An iterative learning approach for network contraction: Path finding problem in stochastic time‐varying networks
Path finding problem has a broad application in different fields of engineering. Travel time uncertainty is a critical factor affecting this problem and the route choice of transportation users. The major downside of the existing algorithms for the reliable path finding problem is their inefficiency...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 34; no. 10; pp. 859 - 876 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 |
| DOI | 10.1111/mice.12460 |
Cover
| Abstract | Path finding problem has a broad application in different fields of engineering. Travel time uncertainty is a critical factor affecting this problem and the route choice of transportation users. The major downside of the existing algorithms for the reliable path finding problem is their inefficiency in computational time. This study aims to develop a network contraction approach to reduce the network size of each specific origin and destination (OD) pair in stochastic time‐dependent networks. The network contraction is based on the comparison of optimistic and pessimistic solutions resulting from minimum and maximum travel time realizations of a Monte‐Carlo simulation (MCS)‐based approach. In this respect, the researchers propose a learning approach to utilize the information of the realizations in the initial iterations of the MCS approach. Implementation of this approach is in place for several OD pairs of two real‐world large‐scale applications. First, it is calibrated for the Chicago downtown network; the performance and accuracy of the proposed approach are investigated by comparing the results against that of the approach without any network contraction. In addition, the Salt Lake City network illustrates the transferability of the approach to other networks. The results demonstrate significant computational improvements, with an acceptable accuracy level relative to the approach without network contraction. |
|---|---|
| AbstractList | Path finding problem has a broad application in different fields of engineering. Travel time uncertainty is a critical factor affecting this problem and the route choice of transportation users. The major downside of the existing algorithms for the reliable path finding problem is their inefficiency in computational time. This study aims to develop a network contraction approach to reduce the network size of each specific origin and destination (OD) pair in stochastic time‐dependent networks. The network contraction is based on the comparison of optimistic and pessimistic solutions resulting from minimum and maximum travel time realizations of a Monte‐Carlo simulation (MCS)‐based approach. In this respect, the researchers propose a learning approach to utilize the information of the realizations in the initial iterations of the MCS approach. Implementation of this approach is in place for several OD pairs of two real‐world large‐scale applications. First, it is calibrated for the Chicago downtown network; the performance and accuracy of the proposed approach are investigated by comparing the results against that of the approach without any network contraction. In addition, the Salt Lake City network illustrates the transferability of the approach to other networks. The results demonstrate significant computational improvements, with an acceptable accuracy level relative to the approach without network contraction. |
| Author | Abdelghany, Khaled Fakhrmoosavi, Fatemeh Hashemi, Hossein Zockaie, Ali |
| Author_xml | – sequence: 1 givenname: Fatemeh surname: Fakhrmoosavi fullname: Fakhrmoosavi, Fatemeh organization: Michigan State University – sequence: 2 givenname: Ali surname: Zockaie fullname: Zockaie, Ali email: zockaiea@egr.msu.edu organization: Michigan State University – sequence: 3 givenname: Khaled surname: Abdelghany fullname: Abdelghany, Khaled organization: Southern Methodist University – sequence: 4 givenname: Hossein surname: Hashemi fullname: Hashemi, Hossein organization: Tiger Analytics |
| BookMark | eNp9kEFPwyAYhomZidv04i8g8WbSCS2lrbdlmbpkRg96bigFx2xhAnPZzZ_gb_SXSO1OxvhdIOF5X748IzDQRgsAzjGa4DBXreJigmNC0REYYkKzKKc0G4Q7KpKooHl2AkbOrVEYQpIhsFMNlReWefUuYCOY1Uq_QLbZWMP4CkpjoRZ-Z-wr5EZ7y7hXRl_DR-bDq9J1hwe4akQLlYbOG75izisOvWrF18fnO7P7DjrUuFNwLFnjxNnhHIPnm_nT7C5aPtwuZtNlxBNCUIQZSyWTLM8kqSteY8R5XvAc06oSNaG0SlHFi4LWOeYIC5EVMmdc0qSOEa5ZMgYXfW_Y7m0rnC_XZmt1-LKM4zxDuIjTNFCXPcWtcc4KWW6sasPKJUZl57TsnJY_TgOMfsFcedYJCWJU83cE95GdasT-n_LyfjGb95lvkiqP7w |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2020_113192 crossref_primary_10_1080_13658816_2024_2394651 crossref_primary_10_1177_03611981211019737 crossref_primary_10_1080_19427867_2023_2231689 crossref_primary_10_1177_03611981221115431 crossref_primary_10_1016_j_trc_2022_103866 crossref_primary_10_1061_JTEPBS_0000669 crossref_primary_10_1016_j_trc_2022_103663 crossref_primary_10_1109_ACCESS_2020_2983047 crossref_primary_10_1111_mice_12697 crossref_primary_10_1142_S0129065721300011 |
| Cites_doi | 10.1111/mice.12103 10.1111/mice.12297 10.1061/(ASCE)CP.1943-5487.0000675 10.1016/0191-2615(80)90014-4 10.3141/2334-01 10.1016/0377-2217(94)00152-3 10.1111/mice.12412 10.1016/j.cor.2005.03.027 10.1016/S0167-8191(01)00105-3 10.3141/2396-11 10.1016/j.engstruct.2017.10.070 10.1002/net.20374 10.1007/978-3-540-37110-6_12 10.3141/2667-12 10.1111/mice.12367 10.1287/trsc.35.1.37.10141 10.1111/mice.12257 10.1111/mice.12224 10.1111/mice.12359 10.1007/s10957-005-7498-5 10.1080/10248079608903712 10.1090/qam/102435 10.1111/mice.12376 10.1016/j.trb.2005.10.003 10.3141/2567-11 10.1111/j.1467-8667.2009.00637.x 10.1111/mice.12363 10.3141/2567-12 10.1287/trsc.28.4.292 10.1016/j.eswa.2010.07.064 10.1016/S0304-3975(02)00085-3 10.1007/BF01386390 10.1111/j.1467-8667.2010.00680.x 10.1002/tal.1400 10.1016/S0377-2217(02)00231-X 10.1016/j.trb.2009.01.008 10.1111/mice.12263 10.1080/13658816.2011.598133 10.1287/mnsc.6.2.187 10.1016/j.trb.2011.06.004 10.1016/j.camwa.2004.07.028 10.3141/2467-15 10.1016/j.tre.2013.07.002 10.14359/51689560 10.3141/2124-20 10.1016/j.tra.2011.10.008 10.1111/j.1467-8667.2011.00724.x |
| ContentType | Journal Article |
| Copyright | 2019 2019 Computer‐Aided Civil and Infrastructure Engineering |
| Copyright_xml | – notice: 2019 – notice: 2019 Computer‐Aided Civil and Infrastructure Engineering |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.12460 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 876 |
| ExternalDocumentID | 10_1111_mice_12460 MICE12460 |
| Genre | article |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3440-1aa5fafa87f4dbcd10cc89c816bbed466b50bc996d81c01ee79f8acf63d201da3 |
| IEDL.DBID | DR2 |
| ISSN | 1093-9687 |
| IngestDate | Fri Jul 25 06:53:57 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Wed Oct 01 04:15:57 EDT 2025 Wed Jan 22 16:39:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3440-1aa5fafa87f4dbcd10cc89c816bbed466b50bc996d81c01ee79f8acf63d201da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2287019255 |
| PQPubID | 2045171 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2287019255 crossref_primary_10_1111_mice_12460 crossref_citationtrail_10_1111_mice_12460 wiley_primary_10_1111_mice_12460_MICE12460 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 56 2009; 43 2017; 26 2016a 1960; 6 1958; 16 2006; 33 2015; 30 2008 2003; 290 2001; 27 1994; 28 2014b; 2467 2011; 38 1959; 1 2017; 114 2016b; 2567 2017; 31 1980; 14 2013; 58 1993; 1408 2006; 40 2017; 2667 2013; 2334 2017; 32 2018; 156 2013; 2396 1995; 87 2018 2016; 2567 2011; 45 2011; 26 2014 2012; 27 2012; 26 2005a; 127 2014a 2018; 33 2012; 46 2003; 146 2001; 35 2005b; 49 1996; 3 2009; 2124 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 Ziliaskopoulos A. K. (e_1_2_7_48_1) 1993; 1408 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 2567 start-page: 95 year: 2016 end-page: 104 article-title: Parallel all‐pairs shortest path algorithm: Network decomposition approach publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 27 start-page: 231 issue: 4 year: 2012 end-page: 243 article-title: A dynamic route choice model considering uncertain capacities publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 35 start-page: 37 issue: 1 year: 2001 end-page: 49 article-title: A mean‐variance model for route guidance in advanced traveler information systems publication-title: Transportation Science – volume: 87 start-page: 368 issue: 2 year: 1995 end-page: 374 article-title: A two‐phase shortest path algorithm for networks with node coordinates publication-title: European Journal of Operational Research – volume: 26 start-page: 16 issue: 1 year: 2011 end-page: 29 article-title: Influence of demand uncertainty and correlations on traffic predictions and decisions publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 638 issue: 8 year: 2018 end-page: 654 article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 30 start-page: 433 issue: 6 year: 2015 end-page: 448 article-title: Robust optimization strategy for the shortest path problem under uncertain link travel cost distribution publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 26 start-page: 311 issue: 4 year: 2011 end-page: 326 article-title: Reliability‐based transit assignment for congested stochastic transit networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 849 issue: 10 year: 2018 end-page: 863 article-title: End‐to‐end deep learning methodology for real‐time traffic network management publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 156 start-page: 598 year: 2018 end-page: 607 article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures publication-title: Engineering Structures – year: 2018 – volume: 127 start-page: 497 issue: 3 year: 2005a end-page: 513 article-title: Arriving on time publication-title: Journal of Optimization Theory and Applications – volume: 33 start-page: 748 issue: 9 year: 2018 end-page: 768 article-title: Deep transfer learning for image‐based structural damage recognition publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2014 – volume: 31 issue: 5 year: 2017 article-title: Bounding box approach to network pruning for efficient path search through large networks publication-title: Journal of Computing in Civil Engineering. American Society of Civil Engineers – volume: 1 start-page: 269 issue: 1 year: 1959 end-page: 271 article-title: A note on two problems in connexion with graphs publication-title: Numerische mathematik – year: 2016a – volume: 43 start-page: 597 issue: 6 year: 2009 end-page: 613 article-title: Shortest path problem considering on‐time arrival probability publication-title: Transportation Research Part B: Methodological – volume: 114 start-page: 237 issue: 2 year: 2017 end-page: 244 article-title: Supervised deep restricted Boltzmann machine for estimation of concrete publication-title: ACI Materials Journal – volume: 26 issue: 18 year: 2017 article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures publication-title: The Structural Design of Tall and Special Buildings – volume: 56 start-page: 215 issue: 3 year: 2010 end-page: 227 article-title: A mean‐variance model for the minimum cost flow problem with stochastic arc costs publication-title: Networks – volume: 146 start-page: 67 issue: 1 year: 2003 end-page: 82 article-title: Path comparisons for a priori and time‐adaptive decisions in stochastic, time‐varying networks publication-title: European Journal of Operational Research – volume: 6 start-page: 187 issue: 2 year: 1960 end-page: 190 article-title: On the shortest route through a network publication-title: Management Science – volume: 2334 start-page: 1 year: 2013 end-page: 9 article-title: Impacts of correlations on reliable shortest path finding: A simulation‐based study publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 32 start-page: 319 issue: 4 year: 2017 end-page: 343 article-title: A hybrid branch‐and‐bound and Benders decomposition algorithm for the network design problem publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 805 issue: 10 year: 2017 end-page: 819 article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 3 start-page: 111 issue: 2 year: 1996 end-page: 127 article-title: Real‐time optimal‐route computation: A heuristic approach publication-title: Journal of Intelligent Transportation Systems – volume: 26 start-page: 365 issue: 2 year: 2012 end-page: 386 article-title: Reliable shortest path finding in stochastic networks with spatial correlated link travel times publication-title: International Journal of Geographical Information Science – volume: 14 start-page: 343 issue: 4 year: 1980 end-page: 347 article-title: Shortest path forest with topological ordering: An algorithm description in SDL publication-title: Transportation Research Part B: Methodological – volume: 46 start-page: 403 issue: 2 year: 2012 end-page: 419 article-title: Reliable route guidance: A case study from Chicago publication-title: Transportation Research Part A: Policy and Practice – volume: 32 start-page: 344 issue: 4 year: 2017 end-page: 357 article-title: A wavelet support vector machine‐based neural network metamodel for structural reliability assessment publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 38 start-page: 1515 issue: 3 year: 2011 end-page: 1528 article-title: Multi‐objective α‐reliable path finding in stochastic networks with correlated link costs: A simulation‐based multi‐objective genetic algorithm approach (SMOGA) publication-title: Expert Systems with Applications – volume: 27 start-page: 1537 issue: 12 year: 2001 end-page: 1568 article-title: Implementing parallel shortest path for parallel transportation applications publication-title: Parallel Computing – year: 2014a – volume: 2124 start-page: 203 year: 2009 end-page: 212 article-title: Flow breakdown and travel time reliability publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 33 start-page: 3324 issue: 11 year: 2006 end-page: 3343 article-title: Heuristic shortest path algorithms for transportation applications: State of the art publication-title: Computers & Operations Research – volume: 1408 start-page: 94 year: 1993 end-page: 100 article-title: Time‐dependent, shortest‐path algorithm for real‐time intelligent vehicle highway system applications publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 40 start-page: 792 issue: 9 year: 2006 end-page: 806 article-title: Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion publication-title: Transportation Research Part B: Methodological – volume: 58 start-page: 52 year: 2013 end-page: 66 article-title: An outer approximation algorithm for the robust shortest path problem publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 2467 start-page: 140 year: 2014b end-page: 148 article-title: Simulation‐based method for finding minimum travel time budget paths in stochastic networks with correlated link times publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 33 start-page: 1090 issue: 12 year: 2018 end-page: 1109 article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2667 start-page: 119 year: 2017 end-page: 130 article-title: Estimating path travel costs for heterogeneous users on large‐scale networks: Heuristic approach to integrated activity‐based model–dynamic traffic assignment models publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 290 start-page: 2021 issue: 3 year: 2003 end-page: 2029 article-title: An approximate A* algorithm and its application to the SCS problem publication-title: Theoretical Computer Science – volume: 2567 start-page: 105 year: 2016b end-page: 113 article-title: Path finding in stochastic time varying networks with spatial and temporal correlations for heterogeneous travelers publication-title: Transportation Research Record: Journal of the Transportation Research Board – start-page: 248 year: 2008 end-page: 266 – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 16 start-page: 87 issue: 1 year: 1958 end-page: 90 article-title: On a routing problem publication-title: Quarterly of Applied Mathematics – volume: 28 start-page: 292 issue: 4 year: 1994 end-page: 308 article-title: A decomposition algorithm for the all‐pairs shortest path problem on massively parallel computer architectures publication-title: Transportation Science – volume: 33 start-page: 443 issue: 6 year: 2018 end-page: 458 article-title: Deep learning for accelerated seismic reliability analysis of transportation networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2396 start-page: 93 year: 2013 end-page: 106 article-title: Implementation and evaluation of weather‐responsive traffic management strategies: Insight from different networks publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 45 start-page: 1660 issue: 10 year: 2011 end-page: 1679 article-title: Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach publication-title: Transportation Research Part B: Methodological – volume: 49 start-page: 1549 issue: 9–10 year: 2005b end-page: 1564 article-title: Shortest paths in stochastic networks with correlated link costs publication-title: Computers & Mathematics with Applications – ident: e_1_2_7_40_1 doi: 10.1111/mice.12103 – ident: e_1_2_7_46_1 doi: 10.1111/mice.12297 – volume: 1408 start-page: 94 year: 1993 ident: e_1_2_7_48_1 article-title: Time‐dependent, shortest‐path algorithm for real‐time intelligent vehicle highway system applications publication-title: Transportation Research Record: Journal of the Transportation Research Board – ident: e_1_2_7_47_1 doi: 10.1061/(ASCE)CP.1943-5487.0000675 – ident: e_1_2_7_10_1 doi: 10.1016/0191-2615(80)90014-4 – ident: e_1_2_7_54_1 doi: 10.3141/2334-01 – ident: e_1_2_7_27_1 doi: 10.1016/0377-2217(94)00152-3 – ident: e_1_2_7_45_1 doi: 10.1111/mice.12412 – ident: e_1_2_7_17_1 doi: 10.1016/j.cor.2005.03.027 – ident: e_1_2_7_21_1 doi: 10.1016/S0167-8191(01)00105-3 – ident: e_1_2_7_52_1 – ident: e_1_2_7_25_1 doi: 10.3141/2396-11 – ident: e_1_2_7_36_1 doi: 10.1016/j.engstruct.2017.10.070 – ident: e_1_2_7_5_1 doi: 10.1002/net.20374 – ident: e_1_2_7_24_1 doi: 10.1007/978-3-540-37110-6_12 – ident: e_1_2_7_43_1 doi: 10.3141/2667-12 – ident: e_1_2_7_44_1 doi: 10.1111/mice.12367 – ident: e_1_2_7_38_1 doi: 10.1287/trsc.35.1.37.10141 – ident: e_1_2_7_8_1 doi: 10.1111/mice.12257 – ident: e_1_2_7_3_1 doi: 10.1111/mice.12224 – ident: e_1_2_7_30_1 doi: 10.1111/mice.12359 – ident: e_1_2_7_15_1 doi: 10.1007/s10957-005-7498-5 – ident: e_1_2_7_23_1 doi: 10.1080/10248079608903712 – ident: e_1_2_7_49_1 – ident: e_1_2_7_4_1 doi: 10.1090/qam/102435 – ident: e_1_2_7_20_1 doi: 10.1111/mice.12376 – ident: e_1_2_7_26_1 doi: 10.1016/j.trb.2005.10.003 – ident: e_1_2_7_2_1 doi: 10.3141/2567-11 – ident: e_1_2_7_13_1 doi: 10.1111/j.1467-8667.2009.00637.x – ident: e_1_2_7_14_1 – ident: e_1_2_7_18_1 doi: 10.1111/mice.12363 – ident: e_1_2_7_51_1 doi: 10.3141/2567-12 – ident: e_1_2_7_19_1 doi: 10.1287/trsc.28.4.292 – ident: e_1_2_7_22_1 doi: 10.1016/j.eswa.2010.07.064 – ident: e_1_2_7_28_1 – ident: e_1_2_7_32_1 doi: 10.1016/S0304-3975(02)00085-3 – ident: e_1_2_7_11_1 doi: 10.1007/BF01386390 – ident: e_1_2_7_41_1 doi: 10.1111/j.1467-8667.2010.00680.x – ident: e_1_2_7_35_1 doi: 10.1002/tal.1400 – ident: e_1_2_7_29_1 doi: 10.1016/S0377-2217(02)00231-X – ident: e_1_2_7_33_1 doi: 10.1016/j.trb.2009.01.008 – ident: e_1_2_7_6_1 doi: 10.1111/mice.12263 – ident: e_1_2_7_7_1 doi: 10.1080/13658816.2011.598133 – ident: e_1_2_7_9_1 doi: 10.1287/mnsc.6.2.187 – ident: e_1_2_7_42_1 doi: 10.1016/j.trb.2011.06.004 – ident: e_1_2_7_16_1 doi: 10.1016/j.camwa.2004.07.028 – ident: e_1_2_7_53_1 doi: 10.3141/2467-15 – ident: e_1_2_7_39_1 doi: 10.1016/j.tre.2013.07.002 – ident: e_1_2_7_50_1 – ident: e_1_2_7_37_1 doi: 10.14359/51689560 – ident: e_1_2_7_12_1 doi: 10.3141/2124-20 – ident: e_1_2_7_34_1 doi: 10.1016/j.tra.2011.10.008 – ident: e_1_2_7_31_1 doi: 10.1111/j.1467-8667.2011.00724.x |
| SSID | ssj0000443 |
| Score | 2.290572 |
| Snippet | Path finding problem has a broad application in different fields of engineering. Travel time uncertainty is a critical factor affecting this problem and the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 859 |
| SubjectTerms | Algorithms Central business districts Computer simulation Computing time Iterative methods Learning Networks Route selection Time dependence Travel time |
| Title | An iterative learning approach for network contraction: Path finding problem in stochastic time‐varying networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12460 https://www.proquest.com/docview/2287019255 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1093-9687 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB6WPenBx6q4vgjoRaFLu23TRLws4iKCIqKwFylJmqgoVXZXD578Cf5Gf4mTNNVVRNBbCdOQ1yTfJDPfAGx1E6qYMSbImA3J4SkLmDBJwLDVKTWS6dAGJx-f0MOL5GiQDhqwV8fCVPwQHxduVjPcfm0VXMjRhJLbbO0dPJ2oNdijmDp76myCOyrx3vU8DjhlmecmtW48n79-PY0-IeYkUHUnTX8WLus2Vg4mt53Hseyo52_0jf_txBzMeAhKetWamYeGLlsw6-Eo8co-wqI640Nd1oLpCfrCBRj2SlKxMuOWSXz-iStS05QTxMOkrNzMiXOJr4Iodskpwk7iXstR3Ke0ITclQSCqroVljiY25_3by-sTds0K-WpGi3DRPzjfPwx8DodAxe7ZWIjUCCNYZpJCqiIKlWJcsYhKqYuEUpmGUqHRVbBIhZHWGTdMKEPjAqFJIeIlaJb3pV4GgoaiTHk31CbhiY4ZQ-RSiK5GyKEiVvA2bNdzmStPcG7zbNzltaFjRzt3o92GzQ_Zh4rW40eptXpJ5F61R3nXPg0jLk7TNuy4uf2lhhx16cB9rfxFeBWmsPe8chpcg-Z4-KjXEfyM5YZb5O-ijgP5 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA0yH9QH5ydOpwb0RaGjXdMs8W3IZH4issHeSpImKkoVN33wyZ_gb_SXeJOmOkUEfSvhNrRJbnJucnMOQttNQhUzxgQtZq_k8IQFTBgSMPjqhBrJdGgvJ5-e0W6fHA2Sgc_NsXdhCn6Ijw036xluvrYObjekx7zcyrU3YHmiELFPEgqBisVEF2PsUcTn1_M44JS1PDupTeT5fPfrevQJMsehqltrDqqFoOrQURTaFJObxuNINtTzNwLHf__GHJr1KBS3i2EzjyZ0voCqHpFi7-9DKCpFH8qyBTQzxmC4iB7aOS6ImWHWxF6C4hKXTOUYIDHOi0xz7LLii3sUe_gckCd2B-Zg7lVt8HWOAYuqK2HJo7GVvX97eX2Cf7NGvprhEuofdHr73cDLOAQqdifHQiRGGMFahmRSZVGoFOOKRVRKnRFKZRJKBXFXxiIVRlq3uGFCGRpngE4yES-jSn6X6xWEIVaUCW-G2hBOdMwYgJdMNDWgDhWxjNfQTtmZqfIc51Zq4zYtYx3b2qlr7Rra-rC9L5g9frSql2Mi9d49TJv2dBigcZLU0K7r3F9qSMGdOu5p9S_Gm2iq2zs9SU8Oz47X0DS0BC9yCOuoMnp41OuAhUZyw434d9rYCBo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSiQxFA2iILpQR0dsXxOY2ShUU9WVpJPZidq0OiMiNrgr8lRRSumHC1d-gt_ol8xNKqWtiDDuinArVB43Oancew5Cv1qEae6cS9rcp-QIyhMuHUk4fDVlTnGb-uTkv8es2yOH5_Q8xub4XJiKH-Llh5v3jLBeewe3d8aNebmXa2_C9sTgxD5FqOA-om_vdIw9isT4epEngvF2ZCf1gTyv777dj15B5jhUDXtNZ74SVB0EikIfYnLdHA1VUz-8I3D8cjMW0FxEoXinmjbf0IQtF9F8RKQ4-vsAimrRh7psEc2OMRguof5OiStiZlg1cZSguMA1UzkGSIzLKtIch6j4Ko_iNz4B5InDhTmYR1UbfFViwKL6UnryaOxl758fn-6hbd4oVjP4jnqd_bPdbhJlHBKdh5tjKamTTvK2I0Zpk6Vac6F5xpSyhjCmaKo0nLsMz3SaWdsWjkvtWG4AnRiZL6PJ8ra0KwjDWVFR0UqtI4LYnHMAL0a2LKAOnXEjGmirHsxCR45zL7VxU9RnHd_bRejtBvr5YntXMXt8aLVez4kievegaPnbYYDGlDbQdhjcT2oowJ32w9Pq_xj_QNMne53iz8Hx0RqagY4QVQjhOpoc9kd2A6DQUG2GCf8PeRYHng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+iterative+learning+approach+for+network+contraction%3A+Path+finding+problem+in+stochastic+time%E2%80%90varying+networks&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Fakhrmoosavi%2C+Fatemeh&rft.au=Zockaie%2C+Ali&rft.au=Abdelghany%2C+Khaled&rft.au=Hashemi%2C+Hossein&rft.date=2019-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=34&rft.issue=10&rft.spage=859&rft.epage=876&rft_id=info:doi/10.1111%2Fmice.12460&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |