Machine Learning Calabi–Yau Metrics

We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show...

Full description

Saved in:
Bibliographic Details
Published inFortschritte der Physik Vol. 68; no. 9
Main Authors Ashmore, Anthony, He, Yang‐Hui, Ovrut, Burt A.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2020
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text
ISSN0015-8208
1521-3978
DOI10.1002/prop.202000068

Cover

Abstract We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude. The concept of machine‐learning is applied to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, conventional curve fitting and machine‐learning techniques are combined to numerically approximate Ricci‐flat metrics. It is shown that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, the authors demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with the new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude.
AbstractList We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude.
We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude. The concept of machine‐learning is applied to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, conventional curve fitting and machine‐learning techniques are combined to numerically approximate Ricci‐flat metrics. It is shown that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, the authors demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with the new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude.
Author Ashmore, Anthony
He, Yang‐Hui
Ovrut, Burt A.
Author_xml – sequence: 1
  givenname: Anthony
  orcidid: 0000-0001-6178-7538
  surname: Ashmore
  fullname: Ashmore, Anthony
  email: aashmore@sas.upenn.edu
  organization: University of Pennsylvania
– sequence: 2
  givenname: Yang‐Hui
  orcidid: 0000-0002-0787-8380
  surname: He
  fullname: He, Yang‐Hui
  organization: NanKai University
– sequence: 3
  givenname: Burt A.
  orcidid: 0000-0001-6654-173X
  surname: Ovrut
  fullname: Ovrut, Burt A.
  organization: University of Pennsylvania
BackLink https://www.osti.gov/biblio/1647385$$D View this record in Osti.gov
BookMark eNqFkMtKAzEUhoNUsK1uXRfF5dScTGaSWUrxBi0t0o2rcCaTsSljpiZTpDvfwTf0SZwyoiCIZ3M233cu_4D0XO0MIadAx0Apu9z4ejNmlNG2UnlA-pAwiOJMyB7pUwpJJBmVR2QQwrpFGGTQJxcz1CvrzGhq0DvrnkYTrDC3H2_vj7gdzUzjrQ7H5LDEKpiTrz4ky5vr5eQums5v7ydX00jHnMvIxDRPkIEQFFOaiZyWRaYLKlhRikxzxDKFOAWJFE0ii6KEnIsy1tykKCAekrNubB0aq4K2jdErXTtndKMg5SKWSQudd1D778vWhEat66137VmKcU55BpDuqXFHaV-H4E2pNt4-o98poGofl9rHpb7jagX-S2jXY2Nr13i01d9a1mmvtjK7f5aoxcN88eN-AqctgIU
CitedBy_id crossref_primary_10_1007_JHEP05_2021_013
crossref_primary_10_1016_j_physletb_2024_138461
crossref_primary_10_1088_2632_2153_adb4bb
crossref_primary_10_1007_JHEP03_2025_028
crossref_primary_10_1142_S0217751X21300179
crossref_primary_10_1016_j_physletb_2022_137376
crossref_primary_10_1016_j_nuclphysb_2024_116778
crossref_primary_10_1142_S2810939222500010
crossref_primary_10_1002_prop_202000032
crossref_primary_10_1007_JHEP06_2023_164
crossref_primary_10_1103_PhysRevD_103_126014
crossref_primary_10_1007_JHEP05_2021_105
crossref_primary_10_1016_j_physletb_2022_136966
crossref_primary_10_1103_PhysRevD_109_106006
crossref_primary_10_1103_PhysRevD_103_106028
crossref_primary_10_1142_S2810939222500034
crossref_primary_10_1088_2632_2153_ac8e4e
crossref_primary_10_1007_JHEP05_2021_085
crossref_primary_10_1007_JHEP08_2022_105
crossref_primary_10_1016_j_geomphys_2023_105028
crossref_primary_10_1038_s42254_024_00740_1
crossref_primary_10_1007_JHEP02_2022_021
crossref_primary_10_1016_j_physletb_2022_136972
crossref_primary_10_1007_JHEP07_2023_164
crossref_primary_10_1007_s00006_021_01189_6
crossref_primary_10_1016_j_physletb_2021_136297
crossref_primary_10_1103_PhysRevD_108_105027
crossref_primary_10_1103_PhysRevD_108_106018
crossref_primary_10_1088_2399_6528_ad246f
crossref_primary_10_1140_epjc_s10052_022_11118_x
crossref_primary_10_1016_j_physletb_2024_138517
crossref_primary_10_1002_prop_202300262
crossref_primary_10_1007_JHEP11_2021_131
crossref_primary_10_1103_PhysRevD_110_126002
Cites_doi 10.1103/PhysRevB.84.024504
10.1002/prop.201400072
10.1016/j.physletb.2004.08.010
10.1007/JHEP12(2017)149
10.1016/S0370-2693(99)00413-X
10.1016/j.physletb.2019.01.002
10.1016/j.physletb.2019.06.067
10.4310/jdg/1090347643
10.4310/jdg/1214445039
10.1103/PhysRevLett.55.2547
10.1142/S0217751X11052943
10.1007/JHEP08(2018)009
10.1007/JHEP06(2015)182
10.4310/jdg/1090349449
10.1088/1126-6708/2008/05/080
10.1088/1475-7516/2019/02/044
10.1007/JHEP08(2015)087
10.1007/JHEP02(2018)034
10.1016/0550-3213(85)90602-9
10.1088/1126-6708/2007/12/083
10.1088/1126-6708/2008/07/120
10.1088/1126-6708/2005/06/039
10.1007/BF01216094
10.1007/JHEP03(2019)054
10.1007/JHEP09(2017)157
10.1016/j.physletb.2018.08.008
10.1007/JHEP01(2014)047
10.1016/j.nuclphysb.2015.04.009
10.1088/1126-6708/2006/04/019
10.1016/j.physletb.2005.05.007
10.1007/JHEP06(2012)113
10.1103/PhysRevLett.123.101601
10.1016/j.physletb.2017.10.024
10.1063/1.2888403
10.1088/1126-6708/2009/10/011
10.1007/JHEP02(2010)054
10.1007/JHEP01(2012)014
10.1088/0264-9381/22/23/002
10.1007/JHEP03(2018)107
10.1007/s00220-008-0558-6
10.1007/JHEP09(2018)089
10.1007/JHEP08(2017)038
10.1007/JHEP06(2010)107
10.1073/pnas.74.5.1798
10.1088/1126-6708/2006/05/043
10.1142/S0217732315500856
10.4310/ATMP.2013.v17.n5.a1
10.1007/JHEP08(2019)057
10.1016/0550-3213(90)90498-3
10.1007/JHEP11(2012)026
10.1016/j.geomphys.2015.02.018
10.1016/j.physletb.2019.03.048
10.1016/j.physletb.2005.12.042
10.1016/j.nuclphysb.2019.01.013
10.1103/PhysRevLett.121.101602
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
OTOTI
DOI 10.1002/prop.202000068
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3978
EndPage n/a
ExternalDocumentID 1647385
10_1002_prop_202000068
PROP202000068
Genre article
GrantInformation_xml – fundername: DOE
  funderid: DE‐SC0007901
– fundername: Science and Technology Facilities Council
  funderid: ST/J00037X/
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNW
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
PQEST
ID FETCH-LOGICAL-c3448-e30b5a21770a6097b0fd9cd072df79c4aaf613618a0ae58ddf1b47f3c4e6a713
IEDL.DBID DR2
ISSN 0015-8208
IngestDate Fri May 19 00:55:28 EDT 2023
Fri Jul 25 12:12:48 EDT 2025
Tue Jul 01 01:03:25 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Wed Jan 22 16:32:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3448-e30b5a21770a6097b0fd9cd072df79c4aaf613618a0ae58ddf1b47f3c4e6a713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
DE‐SC0007901
ORCID 0000-0001-6178-7538
0000-0001-6654-173X
0000-0002-0787-8380
0000000161787538
000000016654173X
0000000207878380
PQID 2440491165
PQPubID 866401
PageCount 23
ParticipantIDs osti_scitechconnect_1647385
proquest_journals_2440491165
crossref_primary_10_1002_prop_202000068
crossref_citationtrail_10_1002_prop_202000068
wiley_primary_10_1002_prop_202000068_PROP202000068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Fortschritte der Physik
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2018; 09
2018; 08
2018; 121
2019; B940
2017; 08
2017; 09
2006; B633
2012; 11
2005; 22
2019; 123
1999; B455
2018; 03
2018; 02
2019; B792
2004; B598
2015; 06
2019; B795
2009; 10
2013; 17
2015; 08
2000; 56
2011; D84
2015; A30
1977; 74
2001; 59
2019; B789
1985; 55
1985; B258
2005; B618
2018; D98
1990; B335
1990; 32
2019; 1902
2017; D96
2015; 92
1985; 101
2011; A26
2005; 06
2007; 12
2017; 774
2014; 01
2008; 282
2019; D99
2010; 02
2010; 06
2006; 05
2008; 07
2015; 63
2008; 49
2008; 05
2006; 04
2017; 12
2018; B785
2019; 03
2019; 08
2018
2016
2012; 06
2012; 01
2015; B898
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
Anderson L. B. (e_1_2_12_7_1) 2011; 84
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_68_1
Krefl D. (e_1_2_12_31_1) 2017; 96
e_1_2_12_62_1
e_1_2_12_60_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_71_1
e_1_2_12_3_1
Hashimoto K. (e_1_2_12_39_1) 2018; 98
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
Mohri M. (e_1_2_12_70_1) 2018
e_1_2_12_23_1
e_1_2_12_69_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_61_1
e_1_2_12_40_1
Halverson J. (e_1_2_12_46_1) 2019; 99
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 01
  start-page: 014
  year: 2012
  publication-title: JHEP
– volume: 74
  start-page: 1798
  year: 1977
  publication-title: Proceedings of the National Academy of Sciences
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 4931
  year: 2005
  publication-title: Class. Quant. Grav.
– volume: 11
  start-page: 026
  year: 2012
  publication-title: JHEP
– volume: 12
  start-page: 149
  year: 2017
  publication-title: JHEP
– volume: 02
  start-page: 054
  year: 2010
  publication-title: JHEP
– volume: 07
  start-page: 120
  year: 2008
  publication-title: JHEP
– volume: B335
  start-page: 347
  year: 1990
  publication-title: Nucl. Phys.
– volume: 08
  start-page: 038
  year: 2017
  publication-title: JHEP
– volume: 56
  start-page: 189
  year: 2000
  publication-title: J. Differential Geom.
– volume: 92
  start-page: 252
  year: 2015
  publication-title: J. Geom. Phys.
– volume: 03
  start-page: 054
  year: 2019
  publication-title: JHEP
– volume: 59
  start-page: 479
  year: 2001
  publication-title: J. Differential Geom.
– year: 2018
– volume: B598
  start-page: 279
  year: 2004
  publication-title: Phys. Lett.
– volume: A30
  year: 2015
  publication-title: Mod. Phys. Lett.
– volume: 06
  start-page: 107
  year: 2010
  publication-title: JHEP
– volume: 09
  start-page: 089
  year: 2018
  publication-title: JHEP
– volume: 282
  start-page: 357
  year: 2008
  publication-title: Commun. Math. Phys.
– volume: B618
  start-page: 252
  year: 2005
  publication-title: Phys. Lett.
– volume: 01
  start-page: 047
  year: 2014
  publication-title: JHEP
– volume: D99
  year: 2019
  publication-title: Phys. Rev.
– volume: 08
  start-page: 057
  year: 2019
  publication-title: JHEP
– volume: 32
  start-page: 99
  year: 1990
  publication-title: J. Differential Geom.
– volume: B795
  start-page: 700
  year: 2019
  publication-title: Phys. Lett.
– volume: 08
  start-page: 087
  year: 2015
  publication-title: JHEP
– volume: 06
  start-page: 113
  year: 2012
  publication-title: JHEP
– volume: 05
  start-page: 043
  year: 2006
  publication-title: JHEP
– volume: 10
  start-page: 011
  year: 2009
  publication-title: JHEP
– volume: 1902
  start-page: 044
  year: 2019
  publication-title: JCAP
– volume: 04
  start-page: 019
  year: 2006
  publication-title: JHEP
– volume: B792
  start-page: 258
  year: 2019
  publication-title: Phys. Lett.
– volume: 03
  start-page: 107
  year: 2018
  publication-title: JHEP
– volume: 49
  year: 2008
  publication-title: J. Math. Phys.
– volume: B898
  start-page: 667
  year: 2015
  publication-title: Nucl. Phys.
– volume: D96
  year: 2017
  publication-title: Phys. Rev.
– volume: 55
  start-page: 2547
  year: 1985
  publication-title: Phys. Rev. Lett.
– volume: B789
  start-page: 438
  year: 2019
  publication-title: Phys. Lett.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: A26
  start-page: 1569
  year: 2011
  publication-title: Int. J. Mod. Phys.
– volume: 02
  start-page: 034
  year: 2018
  publication-title: JHEP
– year: 2016
– volume: B633
  start-page: 783
  year: 2006
  publication-title: Phys. Lett.
– volume: D84
  year: 2011
  publication-title: Phys. Rev.
– volume: B940
  start-page: 113
  year: 2019
  publication-title: Nucl. Phys.
– volume: 12
  start-page: 083
  year: 2007
  publication-title: JHEP
– volume: D98
  year: 2018
  publication-title: Phys. Rev.
– volume: 08
  start-page: 009
  year: 2018
  publication-title: JHEP
– volume: B785
  start-page: 65
  year: 2018
  publication-title: Phys. Lett.
– volume: 63
  start-page: 55
  year: 2015
  publication-title: Fortsch. Phys.
– volume: 06
  start-page: 039
  year: 2005
  publication-title: JHEP
– volume: B455
  start-page: 135
  year: 1999
  publication-title: Phys. Lett.
– volume: B258
  start-page: 46
  year: 1985
  publication-title: Nucl. Phys.
– volume: 06
  start-page: 182
  year: 2015
  publication-title: JHEP
– volume: 17
  start-page: 867
  year: 2013
  publication-title: Adv. Theor. Math. Phys.
– volume: 05
  start-page: 080
  year: 2008
  publication-title: JHEP
– volume: 101
  start-page: 341
  year: 1985
  publication-title: Commun. Math. Phys.
– volume: 774
  start-page: 564
  year: 2017
  publication-title: Phys. Lett. B
– volume: 09
  start-page: 157
  year: 2017
  publication-title: JHEP
– volume: 84
  start-page: 106005
  year: 2011
  ident: e_1_2_12_7_1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.84.024504
– ident: e_1_2_12_52_1
– ident: e_1_2_12_64_1
  doi: 10.1002/prop.201400072
– volume: 98
  start-page: 046019
  year: 2018
  ident: e_1_2_12_39_1
  publication-title: Phys. Rev.
– ident: e_1_2_12_74_1
  doi: 10.1016/j.physletb.2004.08.010
– ident: e_1_2_12_35_1
  doi: 10.1007/JHEP12(2017)149
– ident: e_1_2_12_12_1
  doi: 10.1016/S0370-2693(99)00413-X
– ident: e_1_2_12_48_1
  doi: 10.1016/j.physletb.2019.01.002
– ident: e_1_2_12_41_1
  doi: 10.1016/j.physletb.2019.06.067
– ident: e_1_2_12_57_1
  doi: 10.4310/jdg/1090347643
– ident: e_1_2_12_49_1
– ident: e_1_2_12_20_1
– ident: e_1_2_12_63_1
  doi: 10.4310/jdg/1214445039
– ident: e_1_2_12_59_1
  doi: 10.1103/PhysRevLett.55.2547
– ident: e_1_2_12_15_1
  doi: 10.1142/S0217751X11052943
– ident: e_1_2_12_38_1
  doi: 10.1007/JHEP08(2018)009
– ident: e_1_2_12_10_1
  doi: 10.1007/JHEP06(2015)182
– ident: e_1_2_12_19_1
  doi: 10.4310/jdg/1090349449
– ident: e_1_2_12_25_1
  doi: 10.1088/1126-6708/2008/05/080
– ident: e_1_2_12_45_1
  doi: 10.1088/1475-7516/2019/02/044
– ident: e_1_2_12_50_1
– ident: e_1_2_12_65_1
  doi: 10.1007/JHEP08(2015)087
– ident: e_1_2_12_36_1
  doi: 10.1007/JHEP02(2018)034
– ident: e_1_2_12_1_1
  doi: 10.1016/0550-3213(85)90602-9
– ident: e_1_2_12_53_1
– ident: e_1_2_12_29_1
– ident: e_1_2_12_37_1
– volume: 96
  start-page: 066014
  year: 2017
  ident: e_1_2_12_31_1
  publication-title: Phys. Rev.
– ident: e_1_2_12_22_1
  doi: 10.1088/1126-6708/2007/12/083
– ident: e_1_2_12_26_1
  doi: 10.1088/1126-6708/2008/07/120
– ident: e_1_2_12_72_1
– ident: e_1_2_12_5_1
  doi: 10.1088/1126-6708/2005/06/039
– ident: e_1_2_12_58_1
  doi: 10.1007/BF01216094
– ident: e_1_2_12_42_1
  doi: 10.1007/JHEP03(2019)054
– volume-title: Foundations of machine learning
  year: 2018
  ident: e_1_2_12_70_1
– ident: e_1_2_12_33_1
  doi: 10.1007/JHEP09(2017)157
– volume: 99
  start-page: 046015
  year: 2019
  ident: e_1_2_12_46_1
  publication-title: Phys. Rev.
– ident: e_1_2_12_69_1
– ident: e_1_2_12_40_1
  doi: 10.1016/j.physletb.2018.08.008
– ident: e_1_2_12_9_1
  doi: 10.1007/JHEP01(2014)047
– ident: e_1_2_12_60_1
  doi: 10.1016/j.nuclphysb.2015.04.009
– ident: e_1_2_12_55_1
– ident: e_1_2_12_18_1
  doi: 10.1088/1126-6708/2006/04/019
– ident: e_1_2_12_47_1
– ident: e_1_2_12_2_1
  doi: 10.1016/j.physletb.2005.05.007
– ident: e_1_2_12_8_1
  doi: 10.1007/JHEP06(2012)113
– ident: e_1_2_12_68_1
  doi: 10.1103/PhysRevLett.123.101601
– ident: e_1_2_12_30_1
  doi: 10.1016/j.physletb.2017.10.024
– ident: e_1_2_12_21_1
  doi: 10.1063/1.2888403
– ident: e_1_2_12_14_1
  doi: 10.1088/1126-6708/2009/10/011
– ident: e_1_2_12_54_1
– ident: e_1_2_12_6_1
  doi: 10.1007/JHEP02(2010)054
– ident: e_1_2_12_28_1
  doi: 10.1007/JHEP01(2012)014
– ident: e_1_2_12_23_1
  doi: 10.1088/0264-9381/22/23/002
– ident: e_1_2_12_66_1
  doi: 10.1007/JHEP03(2018)107
– ident: e_1_2_12_73_1
– ident: e_1_2_12_61_1
  doi: 10.1007/s00220-008-0558-6
– ident: e_1_2_12_67_1
  doi: 10.1007/JHEP09(2018)089
– ident: e_1_2_12_32_1
  doi: 10.1007/JHEP08(2017)038
– ident: e_1_2_12_27_1
  doi: 10.1007/JHEP06(2010)107
– ident: e_1_2_12_56_1
  doi: 10.1073/pnas.74.5.1798
– ident: e_1_2_12_4_1
  doi: 10.1088/1126-6708/2006/05/043
– ident: e_1_2_12_17_1
  doi: 10.1142/S0217732315500856
– ident: e_1_2_12_24_1
  doi: 10.4310/ATMP.2013.v17.n5.a1
– ident: e_1_2_12_51_1
  doi: 10.1007/JHEP08(2019)057
– ident: e_1_2_12_11_1
  doi: 10.1016/0550-3213(90)90498-3
– ident: e_1_2_12_16_1
  doi: 10.1007/JHEP11(2012)026
– ident: e_1_2_12_62_1
  doi: 10.1016/j.geomphys.2015.02.018
– ident: e_1_2_12_71_1
– ident: e_1_2_12_13_1
  doi: 10.1016/j.physletb.2019.03.048
– ident: e_1_2_12_3_1
  doi: 10.1016/j.physletb.2005.12.042
– ident: e_1_2_12_43_1
  doi: 10.1016/j.nuclphysb.2019.01.013
– ident: e_1_2_12_44_1
– ident: e_1_2_12_34_1
  doi: 10.1103/PhysRevLett.121.101602
SSID ssj0002191
Score 2.5464208
Snippet We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Curve fitting
generalized geometry
Machine learning
supergravity backgrounds
Title Machine Learning Calabi–Yau Metrics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.202000068
https://www.proquest.com/docview/2440491165
https://www.osti.gov/biblio/1647385
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFIAHKQhe3MXYKjkontJmz8xRqqUI1VIq1NMwq4jSikkvnvwP_kN_iW-ytRVE0FsCMySTeduE976H0KkvQHKVZo7gLnbAQ2mwg4HnaAH-nugQS2UKnAc3cf8uvJ5Ek6Uq_oIPUf9wM5qR22uj4IynnQU0FAyM4U36ucU11b5eEBt4_uVowY8CdSxa5nmRA64OV9RG1--sTl_xSo0ZaNdKxLkct-aOp7eFWPXKRb7JU3ue8bZ4-0Zz_M-attFmGZXaF4UY7aA1Nd1F63l2qEj30NkgT7lUdkljfbC7DKTn8fP9457N7YHpyiXSfTTuXY27fafsr-CIAE5ljgpcHjE4kyQui12ScFdLIqSb-FInRISMaXD2sYeZy1SEpdQeDxMdiFDFDA63B6gxnU3VIbIlRAFERh7mWIaJ8DnjnuZKcg3RBImIhZzq81JRssdNC4xnWlCTfWpWTuuVW-i8Hv9SUDd-HNk0u0UhXjDQW2Gyg0RGDSUtwJGFWtUm0lI3U-obJCIx2CEL-flu_PIMOhzdDuu7o79MaqINc10kp7VQI3udq2OIZjJ-kkvsF2Or6xI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60InrxLdZWzUHxlDbPZnOUYqna1lIq6GnZp4jSim0vnvwP_kN_ibN5tFYQQY8JuySbeX2zmf0G4NgTqLlKM1twh9gYoTT6Qd-1tcB4H-uASGUOOLc7teZNcHkb5tWE5ixMyg8x3XAzlpH4a2PgZkO6OmMNRQ9jCCe9xOWSRVgKEG0kf2p7MwYpNMi0aZ4b2hjsSM7b6HjV-flzcakwRPuaw5xfkWsSehrrwPOXTitOHiuTMa-I1298jv9a1QasZcDUOks1aRMW1GALlpMCUTHahpN2UnWprIyQ9d6qM1Sgh4-39zs2sdqmMZcY7UC_cd6vN-2sxYItfEzMbOU7PGSYlkQOqzlxxB0tYyGdyJM6ikXAmMZ4X3MJc5gKiZTa5UGkfRGoGsP8dhcKg-FA7YElEQjEMnQJJzKIhMcZdzVXkmsEFHEYF8HOvy8VGf246YLxRFPiZI-aldPpyotwOh3_nBJv_DiyZMRFETIY3lthCoTEmBqiNJ-ERSjnUqSZeY6oZ1gRY8M8VAQvEccvz6Dd3nV3erX_l0lHsNLst1u0ddG5KsGquZ_WqpWhMH6ZqAMEN2N-mKjvJyxX7zA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1oRXHjW4xWzUJxFc07k6VUi6_WUhR0NcxTRGnFphtX_oN_6Jd4J0mjFUTQZcIMyeQ-zplw51yAHV-g5yrNHMFd4iBCacyDgedogXif6pBIZQ44t9rxyXV4dhPdfDnFX-hDVD_cTGTk-doE-JPUB5-ioZhgjN6kn2dcMglTYYxwZmhR91NACuOx6JnnRQ5iHRnJNrr-wfj8MViq9TG8xijnV-KaI09zHtjonYuCk4f9Ycb3xcs3Ocf_LGoB5kpaah8WfrQIE6q3BNN5eagYLMNuK6-5VHYpx3pnNxi6z_3769stG9ot05ZLDFbgqnl81ThxygYLjghwW-aowOURw01J4rLYTRPuapkK6Sa-1EkqQsY0on3sEeYyFREptcfDRAciVDHD3e0q1Hr9nloDWyINSGXkEU5kmAifM-5priTXSCfSKLXAGX1eKkrxcdMD45EWssk-NSun1cot2KvGPxWyGz-O3DDWokgYjOqtMOVBIqNGJi0gkQX1kRFpGZwD6htNxNToDlng59b45Rm0073sVFfrf5m0DTOdoya9OG2fb8CsuV0UqtWhlj0P1SYym4xv5c77AWYp7d8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Calabi%E2%80%93Yau+Metrics&rft.jtitle=Fortschritte+der+Physik&rft.au=Ashmore%2C+Anthony&rft.au=Yang%E2%80%90Hui+He&rft.au=Ovrut%2C+Burt+A&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0015-8208&rft.eissn=1521-3978&rft.volume=68&rft.issue=9&rft_id=info:doi/10.1002%2Fprop.202000068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-8208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-8208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-8208&client=summon