Machine Learning Calabi–Yau Metrics
We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show...
Saved in:
Published in | Fortschritte der Physik Vol. 68; no. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2020
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
ISSN | 0015-8208 1521-3978 |
DOI | 10.1002/prop.202000068 |
Cover
Abstract | We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude.
The concept of machine‐learning is applied to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, conventional curve fitting and machine‐learning techniques are combined to numerically approximate Ricci‐flat metrics. It is shown that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, the authors demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with the new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude. |
---|---|
AbstractList | We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude. We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine‐learning techniques to numerically approximate Ricci‐flat metrics. We show that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude. The concept of machine‐learning is applied to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler manifolds, conventional curve fitting and machine‐learning techniques are combined to numerically approximate Ricci‐flat metrics. It is shown that machine learning is able to predict the Calabi–Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, the authors demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with the new machine‐learning algorithm decreasing the time required by between one and two orders of magnitude. |
Author | Ashmore, Anthony He, Yang‐Hui Ovrut, Burt A. |
Author_xml | – sequence: 1 givenname: Anthony orcidid: 0000-0001-6178-7538 surname: Ashmore fullname: Ashmore, Anthony email: aashmore@sas.upenn.edu organization: University of Pennsylvania – sequence: 2 givenname: Yang‐Hui orcidid: 0000-0002-0787-8380 surname: He fullname: He, Yang‐Hui organization: NanKai University – sequence: 3 givenname: Burt A. orcidid: 0000-0001-6654-173X surname: Ovrut fullname: Ovrut, Burt A. organization: University of Pennsylvania |
BackLink | https://www.osti.gov/biblio/1647385$$D View this record in Osti.gov |
BookMark | eNqFkMtKAzEUhoNUsK1uXRfF5dScTGaSWUrxBi0t0o2rcCaTsSljpiZTpDvfwTf0SZwyoiCIZ3M233cu_4D0XO0MIadAx0Apu9z4ejNmlNG2UnlA-pAwiOJMyB7pUwpJJBmVR2QQwrpFGGTQJxcz1CvrzGhq0DvrnkYTrDC3H2_vj7gdzUzjrQ7H5LDEKpiTrz4ky5vr5eQums5v7ydX00jHnMvIxDRPkIEQFFOaiZyWRaYLKlhRikxzxDKFOAWJFE0ii6KEnIsy1tykKCAekrNubB0aq4K2jdErXTtndKMg5SKWSQudd1D778vWhEat66137VmKcU55BpDuqXFHaV-H4E2pNt4-o98poGofl9rHpb7jagX-S2jXY2Nr13i01d9a1mmvtjK7f5aoxcN88eN-AqctgIU |
CitedBy_id | crossref_primary_10_1007_JHEP05_2021_013 crossref_primary_10_1016_j_physletb_2024_138461 crossref_primary_10_1088_2632_2153_adb4bb crossref_primary_10_1007_JHEP03_2025_028 crossref_primary_10_1142_S0217751X21300179 crossref_primary_10_1016_j_physletb_2022_137376 crossref_primary_10_1016_j_nuclphysb_2024_116778 crossref_primary_10_1142_S2810939222500010 crossref_primary_10_1002_prop_202000032 crossref_primary_10_1007_JHEP06_2023_164 crossref_primary_10_1103_PhysRevD_103_126014 crossref_primary_10_1007_JHEP05_2021_105 crossref_primary_10_1016_j_physletb_2022_136966 crossref_primary_10_1103_PhysRevD_109_106006 crossref_primary_10_1103_PhysRevD_103_106028 crossref_primary_10_1142_S2810939222500034 crossref_primary_10_1088_2632_2153_ac8e4e crossref_primary_10_1007_JHEP05_2021_085 crossref_primary_10_1007_JHEP08_2022_105 crossref_primary_10_1016_j_geomphys_2023_105028 crossref_primary_10_1038_s42254_024_00740_1 crossref_primary_10_1007_JHEP02_2022_021 crossref_primary_10_1016_j_physletb_2022_136972 crossref_primary_10_1007_JHEP07_2023_164 crossref_primary_10_1007_s00006_021_01189_6 crossref_primary_10_1016_j_physletb_2021_136297 crossref_primary_10_1103_PhysRevD_108_105027 crossref_primary_10_1103_PhysRevD_108_106018 crossref_primary_10_1088_2399_6528_ad246f crossref_primary_10_1140_epjc_s10052_022_11118_x crossref_primary_10_1016_j_physletb_2024_138517 crossref_primary_10_1002_prop_202300262 crossref_primary_10_1007_JHEP11_2021_131 crossref_primary_10_1103_PhysRevD_110_126002 |
Cites_doi | 10.1103/PhysRevB.84.024504 10.1002/prop.201400072 10.1016/j.physletb.2004.08.010 10.1007/JHEP12(2017)149 10.1016/S0370-2693(99)00413-X 10.1016/j.physletb.2019.01.002 10.1016/j.physletb.2019.06.067 10.4310/jdg/1090347643 10.4310/jdg/1214445039 10.1103/PhysRevLett.55.2547 10.1142/S0217751X11052943 10.1007/JHEP08(2018)009 10.1007/JHEP06(2015)182 10.4310/jdg/1090349449 10.1088/1126-6708/2008/05/080 10.1088/1475-7516/2019/02/044 10.1007/JHEP08(2015)087 10.1007/JHEP02(2018)034 10.1016/0550-3213(85)90602-9 10.1088/1126-6708/2007/12/083 10.1088/1126-6708/2008/07/120 10.1088/1126-6708/2005/06/039 10.1007/BF01216094 10.1007/JHEP03(2019)054 10.1007/JHEP09(2017)157 10.1016/j.physletb.2018.08.008 10.1007/JHEP01(2014)047 10.1016/j.nuclphysb.2015.04.009 10.1088/1126-6708/2006/04/019 10.1016/j.physletb.2005.05.007 10.1007/JHEP06(2012)113 10.1103/PhysRevLett.123.101601 10.1016/j.physletb.2017.10.024 10.1063/1.2888403 10.1088/1126-6708/2009/10/011 10.1007/JHEP02(2010)054 10.1007/JHEP01(2012)014 10.1088/0264-9381/22/23/002 10.1007/JHEP03(2018)107 10.1007/s00220-008-0558-6 10.1007/JHEP09(2018)089 10.1007/JHEP08(2017)038 10.1007/JHEP06(2010)107 10.1073/pnas.74.5.1798 10.1088/1126-6708/2006/05/043 10.1142/S0217732315500856 10.4310/ATMP.2013.v17.n5.a1 10.1007/JHEP08(2019)057 10.1016/0550-3213(90)90498-3 10.1007/JHEP11(2012)026 10.1016/j.geomphys.2015.02.018 10.1016/j.physletb.2019.03.048 10.1016/j.physletb.2005.12.042 10.1016/j.nuclphysb.2019.01.013 10.1103/PhysRevLett.121.101602 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1002/prop.202000068 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3978 |
EndPage | n/a |
ExternalDocumentID | 1647385 10_1002_prop_202000068 PROP202000068 |
Genre | article |
GrantInformation_xml | – fundername: DOE funderid: DE‐SC0007901 – fundername: Science and Technology Facilities Council funderid: ST/J00037X/ |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GYQRN H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M6R MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNW ROL RWI RX1 SAMSI SUPJJ TN5 TUS UB1 UPT W8V W99 WBKPD WGJPS WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI PQEST |
ID | FETCH-LOGICAL-c3448-e30b5a21770a6097b0fd9cd072df79c4aaf613618a0ae58ddf1b47f3c4e6a713 |
IEDL.DBID | DR2 |
ISSN | 0015-8208 |
IngestDate | Fri May 19 00:55:28 EDT 2023 Fri Jul 25 12:12:48 EDT 2025 Tue Jul 01 01:03:25 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Wed Jan 22 16:32:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3448-e30b5a21770a6097b0fd9cd072df79c4aaf613618a0ae58ddf1b47f3c4e6a713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE DE‐SC0007901 |
ORCID | 0000-0001-6178-7538 0000-0001-6654-173X 0000-0002-0787-8380 0000000161787538 000000016654173X 0000000207878380 |
PQID | 2440491165 |
PQPubID | 866401 |
PageCount | 23 |
ParticipantIDs | osti_scitechconnect_1647385 proquest_journals_2440491165 crossref_primary_10_1002_prop_202000068 crossref_citationtrail_10_1002_prop_202000068 wiley_primary_10_1002_prop_202000068_PROP202000068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Fortschritte der Physik |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2018; 09 2018; 08 2018; 121 2019; B940 2017; 08 2017; 09 2006; B633 2012; 11 2005; 22 2019; 123 1999; B455 2018; 03 2018; 02 2019; B792 2004; B598 2015; 06 2019; B795 2009; 10 2013; 17 2015; 08 2000; 56 2011; D84 2015; A30 1977; 74 2001; 59 2019; B789 1985; 55 1985; B258 2005; B618 2018; D98 1990; B335 1990; 32 2019; 1902 2017; D96 2015; 92 1985; 101 2011; A26 2005; 06 2007; 12 2017; 774 2014; 01 2008; 282 2019; D99 2010; 02 2010; 06 2006; 05 2008; 07 2015; 63 2008; 49 2008; 05 2006; 04 2017; 12 2018; B785 2019; 03 2019; 08 2018 2016 2012; 06 2012; 01 2015; B898 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 Anderson L. B. (e_1_2_12_7_1) 2011; 84 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_68_1 Krefl D. (e_1_2_12_31_1) 2017; 96 e_1_2_12_62_1 e_1_2_12_60_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_52_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_71_1 e_1_2_12_3_1 Hashimoto K. (e_1_2_12_39_1) 2018; 98 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 Mohri M. (e_1_2_12_70_1) 2018 e_1_2_12_23_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_61_1 e_1_2_12_40_1 Halverson J. (e_1_2_12_46_1) 2019; 99 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – volume: 01 start-page: 014 year: 2012 publication-title: JHEP – volume: 74 start-page: 1798 year: 1977 publication-title: Proceedings of the National Academy of Sciences – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 22 start-page: 4931 year: 2005 publication-title: Class. Quant. Grav. – volume: 11 start-page: 026 year: 2012 publication-title: JHEP – volume: 12 start-page: 149 year: 2017 publication-title: JHEP – volume: 02 start-page: 054 year: 2010 publication-title: JHEP – volume: 07 start-page: 120 year: 2008 publication-title: JHEP – volume: B335 start-page: 347 year: 1990 publication-title: Nucl. Phys. – volume: 08 start-page: 038 year: 2017 publication-title: JHEP – volume: 56 start-page: 189 year: 2000 publication-title: J. Differential Geom. – volume: 92 start-page: 252 year: 2015 publication-title: J. Geom. Phys. – volume: 03 start-page: 054 year: 2019 publication-title: JHEP – volume: 59 start-page: 479 year: 2001 publication-title: J. Differential Geom. – year: 2018 – volume: B598 start-page: 279 year: 2004 publication-title: Phys. Lett. – volume: A30 year: 2015 publication-title: Mod. Phys. Lett. – volume: 06 start-page: 107 year: 2010 publication-title: JHEP – volume: 09 start-page: 089 year: 2018 publication-title: JHEP – volume: 282 start-page: 357 year: 2008 publication-title: Commun. Math. Phys. – volume: B618 start-page: 252 year: 2005 publication-title: Phys. Lett. – volume: 01 start-page: 047 year: 2014 publication-title: JHEP – volume: D99 year: 2019 publication-title: Phys. Rev. – volume: 08 start-page: 057 year: 2019 publication-title: JHEP – volume: 32 start-page: 99 year: 1990 publication-title: J. Differential Geom. – volume: B795 start-page: 700 year: 2019 publication-title: Phys. Lett. – volume: 08 start-page: 087 year: 2015 publication-title: JHEP – volume: 06 start-page: 113 year: 2012 publication-title: JHEP – volume: 05 start-page: 043 year: 2006 publication-title: JHEP – volume: 10 start-page: 011 year: 2009 publication-title: JHEP – volume: 1902 start-page: 044 year: 2019 publication-title: JCAP – volume: 04 start-page: 019 year: 2006 publication-title: JHEP – volume: B792 start-page: 258 year: 2019 publication-title: Phys. Lett. – volume: 03 start-page: 107 year: 2018 publication-title: JHEP – volume: 49 year: 2008 publication-title: J. Math. Phys. – volume: B898 start-page: 667 year: 2015 publication-title: Nucl. Phys. – volume: D96 year: 2017 publication-title: Phys. Rev. – volume: 55 start-page: 2547 year: 1985 publication-title: Phys. Rev. Lett. – volume: B789 start-page: 438 year: 2019 publication-title: Phys. Lett. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: A26 start-page: 1569 year: 2011 publication-title: Int. J. Mod. Phys. – volume: 02 start-page: 034 year: 2018 publication-title: JHEP – year: 2016 – volume: B633 start-page: 783 year: 2006 publication-title: Phys. Lett. – volume: D84 year: 2011 publication-title: Phys. Rev. – volume: B940 start-page: 113 year: 2019 publication-title: Nucl. Phys. – volume: 12 start-page: 083 year: 2007 publication-title: JHEP – volume: D98 year: 2018 publication-title: Phys. Rev. – volume: 08 start-page: 009 year: 2018 publication-title: JHEP – volume: B785 start-page: 65 year: 2018 publication-title: Phys. Lett. – volume: 63 start-page: 55 year: 2015 publication-title: Fortsch. Phys. – volume: 06 start-page: 039 year: 2005 publication-title: JHEP – volume: B455 start-page: 135 year: 1999 publication-title: Phys. Lett. – volume: B258 start-page: 46 year: 1985 publication-title: Nucl. Phys. – volume: 06 start-page: 182 year: 2015 publication-title: JHEP – volume: 17 start-page: 867 year: 2013 publication-title: Adv. Theor. Math. Phys. – volume: 05 start-page: 080 year: 2008 publication-title: JHEP – volume: 101 start-page: 341 year: 1985 publication-title: Commun. Math. Phys. – volume: 774 start-page: 564 year: 2017 publication-title: Phys. Lett. B – volume: 09 start-page: 157 year: 2017 publication-title: JHEP – volume: 84 start-page: 106005 year: 2011 ident: e_1_2_12_7_1 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.84.024504 – ident: e_1_2_12_52_1 – ident: e_1_2_12_64_1 doi: 10.1002/prop.201400072 – volume: 98 start-page: 046019 year: 2018 ident: e_1_2_12_39_1 publication-title: Phys. Rev. – ident: e_1_2_12_74_1 doi: 10.1016/j.physletb.2004.08.010 – ident: e_1_2_12_35_1 doi: 10.1007/JHEP12(2017)149 – ident: e_1_2_12_12_1 doi: 10.1016/S0370-2693(99)00413-X – ident: e_1_2_12_48_1 doi: 10.1016/j.physletb.2019.01.002 – ident: e_1_2_12_41_1 doi: 10.1016/j.physletb.2019.06.067 – ident: e_1_2_12_57_1 doi: 10.4310/jdg/1090347643 – ident: e_1_2_12_49_1 – ident: e_1_2_12_20_1 – ident: e_1_2_12_63_1 doi: 10.4310/jdg/1214445039 – ident: e_1_2_12_59_1 doi: 10.1103/PhysRevLett.55.2547 – ident: e_1_2_12_15_1 doi: 10.1142/S0217751X11052943 – ident: e_1_2_12_38_1 doi: 10.1007/JHEP08(2018)009 – ident: e_1_2_12_10_1 doi: 10.1007/JHEP06(2015)182 – ident: e_1_2_12_19_1 doi: 10.4310/jdg/1090349449 – ident: e_1_2_12_25_1 doi: 10.1088/1126-6708/2008/05/080 – ident: e_1_2_12_45_1 doi: 10.1088/1475-7516/2019/02/044 – ident: e_1_2_12_50_1 – ident: e_1_2_12_65_1 doi: 10.1007/JHEP08(2015)087 – ident: e_1_2_12_36_1 doi: 10.1007/JHEP02(2018)034 – ident: e_1_2_12_1_1 doi: 10.1016/0550-3213(85)90602-9 – ident: e_1_2_12_53_1 – ident: e_1_2_12_29_1 – ident: e_1_2_12_37_1 – volume: 96 start-page: 066014 year: 2017 ident: e_1_2_12_31_1 publication-title: Phys. Rev. – ident: e_1_2_12_22_1 doi: 10.1088/1126-6708/2007/12/083 – ident: e_1_2_12_26_1 doi: 10.1088/1126-6708/2008/07/120 – ident: e_1_2_12_72_1 – ident: e_1_2_12_5_1 doi: 10.1088/1126-6708/2005/06/039 – ident: e_1_2_12_58_1 doi: 10.1007/BF01216094 – ident: e_1_2_12_42_1 doi: 10.1007/JHEP03(2019)054 – volume-title: Foundations of machine learning year: 2018 ident: e_1_2_12_70_1 – ident: e_1_2_12_33_1 doi: 10.1007/JHEP09(2017)157 – volume: 99 start-page: 046015 year: 2019 ident: e_1_2_12_46_1 publication-title: Phys. Rev. – ident: e_1_2_12_69_1 – ident: e_1_2_12_40_1 doi: 10.1016/j.physletb.2018.08.008 – ident: e_1_2_12_9_1 doi: 10.1007/JHEP01(2014)047 – ident: e_1_2_12_60_1 doi: 10.1016/j.nuclphysb.2015.04.009 – ident: e_1_2_12_55_1 – ident: e_1_2_12_18_1 doi: 10.1088/1126-6708/2006/04/019 – ident: e_1_2_12_47_1 – ident: e_1_2_12_2_1 doi: 10.1016/j.physletb.2005.05.007 – ident: e_1_2_12_8_1 doi: 10.1007/JHEP06(2012)113 – ident: e_1_2_12_68_1 doi: 10.1103/PhysRevLett.123.101601 – ident: e_1_2_12_30_1 doi: 10.1016/j.physletb.2017.10.024 – ident: e_1_2_12_21_1 doi: 10.1063/1.2888403 – ident: e_1_2_12_14_1 doi: 10.1088/1126-6708/2009/10/011 – ident: e_1_2_12_54_1 – ident: e_1_2_12_6_1 doi: 10.1007/JHEP02(2010)054 – ident: e_1_2_12_28_1 doi: 10.1007/JHEP01(2012)014 – ident: e_1_2_12_23_1 doi: 10.1088/0264-9381/22/23/002 – ident: e_1_2_12_66_1 doi: 10.1007/JHEP03(2018)107 – ident: e_1_2_12_73_1 – ident: e_1_2_12_61_1 doi: 10.1007/s00220-008-0558-6 – ident: e_1_2_12_67_1 doi: 10.1007/JHEP09(2018)089 – ident: e_1_2_12_32_1 doi: 10.1007/JHEP08(2017)038 – ident: e_1_2_12_27_1 doi: 10.1007/JHEP06(2010)107 – ident: e_1_2_12_56_1 doi: 10.1073/pnas.74.5.1798 – ident: e_1_2_12_4_1 doi: 10.1088/1126-6708/2006/05/043 – ident: e_1_2_12_17_1 doi: 10.1142/S0217732315500856 – ident: e_1_2_12_24_1 doi: 10.4310/ATMP.2013.v17.n5.a1 – ident: e_1_2_12_51_1 doi: 10.1007/JHEP08(2019)057 – ident: e_1_2_12_11_1 doi: 10.1016/0550-3213(90)90498-3 – ident: e_1_2_12_16_1 doi: 10.1007/JHEP11(2012)026 – ident: e_1_2_12_62_1 doi: 10.1016/j.geomphys.2015.02.018 – ident: e_1_2_12_71_1 – ident: e_1_2_12_13_1 doi: 10.1016/j.physletb.2019.03.048 – ident: e_1_2_12_3_1 doi: 10.1016/j.physletb.2005.12.042 – ident: e_1_2_12_43_1 doi: 10.1016/j.nuclphysb.2019.01.013 – ident: e_1_2_12_44_1 – ident: e_1_2_12_34_1 doi: 10.1103/PhysRevLett.121.101602 |
SSID | ssj0002191 |
Score | 2.5464208 |
Snippet | We apply machine learning to the problem of finding numerical Calabi–Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kähler... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Curve fitting generalized geometry Machine learning supergravity backgrounds |
Title | Machine Learning Calabi–Yau Metrics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.202000068 https://www.proquest.com/docview/2440491165 https://www.osti.gov/biblio/1647385 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFIAHKQhe3MXYKjkontJmz8xRqqUI1VIq1NMwq4jSikkvnvwP_kN_iW-ytRVE0FsCMySTeduE976H0KkvQHKVZo7gLnbAQ2mwg4HnaAH-nugQS2UKnAc3cf8uvJ5Ek6Uq_oIPUf9wM5qR22uj4IynnQU0FAyM4U36ucU11b5eEBt4_uVowY8CdSxa5nmRA64OV9RG1--sTl_xSo0ZaNdKxLkct-aOp7eFWPXKRb7JU3ue8bZ4-0Zz_M-attFmGZXaF4UY7aA1Nd1F63l2qEj30NkgT7lUdkljfbC7DKTn8fP9457N7YHpyiXSfTTuXY27fafsr-CIAE5ljgpcHjE4kyQui12ScFdLIqSb-FInRISMaXD2sYeZy1SEpdQeDxMdiFDFDA63B6gxnU3VIbIlRAFERh7mWIaJ8DnjnuZKcg3RBImIhZzq81JRssdNC4xnWlCTfWpWTuuVW-i8Hv9SUDd-HNk0u0UhXjDQW2Gyg0RGDSUtwJGFWtUm0lI3U-obJCIx2CEL-flu_PIMOhzdDuu7o79MaqINc10kp7VQI3udq2OIZjJ-kkvsF2Or6xI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60InrxLdZWzUHxlDbPZnOUYqna1lIq6GnZp4jSim0vnvwP_kN_ibN5tFYQQY8JuySbeX2zmf0G4NgTqLlKM1twh9gYoTT6Qd-1tcB4H-uASGUOOLc7teZNcHkb5tWE5ixMyg8x3XAzlpH4a2PgZkO6OmMNRQ9jCCe9xOWSRVgKEG0kf2p7MwYpNMi0aZ4b2hjsSM7b6HjV-flzcakwRPuaw5xfkWsSehrrwPOXTitOHiuTMa-I1298jv9a1QasZcDUOks1aRMW1GALlpMCUTHahpN2UnWprIyQ9d6qM1Sgh4-39zs2sdqmMZcY7UC_cd6vN-2sxYItfEzMbOU7PGSYlkQOqzlxxB0tYyGdyJM6ikXAmMZ4X3MJc5gKiZTa5UGkfRGoGsP8dhcKg-FA7YElEQjEMnQJJzKIhMcZdzVXkmsEFHEYF8HOvy8VGf246YLxRFPiZI-aldPpyotwOh3_nBJv_DiyZMRFETIY3lthCoTEmBqiNJ-ERSjnUqSZeY6oZ1gRY8M8VAQvEccvz6Dd3nV3erX_l0lHsNLst1u0ddG5KsGquZ_WqpWhMH6ZqAMEN2N-mKjvJyxX7zA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1oRXHjW4xWzUJxFc07k6VUi6_WUhR0NcxTRGnFphtX_oN_6Jd4J0mjFUTQZcIMyeQ-zplw51yAHV-g5yrNHMFd4iBCacyDgedogXif6pBIZQ44t9rxyXV4dhPdfDnFX-hDVD_cTGTk-doE-JPUB5-ioZhgjN6kn2dcMglTYYxwZmhR91NACuOx6JnnRQ5iHRnJNrr-wfj8MViq9TG8xijnV-KaI09zHtjonYuCk4f9Ycb3xcs3Ocf_LGoB5kpaah8WfrQIE6q3BNN5eagYLMNuK6-5VHYpx3pnNxi6z_3769stG9ot05ZLDFbgqnl81ThxygYLjghwW-aowOURw01J4rLYTRPuapkK6Sa-1EkqQsY0on3sEeYyFREptcfDRAciVDHD3e0q1Hr9nloDWyINSGXkEU5kmAifM-5priTXSCfSKLXAGX1eKkrxcdMD45EWssk-NSun1cot2KvGPxWyGz-O3DDWokgYjOqtMOVBIqNGJi0gkQX1kRFpGZwD6htNxNToDlng59b45Rm0073sVFfrf5m0DTOdoya9OG2fb8CsuV0UqtWhlj0P1SYym4xv5c77AWYp7d8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Calabi%E2%80%93Yau+Metrics&rft.jtitle=Fortschritte+der+Physik&rft.au=Ashmore%2C+Anthony&rft.au=Yang%E2%80%90Hui+He&rft.au=Ovrut%2C+Burt+A&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0015-8208&rft.eissn=1521-3978&rft.volume=68&rft.issue=9&rft_id=info:doi/10.1002%2Fprop.202000068&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-8208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-8208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-8208&client=summon |