A cascading fuzzy logic with image processing algorithm–based defect detection for automatic visual inspection of industrial cylindrical object’s surface
This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of industrial cylindrical object using a camera and multiple flat mirrors. The finishing surface of industrial parts such as shafts, bearings, pistons,...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 102; no. 1-4; pp. 81 - 94 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.05.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-018-3171-7 |
Cover
| Abstract | This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of industrial cylindrical object using a camera and multiple flat mirrors. The finishing surface of industrial parts such as shafts, bearings, pistons, rings, and pins should be smooth within permissible limits before installation process, as the defects in these parts may damage or reduce the life of the whole machine. The optical surface inspection of cylindrical products and highly curved surfaces is quite challenging in the industrial automation, due to that it needs to be acquired with several views and subsequently combined in one view. Thus, a time–cost-effective visual inspection method with fuzzy logic–based decision making approach is developed to investigate the optical defects on the lateral surfaces of the cylindrical products. The image processing algorithm has been developed to extract the main features of the tested objects such as defects, borders, and noise. A cascading fuzzy logic algorithm with two stages has been implemented to eliminate the effect of the noise in the captured images and thereafter classify the objects into defective and non-defective objects. The 1st stage of fuzzy logic algorithm is used to eliminate the low noise from the captured images; however, the 2nd stage is used to differentiate between the big noise and defects on the objects. Results show that the defects can be detected if the ratio of detection is higher than 0.1 and the accuracy of defectiveness levels is 80%. |
|---|---|
| AbstractList | This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of industrial cylindrical object using a camera and multiple flat mirrors. The finishing surface of industrial parts such as shafts, bearings, pistons, rings, and pins should be smooth within permissible limits before installation process, as the defects in these parts may damage or reduce the life of the whole machine. The optical surface inspection of cylindrical products and highly curved surfaces is quite challenging in the industrial automation, due to that it needs to be acquired with several views and subsequently combined in one view. Thus, a time–cost-effective visual inspection method with fuzzy logic–based decision making approach is developed to investigate the optical defects on the lateral surfaces of the cylindrical products. The image processing algorithm has been developed to extract the main features of the tested objects such as defects, borders, and noise. A cascading fuzzy logic algorithm with two stages has been implemented to eliminate the effect of the noise in the captured images and thereafter classify the objects into defective and non-defective objects. The 1st stage of fuzzy logic algorithm is used to eliminate the low noise from the captured images; however, the 2nd stage is used to differentiate between the big noise and defects on the objects. Results show that the defects can be detected if the ratio of detection is higher than 0.1 and the accuracy of defectiveness levels is 80%. |
| Author | Lun, Au Kai Ali, Mohammed A. H. |
| Author_xml | – sequence: 1 givenname: Mohammed A. H. surname: Ali fullname: Ali, Mohammed A. H. email: hashem@ump.edu.my organization: Faculty of Manufacturing Engineering, Universiti Malaysia Pahang – sequence: 2 givenname: Au Kai surname: Lun fullname: Lun, Au Kai organization: Faculty of Manufacturing Engineering, Universiti Malaysia Pahang |
| BookMark | eNp9UctqHDEQFMYGrx8fkJvA54mlkUbSHo1JYoMhF_ssNHpMtMyO1pImYX3yP-SUg3_OX5Je1hAI2KdWU1Xdpa4TdDilySP0iZLPlBB5WQihkjSEqoZRSRt5gBaUM9YwQrtDtCCtAEQKdYxOSlkBW1ChFujlCltTrHFxGnCYn562eExDtPhXrD9wXJvB401O1peyY5hxSBmQ9evz794U77DzwdsKpUKJacIhZWzmmtamwpifscxmxHEqmzc8BejcXGqOANjtCF2OFt6pXwHn9flPwWXOwVh_ho6CGYs_f6un6OHrl_vrm-bu-7fb66u7xjLOa0OJVD1jpg9LHjoqXOes4MS3bXCceaEcDX0fBBzGLJecE6OUEp0D771XXcdO0cV-Lnz1cfal6lWa8wQrdcuXREnBFPmQ1RLWghepgEX3LJtTKdkHvclwx7zVlOhdVnqflYas9C4rLUEj_9PYWM3uXDWbOH6obPfKAlumwed_nt4X_QWnLq-Q |
| CitedBy_id | crossref_primary_10_1155_2022_4956839 crossref_primary_10_1088_1361_6501_ad0a5d crossref_primary_10_1371_journal_pone_0292814 crossref_primary_10_1155_2022_9439093 crossref_primary_10_1080_21693277_2024_2378199 crossref_primary_10_3390_app132011419 crossref_primary_10_1109_TII_2022_3177662 crossref_primary_10_3390_jmmp8060244 crossref_primary_10_3390_pr10030488 crossref_primary_10_1017_S0263574720000831 crossref_primary_10_1111_jfpe_14730 crossref_primary_10_3390_drones7020133 crossref_primary_10_1007_s00170_022_08785_1 crossref_primary_10_1016_j_jksuci_2022_07_017 crossref_primary_10_1007_s40684_021_00343_6 crossref_primary_10_1109_JSEN_2022_3225227 crossref_primary_10_3233_JIFS_189453 crossref_primary_10_3390_s19235309 crossref_primary_10_3390_electronics13193798 |
| Cites_doi | 10.1016/j.procir.2012.07.076 10.1371/journal.pone.0092137 10.1016/j.compind.2015.02.005 10.1080/10942912.2015.1136939 10.1016/j.sigpro.2015.10.028 10.15835/nsb819743 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 Springer-Verlag London Ltd., part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-018-3171-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 94 |
| ExternalDocumentID | 10_1007_s00170_018_3171_7 |
| GrantInformation_xml | – fundername: Ministry of Higher education grantid: RDU 160131 |
| GroupedDBID | -5B -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- ML~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR _50 ~8M ~A9 ~EX -XW -XX -Y2 1SB 28- 2P1 2VQ 5QI 9M8 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADQRH ADRFC AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- PHGZM PHGZT PQGLB PUEGO R4E RNI RZK S1Z S26 S28 SCLPG SCV T16 ZY4 DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c344t-1078b33abf94f516d5dc640e22fd43e68d1fbbf6171a99440a88865ddefbe8553 |
| IEDL.DBID | BENPR |
| ISSN | 0268-3768 |
| IngestDate | Fri Jul 25 11:10:21 EDT 2025 Fri Jul 25 11:13:17 EDT 2025 Wed Oct 01 00:53:01 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Fri Feb 21 02:35:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-4 |
| Keywords | Fuzzy logic Cylindrical object Non-destructive testing Multiple flat mirror system Defect detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-1078b33abf94f516d5dc640e22fd43e68d1fbbf6171a99440a88865ddefbe8553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2490876380 |
| PQPubID | 2044010 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2490876380 proquest_journals_2203234478 crossref_primary_10_1007_s00170_018_3171_7 crossref_citationtrail_10_1007_s00170_018_3171_7 springer_journals_10_1007_s00170_018_3171_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2019 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | BratanicBPernusFLikarBTomazevicDRealtime rotation estimation using histograms of oriented gradientsPLoS One201493e9213710.1371/journal.pone.0092137 Vilas D, Kiran H (2013) Quality inspection and grading of mangoes by computer vision and image analysis. J Eng Res Appl 3(5):1208–1212 online: http://www.ijera.com/papers/Vol3_issue5/GW3512081212.pdf Accessed 14 Dec 2018 Weyrich M, Klein P, Laurowski M, Wang Y (2011) Vision based defect detection on 3D objects and path planning for processing. Proceedings of the 9th WSEAS International Conference on ROCOM Mendoza F, Kelly J, Cichy K (2016) Automated prediction of sensory scores for color and appearance in canned black beans (Phaseolus vulgaris L.) using machine vision. Int J Food Prop. https://doi.org/10.1080/10942912.2015.1136939 Teledyne DALSA line scan camera. online https://www.teledynedalsa.com/en/learn/knowledge-center/color-line-scan-imaging Accessed 14 Dec 2018 Dhou S, Mutai Y (2015) Dynamic 3D surface reconstruction and motion modeling from a pan–tilt–zoom camera. Comput Ind 70(3):183–193 Elsevier. online: https://www.sciencedirect.com/science/article/pii/S0166361515000391 Accessed 14 Dec 2018 Ali M, Mailah M, Hing T (2012) Visual inspection of cylindrical Product's lateral surface using camera and image processing. Int J Math Model meth Appl Sci 6(2):340-348 Ali M (2014) Autonomous mobile robot navigation and control in the road following and roundabout environments incorporating laser range finder and vision system. Ph.D thesis UTM Anvarkhah S, Panah A, Anvarkhah A (2016) The influence of color features on seed identification using machine vision. Not Sci Biol 8(1):93-97 Santos J, Leta F (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989-1000 Hyperfine spectrometer. online : https://lightmachinery.com/spectrometers/hyperfine-spectrometer/?gclid=EAIaIQobChMIg4vZ57r_3gIVioqPCh0FQwwHEAAYASAAEgICcPD_BwE Accessed 14 Dec 2018 Ali M, Mailah M, Kazi S, Hing T (2011) Defects detection of cylindrical object’s surface using vision system. In: Proceedings of The 10th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS '11), Jakarta, 1–3 December. online: http://www.wseas.us/e-library/conferences/2011/Jakarta/CIMISP/CIMISP-36.pdf Accessed 14 Dec 2018 Weyrich M, Klein P, Laurowski M, Wang Y (2011) A real-time and vision-based methodology for processing 3D objects on a conveyor belt. WSEAS WSEAS Int J Sys Appl, Eng Devel 5(4):561-569 Yuxiang Y, Zheng J, Mingyu G, Zhiwei H (2015) A robust vision inspection system for detecting surface defects of film capacitors. In press. Elsavier Signal Processing YangYGaoMYinKWuZLiYAn automatic visual inspection system for cone surface defectsJ Comp Meth Sci Eng2015152269276B Deepika B, Shanu S (2014) A survey of machine vision techniques for fruit sorting and grading. International Journal of Engineering Research & Technology 3(7):1187-1193 3171_CR8 3171_CR9 B Bratanic (3171_CR7) 2014; 9 3171_CR15 3171_CR16 3171_CR13 3171_CR14 3171_CR4 3171_CR5 3171_CR2 3171_CR3 Y Yang (3171_CR6) 2015; 15 3171_CR11 3171_CR1 3171_CR12 3171_CR10 |
| References_xml | – reference: Weyrich M, Klein P, Laurowski M, Wang Y (2011) Vision based defect detection on 3D objects and path planning for processing. Proceedings of the 9th WSEAS International Conference on ROCOM – reference: Vilas D, Kiran H (2013) Quality inspection and grading of mangoes by computer vision and image analysis. J Eng Res Appl 3(5):1208–1212 online: http://www.ijera.com/papers/Vol3_issue5/GW3512081212.pdf Accessed 14 Dec 2018 – reference: Deepika B, Shanu S (2014) A survey of machine vision techniques for fruit sorting and grading. International Journal of Engineering Research & Technology 3(7):1187-1193 – reference: Santos J, Leta F (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989-1000 – reference: Ali M, Mailah M, Kazi S, Hing T (2011) Defects detection of cylindrical object’s surface using vision system. In: Proceedings of The 10th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (CIMMACS '11), Jakarta, 1–3 December. online: http://www.wseas.us/e-library/conferences/2011/Jakarta/CIMISP/CIMISP-36.pdf Accessed 14 Dec 2018 – reference: Weyrich M, Klein P, Laurowski M, Wang Y (2011) A real-time and vision-based methodology for processing 3D objects on a conveyor belt. WSEAS WSEAS Int J Sys Appl, Eng Devel 5(4):561-569 – reference: Anvarkhah S, Panah A, Anvarkhah A (2016) The influence of color features on seed identification using machine vision. Not Sci Biol 8(1):93-97 – reference: Dhou S, Mutai Y (2015) Dynamic 3D surface reconstruction and motion modeling from a pan–tilt–zoom camera. Comput Ind 70(3):183–193 Elsevier. online: https://www.sciencedirect.com/science/article/pii/S0166361515000391 Accessed 14 Dec 2018 – reference: BratanicBPernusFLikarBTomazevicDRealtime rotation estimation using histograms of oriented gradientsPLoS One201493e9213710.1371/journal.pone.0092137 – reference: Hyperfine spectrometer. online : https://lightmachinery.com/spectrometers/hyperfine-spectrometer/?gclid=EAIaIQobChMIg4vZ57r_3gIVioqPCh0FQwwHEAAYASAAEgICcPD_BwE Accessed 14 Dec 2018 – reference: Ali M, Mailah M, Hing T (2012) Visual inspection of cylindrical Product's lateral surface using camera and image processing. Int J Math Model meth Appl Sci 6(2):340-348 – reference: Ali M (2014) Autonomous mobile robot navigation and control in the road following and roundabout environments incorporating laser range finder and vision system. Ph.D thesis UTM – reference: Yuxiang Y, Zheng J, Mingyu G, Zhiwei H (2015) A robust vision inspection system for detecting surface defects of film capacitors. In press. Elsavier Signal Processing – reference: YangYGaoMYinKWuZLiYAn automatic visual inspection system for cone surface defectsJ Comp Meth Sci Eng2015152269276B – reference: Mendoza F, Kelly J, Cichy K (2016) Automated prediction of sensory scores for color and appearance in canned black beans (Phaseolus vulgaris L.) using machine vision. Int J Food Prop. https://doi.org/10.1080/10942912.2015.1136939 – reference: Teledyne DALSA line scan camera. online https://www.teledynedalsa.com/en/learn/knowledge-center/color-line-scan-imaging Accessed 14 Dec 2018 – ident: 3171_CR15 – ident: 3171_CR16 – ident: 3171_CR2 – ident: 3171_CR3 doi: 10.1016/j.procir.2012.07.076 – ident: 3171_CR13 – ident: 3171_CR14 – ident: 3171_CR12 – ident: 3171_CR1 – volume: 9 start-page: e92137 issue: 3 year: 2014 ident: 3171_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0092137 – ident: 3171_CR8 doi: 10.1016/j.compind.2015.02.005 – volume: 15 start-page: 269 issue: 2 year: 2015 ident: 3171_CR6 publication-title: J Comp Meth Sci Eng – ident: 3171_CR9 – ident: 3171_CR10 doi: 10.1080/10942912.2015.1136939 – ident: 3171_CR5 doi: 10.1016/j.sigpro.2015.10.028 – ident: 3171_CR11 doi: 10.15835/nsb819743 – ident: 3171_CR4 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.3780298 |
| Snippet | This paper proposes a cascading fuzzy logic algorithm with image processing technique for defect detection and classification on the lateral surface of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 81 |
| SubjectTerms | Algorithms Automation CAE) and Design Computer-Aided Engineering (CAD Decision making Defects Engineering Feature extraction Fuzzy logic Image classification Image detection Image processing Industrial and Production Engineering Inspection Low noise Mechanical Engineering Media Management Noise Noise reduction Object recognition Original Article Pistons |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7B9gIH_lG3FOQDJ1CqTWwn9nGFWiqQOLVSOUXxH1rRJtUmQeqe-g49ceDl-iSMnXgXqoLUUxSNE8fOeGbsmfkG4K2lllJnaOK0UAkzUiSo5WiSZU5zqVDh6ID2-SU_PGafTvjJmMfdxmj36JIMknqd7BagXnDr68_zijQp7sNWgNuawNb849fP-5GNUln4UphrNsukrz-_YWPKOB2cW6OzIU9DxhzuRoRfbyI6P2_r9G_1tbFJb7hRg3Y6eAxHcVxDUMr3vb5Te3p1A_LxjgN_Ao9Ga5XMB_Z6Cvds_Qwe_oFh-Bx-zYmuWh1C8YnrV6sLEsQp8Se8ZHGG8oqcD9kIvkV1-q1ZIuXs-vLKa1BDjPURJXjpQlRYTdCMJlXfNQFMlvxYtD1-wqIeckKR3ji8iwVHiL7AMZkAdEIa5U-Vri9_tqTtl67S9gUcH-wffThMxpoPiaaMdagVCqEorZSTzPE0N9zonM0s8o5h1ObCpE4ph3ZXWknJ2KzCLXzOUUg7ZQXn9CVM6qa220B4qvBtjlXWSpZLrbAHqlHeZKkxzogpzOKvLPUIiO7rcpyWayjnMPMlznzpZ74spvBu_cj5gAbyv8a7kT_KUTC0ZeYr1nuURXE72fthUeSL2RTeR27YkP_Z186dWr-CB2j3ySFucxcm3bK3r9G26tSbcS39BtvcGdU priority: 102 providerName: Springer Nature |
| Title | A cascading fuzzy logic with image processing algorithm–based defect detection for automatic visual inspection of industrial cylindrical object’s surface |
| URI | https://link.springer.com/article/10.1007/s00170-018-3171-7 https://www.proquest.com/docview/2203234478 https://www.proquest.com/docview/2490876380 |
| Volume | 102 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3015 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELba3QscKp5iS7vygRMoIomdxDkgtIXdVjxWCFipnKL4BSu1ydIkSO2p_4ETB_5cfwkzTrILCHqKIjsPecYzY8_4-wh5ZJhhzGrmWSWkx3UqPPByzAtDq6JUgsNRDu1zHh8t-Kvj6HiLzPuzMFhW2dtEZ6h1qXCP_GmIGSqYDMJ_vvrqIWsUZld7Co28o1bQzxzE2DYZhoiMNSDDg-n83ftew4I0QZbMtQaGKVLTbzSc8Yi1ea8uDxEH7jAdLFQETkXR50V9B0PqSFsC3F9MAi_507NtwtW_MqzOcc1ukZ0u4qSTVkVuky1T3CE3f8MhvEt-TqjKK-XK6altLi7OqTOJFHdp6fIUbA5dtScKsEd-8hlGpv5yenX5Hb2gptpgVQhcalfZVVAIhWne1KUDhKXfllUDv7As2nOd0F5auOtJQ6g6h2BXO7ASWkrcGbq6_FHRqjmzuTL3yGI2_fjiyOt4GzzFOK_BsidCMpZLm3IbBbGOtIq5b0D-mjMTCx1YKS3ETkGeppz7OSzD4wgMrZVGRBG7TwZFWZgHhEaBhLdZnhuTwkJeSfgCU6AFYaC11WJE_H7MM9WBmiO3xkm2hmN2YspATBmKKUtG5PH6kVWL6HFd571ekFk3uassRNZ5REoU_25ea-qIPOllv2n-77d2r3_ZQ3IDgrW0LbbcI4P6rDH7EBDVcky2xexwTIaTl2_ffMDr4afX03Gn-9C6CCe_AMTGDB4 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtVAGJ4QWKgLAl7iEdRZ6EbT2Ham7cyCGFTIQfDEGEjY1c4NTwLtgbaaw4p3cOWCV_FheBL_mXbOUaPsWDXN9Jb-15l__u9D6JkmmhCjSGAkEwFVnAUQ5UgQx0YmXEDAkQ7tc5QOD-j7w-RwAf30vTB2W6X3ic5Rq0raNfJXsa1QgTGw8PXkNLCsUba66ik0ip5aQW04iLG-sWNXT7_BFK7e2HkH8n4ex9tb-2-HQc8yEEhCaQN-KGOCkEIYTk0SpSpRMqWhhq9VlOiUqcgIYSDSRwXnlIYFTBrTBNyCEZolljUCQsASJZTD5G_pzdbo4yev0RHPLCvnTONjDglONrcoQhPS1dn6ukcaueY9mBgxa_rM12FDB3vqSGIiu56ZRUH2ZySdp8d_VXRdoNxeQct9hos3O5VcRQu6vIvu_IZ7eA9dbmJZ1NJt38emPT-fYueCsV0VxuMT8HF40nUw2CuK4yOQRPPl5Oriu426CsNfAUcNh8btJCsxpN64aJvKAdDir-O6hU8Yl10fKYxXBs48SQmWU0iulQNHwZWwK1FXFz9qXLdnppD6Pjq4EQk-QItlVeqHCCeRgKcZWmjNacqlgDcQCVoXR0oZxQYo9P88lz2IuuXyOM5n8M9OTDmIKbdiyrMBejG7ZdIhiFx38boXZN47kzqPLcu9RWZk_x6eWcYAvfSynw__912Prn_YU3RruP9hL9_bGe2uoduQKPJuo-c6WmzOWv0YkrFGPOk1HqPPN21kvwDPyERl |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoSAgOqFAqFij4wKlVxCa2E_u4aruiBSEOrMQtiv_QSpCsNgkSnHgHThx4OZ6kYyfZLYgi9RRFduLIM5kfz8w3CB0YYgixmgRWcRlQLXgAWo4EUWQVExIUjvJon6fx0Yj-vmAXbZ_Tsst270KSTU2DQ2nKq8OJtoezwjcP-wJusDvbS8Ig-YCWqMNJAIYeRYOOoUKRuKaYM4aLhOtEP2doQhlpwlxt2CEOfe0c-CXc_Xm8C4O-teRLRTa3Tl8FVL2eGn5Ea62BiQcNR6yjBZNvoNW_YAc_oacBVlmpfPY8tvXd3S32EhC7Q1k8vgYRgydNAYGbkV1dFlMYuX6-f3BKT2NtXBIIXCqfyJVjsHxxVleFx3_FN-Oyhk8Y500ZJ4wXFu66HiFY3cL-a49NggvpDoKe7x9LXNZTmymziUbDn-ffj4K2TUOgCKUVCPKES0IyaQW1LIw10yqmfQPk1pSYmOvQSmnBVAozISjtZ-B1xwzkqpWGM0Y-o8W8yM0WwiyU8DZLM2ME-O1KwgpEgYiIQq2t5j3U7_Y8VS2GuWulcZXO0Jc9mVIgU-rIlCY99HX2yKQB8Hhv8m5HyLT9l8s0ck3mHTAif3vYhU5BSvN-D33raD8f_uda2_81ex8tn_0Ypie_To930ApYbaLJutxFi9W0Nl_AMqrknuf-P4xDBDU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cascading+fuzzy+logic+with+image+processing+algorithm%E2%80%93based+defect+detection+for+automatic+visual+inspection+of+industrial+cylindrical+object%E2%80%99s+surface&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Ali%2C+Mohammed+A+H&rft.au=Au%2C+Kai+Lun&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=102&rft.issue=1&rft.spage=81&rft.epage=94&rft_id=info:doi/10.1007%2Fs00170-018-3171-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |