Time constant optimization of solar irradiance absolute radiometer
We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer(SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown that, with a classic time constant of 30 s for SIAR, the systemic errors are 0.06%...
Saved in:
Published in | Optoelectronics letters Vol. 13; no. 3; pp. 179 - 183 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Tianjin
Tianjin University of Technology
01.05.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1673-1905 1993-5013 |
DOI | 10.1007/s11801-017-7032-7 |
Cover
Summary: | We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer(SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown that, with a classic time constant of 30 s for SIAR, the systemic errors are 0.06% in the midday and 0.275% in the morning and afternoon. The uncertainty level which can be considered negligible for SIAR is also investigated, and it is suggested that the uncertainty level has to be less than 0.02%. Then, combining the requirement of international comparison with these two conclusions, we conclude that the suitable time constant for SIAR is 20 s. |
---|---|
Bibliography: | 12-1370/TN radiometer absolute classic uncertainty negligible afternoon morning requirement optimize meaningful We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer(SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown that, with a classic time constant of 30 s for SIAR, the systemic errors are 0.06% in the midday and 0.275% in the morning and afternoon. The uncertainty level which can be considered negligible for SIAR is also investigated, and it is suggested that the uncertainty level has to be less than 0.02%. Then, combining the requirement of international comparison with these two conclusions, we conclude that the suitable time constant for SIAR is 20 s. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1673-1905 1993-5013 |
DOI: | 10.1007/s11801-017-7032-7 |