A cascading fuzzy logic with image processing algorithm–based defect detection for automatic visual inspection of industrial cylindrical object’s surface

This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of industrial cylindrical object using a camera and multiple flat mirrors. The finishing surface of industrial parts such as shafts, bearings, pistons,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 102; no. 1-4; pp. 81 - 94
Main Authors Ali, Mohammed A. H., Lun, Au Kai
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-018-3171-7

Cover

Abstract This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of industrial cylindrical object using a camera and multiple flat mirrors. The finishing surface of industrial parts such as shafts, bearings, pistons, rings, and pins should be smooth within permissible limits before installation process, as the defects in these parts may damage or reduce the life of the whole machine. The optical surface inspection of cylindrical products and highly curved surfaces is quite challenging in the industrial automation, due to that it needs to be acquired with several views and subsequently combined in one view. Thus, a time–cost-effective visual inspection method with fuzzy logic–based decision making approach is developed to investigate the optical defects on the lateral surfaces of the cylindrical products. The image processing algorithm has been developed to extract the main features of the tested objects such as defects, borders, and noise. A cascading fuzzy logic algorithm with two stages has been implemented to eliminate the effect of the noise in the captured images and thereafter classify the objects into defective and non-defective objects. The 1st stage of fuzzy logic algorithm is used to eliminate the low noise from the captured images; however, the 2nd stage is used to differentiate between the big noise and defects on the objects. Results show that the defects can be detected if the ratio of detection is higher than 0.1 and the accuracy of defectiveness levels is 80%.
AbstractList This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of industrial cylindrical object using a camera and multiple flat mirrors. The finishing surface of industrial parts such as shafts, bearings, pistons, rings, and pins should be smooth within permissible limits before installation process, as the defects in these parts may damage or reduce the life of the whole machine. The optical surface inspection of cylindrical products and highly curved surfaces is quite challenging in the industrial automation, due to that it needs to be acquired with several views and subsequently combined in one view. Thus, a time–cost-effective visual inspection method with fuzzy logic–based decision making approach is developed to investigate the optical defects on the lateral surfaces of the cylindrical products. The image processing algorithm has been developed to extract the main features of the tested objects such as defects, borders, and noise. A cascading fuzzy logic algorithm with two stages has been implemented to eliminate the effect of the noise in the captured images and thereafter classify the objects into defective and non-defective objects. The 1st stage of fuzzy logic algorithm is used to eliminate the low noise from the captured images; however, the 2nd stage is used to differentiate between the big noise and defects on the objects. Results show that the defects can be detected if the ratio of detection is higher than 0.1 and the accuracy of defectiveness levels is 80%.
Author Lun, Au Kai
Ali, Mohammed A. H.
Author_xml – sequence: 1
  givenname: Mohammed A. H.
  surname: Ali
  fullname: Ali, Mohammed A. H.
  email: hashem@ump.edu.my
  organization: Faculty of Manufacturing Engineering, Universiti Malaysia Pahang
– sequence: 2
  givenname: Au Kai
  surname: Lun
  fullname: Lun, Au Kai
  organization: Faculty of Manufacturing Engineering, Universiti Malaysia Pahang
BookMark eNp9UctqHDEQFMYGrx8fkJvA54mlkUbSHo1JYoMhF_ssNHpMtMyO1pImYX3yP-SUg3_OX5Je1hAI2KdWU1Xdpa4TdDilySP0iZLPlBB5WQihkjSEqoZRSRt5gBaUM9YwQrtDtCCtAEQKdYxOSlkBW1ChFujlCltTrHFxGnCYn562eExDtPhXrD9wXJvB401O1peyY5hxSBmQ9evz794U77DzwdsKpUKJacIhZWzmmtamwpifscxmxHEqmzc8BejcXGqOANjtCF2OFt6pXwHn9flPwWXOwVh_ho6CGYs_f6un6OHrl_vrm-bu-7fb66u7xjLOa0OJVD1jpg9LHjoqXOes4MS3bXCceaEcDX0fBBzGLJecE6OUEp0D771XXcdO0cV-Lnz1cfal6lWa8wQrdcuXREnBFPmQ1RLWghepgEX3LJtTKdkHvclwx7zVlOhdVnqflYas9C4rLUEj_9PYWM3uXDWbOH6obPfKAlumwed_nt4X_QWnLq-Q
CitedBy_id crossref_primary_10_1155_2022_4956839
crossref_primary_10_1088_1361_6501_ad0a5d
crossref_primary_10_1371_journal_pone_0292814
crossref_primary_10_1155_2022_9439093
crossref_primary_10_1080_21693277_2024_2378199
crossref_primary_10_3390_app132011419
crossref_primary_10_1109_TII_2022_3177662
crossref_primary_10_3390_jmmp8060244
crossref_primary_10_3390_pr10030488
crossref_primary_10_1017_S0263574720000831
crossref_primary_10_1111_jfpe_14730
crossref_primary_10_3390_drones7020133
crossref_primary_10_1007_s00170_022_08785_1
crossref_primary_10_1016_j_jksuci_2022_07_017
crossref_primary_10_1007_s40684_021_00343_6
crossref_primary_10_1109_JSEN_2022_3225227
crossref_primary_10_3233_JIFS_189453
crossref_primary_10_3390_s19235309
crossref_primary_10_3390_electronics13193798
Cites_doi 10.1016/j.procir.2012.07.076
10.1371/journal.pone.0092137
10.1016/j.compind.2015.02.005
10.1080/10942912.2015.1136939
10.1016/j.sigpro.2015.10.028
10.15835/nsb819743
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Springer-Verlag London Ltd., part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-018-3171-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 94
ExternalDocumentID 10_1007_s00170_018_3171_7
GrantInformation_xml – fundername: Ministry of Higher education
  grantid: RDU 160131
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
_50
~8M
~A9
~EX
-XW
-XX
-Y2
1SB
28-
2P1
2VQ
5QI
9M8
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADQRH
ADRFC
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
SCV
T16
ZY4
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c344t-1078b33abf94f516d5dc640e22fd43e68d1fbbf6171a99440a88865ddefbe8553
IEDL.DBID BENPR
ISSN 0268-3768
IngestDate Fri Jul 25 11:10:21 EDT 2025
Fri Jul 25 11:13:17 EDT 2025
Wed Oct 01 00:53:01 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Fri Feb 21 02:35:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Fuzzy logic
Cylindrical object
Non-destructive testing
Multiple flat mirror system
Defect detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-1078b33abf94f516d5dc640e22fd43e68d1fbbf6171a99440a88865ddefbe8553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2490876380
PQPubID 2044010
PageCount 14
ParticipantIDs proquest_journals_2490876380
proquest_journals_2203234478
crossref_primary_10_1007_s00170_018_3171_7
crossref_citationtrail_10_1007_s00170_018_3171_7
springer_journals_10_1007_s00170_018_3171_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BratanicBPernusFLikarBTomazevicDRealtime rotation estimation using histograms of oriented gradientsPLoS One201493e9213710.1371/journal.pone.0092137
Vilas D, Kiran H (2013) Quality inspection and grading of mangoes by computer vision and image analysis. J Eng Res Appl 3(5):1208–1212 online: http://www.ijera.com/papers/Vol3_issue5/GW3512081212.pdf Accessed 14 Dec 2018
Weyrich M, Klein P, Laurowski M, Wang Y (2011) Vision based defect detection on 3D objects and path planning for processing. Proceedings of the 9th WSEAS International Conference on ROCOM
Mendoza F, Kelly J, Cichy K (2016) Automated prediction of sensory scores for color and appearance in canned black beans (Phaseolus vulgaris L.) using machine vision. Int J Food Prop. https://doi.org/10.1080/10942912.2015.1136939
Teledyne DALSA line scan camera. online https://www.teledynedalsa.com/en/learn/knowledge-center/color-line-scan-imaging Accessed 14 Dec 2018
Dhou S, Mutai Y (2015) Dynamic 3D surface reconstruction and motion modeling from a pan–tilt–zoom camera. Comput Ind 70(3):183–193 Elsevier. online: https://www.sciencedirect.com/science/article/pii/S0166361515000391 Accessed 14 Dec 2018
Ali M, Mailah M, Hing T (2012) Visual inspection of cylindrical Product's lateral surface using camera and image processing. Int J Math Model meth Appl Sci 6(2):340-348
Ali M (2014) Autonomous mobile robot navigation and control in the road following and roundabout environments incorporating laser range finder and vision system. Ph.D thesis UTM
Anvarkhah S, Panah A, Anvarkhah A (2016) The influence of color features on seed identification using machine vision. Not Sci Biol 8(1):93-97
Santos J, Leta F (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989-1000
Hyperfine spectrometer. online : https://lightmachinery.com/spectrometers/hyperfine-spectrometer/?gclid=EAIaIQobChMIg4vZ57r_3gIVioqPCh0FQwwHEAAYASAAEgICcPD_BwE Accessed 14 Dec 2018
Ali M, Mailah M, Kazi S, Hing T (2011) Defects detection of cylindrical object’s surface using vision system. In: Proceedings of The 10th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS '11), Jakarta, 1–3 December. online: http://www.wseas.us/e-library/conferences/2011/Jakarta/CIMISP/CIMISP-36.pdf Accessed 14 Dec 2018
Weyrich M, Klein P, Laurowski M, Wang Y (2011) A real-time and vision-based methodology for processing 3D objects on a conveyor belt. WSEAS WSEAS Int J Sys Appl, Eng Devel 5(4):561-569
Yuxiang Y, Zheng J, Mingyu G, Zhiwei H (2015) A robust vision inspection system for detecting surface defects of film capacitors. In press. Elsavier Signal Processing
YangYGaoMYinKWuZLiYAn automatic visual inspection system for cone surface defectsJ Comp Meth Sci Eng2015152269276B
Deepika B, Shanu S (2014) A survey of machine vision techniques for fruit sorting and grading. International Journal of Engineering Research & Technology 3(7):1187-1193
3171_CR8
3171_CR9
B Bratanic (3171_CR7) 2014; 9
3171_CR15
3171_CR16
3171_CR13
3171_CR14
3171_CR4
3171_CR5
3171_CR2
3171_CR3
Y Yang (3171_CR6) 2015; 15
3171_CR11
3171_CR1
3171_CR12
3171_CR10
References_xml – reference: Weyrich M, Klein P, Laurowski M, Wang Y (2011) Vision based defect detection on 3D objects and path planning for processing. Proceedings of the 9th WSEAS International Conference on ROCOM
– reference: Vilas D, Kiran H (2013) Quality inspection and grading of mangoes by computer vision and image analysis. J Eng Res Appl 3(5):1208–1212 online: http://www.ijera.com/papers/Vol3_issue5/GW3512081212.pdf Accessed 14 Dec 2018
– reference: Deepika B, Shanu S (2014) A survey of machine vision techniques for fruit sorting and grading. International Journal of Engineering Research & Technology 3(7):1187-1193
– reference: Santos J, Leta F (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989-1000
– reference: Ali M, Mailah M, Kazi S, Hing T (2011) Defects detection of cylindrical object’s surface using vision system. In: Proceedings of The 10th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS '11), Jakarta, 1–3 December. online: http://www.wseas.us/e-library/conferences/2011/Jakarta/CIMISP/CIMISP-36.pdf Accessed 14 Dec 2018
– reference: Weyrich M, Klein P, Laurowski M, Wang Y (2011) A real-time and vision-based methodology for processing 3D objects on a conveyor belt. WSEAS WSEAS Int J Sys Appl, Eng Devel 5(4):561-569
– reference: Anvarkhah S, Panah A, Anvarkhah A (2016) The influence of color features on seed identification using machine vision. Not Sci Biol 8(1):93-97
– reference: Dhou S, Mutai Y (2015) Dynamic 3D surface reconstruction and motion modeling from a pan–tilt–zoom camera. Comput Ind 70(3):183–193 Elsevier. online: https://www.sciencedirect.com/science/article/pii/S0166361515000391 Accessed 14 Dec 2018
– reference: BratanicBPernusFLikarBTomazevicDRealtime rotation estimation using histograms of oriented gradientsPLoS One201493e9213710.1371/journal.pone.0092137
– reference: Hyperfine spectrometer. online : https://lightmachinery.com/spectrometers/hyperfine-spectrometer/?gclid=EAIaIQobChMIg4vZ57r_3gIVioqPCh0FQwwHEAAYASAAEgICcPD_BwE Accessed 14 Dec 2018
– reference: Ali M, Mailah M, Hing T (2012) Visual inspection of cylindrical Product's lateral surface using camera and image processing. Int J Math Model meth Appl Sci 6(2):340-348
– reference: Ali M (2014) Autonomous mobile robot navigation and control in the road following and roundabout environments incorporating laser range finder and vision system. Ph.D thesis UTM
– reference: Yuxiang Y, Zheng J, Mingyu G, Zhiwei H (2015) A robust vision inspection system for detecting surface defects of film capacitors. In press. Elsavier Signal Processing
– reference: YangYGaoMYinKWuZLiYAn automatic visual inspection system for cone surface defectsJ Comp Meth Sci Eng2015152269276B
– reference: Mendoza F, Kelly J, Cichy K (2016) Automated prediction of sensory scores for color and appearance in canned black beans (Phaseolus vulgaris L.) using machine vision. Int J Food Prop. https://doi.org/10.1080/10942912.2015.1136939
– reference: Teledyne DALSA line scan camera. online https://www.teledynedalsa.com/en/learn/knowledge-center/color-line-scan-imaging Accessed 14 Dec 2018
– ident: 3171_CR15
– ident: 3171_CR16
– ident: 3171_CR2
– ident: 3171_CR3
  doi: 10.1016/j.procir.2012.07.076
– ident: 3171_CR13
– ident: 3171_CR14
– ident: 3171_CR12
– ident: 3171_CR1
– volume: 9
  start-page: e92137
  issue: 3
  year: 2014
  ident: 3171_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092137
– ident: 3171_CR8
  doi: 10.1016/j.compind.2015.02.005
– volume: 15
  start-page: 269
  issue: 2
  year: 2015
  ident: 3171_CR6
  publication-title: J Comp Meth Sci Eng
– ident: 3171_CR9
– ident: 3171_CR10
  doi: 10.1080/10942912.2015.1136939
– ident: 3171_CR5
  doi: 10.1016/j.sigpro.2015.10.028
– ident: 3171_CR11
  doi: 10.15835/nsb819743
– ident: 3171_CR4
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.3780298
Snippet This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Algorithms
Automation
CAE) and Design
Computer-Aided Engineering (CAD
Decision making
Defects
Engineering
Feature extraction
Fuzzy logic
Image classification
Image detection
Image processing
Industrial and Production Engineering
Inspection
Low noise
Mechanical Engineering
Media Management
Noise
Noise reduction
Object recognition
Original Article
Pistons
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7B9gIH_lG3FOQDJ1CqTWwn9nGFWiqQOLVSOUXxH1rRJtUmQeqe-g49ceDl-iSMnXgXqoLUUxSNE8fOeGbsmfkG4K2lllJnaOK0UAkzUiSo5WiSZU5zqVDh6ID2-SU_PGafTvjJmMfdxmj36JIMknqd7BagXnDr68_zijQp7sNWgNuawNb849fP-5GNUln4UphrNsukrz-_YWPKOB2cW6OzIU9DxhzuRoRfbyI6P2_r9G_1tbFJb7hRg3Y6eAxHcVxDUMr3vb5Te3p1A_LxjgN_Ao9Ga5XMB_Z6Cvds_Qwe_oFh-Bx-zYmuWh1C8YnrV6sLEsQp8Se8ZHGG8oqcD9kIvkV1-q1ZIuXs-vLKa1BDjPURJXjpQlRYTdCMJlXfNQFMlvxYtD1-wqIeckKR3ji8iwVHiL7AMZkAdEIa5U-Vri9_tqTtl67S9gUcH-wffThMxpoPiaaMdagVCqEorZSTzPE0N9zonM0s8o5h1ObCpE4ph3ZXWknJ2KzCLXzOUUg7ZQXn9CVM6qa220B4qvBtjlXWSpZLrbAHqlHeZKkxzogpzOKvLPUIiO7rcpyWayjnMPMlznzpZ74spvBu_cj5gAbyv8a7kT_KUTC0ZeYr1nuURXE72fthUeSL2RTeR27YkP_Z186dWr-CB2j3ySFucxcm3bK3r9G26tSbcS39BtvcGdU
  priority: 102
  providerName: Springer Nature
Title A cascading fuzzy logic with image processing algorithm–based defect detection for automatic visual inspection of industrial cylindrical object’s surface
URI https://link.springer.com/article/10.1007/s00170-018-3171-7
https://www.proquest.com/docview/2203234478
https://www.proquest.com/docview/2490876380
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELba3QscKp5iS7vygRMoIomdxDkgtIXdVjxWCFipnKL4BSu1ydIkSO2p_4ETB_5cfwkzTrILCHqKIjsPecYzY8_4-wh5ZJhhzGrmWSWkx3UqPPByzAtDq6JUgsNRDu1zHh8t-Kvj6HiLzPuzMFhW2dtEZ6h1qXCP_GmIGSqYDMJ_vvrqIWsUZld7Co28o1bQzxzE2DYZhoiMNSDDg-n83ftew4I0QZbMtQaGKVLTbzSc8Yi1ea8uDxEH7jAdLFQETkXR50V9B0PqSFsC3F9MAi_507NtwtW_MqzOcc1ukZ0u4qSTVkVuky1T3CE3f8MhvEt-TqjKK-XK6altLi7OqTOJFHdp6fIUbA5dtScKsEd-8hlGpv5yenX5Hb2gptpgVQhcalfZVVAIhWne1KUDhKXfllUDv7As2nOd0F5auOtJQ6g6h2BXO7ASWkrcGbq6_FHRqjmzuTL3yGI2_fjiyOt4GzzFOK_BsidCMpZLm3IbBbGOtIq5b0D-mjMTCx1YKS3ETkGeppz7OSzD4wgMrZVGRBG7TwZFWZgHhEaBhLdZnhuTwkJeSfgCU6AFYaC11WJE_H7MM9WBmiO3xkm2hmN2YspATBmKKUtG5PH6kVWL6HFd571ekFk3uassRNZ5REoU_25ea-qIPOllv2n-77d2r3_ZQ3IDgrW0LbbcI4P6rDH7EBDVcky2xexwTIaTl2_ffMDr4afX03Gn-9C6CCe_AMTGDB4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtVAGJ4QWKgLAl7iEdRZ6EbT2Ham7cyCGFTIQfDEGEjY1c4NTwLtgbaaw4p3cOWCV_FheBL_mXbOUaPsWDXN9Jb-15l__u9D6JkmmhCjSGAkEwFVnAUQ5UgQx0YmXEDAkQ7tc5QOD-j7w-RwAf30vTB2W6X3ic5Rq0raNfJXsa1QgTGw8PXkNLCsUba66ik0ip5aQW04iLG-sWNXT7_BFK7e2HkH8n4ex9tb-2-HQc8yEEhCaQN-KGOCkEIYTk0SpSpRMqWhhq9VlOiUqcgIYSDSRwXnlIYFTBrTBNyCEZolljUCQsASJZTD5G_pzdbo4yev0RHPLCvnTONjDglONrcoQhPS1dn6ukcaueY9mBgxa_rM12FDB3vqSGIiu56ZRUH2ZySdp8d_VXRdoNxeQct9hos3O5VcRQu6vIvu_IZ7eA9dbmJZ1NJt38emPT-fYueCsV0VxuMT8HF40nUw2CuK4yOQRPPl5Oriu426CsNfAUcNh8btJCsxpN64aJvKAdDir-O6hU8Yl10fKYxXBs48SQmWU0iulQNHwZWwK1FXFz9qXLdnppD6Pjq4EQk-QItlVeqHCCeRgKcZWmjNacqlgDcQCVoXR0oZxQYo9P88lz2IuuXyOM5n8M9OTDmIKbdiyrMBejG7ZdIhiFx38boXZN47kzqPLcu9RWZk_x6eWcYAvfSynw__912Prn_YU3RruP9hL9_bGe2uoduQKPJuo-c6WmzOWv0YkrFGPOk1HqPPN21kvwDPyERl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoSAgOqFAqFij4wKlVxCa2E_u4aruiBSEOrMQtiv_QSpCsNgkSnHgHThx4OZ6kYyfZLYgi9RRFduLIM5kfz8w3CB0YYgixmgRWcRlQLXgAWo4EUWQVExIUjvJon6fx0Yj-vmAXbZ_Tsst270KSTU2DQ2nKq8OJtoezwjcP-wJusDvbS8Ig-YCWqMNJAIYeRYOOoUKRuKaYM4aLhOtEP2doQhlpwlxt2CEOfe0c-CXc_Xm8C4O-teRLRTa3Tl8FVL2eGn5Ea62BiQcNR6yjBZNvoNW_YAc_oacBVlmpfPY8tvXd3S32EhC7Q1k8vgYRgydNAYGbkV1dFlMYuX6-f3BKT2NtXBIIXCqfyJVjsHxxVleFx3_FN-Oyhk8Y500ZJ4wXFu66HiFY3cL-a49NggvpDoKe7x9LXNZTmymziUbDn-ffj4K2TUOgCKUVCPKES0IyaQW1LIw10yqmfQPk1pSYmOvQSmnBVAozISjtZ-B1xwzkqpWGM0Y-o8W8yM0WwiyU8DZLM2ME-O1KwgpEgYiIQq2t5j3U7_Y8VS2GuWulcZXO0Jc9mVIgU-rIlCY99HX2yKQB8Hhv8m5HyLT9l8s0ck3mHTAif3vYhU5BSvN-D33raD8f_uda2_81ex8tn_0Ypie_To930ApYbaLJutxFi9W0Nl_AMqrknuf-P4xDBDU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cascading+fuzzy+logic+with+image+processing+algorithm%E2%80%93based+defect+detection+for+automatic+visual+inspection+of+industrial+cylindrical+object%E2%80%99s+surface&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Ali%2C+Mohammed+A+H&rft.au=Au%2C+Kai+Lun&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=102&rft.issue=1&rft.spage=81&rft.epage=94&rft_id=info:doi/10.1007%2Fs00170-018-3171-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon