The Phase Response of a Rough Rectangular Facet for Radar Sounder Simulations of Both Coherent and Incoherent Scattering

With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial a...

Full description

Saved in:
Bibliographic Details
Published inRadio science Vol. 58; no. 6
Main Authors Gerekos, C., Haynes, M. S., Schroeder, D. M., Blankenship, D. D.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.06.2023
Subjects
Online AccessGet full text
ISSN0048-6604
1944-799X
1944-799X
DOI10.1029/2022RS007594

Cover

Abstract With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth. Key Points Planetary digital elevation models are often of coarse resolution and depict a surface that is smooth at scales below that resolution Polynomial phase approximations can be used to simulate radar scattering rigorously but they overestimate the coherence of reflected signals We analytically derive the linear phase approximation formula on a rough rectangular facet, leading to much better clutter simulations
AbstractList With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth. Planetary digital elevation models are often of coarse resolution and depict a surface that is smooth at scales below that resolution Polynomial phase approximations can be used to simulate radar scattering rigorously but they overestimate the coherence of reflected signals We analytically derive the linear phase approximation formula on a rough rectangular facet, leading to much better clutter simulations
With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth.
With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth. Key Points Planetary digital elevation models are often of coarse resolution and depict a surface that is smooth at scales below that resolution Polynomial phase approximations can be used to simulate radar scattering rigorously but they overestimate the coherence of reflected signals We analytically derive the linear phase approximation formula on a rough rectangular facet, leading to much better clutter simulations
Author Gerekos, C.
Haynes, M. S.
Schroeder, D. M.
Blankenship, D. D.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0003-1526-1249
  surname: Gerekos
  fullname: Gerekos, C.
  email: christopher.gerekos@austin.utexas.edu
  organization: University of Texas at Austin
– sequence: 2
  givenname: M. S.
  orcidid: 0000-0003-2119-2083
  surname: Haynes
  fullname: Haynes, M. S.
  organization: California Institute of Technology
– sequence: 3
  givenname: D. M.
  orcidid: 0000-0003-1916-3929
  surname: Schroeder
  fullname: Schroeder, D. M.
  organization: Stanford University
– sequence: 4
  givenname: D. D.
  orcidid: 0000-0003-0205-4830
  surname: Blankenship
  fullname: Blankenship, D. D.
  organization: University of Texas at Austin
BookMark eNp9kU1LxDAQhoMouH7c_AEBr1YnadJtjrp-gqB0FbyVNE23lZqsScq6_96sq6AinmYmed6Z4Z0dtGms0QgdEDgmQMUJBUqLKcCYC7aBRkQwloyFeNpEIwCWJ1kGbBvteP8MQBjP2Ai9PbQa37fSa1xoP7cmJrbBEhd2mLXxTQVpZkMvHb6USgfcWIcLWcd6agdT6xi7l_gfuqhdSc9saPHEttppE7A0Nb4x6qucKhmCdp2Z7aGtRvZe73_GXfR4efEwuU5u765uJqe3iUoZSxMpxqJSWaNFxRtFGglZRvOGQQ2MpIRSzQXkOR_XQoDglaJ5VWme12kliaJpuouSdd_BzOVyIfu-nLvuRbplSaBc2VaubHN-bVvkD9f83NnXQftQPtvBmbhiSXMqBKMZh0jRNaWc9d7pplRd-PAgONn1P1p_XSSKjn6J_trkG_45Y9H1evkvWxbnU0ooT9N3WZma9w
CitedBy_id crossref_primary_10_5194_tc_18_1495_2024
crossref_primary_10_1109_TGRS_2025_3546160
Cites_doi 10.1126/science.1165988
10.1017/aog.2020.11
10.1109/IGARSS.2013.6723686
10.1109/jstars.2020.2975187
10.1109/tap.2012.2236531
10.5194/npg-22-713-2015
10.1002/2014gl061635
10.1109/tgrs.2018.2851020
10.2528/pier20121201
10.1109/IGARSS39084.2020.9324279
10.1073/pnas.1302828110
10.1029/2010gl043751
10.1117/12.2599760
10.1109/tgrs.2019.2960751
10.1029/2017jf004561
10.1109/lgrs.2011.2170052
10.1109/taes.2019.2895711
10.1016/j.icarus.2016.11.039
10.5194/tc-12-2969-2018
10.1186/bf03352446
10.1007/s11430-010-3070-8
10.3189/002214308784409107
10.1017/jog.2019.72
10.1016/j.pss.2009.09.016
10.1029/2019jf005420
10.1002/2015RS005714
10.1109/lgrs.2014.2337878
10.1029/2003je002164
10.1016/j.pss.2014.07.018
10.1109/tgrs.2019.2929422
10.1016/j.epsl.2009.03.018
10.1017/s095410201200048x
10.3390/rs15030764
10.1109/tgrs.2019.2945079
10.1109/jproc.2010.2104130
10.1080/01431161.2019.1573339
10.1029/2020je006429
10.1029/2003rs002903
10.1007/s11214-010-9673-8
10.1126/sciadv.aar4353
10.1109/tgrs.2018.2840511
ContentType Journal Article
Copyright 2023. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2023. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7SP
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1029/2022RS007594
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
EISSN 1944-799X
EndPage n/a
ExternalDocumentID 10.1029/2022rs007594
10_1029_2022RS007594
RDS21253
Genre researchArticle
GrantInformation_xml – fundername: REASON investigation within the Europa Clipper Project
  funderid: NNM16AA26C
– fundername: The G. Unger Vetlesen Foundation
– fundername: JPL
  funderid: RSA1689731
– fundername: NASA
  funderid: 80NM0018D0004
GroupedDBID -~X
05W
0R~
123
186
1OB
1OC
24P
29P
31~
33P
3V.
50Y
6IK
6TJ
8-1
88I
8FE
8FG
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAHQN
AAIHA
AAJGR
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABAZT
ABCUV
ABDPE
ABJNI
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
ALXUD
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BEFXN
BENPR
BFFAM
BFHJK
BGLVJ
BGNUA
BHPHI
BKEBE
BKSAR
BMXJE
BPEOZ
BPHCQ
BRXPI
CCPQU
CS3
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
H~9
IPLJI
JAVBF
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OCL
OHT
OK1
P-X
P2P
P2W
P62
PCBAR
PQQKQ
PROAC
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TN5
UHW
UQL
VOH
WBKPD
WIN
WXSBR
WYJ
XOL
YNT
ZY4
ZZTAW
~02
~OA
~~A
AAMMB
AAYXX
ABVLG
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
PHGZM
PHGZT
PQGLB
PUEGO
7SP
8FD
H8D
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c3443-a979bc6fe9b5fc1fa06628f40d0413122e5908857d99095bc28bbe58d3ba1c233
IEDL.DBID UNPAY
ISSN 0048-6604
1944-799X
IngestDate Wed Oct 01 15:22:25 EDT 2025
Fri Jul 25 03:16:37 EDT 2025
Wed Oct 01 04:46:00 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Wed Jan 22 16:21:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3443-a979bc6fe9b5fc1fa06628f40d0413122e5908857d99095bc28bbe58d3ba1c233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0205-4830
0000-0003-1916-3929
0000-0003-1526-1249
0000-0003-2119-2083
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007594
PQID 2829942650
PQPubID 54001
PageCount 30
ParticipantIDs unpaywall_primary_10_1029_2022rs007594
proquest_journals_2829942650
crossref_citationtrail_10_1029_2022RS007594
crossref_primary_10_1029_2022RS007594
wiley_primary_10_1029_2022RS007594_RDS21253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Radio science
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2012; 61
2010; 53
2010; 37
2021; 11862
2023; 15
2019; 55
2015; 50
2020; 61
2019; 57
2018; 123
2002; 54
2019; 58
2011; 99
2020; 58
2020; 13
1994
2008; 54
2004
2020; 125
2014; 41
2018; 42
2011; 9
2009; 57
2003; 108
2019; 40
2018; 4
2022
2000
2020
2019; 65
2004; 39
2015; 22
2010; 154
1964; 55
2021; 170
2018
2016
2009; 282
2017; 285
2013; 110
1981
2013
2018; 56
2018; 12
2012; 24
2014; 103
2009; 323
2014; 12
e_1_2_13_24_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_32_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
Abramowitz M. (e_1_2_13_2_1) 1964
e_1_2_13_30_1
Tsang L. (e_1_2_13_49_1) 2004
e_1_2_13_29_1
Gerekos C. (e_1_2_13_21_1) 2020
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_9_1
Fung A. K. (e_1_2_13_20_1) 1994
e_1_2_13_40_1
e_1_2_13_7_1
Kong J. A. (e_1_2_13_33_1) 2000
Fergason R. (e_1_2_13_18_1) 2018
Botev Z. (e_1_2_13_5_1) 2016
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_12_1
e_1_2_13_52_1
e_1_2_13_50_1
Botev Z. (e_1_2_13_6_1) 2022
e_1_2_13_3_1
Blankenship D. (e_1_2_13_4_1) 2018
e_1_2_13_28_1
References_xml – volume: 11862
  start-page: 222
  year: 2021
  end-page: 234
– volume: 55
  start-page: 2992
  issue: 6
  year: 2019
  end-page: 3002
  article-title: Homodyned‐k distribution with additive Gaussian noise
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 58
  start-page: 2250
  issue: 4
  year: 2019
  end-page: 2265
  article-title: A coherent method for simulating active and passive radar sounding of the Jovian icy moons
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 1981
– volume: 55
  year: 1964
– volume: 282
  start-page: 222
  issue: 1–4
  year: 2009
  end-page: 233
  article-title: Radar detection of accreted ice over Lake Vostok, Antarctica
  publication-title: Earth and Planetary Science Letters
– volume: 110
  start-page: 12225
  issue: 30
  year: 2013
  end-page: 12228
  article-title: Evidence for a water system transition beneath Thwaites Glacier, West Antarctica
  publication-title: Proceedings of the National Academy of Sciences
– volume: 56
  start-page: 6571
  issue: 11
  year: 2018
  end-page: 6585
  article-title: Geometric power fall‐off in radar sounding
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 39
  start-page: 1
  issue: 1
  year: 2004
  end-page: 17
  article-title: Radar signal simulation: Surface modeling with the facet method
  publication-title: Radio Science
– volume: 41
  start-page: 6787
  issue: 19
  year: 2014
  end-page: 6794
  article-title: Surface slope control on firn density at Thwaites Glacier, West Antarctica: Results from airborne radar sounding
  publication-title: Geophysical Research Letters
– volume: 22
  start-page: 713
  issue: 6
  year: 2015
  end-page: 722
  article-title: Universal multifractal Martian topography
  publication-title: Nonlinear Processes in Geophysics
– start-page: 3907
  year: 2013
  end-page: 3910
– volume: 56
  start-page: 7388
  issue: 12
  year: 2018
  end-page: 7404
  article-title: A coherent multilayer simulator of radargrams acquired by radar sounder instruments
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2018
– volume: 42
  year: 2018
– year: 1994
– volume: 15
  issue: 3
  year: 2023
  article-title: Resolving ambiguities in sharad data analysis using high‐resolution digital terrain models
  publication-title: Remote Sensing
– volume: 103
  start-page: 191
  year: 2014
  end-page: 204
  article-title: Planetary landing‐zone reconnaissance using ice‐penetrating radar data: Concept validation in Antarctica
  publication-title: Planetary and Space Science
– volume: 4
  issue: 4
  year: 2018
  article-title: Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic
  publication-title: Science Advances
– volume: 65
  start-page: 983
  issue: 254
  year: 2019
  end-page: 988
  article-title: Layer optimized SAR processing and slope estimation in radar sounder data
  publication-title: Journal of Glaciology
– volume: 123
  start-page: 985
  issue: 5
  year: 2018
  end-page: 995
  article-title: Complex basal thermal transition near the onset of Petermann Glacier, Greenland
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 125
  issue: 8
  year: 2020
  article-title: Meter‐scale topographic roughness of the moon: The effect of small impact craters
  publication-title: Journal of Geophysical Research: Planets
– year: 2022
– year: 2004
– volume: 285
  start-page: 237
  year: 2017
  end-page: 251
  article-title: Radar probing of Jovian icy moons: Understanding subsurface water and structure detectability in the juice and Europa missions
  publication-title: Icarus
– volume: 13
  start-page: 1218
  year: 2020
  end-page: 1233
  article-title: Space‐borne GNSS‐R signal over a complex topography: Modeling and validation
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 99
  start-page: 794
  issue: 5
  year: 2011
  end-page: 807
  article-title: The shallow radar (SHARAD) onboard the NASA MRO mission
  publication-title: Proceedings of the IEEE
– volume: 50
  start-page: 1097
  issue: 10
  year: 2015
  end-page: 1109
  article-title: Computing low‐frequency radar surface echoes for planetary radar using Huygens‐Fresnel’s principle
  publication-title: Radio Science
– volume: 125
  issue: 3
  year: 2020
  article-title: Antarctic topographic realizations and geostatistical modeling used to map subglacial lakes
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 24
  start-page: 659
  issue: 6
  year: 2012
  end-page: 664
  article-title: A fourth inventory of Antarctic subglacial lakes
  publication-title: Antarctic Science
– start-page: 5960
  year: 2020
  end-page: 5963
– volume: 61
  start-page: 1
  issue: 81
  year: 2020
  end-page: 13
  article-title: Five decades of radioglaciology
  publication-title: Annals of Glaciology
– volume: 37
  issue: 18
  year: 2010
  article-title: Initial observations from the lunar orbiter laser altimeter (LOLA)
  publication-title: Geophysical Research Letters
– volume: 53
  start-page: 1043
  issue: 7
  year: 2010
  end-page: 1055
  article-title: Simulation of radar sounder echo from lunar surface and subsurface structure
  publication-title: Science China Earth Sciences
– volume: 54
  start-page: 94
  issue: 184
  year: 2008
  end-page: 106
  article-title: Recovery of subglacial water extent from Greenland radar survey data
  publication-title: Journal of Glaciology
– volume: 323
  start-page: 909
  issue: 5916
  year: 2009
  end-page: 912
  article-title: Lunar radar sounder observations of subsurface layers under the nearside maria of the moon
  publication-title: Science
– year: 2000
– volume: 58
  start-page: 4076
  issue: 6
  year: 2020
  end-page: 4098
  article-title: A 2‐D pseudospectral time‐domain (PSTD) simulator for large‐scale electromagnetic scattering and radar sounding applications
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 40
  start-page: 4762
  issue: 12
  year: 2019
  end-page: 4786
  article-title: Squinted SAR focusing for improving automatic radar sounder data analysis and enhancement
  publication-title: International Journal of Remote Sensing
– year: 2016
– volume: 54
  start-page: 983
  issue: 10
  year: 2002
  end-page: 991
  article-title: B‐scan analysis of subsurface radar sounding of lunar highland region
  publication-title: Earth Planets and Space
– volume: 57
  start-page: 1975
  issue: 14–15
  year: 2009
  end-page: 1986
  article-title: The Mars express MARSIS sounder instrument
  publication-title: Planetary and Space Science
– volume: 170
  start-page: 97
  year: 2021
  end-page: 128
  article-title: A fine scale partially coherent patch model including topographical effects for GNSS‐R DDM simulations
  publication-title: Progress in Electromagnetics Research
– volume: 12
  start-page: 443
  issue: 3
  year: 2014
  end-page: 447
  article-title: Estimating subglacial water geometry using radar bed echo specularity: Application to Thwaites Glacier, West Antarctica
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 57
  start-page: 9791
  issue: 12
  year: 2019
  end-page: 9809
  article-title: Distributed radar sounder: A novel concept for subsurface investigations using sensors in formation flight
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 61
  start-page: 2156
  issue: 4
  year: 2012
  end-page: 2163
  article-title: Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation
  publication-title: IEEE Transactions on Antennas and Propagation
– year: 2020
– volume: 12
  start-page: 2969
  issue: 9
  year: 2018
  end-page: 2979
  article-title: Coherent large beamwidth processing of radio‐echo sounding data
  publication-title: The Cryosphere
– volume: 108
  issue: E12
  year: 2003
  article-title: Coherent and incoherent components in near‐nadir radar scattering: Applications to radar sounding of Mars
  publication-title: Journal of Geophysical Research
– volume: 9
  start-page: 393
  issue: 3
  year: 2011
  end-page: 397
  article-title: Cryosat SAR‐mode looks revisited
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 154
  start-page: 145
  issue: 1
  year: 2010
  end-page: 192
  article-title: The lunar radar sounder (LRS) onboard the Kaguya (SELENE) spacecraft
  publication-title: Space Science Reviews
– ident: e_1_2_13_40_1
  doi: 10.1126/science.1165988
– ident: e_1_2_13_45_1
  doi: 10.1017/aog.2020.11
– ident: e_1_2_13_8_1
  doi: 10.1109/IGARSS.2013.6723686
– ident: e_1_2_13_15_1
  doi: 10.1109/jstars.2020.2975187
– ident: e_1_2_13_30_1
  doi: 10.1109/tap.2012.2236531
– ident: e_1_2_13_34_1
  doi: 10.5194/npg-22-713-2015
– ident: e_1_2_13_24_1
  doi: 10.1002/2014gl061635
– ident: e_1_2_13_23_1
  doi: 10.1109/tgrs.2018.2851020
– ident: e_1_2_13_53_1
  doi: 10.2528/pier20121201
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1964
  ident: e_1_2_13_2_1
– ident: e_1_2_13_7_1
  doi: 10.1109/IGARSS39084.2020.9324279
– ident: e_1_2_13_47_1
  doi: 10.1073/pnas.1302828110
– volume-title: Microwave scattering and emission models and their applications
  year: 1994
  ident: e_1_2_13_20_1
– ident: e_1_2_13_48_1
  doi: 10.1029/2010gl043751
– ident: e_1_2_13_44_1
  doi: 10.1117/12.2599760
– ident: e_1_2_13_35_1
  doi: 10.1109/tgrs.2019.2960751
– ident: e_1_2_13_50_1
– ident: e_1_2_13_13_1
  doi: 10.1029/2017jf004561
– ident: e_1_2_13_42_1
  doi: 10.1109/lgrs.2011.2170052
– start-page: B5‐3
  volume-title: 42nd COSPAR scientific assembly
  year: 2018
  ident: e_1_2_13_4_1
– ident: e_1_2_13_26_1
  doi: 10.1109/taes.2019.2895711
– ident: e_1_2_13_28_1
  doi: 10.1016/j.icarus.2016.11.039
– ident: e_1_2_13_29_1
  doi: 10.5194/tc-12-2969-2018
– ident: e_1_2_13_32_1
  doi: 10.1186/bf03352446
– volume-title: MATLAB central file exchange
  year: 2016
  ident: e_1_2_13_5_1
– ident: e_1_2_13_17_1
  doi: 10.1007/s11430-010-3070-8
– ident: e_1_2_13_41_1
  doi: 10.3189/002214308784409107
– ident: e_1_2_13_12_1
  doi: 10.1017/jog.2019.72
– ident: e_1_2_13_31_1
  doi: 10.1016/j.pss.2009.09.016
– ident: e_1_2_13_37_1
  doi: 10.1029/2019jf005420
– ident: e_1_2_13_3_1
  doi: 10.1002/2015RS005714
– ident: e_1_2_13_46_1
  doi: 10.1109/lgrs.2014.2337878
– ident: e_1_2_13_51_1
– ident: e_1_2_13_10_1
  doi: 10.1029/2003je002164
– ident: e_1_2_13_25_1
  doi: 10.1016/j.pss.2014.07.018
– ident: e_1_2_13_11_1
  doi: 10.1109/tgrs.2019.2929422
– volume-title: MATLAB central file exchange
  year: 2022
  ident: e_1_2_13_6_1
– ident: e_1_2_13_36_1
  doi: 10.1016/j.epsl.2009.03.018
– ident: e_1_2_13_52_1
  doi: 10.1017/s095410201200048x
– ident: e_1_2_13_16_1
  doi: 10.3390/rs15030764
– ident: e_1_2_13_22_1
  doi: 10.1109/tgrs.2019.2945079
– ident: e_1_2_13_14_1
  doi: 10.1109/jproc.2010.2104130
– ident: e_1_2_13_19_1
  doi: 10.1080/01431161.2019.1573339
– volume-title: Electromagnetic wave theory
  year: 2000
  ident: e_1_2_13_33_1
– ident: e_1_2_13_9_1
  doi: 10.1029/2020je006429
– volume-title: Scattering of electromagnetic waves: Advanced topics
  year: 2004
  ident: e_1_2_13_49_1
– ident: e_1_2_13_38_1
  doi: 10.1029/2003rs002903
– volume-title: Advanced backscattering simulation methods for the design of spaceborne radar sounders. Doctoral dissertation
  year: 2020
  ident: e_1_2_13_21_1
– ident: e_1_2_13_39_1
  doi: 10.1007/s11214-010-9673-8
– volume-title: Astrogeology PDS Annex
  year: 2018
  ident: e_1_2_13_18_1
– ident: e_1_2_13_43_1
  doi: 10.1126/sciadv.aar4353
– ident: e_1_2_13_27_1
  doi: 10.1109/tgrs.2018.2840511
SSID ssj0014564
Score 2.370555
Snippet With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter,...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Approximation
Backscattering
Clutter
Coherent scattering
Correlation
Digital Elevation Models
facets
Incoherent scatter radar
Linear phase
Mathematical analysis
Polynomials
Radar
Roughness
Scattering angle
Simulation
Simulators
Stratton‐Chu
Title The Phase Response of a Rough Rectangular Facet for Radar Sounder Simulations of Both Coherent and Incoherent Scattering
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022RS007594
https://www.proquest.com/docview/2829942650
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007594
UnpaywallVersion publishedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1944-799X
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0014564
  issn: 0048-6604
  databaseCode: ADMLS
  dateStart: 19681101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegPSAOAwaITmPyAXZBnlp_xT6WjWpCdJoSKpVTZDuOmChp1abi46_nOU5KhwAhcYoc-TlO8p7fz3727yH0gjrlaGE0kWWZEO6YJMZSTrTVzCrqhE_C2eHplbyc8bdzMd87CxP5IXYLbsEymvE6GPiqKOM431IO6DBzp2kW3J7md1FfCsDjPdSfXV2PP8TQsiJSDmNomXOSaD1vd7934utNFL_tl36CzXvbamW-fTGLxW342vifyQPkup7HbSefzra1PXPffyF1_L9Xe4gOWniKx1GfHqE7vjpE9_dICw_RYAo4e7luluPxKT5f3ADobUqP0VfQOnz9ETwjTuPmW4-XJTY4DcmA4J6rw_oozKbxxDhfY4DMODUFlLOQ38nD9eZzm1FsE0RfgybhcIYksEhhUxUYRrSumLmGHRS69QTNJm_en1-SNrcDcYxzRoxOtHWy9NqK0o1KE5joVcmHxRDc6ohSH5KxK5EU4C61sI4qa71QBbNm5ChjT1GvWlb-GcIwReXKWeEl9-BdlbKgaCDJpOSjRBUD9Kr7s7lric9D_o1F3gTgqc73v_UAvdzVXkXCjz_UO-6UJG_NfpOHsLQGzCOGA3S6U5zfttPpHfSuUYW_PixPLzLAGIId_Wuzx6hXr7f-OSCm2p6g_vhi-i47aU3jB0E2EgU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBddehg7tFu3sZR26LD2MlQSfVk69iuUQUtxFshORpJlVpo5IXHox1_fJ8vO0rGNwU5GRk-W7ff0ftKTfg-hT9QpR3OjiSyKhHDHJDGWcqKtZlZRJ3wSzg5fXsmLEf8yFuO1szCRH2K14BYsox6vg4HP8iKO8w3lgA4zd5oOg9vT_AXalALweAdtjq6uj7_F0LIiUvZiaJlzkmg9bna_t-LzRRR_7pd-gs2Xy3JmHu7MZPIcvtb-Z7CNXNvzuO3k9mhZ2SP3-Aup4_-92mu01cBTfBz16Q3a8OUOerVGWriDupeAs6fzejkeH-LTyQ2A3rr0Ft2D1uHr7-AZcRo333o8LbDBaUgGBPdcFdZHYTaNB8b5CgNkxqnJoTwM-Z08XG9-NBnFFkH0BDQJhzMkgUUKmzLHMKK1xaGr2UGhW-_QaHD-9fSCNLkdiGOcM2J0oq2ThddWFK5fmMBErwrey3vgVvuU-pCMXYkkB3ephXVUWeuFypk1fUcZe4865bT0HxCGKSpXzgovuQfvqpQFRQNJJiXvJyrvos_tn81cQ3we8m9MsjoAT3W2_q276GBVexYJP_5Qb69Vkqwx-0UWwtIaMI_oddHhSnF-206rd9C7WhX--rAsPRsCxhBs91-b3UOdar70-4CYKvuxMYknuUoQcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Phase+Response+of+a+Rough+Rectangular+Facet+for+Radar+Sounder+Simulations+of+Both+Coherent+and+Incoherent+Scattering&rft.jtitle=Radio+science&rft.au=Gerekos%2C+C.&rft.au=Haynes%2C+M.+S.&rft.au=Schroeder%2C+D.+M.&rft.au=Blankenship%2C+D.+D.&rft.date=2023-06-01&rft.issn=0048-6604&rft.eissn=1944-799X&rft.volume=58&rft.issue=6&rft_id=info:doi/10.1029%2F2022RS007594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2022RS007594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon