Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2 imagery

Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView...

Full description

Saved in:
Bibliographic Details
Published inGeocarto international Vol. 32; no. 12; pp. 1389 - 1406
Main Authors Shahi, Kaveh, Shafri, Helmi Zulhaidi Mohd, Hamedianfar, Alireza
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.12.2017
Subjects
Online AccessGet full text
ISSN1010-6049
1752-0762
1752-0762
DOI10.1080/10106049.2016.1213888

Cover

Abstract Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView-2 (WV-2) satellite data. Different feature selection techniques, including support vector machine (SVM), random forest (RF) and chi-square (CHI) are evaluated to indicate the most effective algorithm to identify the best set of OBIA attributes (spatial, spectral, textural and colour). The chi-square algorithm outperformed SVM and RF techniques. The classification result based on CHI algorithm achieved an overall accuracy of 83.19% for the training image (first site). Furthermore, the proposed model was used to examine its performance in different areas; and it achieved accuracy levels of 83.44, 87.80 and 80.26% for the different selected areas. Therefore, the selected method can be potentially useful for detecting road conditions based on WV-2 images.
AbstractList Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView-2 (WV-2) satellite data. Different feature selection techniques, including support vector machine (SVM), random forest (RF) and chi-square (CHI) are evaluated to indicate the most effective algorithm to identify the best set of OBIA attributes (spatial, spectral, textural and colour). The chi-square algorithm outperformed SVM and RF techniques. The classification result based on CHI algorithm achieved an overall accuracy of 83.19% for the training image (first site). Furthermore, the proposed model was used to examine its performance in different areas; and it achieved accuracy levels of 83.44, 87.80 and 80.26% for the different selected areas. Therefore, the selected method can be potentially useful for detecting road conditions based on WV-2 images.
Author Shafri, Helmi Zulhaidi Mohd
Hamedianfar, Alireza
Shahi, Kaveh
Author_xml – sequence: 1
  givenname: Kaveh
  surname: Shahi
  fullname: Shahi, Kaveh
  organization: Faculty of Engineering, Department of Civil Engineering, Universiti Putra Malaysia (UPM)
– sequence: 2
  givenname: Helmi Zulhaidi Mohd
  surname: Shafri
  fullname: Shafri, Helmi Zulhaidi Mohd
  email: helmi@upm.edu.my, hzms04@gmail.com
  organization: Faculty of Engineering, Geospatial Information Science Research Center (GISRC), Universiti Putra Malaysia (UPM)
– sequence: 3
  givenname: Alireza
  surname: Hamedianfar
  fullname: Hamedianfar, Alireza
  organization: Young Researchers and Elite Club, Islamic Azad University
BookMark eNqFkE1LJDEQhoMo6Kg_QchxLz2bj-nuDF52dthVQRAWP46hOqmeifQkY5JW5t9vt6MXD7tQUHV43qLqmZBDHzwScsHZlDPFvnPGWcVm86lgvJpywaVS6oCc8LoUBasrcTjMA1OM0DGZpPTMmKxVJU_Iy58AlprgrcsueAopYUob9Jk2O3r382ZBwVvaIuQ-Ik3YoXkHM5q1dy89Jton51f0FeOOrt1qXURMoevfqacQO_vo8K0Q1G1gNTBn5KiFLuH5Rz8lD79_3S-vi9u7q5vl4rYwciZzgbYRljUCLNjKNnYoEK0o66YCWdZMNEJxMVd1W4KYVWjaUpZz23CJShph5Sn5tt-7jWE8M-uNSwa7DjyGPmnBZqViYl6zAS33qIkhpYit3sbh2rjTnOlRsf5UrEfF-kPxkLv8kjMuw_h4juC6_6Z_7NPOtyFu4G10pTPsuhDbCN64pOW_V_wF4XeY_w
CitedBy_id crossref_primary_10_3390_rs12071081
crossref_primary_10_1016_j_jag_2019_101912
crossref_primary_10_1061_JCCEE5_CPENG_5108
crossref_primary_10_3233_JIFS_191707
crossref_primary_10_1080_15230430_2024_2309686
crossref_primary_10_3390_rs13081523
crossref_primary_10_1080_01431161_2019_1594435
crossref_primary_10_3390_rs13245054
crossref_primary_10_32604_rig_2024_050723
crossref_primary_10_1016_j_rsase_2023_101031
crossref_primary_10_1002_cem_3387
crossref_primary_10_1080_10106049_2020_1737974
crossref_primary_10_3390_land12040763
crossref_primary_10_3390_rs10091413
crossref_primary_10_1016_j_ress_2021_108031
Cites_doi 10.1007/s12544-015-0156-6
10.1080/01431161.2015.1060645
10.1080/01431161.2010.508799
10.1023/A:1012487302797
10.1080/10106049.2012.726278
10.3390/rs6098494
10.1016/0034-4257(91)90048-B
10.1080/0143116031000115292
10.4236/ars.2013.24034
10.1016/j.apgeog.2010.01.009
10.1080/01431161.2013.879350
10.1080/0143116031000102539
10.1111/j.1365-2699.2009.02186.x
10.1016/j.rse.2004.02.013
10.1080/10106049.2010.535616
10.1023/A:1010933404324
10.1080/01431160802639582
10.1016/j.patcog.2009.09.003
10.1080/03772063.2015.1086703
10.1016/j.proeps.2011.09.055
10.1080/01431160412331269698
10.4236/ars.2013.22022.
10.1080/19479832.2014.926296
10.5194/isprsannals-II-4-35-2014
10.1080/01431160802558634
10.5194/isprsarchives-XXXIX-B7-191-2012
10.1080/01431161003743173
10.1080/01431160701241746
10.1117/1.JRS.9.095079
10.1117/1.JRS.8.085091
10.1080/01431160903252327
10.1016/j.eswa.2014.03.019
10.1117/1.JRS.10.025001
10.1080/14498596.2010.487854
10.14358/PERS.70.5.627
10.1016/j.rse.2010.12.017
10.1080/01431160117759
10.1080/19479832.2013.824029
10.1016/j.rse.2011.02.030
10.1080/01431160802508985
10.1016/j.eswa.2013.02.019
10.1093/bioinformatics/btm344
10.1364/AO.44.004327
10.5721/EuJRS
10.1080/10106049.2012.760006
10.1080/01431160500242515
10.1016/j.isprsjprs.2009.06.004
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1080/10106049.2016.1213888
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
EISSN 1752-0762
EndPage 1406
ExternalDocumentID 10_1080_10106049_2016_1213888
1213888
Genre Article
GrantInformation_xml – fundername: Fundamental Research Grant Scheme
  grantid: 5524613
GroupedDBID .7F
.QJ
0BK
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
~02
~S~
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c343t-edb2d0b2adad6dbddbda2f257b6a35702b2812987f5a246ecf5359db13e83c2d3
ISSN 1010-6049
1752-0762
IngestDate Fri Sep 05 17:23:43 EDT 2025
Wed Oct 01 02:39:02 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Mon Oct 20 23:46:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-edb2d0b2adad6dbddbda2f257b6a35702b2812987f5a246ecf5359db13e83c2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2045802970
PQPubID 24069
PageCount 18
ParticipantIDs crossref_citationtrail_10_1080_10106049_2016_1213888
proquest_miscellaneous_2045802970
informaworld_taylorfrancis_310_1080_10106049_2016_1213888
crossref_primary_10_1080_10106049_2016_1213888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-02
PublicationDateYYYYMMDD 2017-12-02
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-02
  day: 02
PublicationDecade 2010
PublicationTitle Geocarto international
PublicationYear 2017
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0071
CIT0030
CIT0074
CIT0076
CIT0031
CIT0034
CIT0078
CIT0033
ENVI-Zoom (CIT0022) 2010
CIT0070
Witten IH (CIT0075) 1999
Shafri HZM (CIT0067) 2012; 4
Kavzoglu T (CIT0042) 2001
CIT0036
CIT0038
CIT0039
CIT0040
CIT0043
CIT0001
Raghavendra B (CIT0059) 2010; 2
Zhang Q (CIT0080) 2004; 35
Huang M-L (CIT0037) 2014; 2014
CIT0047
CIT0002
CIT0046
Aggarwal M (CIT0003) 2013; 2
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0050
CIT0052
CIT0051
CIT0010
CIT0053
CIT0012
Bhatti A (CIT0013) 2010
CIT0056
CIT0011
Heiden U (CIT0032) 2001
Wang Y (CIT0073) 2008; 86
CIT0014
CIT0058
CIT0057
Tiong PLY (CIT0072) 2012; 19
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0063
CIT0062
CIT0021
CIT0065
CIT0023
DigitalGlobe (CIT0020) 2009
Hu H (CIT0035) 2008
CIT0069
CIT0024
CIT0068
CIT0027
Alvarez SA (CIT0006) 2003
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0065
  doi: 10.1007/s12544-015-0156-6
– ident: CIT0028
  doi: 10.1080/01431161.2015.1060645
– start-page: 779
  year: 2008
  ident: CIT0035
  publication-title: Intelligent info Hiding and Multimedia Signal Processing. IIHMSP'08 International Conference
– ident: CIT0007
  doi: 10.1080/01431161.2010.508799
– ident: CIT0026
  doi: 10.1023/A:1012487302797
– ident: CIT0011
  doi: 10.1080/10106049.2012.726278
– ident: CIT0058
  doi: 10.3390/rs6098494
– ident: CIT0019
  doi: 10.1016/0034-4257(91)90048-B
– ident: CIT0039
  doi: 10.1080/0143116031000115292
– volume: 19
  start-page: 867
  year: 2012
  ident: CIT0072
  publication-title: World Appl Sci J
– volume-title: An investigation of the design and use of feed forward artificial neural networks in the classification of remotely sensed images [PhD thesis]
  year: 2001
  ident: CIT0042
– ident: CIT0068
  doi: 10.4236/ars.2013.24034
– ident: CIT0012
  doi: 10.1016/j.apgeog.2010.01.009
– ident: CIT0031
  doi: 10.1080/01431161.2013.879350
– ident: CIT0017
  doi: 10.1080/0143116031000102539
– ident: CIT0018
  doi: 10.1111/j.1365-2699.2009.02186.x
– ident: CIT0034
  doi: 10.1016/j.rse.2004.02.013
– ident: CIT0036
  doi: 10.1080/10106049.2010.535616
– ident: CIT0050
– ident: CIT0016
  doi: 10.1023/A:1010933404324
– ident: CIT0043
  doi: 10.1080/01431160802639582
– ident: CIT0053
  doi: 10.1016/j.patcog.2009.09.003
– ident: CIT0040
  doi: 10.1080/03772063.2015.1086703
– ident: CIT0046
  doi: 10.1016/j.proeps.2011.09.055
– volume: 2014
  start-page: 1
  year: 2014
  ident: CIT0037
  publication-title: Sci World J
– ident: CIT0056
  doi: 10.1080/01431160412331269698
– ident: CIT0005
  doi: 10.4236/ars.2013.22022.
– volume-title: ENVI user guide
  year: 2010
  ident: CIT0022
– ident: CIT0014
  doi: 10.1080/19479832.2014.926296
– ident: CIT0038
  doi: 10.5194/isprsannals-II-4-35-2014
– ident: CIT0076
  doi: 10.1080/01431160802558634
– year: 2009
  ident: CIT0020
  publication-title: White paper: the benefits of the 8 spectral bands of WorldView–2
– ident: CIT0047
– volume: 86
  start-page: 59
  year: 2008
  ident: CIT0073
  publication-title: Int Arch Photogram Remote Sens Spatial Inform Sci
– ident: CIT0021
  doi: 10.5194/isprsarchives-XXXIX-B7-191-2012
– ident: CIT0048
  doi: 10.1080/01431161003743173
– ident: CIT0071
  doi: 10.1080/01431160701241746
– volume: 4
  start-page: 1557
  year: 2012
  ident: CIT0067
  publication-title: Res J Appl Sci Eng Technol
– ident: CIT0001
– volume: 2
  start-page: 714
  year: 2010
  ident: CIT0059
  publication-title: Int J Adv Network Appl
– ident: CIT0063
  doi: 10.1117/1.JRS.9.095079
– volume: 2
  start-page: 1725
  year: 2013
  ident: CIT0003
  publication-title: Int J Adv Res Comput Eng Technol
– ident: CIT0030
  doi: 10.1117/1.JRS.8.085091
– ident: CIT0024
  doi: 10.1080/01431160903252327
– ident: CIT0002
  doi: 10.1016/j.eswa.2014.03.019
– ident: CIT0029
  doi: 10.1117/1.JRS.10.025001
– ident: CIT0070
  doi: 10.1080/14498596.2010.487854
– ident: CIT0023
  doi: 10.14358/PERS.70.5.627
– ident: CIT0052
  doi: 10.1016/j.rse.2010.12.017
– ident: CIT0010
  doi: 10.1080/01431160117759
– ident: CIT0004
  doi: 10.1080/19479832.2013.824029
– ident: CIT0074
  doi: 10.1016/j.rse.2011.02.030
– volume: 35
  start-page: 720
  year: 2004
  ident: CIT0080
  publication-title: Int Arch Photogram Remote Sens Spatial Inform Sci
– ident: CIT0049
  doi: 10.1080/01431160802508985
– ident: CIT0069
  doi: 10.1016/j.eswa.2013.02.019
– ident: CIT0062
  doi: 10.1093/bioinformatics/btm344
– volume-title: Proceedings of the Proceedings of the accuracy symposium
  year: 2010
  ident: CIT0013
– ident: CIT0033
  doi: 10.1364/AO.44.004327
– ident: CIT0078
  doi: 10.5721/EuJRS
– volume-title: Data mining: practical machine learning tools and techniques with Java implementations
  year: 1999
  ident: CIT0075
– ident: CIT0027
  doi: 10.1080/10106049.2012.760006
– volume-title: Chi-squared computation for association rules: preliminary results
  year: 2003
  ident: CIT0006
– start-page: 69
  year: 2001
  ident: CIT0032
  publication-title: Remote Sens Urban Areas
– ident: CIT0051
– ident: CIT0057
  doi: 10.1080/01431160500242515
– ident: CIT0015
  doi: 10.1016/j.isprsjprs.2009.06.004
SSID ssj0037863
Score 2.2164536
Snippet Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1389
SubjectTerms bitumen
chi-square
color
economic development
feature selection
image analysis
Object-based image analysis (OBIA)
remote sensing
road condition
roads
support vector machines
WorldView-2
Title Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2 imagery
URI https://www.tandfonline.com/doi/abs/10.1080/10106049.2016.1213888
https://www.proquest.com/docview/2045802970
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwELbKEIIvCAaI8SYj8S1KSe28fiwIGEgMCXVo4ktkx44SqUthTUDb7-AHc2fnrV2l8SJVUeXWsdt74ruz754j5EUgOMs0uCUB2AquH0vlJl4WwoOnRBZEWiSGge_jUXh47H84CU4mk1-jqKWmltPsYmdeyb9IFdpArpgl-xeS7W8KDfAe5AtXkDBc_0jGn1cCk9Lw1NlEFfcsm2hUfnr1fm6OBnJtyDudtSl5g1_siVvXTmP2CuCXnzvIXOyC991O2cbZfCn1T5c55anYzp5-p0ENnoHpWo43Ffsdm0IUNlBA_NDFqDW3qe2g7k5L52uzLESpSlhaCjXaTMd0liq3sd_zJazKF2K8PQEqD0M9Bmd2calSyGixxYP40LOUpVNt26IAo2E3V-hhB7Tpo67teovHrCPdDd5iuFMv2EBKHBDHw4i-EHk1eGxrCm5RbrefXCPXGcwEC4Jw76jT7zyKQ5u20c6-ywuLvZc7B9iweDb4cC_pf2PULO6Q2603QucWWnfJRFf75CZI1vKY75MbJkI4W98j3xFstAcbHcBG5TlFsFEAG23BRnuw0QFs1ICNItjoFtjoCGy0Bdt9cvz2zeL1odvW63Az7vPa1Uoy5UkmlMAyZQpeguWgE2QoeBB5TDIwJ5M4ygPB_FBnecCDRMkZ1zHPmOIPyF61qvRDQtGPltyPmNaZn0exyMEvnuXKlz7zgtg7IH73n6ZZS2aPNVWW6azlvO1EkaIo0lYUB2Tad_tm2Vyu6pCMBZbWBs65RXLKr-j7vJNuCms2HsSJSq-adYolIGKsGuc9-o_7Pya3hgfuCdmrzxr9FCzkWj4zgP0ND6q27w
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BESoXHgXUlpeRuGaV-JHHsUVUW2gXCbWoN8vPUkF3gc2qWn59Z5xk1YJQD5Ui5ZKxHMcznnE-fx_AO2UEdwHLEoW5QiZr67MmdyU6njdOVcE0iYHvcFKOj-XHE3Vy5SwMwSqpho4dUUSK1eTctBk9QOLwXhDnC50zKUriRxBYx92FewqTfVIxEPlkiMaiqssOZI_xhmyGUzz_a-ba-nSNvfSfaJ2WoL1H4IbOd8iT76NFa0fuz1-8jrd7u8fwsM9Q2U43pZ7AnTDdgPVeLP3bcgPuJ9Somz-FX19mxjOsqH0CfjGzovlkdsk-7-7vMOwGiyGxh7J50tyhB1fMsXNGwPtThg61ZESdnGH533sDS0Cfr2fhIuPs7JzINpbP4Hjvw9H7cdZrOGROSNFmwVvuc8uNNyRd5fEyPGKcsKURqsq55ZhiNHUVleGyDC4qoRpvCxFq4bgXz2FtOpuGTWBUW1khKx6Ck7GqTcRaqYheWslzVedbIIcvp11PcE46Gz900fOgDiOraWR1P7JbMFqZ_ewYPm4yaK5OC92mrZXY6aBocYPt22EOafRj-jljpmG2mGuSBahJSSzfvkX7b2B9fHR4oA_2J59ewANOOQhhb_hLWGt_L8IrzKBa-zq5yCUlMgzX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEbSXUkor-gCMxDWrxI88jn2tWqALQhRxs_xsq5bdQrKqtr--HidZURDqoVKkXDKW43jGM_Hn7wN4LxSjxoWyRIRcIeGltkmVmjw4nlVGFE5VkYHveJQfnvAPP0SPJqw7WCXW0L4lioixGp37yvoeERfuGVK-4DGTLEd6BBbKuMfwJMddMTzFkY76YMyKMm8x9iHcoE1_iOd_zdxZnu6Ql_4TrOMKNHwOuu97Czy5GEwbPTA3f9E6PujlVmC5y0_JTjuhXsAjN16FxU4q_Wy2Ck8jZtTUL-HX14myJNTTNsK-iJqTfBI9I593j3ZI6AXxLnKHkjoq7uCDc97YmiDs_pQEd5oRJE5OQvHf-QKJMJ_v5-46oeT8J1JtzNbgZHjwbe8w6RQcEsM4axJnNbWppsoqFK6y4VLUhyihc8VEkVJNQ4JRlYUXivLcGS-YqKzOmCuZoZatw8J4MnavgGBlpRkvqHOG-6JUPlRKmbdcc5qKMt0A3n84aTp6c1TZuJRZx4Laj6zEkZXdyG7AYG521fJ73GdQ_TkrZBN_rPhWBUWye2zf9VNIBi_GrRk1dpNpLVEUoEQdsXTzAe2_hWdf9ofy09Ho4xYsUUxAEHhDt2Gh-T11r0P61Og30UFuAcHtC3s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+condition+assessment+by+OBIA+and+feature+selection+techniques+using+very+high-resolution+WorldView-2+imagery&rft.jtitle=Geocarto+international&rft.au=Shahi%2C+Kaveh&rft.au=Shafri%2C+Helmi+Zulhaidi+Mohd&rft.au=Hamedianfar%2C+Alireza&rft.date=2017-12-02&rft.pub=Taylor+%26+Francis&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=32&rft.issue=12&rft.spage=1389&rft.epage=1406&rft_id=info:doi/10.1080%2F10106049.2016.1213888&rft.externalDocID=1213888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon