The Phase Response of a Rough Rectangular Facet for Radar Sounder Simulations of Both Coherent and Incoherent Scattering
With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial a...
Saved in:
| Published in | Radio science Vol. 58; no. 6 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
Blackwell Publishing Ltd
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0048-6604 1944-799X 1944-799X |
| DOI | 10.1029/2022RS007594 |
Cover
| Abstract | With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth.
Key Points
Planetary digital elevation models are often of coarse resolution and depict a surface that is smooth at scales below that resolution
Polynomial phase approximations can be used to simulate radar scattering rigorously but they overestimate the coherence of reflected signals
We analytically derive the linear phase approximation formula on a rough rectangular facet, leading to much better clutter simulations |
|---|---|
| AbstractList | With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth.
Planetary digital elevation models are often of coarse resolution and depict a surface that is smooth at scales below that resolution
Polynomial phase approximations can be used to simulate radar scattering rigorously but they overestimate the coherence of reflected signals
We analytically derive the linear phase approximation formula on a rough rectangular facet, leading to much better clutter simulations With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth. With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent. Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterized by Gaussian roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in isolation and after inclusion in different Stratton‐Chu simulators. In order to illustrate the different uses of such a formulation, we reproduce two lunar radargrams acquired by the Lunar Radar Sounder instrument with a Stratton‐Chu simulator incorporating the proposed rough facet phase integral, and we show that the original radargrams are significantly better‐reproduced than with state‐of‐the‐art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation to better characterize subglacial water bodies on Earth. Key Points Planetary digital elevation models are often of coarse resolution and depict a surface that is smooth at scales below that resolution Polynomial phase approximations can be used to simulate radar scattering rigorously but they overestimate the coherence of reflected signals We analytically derive the linear phase approximation formula on a rough rectangular facet, leading to much better clutter simulations |
| Author | Gerekos, C. Haynes, M. S. Schroeder, D. M. Blankenship, D. D. |
| Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0003-1526-1249 surname: Gerekos fullname: Gerekos, C. email: christopher.gerekos@austin.utexas.edu organization: University of Texas at Austin – sequence: 2 givenname: M. S. orcidid: 0000-0003-2119-2083 surname: Haynes fullname: Haynes, M. S. organization: California Institute of Technology – sequence: 3 givenname: D. M. orcidid: 0000-0003-1916-3929 surname: Schroeder fullname: Schroeder, D. M. organization: Stanford University – sequence: 4 givenname: D. D. orcidid: 0000-0003-0205-4830 surname: Blankenship fullname: Blankenship, D. D. organization: University of Texas at Austin |
| BookMark | eNp9kU1LxDAQhoMouH7c_AEBr1YnadJtjrp-gqB0FbyVNE23lZqsScq6_96sq6AinmYmed6Z4Z0dtGms0QgdEDgmQMUJBUqLKcCYC7aBRkQwloyFeNpEIwCWJ1kGbBvteP8MQBjP2Ai9PbQa37fSa1xoP7cmJrbBEhd2mLXxTQVpZkMvHb6USgfcWIcLWcd6agdT6xi7l_gfuqhdSc9saPHEttppE7A0Nb4x6qucKhmCdp2Z7aGtRvZe73_GXfR4efEwuU5u765uJqe3iUoZSxMpxqJSWaNFxRtFGglZRvOGQQ2MpIRSzQXkOR_XQoDglaJ5VWme12kliaJpuouSdd_BzOVyIfu-nLvuRbplSaBc2VaubHN-bVvkD9f83NnXQftQPtvBmbhiSXMqBKMZh0jRNaWc9d7pplRd-PAgONn1P1p_XSSKjn6J_trkG_45Y9H1evkvWxbnU0ooT9N3WZma9w |
| CitedBy_id | crossref_primary_10_5194_tc_18_1495_2024 crossref_primary_10_1109_TGRS_2025_3546160 |
| Cites_doi | 10.1126/science.1165988 10.1017/aog.2020.11 10.1109/IGARSS.2013.6723686 10.1109/jstars.2020.2975187 10.1109/tap.2012.2236531 10.5194/npg-22-713-2015 10.1002/2014gl061635 10.1109/tgrs.2018.2851020 10.2528/pier20121201 10.1109/IGARSS39084.2020.9324279 10.1073/pnas.1302828110 10.1029/2010gl043751 10.1117/12.2599760 10.1109/tgrs.2019.2960751 10.1029/2017jf004561 10.1109/lgrs.2011.2170052 10.1109/taes.2019.2895711 10.1016/j.icarus.2016.11.039 10.5194/tc-12-2969-2018 10.1186/bf03352446 10.1007/s11430-010-3070-8 10.3189/002214308784409107 10.1017/jog.2019.72 10.1016/j.pss.2009.09.016 10.1029/2019jf005420 10.1002/2015RS005714 10.1109/lgrs.2014.2337878 10.1029/2003je002164 10.1016/j.pss.2014.07.018 10.1109/tgrs.2019.2929422 10.1016/j.epsl.2009.03.018 10.1017/s095410201200048x 10.3390/rs15030764 10.1109/tgrs.2019.2945079 10.1109/jproc.2010.2104130 10.1080/01431161.2019.1573339 10.1029/2020je006429 10.1029/2003rs002903 10.1007/s11214-010-9673-8 10.1126/sciadv.aar4353 10.1109/tgrs.2018.2840511 |
| ContentType | Journal Article |
| Copyright | 2023. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2023. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7SP 8FD H8D L7M ADTOC UNPAY |
| DOI | 10.1029/2022RS007594 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Engineering |
| EISSN | 1944-799X |
| EndPage | n/a |
| ExternalDocumentID | 10.1029/2022rs007594 10_1029_2022RS007594 RDS21253 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: REASON investigation within the Europa Clipper Project funderid: NNM16AA26C – fundername: The G. Unger Vetlesen Foundation – fundername: JPL funderid: RSA1689731 – fundername: NASA funderid: 80NM0018D0004 |
| GroupedDBID | -~X 05W 0R~ 123 186 1OB 1OC 24P 29P 31~ 33P 3V. 50Y 6IK 6TJ 8-1 88I 8FE 8FG 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAHQN AAIHA AAJGR AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABAZT ABCUV ABDPE ABJNI ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ ALXUD AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BEFXN BENPR BFFAM BFHJK BGLVJ BGNUA BHPHI BKEBE BKSAR BMXJE BPEOZ BPHCQ BRXPI CCPQU CS3 D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ H~9 IPLJI JAVBF K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OCL OHT OK1 P-X P2P P2W P62 PCBAR PQQKQ PROAC Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TN5 UHW UQL VOH WBKPD WIN WXSBR WYJ XOL YNT ZY4 ZZTAW ~02 ~OA ~~A AAMMB AAYXX ABVLG ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 PHGZM PHGZT PQGLB PUEGO 7SP 8FD H8D L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3443-a979bc6fe9b5fc1fa06628f40d0413122e5908857d99095bc28bbe58d3ba1c233 |
| IEDL.DBID | UNPAY |
| ISSN | 0048-6604 1944-799X |
| IngestDate | Wed Oct 01 15:22:25 EDT 2025 Fri Jul 25 03:16:37 EDT 2025 Wed Oct 01 04:46:00 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Wed Jan 22 16:21:59 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3443-a979bc6fe9b5fc1fa06628f40d0413122e5908857d99095bc28bbe58d3ba1c233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0205-4830 0000-0003-1916-3929 0000-0003-1526-1249 0000-0003-2119-2083 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007594 |
| PQID | 2829942650 |
| PQPubID | 54001 |
| PageCount | 30 |
| ParticipantIDs | unpaywall_primary_10_1029_2022rs007594 proquest_journals_2829942650 crossref_citationtrail_10_1029_2022RS007594 crossref_primary_10_1029_2022RS007594 wiley_primary_10_1029_2022RS007594_RDS21253 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Radio science |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2012; 61 2010; 53 2010; 37 2021; 11862 2023; 15 2019; 55 2015; 50 2020; 61 2019; 57 2018; 123 2002; 54 2019; 58 2011; 99 2020; 58 2020; 13 1994 2008; 54 2004 2020; 125 2014; 41 2018; 42 2011; 9 2009; 57 2003; 108 2019; 40 2018; 4 2022 2000 2020 2019; 65 2004; 39 2015; 22 2010; 154 1964; 55 2021; 170 2018 2016 2009; 282 2017; 285 2013; 110 1981 2013 2018; 56 2018; 12 2012; 24 2014; 103 2009; 323 2014; 12 e_1_2_13_24_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_45_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_32_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 Abramowitz M. (e_1_2_13_2_1) 1964 e_1_2_13_30_1 Tsang L. (e_1_2_13_49_1) 2004 e_1_2_13_29_1 Gerekos C. (e_1_2_13_21_1) 2020 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 Fung A. K. (e_1_2_13_20_1) 1994 e_1_2_13_40_1 e_1_2_13_7_1 Kong J. A. (e_1_2_13_33_1) 2000 Fergason R. (e_1_2_13_18_1) 2018 Botev Z. (e_1_2_13_5_1) 2016 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_52_1 e_1_2_13_50_1 Botev Z. (e_1_2_13_6_1) 2022 e_1_2_13_3_1 Blankenship D. (e_1_2_13_4_1) 2018 e_1_2_13_28_1 |
| References_xml | – volume: 11862 start-page: 222 year: 2021 end-page: 234 – volume: 55 start-page: 2992 issue: 6 year: 2019 end-page: 3002 article-title: Homodyned‐k distribution with additive Gaussian noise publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 58 start-page: 2250 issue: 4 year: 2019 end-page: 2265 article-title: A coherent method for simulating active and passive radar sounding of the Jovian icy moons publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 1981 – volume: 55 year: 1964 – volume: 282 start-page: 222 issue: 1–4 year: 2009 end-page: 233 article-title: Radar detection of accreted ice over Lake Vostok, Antarctica publication-title: Earth and Planetary Science Letters – volume: 110 start-page: 12225 issue: 30 year: 2013 end-page: 12228 article-title: Evidence for a water system transition beneath Thwaites Glacier, West Antarctica publication-title: Proceedings of the National Academy of Sciences – volume: 56 start-page: 6571 issue: 11 year: 2018 end-page: 6585 article-title: Geometric power fall‐off in radar sounding publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 39 start-page: 1 issue: 1 year: 2004 end-page: 17 article-title: Radar signal simulation: Surface modeling with the facet method publication-title: Radio Science – volume: 41 start-page: 6787 issue: 19 year: 2014 end-page: 6794 article-title: Surface slope control on firn density at Thwaites Glacier, West Antarctica: Results from airborne radar sounding publication-title: Geophysical Research Letters – volume: 22 start-page: 713 issue: 6 year: 2015 end-page: 722 article-title: Universal multifractal Martian topography publication-title: Nonlinear Processes in Geophysics – start-page: 3907 year: 2013 end-page: 3910 – volume: 56 start-page: 7388 issue: 12 year: 2018 end-page: 7404 article-title: A coherent multilayer simulator of radargrams acquired by radar sounder instruments publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2018 – volume: 42 year: 2018 – year: 1994 – volume: 15 issue: 3 year: 2023 article-title: Resolving ambiguities in sharad data analysis using high‐resolution digital terrain models publication-title: Remote Sensing – volume: 103 start-page: 191 year: 2014 end-page: 204 article-title: Planetary landing‐zone reconnaissance using ice‐penetrating radar data: Concept validation in Antarctica publication-title: Planetary and Space Science – volume: 4 issue: 4 year: 2018 article-title: Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic publication-title: Science Advances – volume: 65 start-page: 983 issue: 254 year: 2019 end-page: 988 article-title: Layer optimized SAR processing and slope estimation in radar sounder data publication-title: Journal of Glaciology – volume: 123 start-page: 985 issue: 5 year: 2018 end-page: 995 article-title: Complex basal thermal transition near the onset of Petermann Glacier, Greenland publication-title: Journal of Geophysical Research: Earth Surface – volume: 125 issue: 8 year: 2020 article-title: Meter‐scale topographic roughness of the moon: The effect of small impact craters publication-title: Journal of Geophysical Research: Planets – year: 2022 – year: 2004 – volume: 285 start-page: 237 year: 2017 end-page: 251 article-title: Radar probing of Jovian icy moons: Understanding subsurface water and structure detectability in the juice and Europa missions publication-title: Icarus – volume: 13 start-page: 1218 year: 2020 end-page: 1233 article-title: Space‐borne GNSS‐R signal over a complex topography: Modeling and validation publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 99 start-page: 794 issue: 5 year: 2011 end-page: 807 article-title: The shallow radar (SHARAD) onboard the NASA MRO mission publication-title: Proceedings of the IEEE – volume: 50 start-page: 1097 issue: 10 year: 2015 end-page: 1109 article-title: Computing low‐frequency radar surface echoes for planetary radar using Huygens‐Fresnel’s principle publication-title: Radio Science – volume: 125 issue: 3 year: 2020 article-title: Antarctic topographic realizations and geostatistical modeling used to map subglacial lakes publication-title: Journal of Geophysical Research: Earth Surface – volume: 24 start-page: 659 issue: 6 year: 2012 end-page: 664 article-title: A fourth inventory of Antarctic subglacial lakes publication-title: Antarctic Science – start-page: 5960 year: 2020 end-page: 5963 – volume: 61 start-page: 1 issue: 81 year: 2020 end-page: 13 article-title: Five decades of radioglaciology publication-title: Annals of Glaciology – volume: 37 issue: 18 year: 2010 article-title: Initial observations from the lunar orbiter laser altimeter (LOLA) publication-title: Geophysical Research Letters – volume: 53 start-page: 1043 issue: 7 year: 2010 end-page: 1055 article-title: Simulation of radar sounder echo from lunar surface and subsurface structure publication-title: Science China Earth Sciences – volume: 54 start-page: 94 issue: 184 year: 2008 end-page: 106 article-title: Recovery of subglacial water extent from Greenland radar survey data publication-title: Journal of Glaciology – volume: 323 start-page: 909 issue: 5916 year: 2009 end-page: 912 article-title: Lunar radar sounder observations of subsurface layers under the nearside maria of the moon publication-title: Science – year: 2000 – volume: 58 start-page: 4076 issue: 6 year: 2020 end-page: 4098 article-title: A 2‐D pseudospectral time‐domain (PSTD) simulator for large‐scale electromagnetic scattering and radar sounding applications publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 40 start-page: 4762 issue: 12 year: 2019 end-page: 4786 article-title: Squinted SAR focusing for improving automatic radar sounder data analysis and enhancement publication-title: International Journal of Remote Sensing – year: 2016 – volume: 54 start-page: 983 issue: 10 year: 2002 end-page: 991 article-title: B‐scan analysis of subsurface radar sounding of lunar highland region publication-title: Earth Planets and Space – volume: 57 start-page: 1975 issue: 14–15 year: 2009 end-page: 1986 article-title: The Mars express MARSIS sounder instrument publication-title: Planetary and Space Science – volume: 170 start-page: 97 year: 2021 end-page: 128 article-title: A fine scale partially coherent patch model including topographical effects for GNSS‐R DDM simulations publication-title: Progress in Electromagnetics Research – volume: 12 start-page: 443 issue: 3 year: 2014 end-page: 447 article-title: Estimating subglacial water geometry using radar bed echo specularity: Application to Thwaites Glacier, West Antarctica publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 57 start-page: 9791 issue: 12 year: 2019 end-page: 9809 article-title: Distributed radar sounder: A novel concept for subsurface investigations using sensors in formation flight publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 61 start-page: 2156 issue: 4 year: 2012 end-page: 2163 article-title: Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation publication-title: IEEE Transactions on Antennas and Propagation – year: 2020 – volume: 12 start-page: 2969 issue: 9 year: 2018 end-page: 2979 article-title: Coherent large beamwidth processing of radio‐echo sounding data publication-title: The Cryosphere – volume: 108 issue: E12 year: 2003 article-title: Coherent and incoherent components in near‐nadir radar scattering: Applications to radar sounding of Mars publication-title: Journal of Geophysical Research – volume: 9 start-page: 393 issue: 3 year: 2011 end-page: 397 article-title: Cryosat SAR‐mode looks revisited publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 154 start-page: 145 issue: 1 year: 2010 end-page: 192 article-title: The lunar radar sounder (LRS) onboard the Kaguya (SELENE) spacecraft publication-title: Space Science Reviews – ident: e_1_2_13_40_1 doi: 10.1126/science.1165988 – ident: e_1_2_13_45_1 doi: 10.1017/aog.2020.11 – ident: e_1_2_13_8_1 doi: 10.1109/IGARSS.2013.6723686 – ident: e_1_2_13_15_1 doi: 10.1109/jstars.2020.2975187 – ident: e_1_2_13_30_1 doi: 10.1109/tap.2012.2236531 – ident: e_1_2_13_34_1 doi: 10.5194/npg-22-713-2015 – ident: e_1_2_13_24_1 doi: 10.1002/2014gl061635 – ident: e_1_2_13_23_1 doi: 10.1109/tgrs.2018.2851020 – ident: e_1_2_13_53_1 doi: 10.2528/pier20121201 – volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables year: 1964 ident: e_1_2_13_2_1 – ident: e_1_2_13_7_1 doi: 10.1109/IGARSS39084.2020.9324279 – ident: e_1_2_13_47_1 doi: 10.1073/pnas.1302828110 – volume-title: Microwave scattering and emission models and their applications year: 1994 ident: e_1_2_13_20_1 – ident: e_1_2_13_48_1 doi: 10.1029/2010gl043751 – ident: e_1_2_13_44_1 doi: 10.1117/12.2599760 – ident: e_1_2_13_35_1 doi: 10.1109/tgrs.2019.2960751 – ident: e_1_2_13_50_1 – ident: e_1_2_13_13_1 doi: 10.1029/2017jf004561 – ident: e_1_2_13_42_1 doi: 10.1109/lgrs.2011.2170052 – start-page: B5‐3 volume-title: 42nd COSPAR scientific assembly year: 2018 ident: e_1_2_13_4_1 – ident: e_1_2_13_26_1 doi: 10.1109/taes.2019.2895711 – ident: e_1_2_13_28_1 doi: 10.1016/j.icarus.2016.11.039 – ident: e_1_2_13_29_1 doi: 10.5194/tc-12-2969-2018 – ident: e_1_2_13_32_1 doi: 10.1186/bf03352446 – volume-title: MATLAB central file exchange year: 2016 ident: e_1_2_13_5_1 – ident: e_1_2_13_17_1 doi: 10.1007/s11430-010-3070-8 – ident: e_1_2_13_41_1 doi: 10.3189/002214308784409107 – ident: e_1_2_13_12_1 doi: 10.1017/jog.2019.72 – ident: e_1_2_13_31_1 doi: 10.1016/j.pss.2009.09.016 – ident: e_1_2_13_37_1 doi: 10.1029/2019jf005420 – ident: e_1_2_13_3_1 doi: 10.1002/2015RS005714 – ident: e_1_2_13_46_1 doi: 10.1109/lgrs.2014.2337878 – ident: e_1_2_13_51_1 – ident: e_1_2_13_10_1 doi: 10.1029/2003je002164 – ident: e_1_2_13_25_1 doi: 10.1016/j.pss.2014.07.018 – ident: e_1_2_13_11_1 doi: 10.1109/tgrs.2019.2929422 – volume-title: MATLAB central file exchange year: 2022 ident: e_1_2_13_6_1 – ident: e_1_2_13_36_1 doi: 10.1016/j.epsl.2009.03.018 – ident: e_1_2_13_52_1 doi: 10.1017/s095410201200048x – ident: e_1_2_13_16_1 doi: 10.3390/rs15030764 – ident: e_1_2_13_22_1 doi: 10.1109/tgrs.2019.2945079 – ident: e_1_2_13_14_1 doi: 10.1109/jproc.2010.2104130 – ident: e_1_2_13_19_1 doi: 10.1080/01431161.2019.1573339 – volume-title: Electromagnetic wave theory year: 2000 ident: e_1_2_13_33_1 – ident: e_1_2_13_9_1 doi: 10.1029/2020je006429 – volume-title: Scattering of electromagnetic waves: Advanced topics year: 2004 ident: e_1_2_13_49_1 – ident: e_1_2_13_38_1 doi: 10.1029/2003rs002903 – volume-title: Advanced backscattering simulation methods for the design of spaceborne radar sounders. Doctoral dissertation year: 2020 ident: e_1_2_13_21_1 – ident: e_1_2_13_39_1 doi: 10.1007/s11214-010-9673-8 – volume-title: Astrogeology PDS Annex year: 2018 ident: e_1_2_13_18_1 – ident: e_1_2_13_43_1 doi: 10.1126/sciadv.aar4353 – ident: e_1_2_13_27_1 doi: 10.1109/tgrs.2018.2840511 |
| SSID | ssj0014564 |
| Score | 2.370555 |
| Snippet | With radar sounders, coherent backscattering simulations from global planetary digital elevation models (DEMs) typically display a deficit in diffuse clutter,... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Approximation Backscattering Clutter Coherent scattering Correlation Digital Elevation Models facets Incoherent scatter radar Linear phase Mathematical analysis Polynomials Radar Roughness Scattering angle Simulation Simulators Stratton‐Chu |
| Title | The Phase Response of a Rough Rectangular Facet for Radar Sounder Simulations of Both Coherent and Incoherent Scattering |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022RS007594 https://www.proquest.com/docview/2829942650 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007594 |
| UnpaywallVersion | publishedVersion |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1944-799X dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0014564 issn: 0048-6604 databaseCode: ADMLS dateStart: 19681101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegPSAOAwaITmPyAXZBnlp_xT6WjWpCdJoSKpVTZDuOmChp1abi46_nOU5KhwAhcYoc-TlO8p7fz3727yH0gjrlaGE0kWWZEO6YJMZSTrTVzCrqhE_C2eHplbyc8bdzMd87CxP5IXYLbsEymvE6GPiqKOM431IO6DBzp2kW3J7md1FfCsDjPdSfXV2PP8TQsiJSDmNomXOSaD1vd7934utNFL_tl36CzXvbamW-fTGLxW342vifyQPkup7HbSefzra1PXPffyF1_L9Xe4gOWniKx1GfHqE7vjpE9_dICw_RYAo4e7luluPxKT5f3ADobUqP0VfQOnz9ETwjTuPmW4-XJTY4DcmA4J6rw_oozKbxxDhfY4DMODUFlLOQ38nD9eZzm1FsE0RfgybhcIYksEhhUxUYRrSumLmGHRS69QTNJm_en1-SNrcDcYxzRoxOtHWy9NqK0o1KE5joVcmHxRDc6ohSH5KxK5EU4C61sI4qa71QBbNm5ChjT1GvWlb-GcIwReXKWeEl9-BdlbKgaCDJpOSjRBUD9Kr7s7lric9D_o1F3gTgqc73v_UAvdzVXkXCjz_UO-6UJG_NfpOHsLQGzCOGA3S6U5zfttPpHfSuUYW_PixPLzLAGIId_Wuzx6hXr7f-OSCm2p6g_vhi-i47aU3jB0E2EgU |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBddehg7tFu3sZR26LD2MlQSfVk69iuUQUtxFshORpJlVpo5IXHox1_fJ8vO0rGNwU5GRk-W7ff0ftKTfg-hT9QpR3OjiSyKhHDHJDGWcqKtZlZRJ3wSzg5fXsmLEf8yFuO1szCRH2K14BYsox6vg4HP8iKO8w3lgA4zd5oOg9vT_AXalALweAdtjq6uj7_F0LIiUvZiaJlzkmg9bna_t-LzRRR_7pd-gs2Xy3JmHu7MZPIcvtb-Z7CNXNvzuO3k9mhZ2SP3-Aup4_-92mu01cBTfBz16Q3a8OUOerVGWriDupeAs6fzejkeH-LTyQ2A3rr0Ft2D1uHr7-AZcRo333o8LbDBaUgGBPdcFdZHYTaNB8b5CgNkxqnJoTwM-Z08XG9-NBnFFkH0BDQJhzMkgUUKmzLHMKK1xaGr2UGhW-_QaHD-9fSCNLkdiGOcM2J0oq2ThddWFK5fmMBErwrey3vgVvuU-pCMXYkkB3ephXVUWeuFypk1fUcZe4865bT0HxCGKSpXzgovuQfvqpQFRQNJJiXvJyrvos_tn81cQ3we8m9MsjoAT3W2_q276GBVexYJP_5Qb69Vkqwx-0UWwtIaMI_oddHhSnF-206rd9C7WhX--rAsPRsCxhBs91-b3UOdar70-4CYKvuxMYknuUoQcQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Phase+Response+of+a+Rough+Rectangular+Facet+for+Radar+Sounder+Simulations+of+Both+Coherent+and+Incoherent+Scattering&rft.jtitle=Radio+science&rft.au=Gerekos%2C+C.&rft.au=Haynes%2C+M.+S.&rft.au=Schroeder%2C+D.+M.&rft.au=Blankenship%2C+D.+D.&rft.date=2023-06-01&rft.issn=0048-6604&rft.eissn=1944-799X&rft.volume=58&rft.issue=6&rft_id=info:doi/10.1029%2F2022RS007594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2022RS007594 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon |