26 year: 2002 end-page: 30 ident: bib0080 article-title: Improvement in the durability of alumina-spinel steel ladle castable containing spinel fine powder publication-title: Taik. Ov. – reference: , Antigua, Guatemala, 2004, p. 11. – volume: 31 start-page: 583 year: 2005 end-page: 589 ident: bib0410 article-title: Effect of polymorphism of Al publication-title: Ceram. Int. – reference: , Lima, Peru 1998, p. 8. – volume: 16 start-page: 17 year: 1996 end-page: 19 ident: bib0395 article-title: Application of alumina-magnesia castable in high temperature steel ladles publication-title: Taik. Overs. – volume: 86 start-page: 9201 year: 2007 end-page: 9206 ident: bib0220 article-title: Expansion behavior of cement bonded alumina-magnesia refractory castables publication-title: Am. Ceram. Soc. Bull. – volume: 28 start-page: 2845 year: 2008 end-page: 2852 ident: bib0215 article-title: Magnesia grain size effect on publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 46 year: 2008 end-page: 51 ident: bib0405 article-title: The influence of nano boehmite on spinel formation in the alumina-magnesia system at low temperatures publication-title: J. Ceram. Proc. Research – volume: 22 start-page: 294 year: 2002 end-page: 301 ident: bib0190 article-title: Synthesis of whisker-like MgAl publication-title: J. Tech. Assoc. Refract. - Japan – volume: 13 start-page: 39 year: 1994 end-page: 45 ident: bib0110 article-title: Effect of spinel clinker composition on properties of alumina-spinel castable publication-title: Taik. Ov. – volume: 382 start-page: 362 year: 2004 end-page: 370 ident: bib0355 article-title: Investigation of lattice constant, sintering and properties of nano Mg-Al spinels, Mat publication-title: Sc. and Eng. A – volume: 86 start-page: 2195 year: 2003 end-page: 2199 ident: bib0480 article-title: Quaternary system Al publication-title: Am. Ceram. Soc. – volume: 16 start-page: 3 year: 1995 end-page: 11 ident: bib0315 article-title: Hydration characteristics of magnesia publication-title: Taik. Overs. – volume: 27 start-page: 4745 year: 2007 end-page: 4749 ident: bib0200 article-title: Template formation of magnesium aluminate (MgAl publication-title: J. Eur. Ceram. Soc. – volume: 28 start-page: 180 year: 2008 end-page: 184 ident: bib0240 article-title: Microsilica effects on cement bonded alumina–magnesia refractory castables publication-title: J. Techn. Assoc. Refract. - Japan – volume: 12 start-page: 21 year: 1992 end-page: 27 ident: bib0135 article-title: Alumina-spinel castable refractories for steel teeming ladle publication-title: Taik. Overs. – volume: 116 start-page: 59 year: 1996 end-page: 66 ident: bib0140 article-title: PhD thesis and publication, Tonerdereiche Feuerfestbetone für den Einsatz in der Stahlindustrie (High alumina refractory castables for steel applications) publication-title: RWTH Aachen, 1996; Stahl und Eisen – year: 1960 ident: bib0005 article-title: Structure of crystals publication-title: in: Introduction to Ceramics – volume: 22 start-page: 161 year: 2002 end-page: 163 ident: bib0500 article-title: Development of low sílica wet gunning material for steel ladles publication-title: J. Techn. Assoc. Refract. - Japan – volume: 92 start-page: 559 year: 2009 end-page: 562 ident: bib0420 publication-title: J. Am. Ceram. Soc. – volume: 88 start-page: 1949 year: 2005 end-page: 1957 ident: bib0485 article-title: Quaternary system Al publication-title: Am. Ceram. Soc. – volume: 236 start-page: 441 year: 2002 end-page: 454 ident: bib0185 article-title: Crystal structural control on surface topology and crystal morphology of normal spinel (MgAl publication-title: J. Cryst. Gr. – start-page: 81 year: 2004 end-page: 139 ident: bib0115 article-title: Spinel-containing refractories, in: Refractories Handbook, C.A. Schacht publication-title: Marcel Dekker, Monticello – start-page: 103 year: 1992 end-page: 108 ident: bib0065 article-title: Monolithic ladle lining - another contribution to environmentally compatible and cost-conscious steelmaking, in: publication-title: Aachen, Germany – volume: 9 start-page: 8 year: 2004 end-page: 10 ident: bib0020 article-title: Mg-Al spinel: is it the mullite of the 21 publication-title: Ref. Appl. and News. – volume: 17 start-page: 39 year: 1997 end-page: 44 ident: bib0085 article-title: Use of alumina-magnesia castables in steel ladle sidewalls publication-title: Taik. Ov. – start-page: 462 year: 2005 end-page: 467 ident: bib0265 article-title: Bonite - A new raw material alternative for refractory innovations, in: publication-title: Orlando, USA – reference: C. Odegard, B. Myhre, N. Zhou, S. Zhang, Flow and properties of MgO based castables, in: – reference: , Kiyoto, Japan, 1995, pp. 171-178. – volume: 79 start-page: 491 year: 1996 end-page: 494 ident: bib0195 article-title: Synthesis of MgAl publication-title: J. Am. Ceram. Soc. – reference: R. A. Landy, Magnesia refractories, Refractories Handbook, C.A. Schacht, Marcel Dekker, Monticello, 2004, pp. 109-149. – year: 1993 ident: bib0030 article-title: Creep behavior of synthetic spinels based on raw diaspore and bauxite, in: publication-title: St. Louis, USA – start-page: 1312 year: 1993 end-page: 1319 ident: bib0070 article-title: Experiences of monolithic ladle linings in Raahe steel works, in: publication-title: São Paulo, Brazil – volume: 25 start-page: 202 year: 2005 end-page: 208 ident: bib0295 article-title: Expansion Behavior of Alumina-Magnesia Castables publication-title: J. Techn. Assoc. Refract. - Japan – volume: 62 start-page: 920 year: 1958 end-page: 925 ident: bib0310 article-title: The hydration of magnesium oxide from vapor phase publication-title: J. Phys. Chem. – start-page: 387 year: 1995 end-page: 394 ident: bib0175 article-title: Spinel formation in the MgO-Al publication-title: Kyoto, Japan – volume: 1 start-page: 3 year: 1998 end-page: 19 ident: bib0130 article-title: Evaluation of the interaction of different ladle slags with two different alumina castables publication-title: Veitsch-Radex Rundschau – start-page: 679 year: 2005 end-page: 683 ident: bib0335 article-title: Understanding and optimisation of MgO hydration resistance and spinel formation mechanisms for increasing performances of DVM used in crucible induction furnaces melting steel, in: publication-title: Orlando, USA – volume: 12 start-page: 10 year: 1992 end-page: 14 ident: bib0105 article-title: Test results of alumina-spinel castable for steel ladle publication-title: Taik. Ov. – volume: 31 start-page: 121 year: 2005 end-page: 127 ident: bib0330 article-title: Investigation of parameters affecting grain growth of sintered magnesite refractories publication-title: Ceram. Int. – reference: J. Mori, Y. Toritani, S. Tanaka, Development of alumina-magnesia castable for steel ladle, in: – volume: 44 start-page: 116 year: 1997 end-page: 120 ident: bib0170 article-title: Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide publication-title: J; Am. Ceram. Soc. – reference: B. Myhre, Microsilica in refractory castables - How does microsilica quality influence performance?, in: – volume: 12 start-page: 40 year: 1992 end-page: 45 ident: bib0095 article-title: Effect of slag composition on wear of alumina-spinel castable for steel ladle publication-title: Taik. Ov. – volume: 16 start-page: 12 year: 1996 end-page: 16 ident: bib0400 article-title: Effect of alumina grain size on spinel formation publication-title: Taik. Overs. – volume: 35 start-page: 3321 year: 2009 end-page: 3334 ident: bib0505 article-title: Microsilica or MgO grain size: Which one mostly affects the in situ spinel refractory castable expansion? publication-title: Ceram Int. – reference: E. Y. Sako, M. A. L. Braulio, P. O. Brant, V. C. Pandolfelli, Cement bonded high alumina refractory castables containing pre-formed and in situ spinel, accepted for publication in Ceram. Int. – volume: 2 start-page: 87 year: 2010 end-page: 93 ident: bib0515 article-title: Spinel: in-situ versus preformed - clearing the myth publication-title: Refract. W. Forum – volume: 19 start-page: 44 year: 1999 end-page: 48 ident: bib0275 article-title: Alumina cement for advanced monolithic refractories publication-title: Taik. Overs. – volume: 10 start-page: 23 year: 1990 end-page: 28 ident: bib0470 article-title: Development of high-alumina castable for steel ladles (findings on spinel formation in alumina-magnesia castable) publication-title: Taik. Overs. – reference: T. R. Lipinski, C. Tontrup, The use of nano-scaled alumina in alumina-based refractory materials, in: – volume: 53 start-page: 21 year: 2008 end-page: 38 ident: bib0435 article-title: Sintering of nanoceramics publication-title: Int. Mat. Reviews – volume: 89 start-page: 1724 year: 2006 end-page: 1726 ident: bib0205 article-title: Molten salt synthesis of magnesium aluminate spinel powder publication-title: J. Am. Ceram. Soc. – volume: 46 start-page: 145 year: 2001 end-page: 167 ident: bib0465 article-title: Castable refractory concretes publication-title: Int. Mat. Rev. – start-page: 67 year: 2004 end-page: 71 ident: bib0290 article-title: Improved workability of calcia free alumina binder Alphabond for non-cement castables, in: publication-title: Aachen, Germany – volume: 31 start-page: 65 year: 2000 end-page: 69 ident: bib0475 article-title: Effect of silica and temperature on spinel-based high-alumina castables publication-title: Am. Ceram. Soc. Bul. – volume: 56 start-page: 238 year: 2002 end-page: 243 ident: bib0360 article-title: MgAl publication-title: Mat. Lett. – volume: 85 start-page: 2995 year: 2002 end-page: 3003 ident: bib0390 article-title: Synthesis of magnesium aluminate spinels from bauxites and magnesias publication-title: J. Am. Ceram. Soc. – volume: 15 start-page: 20 year: 1995 end-page: 23 ident: bib0075 article-title: Structure change of alumina castable by addition of magnesia or spinel publication-title: Taik. Ov. – volume: 113 start-page: 109 year: 2000 end-page: 113 ident: bib0365 article-title: Effect of grinding on synthesis of MgAl publication-title: Powder Tech. – volume: 91 start-page: 3090 year: 2008 end-page: 3093 ident: bib0340 article-title: From macro to nanomagnesia: designing the publication-title: J. Am. Ceram. Soc. – volume: 81 start-page: 2957 year: 1998 end-page: 2960 ident: bib0260 article-title: Effect of CaO content on the hot strength of alumina-spinel castables in the temperature range of 1000̊ to 1500̊C publication-title: J. Am. Ceram. Soc. – ident: 10.1016/j.ceramint.2011.03.049_bib0320 – volume: 69 start-page: 1172 issue: 7 year: 1990 ident: 10.1016/j.ceramint.2011.03.049_bib0125 article-title: Material design of monolithic refractories for steel ladle publication-title: Am. Ceram. Soc. Bull. – volume: 11 start-page: 20 issue: 3 year: 1991 ident: 10.1016/j.ceramint.2011.03.049_bib0090 article-title: Refractory characteristics of spinels with various MgO contents publication-title: Taik. Ov. – volume: 46 start-page: 145 issue: 3 year: 2001 ident: 10.1016/j.ceramint.2011.03.049_bib0465 article-title: Castable refractory concretes publication-title: Int. Mat. Rev. doi: 10.1179/095066001101528439 – year: 1991 ident: 10.1016/j.ceramint.2011.03.049_bib0060 article-title: How infinite is endless lining of ladles?, in: Proceedings of 34th international colloquium on refractories and UNITECŔ91 publication-title: Aachen, Germany – start-page: 420 year: 1990 ident: 10.1016/j.ceramint.2011.03.049_bib0055 article-title: Monolithic, environment-conscious refractory lining of ladles, in: Proceedings of 33rd International Colloquium on Refractories publication-title: Aachen, Germany – start-page: p10 year: 1997 ident: 10.1016/j.ceramint.2011.03.049_bib0385 article-title: Castables with MgO-SiO2-Al2O3 as bond phase, in: Proceedings of XXVI Alafar publication-title: San Juan, Porto Rico – year: 1990 ident: 10.1016/j.ceramint.2011.03.049_bib0225 – volume: 25 start-page: 202 issue: 3 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0295 article-title: Expansion Behavior of Alumina-Magnesia Castables publication-title: J. Techn. Assoc. Refract. - Japan – volume: 28 start-page: 811 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0160 article-title: Thermal characteristics of Al2O3-MgO and Al2O3-spinel castables for steel ladles publication-title: Ceram. Int. doi: 10.1016/S0272-8842(02)00047-0 – volume: 53 start-page: 21 issue: 1 year: 2008 ident: 10.1016/j.ceramint.2011.03.049_bib0435 article-title: Sintering of nanoceramics publication-title: Int. Mat. Reviews doi: 10.1179/174328008X254358 – volume: 12 start-page: 40 issue: 1 year: 1992 ident: 10.1016/j.ceramint.2011.03.049_bib0095 article-title: Effect of slag composition on wear of alumina-spinel castable for steel ladle publication-title: Taik. Ov. – volume: 86 start-page: 1959 issue: 11 year: 2003 ident: 10.1016/j.ceramint.2011.03.049_bib0210 article-title: Synthesis of magnesium aluminate spinel platelet and magnesium sulfate precursors publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03589.x – volume: 22 start-page: 294 issue: 4 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0190 article-title: Synthesis of whisker-like MgAl2O4 spinel from gibbsite and magnesium acetate publication-title: J. Tech. Assoc. Refract. - Japan – ident: 10.1016/j.ceramint.2011.03.049_bib0305 – volume: 86 start-page: 2195 issue: 12 year: 2003 ident: 10.1016/j.ceramint.2011.03.049_bib0480 article-title: Quaternary system Al2O3-CaO-MgO-SiO2:I, study of the crystallization volume of Al2O3, J publication-title: Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03630.x – volume: 236 start-page: 441 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0185 article-title: Crystal structural control on surface topology and crystal morphology of normal spinel (MgAl2O4) publication-title: J. Cryst. Gr. doi: 10.1016/S0022-0248(01)02217-5 – volume: 92 start-page: 559 issue: 2 year: 2009 ident: 10.1016/j.ceramint.2011.03.049_bib0420 article-title: In situ expansion design by colloidal alumina suspension addition publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.02934.x – volume: 83 start-page: 2872 issue: 11 year: 2000 ident: 10.1016/j.ceramint.2011.03.049_bib0250 article-title: Thermal expansion characteristics of alumina-magnesia and alumina-spinel castables in the temperature range 800̊-1650̊C publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01650.x – volume: 81 start-page: 2957 issue: 11 year: 1998 ident: 10.1016/j.ceramint.2011.03.049_bib0260 article-title: Effect of CaO content on the hot strength of alumina-spinel castables in the temperature range of 1000̊ to 1500̊C publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1998.tb02719.x – volume: 18 start-page: 813 year: 1998 ident: 10.1016/j.ceramint.2011.03.049_bib0245 article-title: Microstructural evolution in self-forming spinel/calcium aluminate castable refractories publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(97)00182-9 – start-page: 150 year: 1994 ident: 10.1016/j.ceramint.2011.03.049_bib0145 article-title: The influence of SiO2 and spinel on the hot properties of high alumina low cement castables, in: Proceedings of 37th international colloquium on refractories publication-title: Aachen, Germany – volume: 27 start-page: 3489 year: 2007 ident: 10.1016/j.ceramint.2011.03.049_bib0235 article-title: Evolution of elastic properties and microstructural changes versus temperature in bonding phases of alumina and alumina-magnesia refractory castables publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2007.01.016 – volume: 89 start-page: 1724 issue: 2 year: 2006 ident: 10.1016/j.ceramint.2011.03.049_bib0205 article-title: Molten salt synthesis of magnesium aluminate spinel powder publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.00932.x – volume: 27 start-page: 4745 year: 2007 ident: 10.1016/j.ceramint.2011.03.049_bib0200 article-title: Template formation of magnesium aluminate (MgAl2O4) spinel microplatelets in molten salt publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2007.03.027 – start-page: 462 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0265 article-title: Bonite - A new raw material alternative for refractory innovations, in: Proceedings of UNITECR’05 publication-title: Orlando, USA – volume: 28 start-page: 2845 year: 2008 ident: 10.1016/j.ceramint.2011.03.049_bib0215 article-title: Magnesia grain size effect on in situ spinel refractory castables publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2008.05.014 – volume: 2 start-page: 87 issue: 2 year: 2010 ident: 10.1016/j.ceramint.2011.03.049_bib0515 article-title: Spinel: in-situ versus preformed - clearing the myth publication-title: Refract. W. Forum – start-page: 57 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0155 article-title: Corrosion mechanism of spinel forming and spinel containing refractory castables in lab and plant conditions, in: Proceedings of UNITECR’05 publication-title: Orlando, USA – year: 2000 ident: 10.1016/j.ceramint.2011.03.049_bib0445 article-title: Dispersão e Empacotamento de Partículas - Princípios e Aplicações em Processamento Cerâmico (Dispersion and Particle Packing - Principles and Applications in Ceramic Processing) publication-title: Fazendo Arte Editiorial São Paulo – ident: 10.1016/j.ceramint.2011.03.049_bib0455 – year: 1960 ident: 10.1016/j.ceramint.2011.03.049_bib0005 article-title: Structure of crystals – ident: 10.1016/j.ceramint.2011.03.049_bib0370 – start-page: 1312 year: 1995 ident: 10.1016/j.ceramint.2011.03.049_bib0165 article-title: Effect of corundum/periclase sizes on expansion behavior during synthesis of spinel, in: Proceedings of UNITECR’95 publication-title: Kyoto, Japan – volume: 13 start-page: 2449 year: 1978 ident: 10.1016/j.ceramint.2011.03.049_bib0415 article-title: SiO2-Al2O3 metastable phase equilibrium diagram without mullite publication-title: J. Mat. Sc. doi: 10.1007/BF00808060 – volume: 15 start-page: 20 issue: 3 year: 1995 ident: 10.1016/j.ceramint.2011.03.049_bib0075 article-title: Structure change of alumina castable by addition of magnesia or spinel publication-title: Taik. Ov. – volume: 9 start-page: 46 issue: 1 year: 2008 ident: 10.1016/j.ceramint.2011.03.049_bib0405 article-title: The influence of nano boehmite on spinel formation in the alumina-magnesia system at low temperatures publication-title: J. Ceram. Proc. Research – start-page: p9 year: 2003 ident: 10.1016/j.ceramint.2011.03.049_bib0460 article-title: MgO-SiO2-H2O bonded MgO based castables, in: Proceedings of 4th international symposium on refractories publication-title: Dalian, China – volume: 16 start-page: 17 issue: 3 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0495 article-title: Thermal characteristics of castables for teeming ladle publication-title: Taik. Overs. – volume: 12 start-page: 21 issue: 1 year: 1992 ident: 10.1016/j.ceramint.2011.03.049_bib0135 article-title: Alumina-spinel castable refractories for steel teeming ladle publication-title: Taik. Overs. – volume: 12 start-page: 4 issue: 1 year: 1999 ident: 10.1016/j.ceramint.2011.03.049_bib0045 article-title: Composition of spinel clinker for teeming ladle casting materials publication-title: Taik. Ov. – volume: 28 start-page: 180 issue: 3 year: 2008 ident: 10.1016/j.ceramint.2011.03.049_bib0240 article-title: Microsilica effects on cement bonded alumina–magnesia refractory castables publication-title: J. Techn. Assoc. Refract. - Japan – ident: 10.1016/j.ceramint.2011.03.049_bib0440 – volume: 13 start-page: 39 year: 1994 ident: 10.1016/j.ceramint.2011.03.049_bib0110 article-title: Effect of spinel clinker composition on properties of alumina-spinel castable publication-title: Taik. Ov. – volume: 35 start-page: 3321 issue: 8 year: 2009 ident: 10.1016/j.ceramint.2011.03.049_bib0505 article-title: Microsilica or MgO grain size: Which one mostly affects the in situ spinel refractory castable expansion? publication-title: Ceram Int. doi: 10.1016/j.ceramint.2009.05.031 – start-page: 103 year: 1992 ident: 10.1016/j.ceramint.2011.03.049_bib0065 article-title: Monolithic ladle lining - another contribution to environmentally compatible and cost-conscious steelmaking, in: Proceedings of 35th international colloquium on refractories publication-title: Aachen, Germany – volume: 16 start-page: 12 issue: 3 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0400 article-title: Effect of alumina grain size on spinel formation publication-title: Taik. Overs. – ident: 10.1016/j.ceramint.2011.03.049_bib0375 – volume: 79 start-page: 491 issue: 2 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0195 article-title: Synthesis of MgAl2O4 whiskers by an oxidation-reduction reaction publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb08150.x – start-page: 546 year: 2007 ident: 10.1016/j.ceramint.2011.03.049_bib0180 article-title: Reduction of permanent linear change of Al2O3-MgO castable, in: Proceedings of UNITECR’07 publication-title: Dresden, Germany – start-page: 679 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0335 article-title: Understanding and optimisation of MgO hydration resistance and spinel formation mechanisms for increasing performances of DVM used in crucible induction furnaces melting steel, in: Proceedings of UNITECR’05 publication-title: Orlando, USA – start-page: 113 year: 1984 ident: 10.1016/j.ceramint.2011.03.049_bib0035 article-title: Spinell und spinellhaltige feuerfeste Werkstoffe, Berichtsband Feuerfesttechnik, Werkstoffe, Rohstoffe, Neue Entwicklungen, Verlag Stahleisen mbH, Düsseldorf publication-title: Germany – volume: 62 start-page: 920 year: 1958 ident: 10.1016/j.ceramint.2011.03.049_bib0310 article-title: The hydration of magnesium oxide from vapor phase publication-title: J. Phys. Chem. doi: 10.1021/j150566a006 – volume: 103 start-page: 37 issue: 1 year: 2004 ident: 10.1016/j.ceramint.2011.03.049_bib0285 article-title: Heat resistance and thermomechanical behaviour of ultralow and zero cement castables publication-title: Brit. Ceram. Trans. doi: 10.1179/096797804225012666 – volume: 28 start-page: 805 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0150 article-title: Role of spinel composition in the slag resistance of Al2O3-spinel and Al2O3-MgO castables publication-title: Ceram. Int. doi: 10.1016/S0272-8842(02)00046-9 – volume: 16 start-page: 17 issue: 2 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0395 article-title: Application of alumina-magnesia castable in high temperature steel ladles publication-title: Taik. Overs. – volume: 31 start-page: 65 year: 2000 ident: 10.1016/j.ceramint.2011.03.049_bib0475 article-title: Effect of silica and temperature on spinel-based high-alumina castables publication-title: Am. Ceram. Soc. Bul. – volume: 31 start-page: 3223 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0255 article-title: Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites publication-title: J. Mat. Sc. doi: 10.1007/BF00354672 – start-page: 30 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0510 article-title: The recent developments of castable technology in Japan,? publication-title: in: Proceedings of UNITECR’05 Orlando, USA – volume: 29 start-page: 2727 issue: 13 year: 2009 ident: 10.1016/j.ceramint.2011.03.049_bib0280 article-title: Selection of binders for in situ spinel refractory castables publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2009.03.024 – year: 2004 ident: 10.1016/j.ceramint.2011.03.049_bib0025 article-title: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles, in: Proceedings of 43rd Conference of Metallurgy publication-title: Hamilton, Canada – volume: 113 start-page: 109 year: 2000 ident: 10.1016/j.ceramint.2011.03.049_bib0365 article-title: Effect of grinding on synthesis of MgAl2O4 spinel from a powder mixture of Mg(OH)2 and Al(OH)3 publication-title: Powder Tech. doi: 10.1016/S0032-5910(00)00208-4 – volume: 12 start-page: 10 issue: 1 year: 1992 ident: 10.1016/j.ceramint.2011.03.049_bib0105 article-title: Test results of alumina-spinel castable for steel ladle publication-title: Taik. Ov. – ident: 10.1016/j.ceramint.2011.03.049_bib0325 doi: 10.1201/9780203026328.ch5 – volume: 1 start-page: 3 year: 1998 ident: 10.1016/j.ceramint.2011.03.049_bib0130 article-title: Evaluation of the interaction of different ladle slags with two different alumina castables publication-title: Veitsch-Radex Rundschau – volume: 28 start-page: 153 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0345 article-title: Microstructural and mechanical properties of nanocrystalline spinel and related composites publication-title: Ceram. Int. doi: 10.1016/S0272-8842(01)00071-2 – volume: 31 start-page: 583 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0410 article-title: Effect of polymorphism of Al2O3 on the synthesis of magnesium aluminate spinel publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2004.06.025 – start-page: 81 year: 2004 ident: 10.1016/j.ceramint.2011.03.049_bib0115 article-title: Spinel-containing refractories, in: Refractories Handbook, C.A. Schacht publication-title: Marcel Dekker, Monticello – start-page: 97 year: 1999 ident: 10.1016/j.ceramint.2011.03.049_bib0040 article-title: Study on slag penetration of alumina-spinel castable, in: Proceedings of UNITECR’99 publication-title: Berlin, Germany – volume: 40 start-page: 6 issue: 1 year: 1957 ident: 10.1016/j.ceramint.2011.03.049_bib0490 article-title: Phase equilibria in high-alumina part of the system CaO-MgO Al2O3-SiO2 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1957.tb12540.x – volume: 10 start-page: 23 issue: 1 year: 1990 ident: 10.1016/j.ceramint.2011.03.049_bib0470 article-title: Development of high-alumina castable for steel ladles (findings on spinel formation in alumina-magnesia castable) publication-title: Taik. Overs. – start-page: 1312 year: 1993 ident: 10.1016/j.ceramint.2011.03.049_bib0070 article-title: Experiences of monolithic ladle linings in Raahe steel works, in: Proceedings of UNITECR’93 publication-title: São Paulo, Brazil – volume: 382 start-page: 362 year: 2004 ident: 10.1016/j.ceramint.2011.03.049_bib0355 article-title: Investigation of lattice constant, sintering and properties of nano Mg-Al spinels, Mat publication-title: Sc. and Eng. A doi: 10.1016/j.msea.2004.05.074 – volume: 19 start-page: 44 issue: 3 year: 1999 ident: 10.1016/j.ceramint.2011.03.049_bib0275 article-title: Alumina cement for advanced monolithic refractories publication-title: Taik. Overs. – volume: 31 start-page: 121 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0330 article-title: Investigation of parameters affecting grain growth of sintered magnesite refractories publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2004.03.046 – ident: 10.1016/j.ceramint.2011.03.049_bib0425 – year: 2000 ident: 10.1016/j.ceramint.2011.03.049_bib0010 – volume: 16 start-page: 3 issue: 3 year: 1995 ident: 10.1016/j.ceramint.2011.03.049_bib0315 article-title: Hydration characteristics of magnesia publication-title: Taik. Overs. – volume: 44 start-page: 116 issue: 3 year: 1997 ident: 10.1016/j.ceramint.2011.03.049_bib0170 article-title: Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide publication-title: J; Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1961.tb13724.x – volume: 23 start-page: 737 year: 2003 ident: 10.1016/j.ceramint.2011.03.049_bib0450 article-title: New spinel containing refractory cements publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(02)00166-8 – year: 1993 ident: 10.1016/j.ceramint.2011.03.049_bib0030 article-title: Creep behavior of synthetic spinels based on raw diaspore and bauxite, in: Proceedings of 29th Annual Meeting of St. Louis Section publication-title: St. Louis, USA – volume: 17 start-page: 39 issue: 3 year: 1997 ident: 10.1016/j.ceramint.2011.03.049_bib0085 article-title: Use of alumina-magnesia castables in steel ladle sidewalls publication-title: Taik. Ov. – volume: 85 start-page: 2995 issue: 12 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0390 article-title: Synthesis of magnesium aluminate spinels from bauxites and magnesias publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2002.tb00569.x – volume: 9 start-page: 8 issue: 4 year: 2004 ident: 10.1016/j.ceramint.2011.03.049_bib0020 article-title: Mg-Al spinel: is it the mullite of the 21st century? publication-title: Ref. Appl. and News. – volume: 91 start-page: 3090 issue: 9 year: 2008 ident: 10.1016/j.ceramint.2011.03.049_bib0340 article-title: From macro to nanomagnesia: designing the in situ spinel expansion publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02566.x – year: 1992 ident: 10.1016/j.ceramint.2011.03.049_bib0050 article-title: Neue Spinell-Rohstoffe für Feuerfestauskleidungen im Stahlbereich, in: Proceedings of 35th International Colloquium on Refractories publication-title: Aachen, Germany – volume: 22 start-page: 161 issue: 2 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0500 article-title: Development of low sílica wet gunning material for steel ladles publication-title: J. Techn. Assoc. Refract. - Japan – volume: 116 start-page: 59 issue: 9 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0140 article-title: PhD thesis and publication, Tonerdereiche Feuerfestbetone für den Einsatz in der Stahlindustrie (High alumina refractory castables for steel applications) publication-title: RWTH Aachen, 1996; Stahl und Eisen – start-page: 67 year: 2004 ident: 10.1016/j.ceramint.2011.03.049_bib0290 article-title: Improved workability of calcia free alumina binder Alphabond for non-cement castables, in: Proceedings of 47th international colloquium on refractories publication-title: Aachen, Germany – volume: 12 start-page: 15 issue: 1 year: 1992 ident: 10.1016/j.ceramint.2011.03.049_bib0100 article-title: Wear mechanism of castasble for steel ladle by slag publication-title: Taik. Ov. – volume: 209 start-page: 5552 year: 2009 ident: 10.1016/j.ceramint.2011.03.049_bib0300 article-title: Microsilica role in the CA6 formation in cement-bonded spinel refractory castables publication-title: J. Mat. Proc. Techn. doi: 10.1016/j.jmatprotec.2009.05.013 – start-page: 12 year: 2007 ident: 10.1016/j.ceramint.2011.03.049_bib0430 article-title: Nanotechnology for the refractories industry – a foresight perspective publication-title: The Refract. Eng., May Issue – volume: 22 start-page: 26 issue: 1 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0080 article-title: Improvement in the durability of alumina-spinel steel ladle castable containing spinel fine powder publication-title: Taik. Ov. – volume: 79 start-page: 3142 issue: 12 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0270 article-title: R-curve behavior of in-situ toughened Al2O3:CaAl12O19 Ceramic Composites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb08088.x – volume: 56 start-page: 238 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0360 article-title: MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process publication-title: Mat. Lett. doi: 10.1016/S0167-577X(02)00447-0 – volume: 83 start-page: 2481 issue: 10 year: 2000 ident: 10.1016/j.ceramint.2011.03.049_bib0230 article-title: Thermomechanical behavior of high-alumina refractory castables with synthetic spinel additions publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01579.x – volume: 6 start-page: 51 issue: 1 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0120 article-title: Properties and production of Al2O3-Spinel and Al2O3-MgO castables for steel ladles publication-title: Ceram. Int. – start-page: 387 year: 1995 ident: 10.1016/j.ceramint.2011.03.049_bib0175 article-title: Spinel formation in the MgO-Al2O3 system relevant to basic oxides, in: Proceedings of UNITECR’95 publication-title: Kyoto, Japan – volume: 101 start-page: 71 issue: 2 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0350 article-title: Synthesis and characterization of nanocrystalline MgAl2O4 ceramic powders by use of molten salts publication-title: Br. Ceram. Trans. doi: 10.1179/096797801225000888 – volume: vol. 3 start-page: 68 year: 1996 ident: 10.1016/j.ceramint.2011.03.049_bib0015 article-title: Pneumatic steelmaking publication-title: Refractories Iron & Steel Society – volume: 86 start-page: 9201 issue: 12 year: 2007 ident: 10.1016/j.ceramint.2011.03.049_bib0220 article-title: Expansion behavior of cement bonded alumina-magnesia refractory castables publication-title: Am. Ceram. Soc. Bull. – volume: 88 start-page: 1949 issue: 7 year: 2005 ident: 10.1016/j.ceramint.2011.03.049_bib0485 article-title: Quaternary system Al2O3-CaO-MgO-SiO2:II, study of the crystallization volume of MgAl2O4, J publication-title: Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00372.x – volume: 28 start-page: 487 year: 2002 ident: 10.1016/j.ceramint.2011.03.049_bib0380 article-title: Influence of in situ formation on microstructural evolution and properties of castables refractories publication-title: Ceram. Int. doi: 10.1016/S0272-8842(01)00121-3 |
| SSID | ssj0016940 |
| Score | 2.4422112 |
| SecondaryResourceType | review_article |
| Snippet | Due to their high corrosion resistance to basic slags, either pre-formed or
in situ spinel (MgAl
2O
4) containing refractory castables are nowadays widely used... Due to their high corrosion resistance to basic slags, either pre-formed or in situ spinel (MgAl2O4) containing refractory castables are nowadays widely used... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1705 |
| SubjectTerms | Aluminous refractories Aluminum oxide Castable refractories Iron and steel making Ladle metallurgy Magnesium oxide Nanostructure Refractories (E) Spinel Spinels (D) |
| Title | Spinel-containing alumina-based refractory castables |
| URI | https://dx.doi.org/10.1016/j.ceramint.2011.03.049 https://www.proquest.com/docview/896172810 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlL2XoGrATO45HhIpoK7FQJDbLcWwpiAYEYejS395zHohWlRg6xsol0ef4uzv7Hgg9KcIsmAnMV4mmPk2s9pUlGsiQcq5dNZMq2mIcjab0dcZmLTRocmFcWGXN_RWnl2xdj_RqNHurLOtNwKEK4pg6D6Zs4-0y2Cl3XQy6X7swDxIJWu2zcFj5cPdelvC8q81afWR5UZfyDLvY1dT8W0H9oupS_wzP0GltOHr96tvOUcvkF-hkr5zgJaKTFVwsfBd-XjV-8BRwT5Yr3ymr1IOXrcv-Op-eVmAWJguzuULT4fP7YOTXXRF8HVJa-CRNNQBrXZK2CbBRJhBBKoQ1LGQkZUFiiAYXOcRxyi34JyrQEYfBSPDEmXfXqJ0vc3ODPIEtjamJdBwk1FIlmAaFTjhW3HIY7iDWQCF1XTLcda5YyCY2bC4bCKWDUOJQAoQd1NvJraqiGQclRIO0_DH9Epj9oKzXTI2EteEOPFRultuNjIWzz2KCb__x-Dt03OwjY3KP2sV6ax7AECmSx_JPe0RH_Ze30fgbNCPebA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYoHdoOVZ8qfWboGogTO47HChXRlrIAEpvlOLYEogFBGLr0t_ecB6JVJYaOsXJJ9Dn-7s6-B0KPElMDZgJ1ZayIS2KjXGmwAjIkjClbzaSItuiH3RF5HdNxDbWrXBgbVllyf8HpOVuXI60SzdZiMmkNwKHyo4hYDyZv472H9gn1mfXAml-bOA8cclJstDBY-nD7VprwtKn0Un5M0qys5Rk0PVtU828N9YurcwXUOUHHpeXoPBUfd4pqOj1DR1v1BM8RGSzgYuba-POi84MjgXwmqXSttkoceNkyb7Dz6SgJdmE806sLNOo8D9tdt2yL4KqAkMzFSaIAWWOztLXvaal97iecG00DihPqxxor8JEDL0qYAQdF-ipkMBhyFlv77hLV03mqr5DDPUMiokMV-TExRHKqQKNj5klmGAw3EK2gEKqsGW5bV8xEFRw2FRWEwkIovEAAhA3U2sgtiqoZOyV4hbT4Mf8CqH2nrFNNjYDFYU88ZKrn65WIuDXQIuxd_-PxD-igO3zvid5L_-0GHVabyh6-RfVsudZ3YJVk8X3-130DdVfgAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinel-containing+alumina-based+refractory+castables&rft.jtitle=Ceramics+international&rft.au=Braulio%2C+MAL&rft.au=Rigaud%2C+M&rft.au=Buhr%2C+A&rft.au=Parr%2C+C&rft.date=2011-08-01&rft.issn=0272-8842&rft.volume=37&rft.issue=6&rft.spage=1705&rft.epage=1724&rft_id=info:doi/10.1016%2Fj.ceramint.2011.03.049&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |