Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2 imagery
Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView...
        Saved in:
      
    
          | Published in | Geocarto international Vol. 32; no. 12; pp. 1389 - 1406 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Taylor & Francis
    
        02.12.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1010-6049 1752-0762 1752-0762  | 
| DOI | 10.1080/10106049.2016.1213888 | 
Cover
| Abstract | Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView-2 (WV-2) satellite data. Different feature selection techniques, including support vector machine (SVM), random forest (RF) and chi-square (CHI) are evaluated to indicate the most effective algorithm to identify the best set of OBIA attributes (spatial, spectral, textural and colour). The chi-square algorithm outperformed SVM and RF techniques. The classification result based on CHI algorithm achieved an overall accuracy of 83.19% for the training image (first site). Furthermore, the proposed model was used to examine its performance in different areas; and it achieved accuracy levels of 83.44, 87.80 and 80.26% for the different selected areas. Therefore, the selected method can be potentially useful for detecting road conditions based on WV-2 images. | 
    
|---|---|
| AbstractList | Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView-2 (WV-2) satellite data. Different feature selection techniques, including support vector machine (SVM), random forest (RF) and chi-square (CHI) are evaluated to indicate the most effective algorithm to identify the best set of OBIA attributes (spatial, spectral, textural and colour). The chi-square algorithm outperformed SVM and RF techniques. The classification result based on CHI algorithm achieved an overall accuracy of 83.19% for the training image (first site). Furthermore, the proposed model was used to examine its performance in different areas; and it achieved accuracy levels of 83.44, 87.80 and 80.26% for the different selected areas. Therefore, the selected method can be potentially useful for detecting road conditions based on WV-2 images. | 
    
| Author | Shafri, Helmi Zulhaidi Mohd Hamedianfar, Alireza Shahi, Kaveh  | 
    
| Author_xml | – sequence: 1 givenname: Kaveh surname: Shahi fullname: Shahi, Kaveh organization: Faculty of Engineering, Department of Civil Engineering, Universiti Putra Malaysia (UPM) – sequence: 2 givenname: Helmi Zulhaidi Mohd surname: Shafri fullname: Shafri, Helmi Zulhaidi Mohd email: helmi@upm.edu.my, hzms04@gmail.com organization: Faculty of Engineering, Geospatial Information Science Research Center (GISRC), Universiti Putra Malaysia (UPM) – sequence: 3 givenname: Alireza surname: Hamedianfar fullname: Hamedianfar, Alireza organization: Young Researchers and Elite Club, Islamic Azad University  | 
    
| BookMark | eNqFkE1LJDEQhoMo6Kg_QchxLz2bj-nuDF52dthVQRAWP46hOqmeifQkY5JW5t9vt6MXD7tQUHV43qLqmZBDHzwScsHZlDPFvnPGWcVm86lgvJpywaVS6oCc8LoUBasrcTjMA1OM0DGZpPTMmKxVJU_Iy58AlprgrcsueAopYUob9Jk2O3r382ZBwVvaIuQ-Ik3YoXkHM5q1dy89Jton51f0FeOOrt1qXURMoevfqacQO_vo8K0Q1G1gNTBn5KiFLuH5Rz8lD79_3S-vi9u7q5vl4rYwciZzgbYRljUCLNjKNnYoEK0o66YCWdZMNEJxMVd1W4KYVWjaUpZz23CJShph5Sn5tt-7jWE8M-uNSwa7DjyGPmnBZqViYl6zAS33qIkhpYit3sbh2rjTnOlRsf5UrEfF-kPxkLv8kjMuw_h4juC6_6Z_7NPOtyFu4G10pTPsuhDbCN64pOW_V_wF4XeY_w | 
    
| CitedBy_id | crossref_primary_10_3390_rs12071081 crossref_primary_10_1016_j_jag_2019_101912 crossref_primary_10_1061_JCCEE5_CPENG_5108 crossref_primary_10_3233_JIFS_191707 crossref_primary_10_1080_15230430_2024_2309686 crossref_primary_10_3390_rs13081523 crossref_primary_10_1080_01431161_2019_1594435 crossref_primary_10_3390_rs13245054 crossref_primary_10_32604_rig_2024_050723 crossref_primary_10_1016_j_rsase_2023_101031 crossref_primary_10_1002_cem_3387 crossref_primary_10_1080_10106049_2020_1737974 crossref_primary_10_3390_land12040763 crossref_primary_10_3390_rs10091413 crossref_primary_10_1016_j_ress_2021_108031  | 
    
| Cites_doi | 10.1007/s12544-015-0156-6 10.1080/01431161.2015.1060645 10.1080/01431161.2010.508799 10.1023/A:1012487302797 10.1080/10106049.2012.726278 10.3390/rs6098494 10.1016/0034-4257(91)90048-B 10.1080/0143116031000115292 10.4236/ars.2013.24034 10.1016/j.apgeog.2010.01.009 10.1080/01431161.2013.879350 10.1080/0143116031000102539 10.1111/j.1365-2699.2009.02186.x 10.1016/j.rse.2004.02.013 10.1080/10106049.2010.535616 10.1023/A:1010933404324 10.1080/01431160802639582 10.1016/j.patcog.2009.09.003 10.1080/03772063.2015.1086703 10.1016/j.proeps.2011.09.055 10.1080/01431160412331269698 10.4236/ars.2013.22022. 10.1080/19479832.2014.926296 10.5194/isprsannals-II-4-35-2014 10.1080/01431160802558634 10.5194/isprsarchives-XXXIX-B7-191-2012 10.1080/01431161003743173 10.1080/01431160701241746 10.1117/1.JRS.9.095079 10.1117/1.JRS.8.085091 10.1080/01431160903252327 10.1016/j.eswa.2014.03.019 10.1117/1.JRS.10.025001 10.1080/14498596.2010.487854 10.14358/PERS.70.5.627 10.1016/j.rse.2010.12.017 10.1080/01431160117759 10.1080/19479832.2013.824029 10.1016/j.rse.2011.02.030 10.1080/01431160802508985 10.1016/j.eswa.2013.02.019 10.1093/bioinformatics/btm344 10.1364/AO.44.004327 10.5721/EuJRS 10.1080/10106049.2012.760006 10.1080/01431160500242515 10.1016/j.isprsjprs.2009.06.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 | 
    
| Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1080/10106049.2016.1213888 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Physics  | 
    
| EISSN | 1752-0762 | 
    
| EndPage | 1406 | 
    
| ExternalDocumentID | 10_1080_10106049_2016_1213888 1213888  | 
    
| Genre | Article | 
    
| GrantInformation_xml | – fundername: Fundamental Research Grant Scheme grantid: 5524613  | 
    
| GroupedDBID | .7F .QJ 0BK 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ~02 ~S~ AAYXX CITATION 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c343t-edb2d0b2adad6dbddbda2f257b6a35702b2812987f5a246ecf5359db13e83c2d3 | 
    
| ISSN | 1010-6049 1752-0762  | 
    
| IngestDate | Fri Sep 05 17:23:43 EDT 2025 Wed Oct 01 02:39:02 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Mon Oct 20 23:46:09 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c343t-edb2d0b2adad6dbddbda2f257b6a35702b2812987f5a246ecf5359db13e83c2d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 2045802970 | 
    
| PQPubID | 24069 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | crossref_citationtrail_10_1080_10106049_2016_1213888 proquest_miscellaneous_2045802970 informaworld_taylorfrancis_310_1080_10106049_2016_1213888 crossref_primary_10_1080_10106049_2016_1213888  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-12-02 | 
    
| PublicationDateYYYYMMDD | 2017-12-02 | 
    
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-02 day: 02  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Geocarto international | 
    
| PublicationYear | 2017 | 
    
| Publisher | Taylor & Francis | 
    
| Publisher_xml | – name: Taylor & Francis | 
    
| References | CIT0071 CIT0030 CIT0074 CIT0076 CIT0031 CIT0034 CIT0078 CIT0033 ENVI-Zoom (CIT0022) 2010 CIT0070 Witten IH (CIT0075) 1999 Shafri HZM (CIT0067) 2012; 4 Kavzoglu T (CIT0042) 2001 CIT0036 CIT0038 CIT0039 CIT0040 CIT0043 CIT0001 Raghavendra B (CIT0059) 2010; 2 Zhang Q (CIT0080) 2004; 35 Huang M-L (CIT0037) 2014; 2014 CIT0047 CIT0002 CIT0046 Aggarwal M (CIT0003) 2013; 2 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0050 CIT0052 CIT0051 CIT0010 CIT0053 CIT0012 Bhatti A (CIT0013) 2010 CIT0056 CIT0011 Heiden U (CIT0032) 2001 Wang Y (CIT0073) 2008; 86 CIT0014 CIT0058 CIT0057 Tiong PLY (CIT0072) 2012; 19 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0063 CIT0062 CIT0021 CIT0065 CIT0023 DigitalGlobe (CIT0020) 2009 Hu H (CIT0035) 2008 CIT0069 CIT0024 CIT0068 CIT0027 Alvarez SA (CIT0006) 2003 CIT0026 CIT0029 CIT0028  | 
    
| References_xml | – ident: CIT0065 doi: 10.1007/s12544-015-0156-6 – ident: CIT0028 doi: 10.1080/01431161.2015.1060645 – start-page: 779 year: 2008 ident: CIT0035 publication-title: Intelligent info Hiding and Multimedia Signal Processing. IIHMSP'08 International Conference – ident: CIT0007 doi: 10.1080/01431161.2010.508799 – ident: CIT0026 doi: 10.1023/A:1012487302797 – ident: CIT0011 doi: 10.1080/10106049.2012.726278 – ident: CIT0058 doi: 10.3390/rs6098494 – ident: CIT0019 doi: 10.1016/0034-4257(91)90048-B – ident: CIT0039 doi: 10.1080/0143116031000115292 – volume: 19 start-page: 867 year: 2012 ident: CIT0072 publication-title: World Appl Sci J – volume-title: An investigation of the design and use of feed forward artificial neural networks in the classification of remotely sensed images [PhD thesis] year: 2001 ident: CIT0042 – ident: CIT0068 doi: 10.4236/ars.2013.24034 – ident: CIT0012 doi: 10.1016/j.apgeog.2010.01.009 – ident: CIT0031 doi: 10.1080/01431161.2013.879350 – ident: CIT0017 doi: 10.1080/0143116031000102539 – ident: CIT0018 doi: 10.1111/j.1365-2699.2009.02186.x – ident: CIT0034 doi: 10.1016/j.rse.2004.02.013 – ident: CIT0036 doi: 10.1080/10106049.2010.535616 – ident: CIT0050 – ident: CIT0016 doi: 10.1023/A:1010933404324 – ident: CIT0043 doi: 10.1080/01431160802639582 – ident: CIT0053 doi: 10.1016/j.patcog.2009.09.003 – ident: CIT0040 doi: 10.1080/03772063.2015.1086703 – ident: CIT0046 doi: 10.1016/j.proeps.2011.09.055 – volume: 2014 start-page: 1 year: 2014 ident: CIT0037 publication-title: Sci World J – ident: CIT0056 doi: 10.1080/01431160412331269698 – ident: CIT0005 doi: 10.4236/ars.2013.22022. – volume-title: ENVI user guide year: 2010 ident: CIT0022 – ident: CIT0014 doi: 10.1080/19479832.2014.926296 – ident: CIT0038 doi: 10.5194/isprsannals-II-4-35-2014 – ident: CIT0076 doi: 10.1080/01431160802558634 – year: 2009 ident: CIT0020 publication-title: White paper: the benefits of the 8 spectral bands of WorldView–2 – ident: CIT0047 – volume: 86 start-page: 59 year: 2008 ident: CIT0073 publication-title: Int Arch Photogram Remote Sens Spatial Inform Sci – ident: CIT0021 doi: 10.5194/isprsarchives-XXXIX-B7-191-2012 – ident: CIT0048 doi: 10.1080/01431161003743173 – ident: CIT0071 doi: 10.1080/01431160701241746 – volume: 4 start-page: 1557 year: 2012 ident: CIT0067 publication-title: Res J Appl Sci Eng Technol – ident: CIT0001 – volume: 2 start-page: 714 year: 2010 ident: CIT0059 publication-title: Int J Adv Network Appl – ident: CIT0063 doi: 10.1117/1.JRS.9.095079 – volume: 2 start-page: 1725 year: 2013 ident: CIT0003 publication-title: Int J Adv Res Comput Eng Technol – ident: CIT0030 doi: 10.1117/1.JRS.8.085091 – ident: CIT0024 doi: 10.1080/01431160903252327 – ident: CIT0002 doi: 10.1016/j.eswa.2014.03.019 – ident: CIT0029 doi: 10.1117/1.JRS.10.025001 – ident: CIT0070 doi: 10.1080/14498596.2010.487854 – ident: CIT0023 doi: 10.14358/PERS.70.5.627 – ident: CIT0052 doi: 10.1016/j.rse.2010.12.017 – ident: CIT0010 doi: 10.1080/01431160117759 – ident: CIT0004 doi: 10.1080/19479832.2013.824029 – ident: CIT0074 doi: 10.1016/j.rse.2011.02.030 – volume: 35 start-page: 720 year: 2004 ident: CIT0080 publication-title: Int Arch Photogram Remote Sens Spatial Inform Sci – ident: CIT0049 doi: 10.1080/01431160802508985 – ident: CIT0069 doi: 10.1016/j.eswa.2013.02.019 – ident: CIT0062 doi: 10.1093/bioinformatics/btm344 – volume-title: Proceedings of the Proceedings of the accuracy symposium year: 2010 ident: CIT0013 – ident: CIT0033 doi: 10.1364/AO.44.004327 – ident: CIT0078 doi: 10.5721/EuJRS – volume-title: Data mining: practical machine learning tools and techniques with Java implementations year: 1999 ident: CIT0075 – ident: CIT0027 doi: 10.1080/10106049.2012.760006 – volume-title: Chi-squared computation for association rules: preliminary results year: 2003 ident: CIT0006 – start-page: 69 year: 2001 ident: CIT0032 publication-title: Remote Sens Urban Areas – ident: CIT0051 – ident: CIT0057 doi: 10.1080/01431160500242515 – ident: CIT0015 doi: 10.1016/j.isprsjprs.2009.06.004  | 
    
| SSID | ssj0037863 | 
    
| Score | 2.2164536 | 
    
| Snippet | Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1389 | 
    
| SubjectTerms | bitumen chi-square color economic development feature selection image analysis Object-based image analysis (OBIA) remote sensing road condition roads support vector machines WorldView-2  | 
    
| Title | Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2 imagery | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/10106049.2016.1213888 https://www.proquest.com/docview/2045802970  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwELbKEIIvCAaI8SYj8S1KSe28fiwIGEgMCXVo4ktkx44SqUthTUDb7-AHc2fnrV2l8SJVUeXWsdt74ruz754j5EUgOMs0uCUB2AquH0vlJl4WwoOnRBZEWiSGge_jUXh47H84CU4mk1-jqKWmltPsYmdeyb9IFdpArpgl-xeS7W8KDfAe5AtXkDBc_0jGn1cCk9Lw1NlEFfcsm2hUfnr1fm6OBnJtyDudtSl5g1_siVvXTmP2CuCXnzvIXOyC991O2cbZfCn1T5c55anYzp5-p0ENnoHpWo43Ffsdm0IUNlBA_NDFqDW3qe2g7k5L52uzLESpSlhaCjXaTMd0liq3sd_zJazKF2K8PQEqD0M9Bmd2calSyGixxYP40LOUpVNt26IAo2E3V-hhB7Tpo67teovHrCPdDd5iuFMv2EBKHBDHw4i-EHk1eGxrCm5RbrefXCPXGcwEC4Jw76jT7zyKQ5u20c6-ywuLvZc7B9iweDb4cC_pf2PULO6Q2603QucWWnfJRFf75CZI1vKY75MbJkI4W98j3xFstAcbHcBG5TlFsFEAG23BRnuw0QFs1ICNItjoFtjoCGy0Bdt9cvz2zeL1odvW63Az7vPa1Uoy5UkmlMAyZQpeguWgE2QoeBB5TDIwJ5M4ygPB_FBnecCDRMkZ1zHPmOIPyF61qvRDQtGPltyPmNaZn0exyMEvnuXKlz7zgtg7IH73n6ZZS2aPNVWW6azlvO1EkaIo0lYUB2Tad_tm2Vyu6pCMBZbWBs65RXLKr-j7vJNuCms2HsSJSq-adYolIGKsGuc9-o_7Pya3hgfuCdmrzxr9FCzkWj4zgP0ND6q27w | 
    
| linkProvider | Taylor & Francis | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BESoXHgXUlpeRuGaV-JHHsUVUW2gXCbWoN8vPUkF3gc2qWn59Z5xk1YJQD5Ui5ZKxHMcznnE-fx_AO2UEdwHLEoW5QiZr67MmdyU6njdOVcE0iYHvcFKOj-XHE3Vy5SwMwSqpho4dUUSK1eTctBk9QOLwXhDnC50zKUriRxBYx92FewqTfVIxEPlkiMaiqssOZI_xhmyGUzz_a-ba-nSNvfSfaJ2WoL1H4IbOd8iT76NFa0fuz1-8jrd7u8fwsM9Q2U43pZ7AnTDdgPVeLP3bcgPuJ9Somz-FX19mxjOsqH0CfjGzovlkdsk-7-7vMOwGiyGxh7J50tyhB1fMsXNGwPtThg61ZESdnGH533sDS0Cfr2fhIuPs7JzINpbP4Hjvw9H7cdZrOGROSNFmwVvuc8uNNyRd5fEyPGKcsKURqsq55ZhiNHUVleGyDC4qoRpvCxFq4bgXz2FtOpuGTWBUW1khKx6Ck7GqTcRaqYheWslzVedbIIcvp11PcE46Gz900fOgDiOraWR1P7JbMFqZ_ewYPm4yaK5OC92mrZXY6aBocYPt22EOafRj-jljpmG2mGuSBahJSSzfvkX7b2B9fHR4oA_2J59ewANOOQhhb_hLWGt_L8IrzKBa-zq5yCUlMgzX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEbSXUkor-gCMxDWrxI88jn2tWqALQhRxs_xsq5bdQrKqtr--HidZURDqoVKkXDKW43jGM_Hn7wN4LxSjxoWyRIRcIeGltkmVmjw4nlVGFE5VkYHveJQfnvAPP0SPJqw7WCXW0L4lioixGp37yvoeERfuGVK-4DGTLEd6BBbKuMfwJMddMTzFkY76YMyKMm8x9iHcoE1_iOd_zdxZnu6Ql_4TrOMKNHwOuu97Czy5GEwbPTA3f9E6PujlVmC5y0_JTjuhXsAjN16FxU4q_Wy2Ck8jZtTUL-HX14myJNTTNsK-iJqTfBI9I593j3ZI6AXxLnKHkjoq7uCDc97YmiDs_pQEd5oRJE5OQvHf-QKJMJ_v5-46oeT8J1JtzNbgZHjwbe8w6RQcEsM4axJnNbWppsoqFK6y4VLUhyihc8VEkVJNQ4JRlYUXivLcGS-YqKzOmCuZoZatw8J4MnavgGBlpRkvqHOG-6JUPlRKmbdcc5qKMt0A3n84aTp6c1TZuJRZx4Laj6zEkZXdyG7AYG521fJ73GdQ_TkrZBN_rPhWBUWye2zf9VNIBi_GrRk1dpNpLVEUoEQdsXTzAe2_hWdf9ofy09Ho4xYsUUxAEHhDt2Gh-T11r0P61Og30UFuAcHtC3s | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+condition+assessment+by+OBIA+and+feature+selection+techniques+using+very+high-resolution+WorldView-2+imagery&rft.jtitle=Geocarto+international&rft.au=Shahi%2C+Kaveh&rft.au=Shafri%2C+Helmi+Zulhaidi+Mohd&rft.au=Hamedianfar%2C+Alireza&rft.date=2017-12-02&rft.pub=Taylor+%26+Francis&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=32&rft.issue=12&rft.spage=1389&rft.epage=1406&rft_id=info:doi/10.1080%2F10106049.2016.1213888&rft.externalDocID=1213888 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon |