Control-based algorithms for high dimensional online learning
In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems, respectively. The proble...
Saved in:
| Published in | Journal of the Franklin Institute Vol. 357; no. 3; pp. 1909 - 1942 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elmsford
Elsevier Ltd
01.02.2020
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-0032 1879-2693 0016-0032 |
| DOI | 10.1016/j.jfranklin.2019.12.039 |
Cover
| Abstract | In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems, respectively. The problems are formulated as feedback control problems for some low dimensional systems. The novel learning algorithms are then developed via the control problems. Via an efficient polar decomposition, we derive the explicit solutions of the control problems, substantially reducing the corresponding computational complexity, especially for high dimensional large-scale data streams. Comparing with conventional methods, the new algorithm can achieve more robust and accurate performance with faster convergence. This paper demonstrates that optimal control can be an effective approach for developing high dimensional learning algorithms. We have also for the first time proposed a control-based robust algorithm for classification problems. Numerical results support our theory and illustrate the efficiency of our algorithm. |
|---|---|
| AbstractList | In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems, respectively. The problems are formulated as feedback control problems for some low dimensional systems. The novel learning algorithms are then developed via the control problems. Via an efficient polar decomposition, we derive the explicit solutions of the control problems, substantially reducing the corresponding computational complexity, especially for high dimensional large-scale data streams. Comparing with conventional methods, the new algorithm can achieve more robust and accurate performance with faster convergence. This paper demonstrates that optimal control can be an effective approach for developing high dimensional learning algorithms. We have also for the first time proposed a control-based robust algorithm for classification problems. Numerical results support our theory and illustrate the efficiency of our algorithm. |
| Author | Chu, Eric King-wah Ning, Hanwen Feng, Ting-Ting Tian, Tianhai Zhang, Jiaming |
| Author_xml | – sequence: 1 givenname: Hanwen orcidid: 0000-0003-4550-2285 surname: Ning fullname: Ning, Hanwen email: ninghanwen@gmail.com organization: Department of Statistics, Zhongnan University of Economics and Law, Wuhan 430073, PR China – sequence: 2 givenname: Jiaming surname: Zhang fullname: Zhang, Jiaming email: zjming1994@gmail.com organization: Department of Statistics, Zhongnan University of Economics and Law, Wuhan 430073, PR China – sequence: 3 givenname: Ting-Ting surname: Feng fullname: Feng, Ting-Ting email: tofengtingting@163.com organization: Department of Mathematics, School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, PR China – sequence: 4 givenname: Eric King-wah surname: Chu fullname: Chu, Eric King-wah email: eric.chu@monash.edu organization: School of Mathematical Science, Monash University, Melbourne, VIC 3800, Australia – sequence: 5 givenname: Tianhai surname: Tian fullname: Tian, Tianhai email: tianhai.tian@monash.edu organization: School of Mathematical Science, Monash University, Melbourne, VIC 3800, Australia |
| BookMark | eNqNkE1LAzEQhoNUsK3-Bhc875pJ9vPQQyl-QcGLnkM2mW2zbpOabAX_vSkVD170NDPwPjPDMyMT6ywScg00AwrlbZ_1nZf2bTA2YxSaDFhGeXNGplBXTcrKhk_IlMZoSilnF2QWQh_HCiidksXK2dG7IW1lQJ3IYeO8Gbe7kHTOJ1uz2Sba7NAG46wcEmfjGUwGlN4au7kk550cAl591zl5vb97WT2m6-eHp9VynSqe8zHVSre1KlgLKIEz2QLXKle8bDXrirqEhndQMeRUtYVC6LCsCqnz2Bda5i2fk5vT3r137wcMo-jdwceHgmC8aihlVQ0xVZ1SyrsQPHZi781O-k8BVBxdiV78uBJHVwKYiK4iufhFKjPK0RzdSDP8g1-eeIwSPgx6EZRBq1Abj2oU2pk_d3wBytyOrA |
| CitedBy_id | crossref_primary_10_1007_s00521_022_07283_5 crossref_primary_10_1016_j_neucom_2021_04_112 crossref_primary_10_1109_TNNLS_2023_3234427 crossref_primary_10_3390_s24155033 |
| Cites_doi | 10.1016/j.neunet.2012.03.003 10.1016/j.arcontrol.2009.12.001 10.1109/TNN.2006.883722 10.1073/pnas.1610618114 10.1038/s41467-017-00148-9 10.1016/j.neunet.2011.03.015 10.1109/TIE.2012.2194973 10.1109/TSP.2004.830991 10.1016/j.ins.2012.02.052 10.1023/A:1018628609742 10.1016/j.knosys.2017.09.006 10.1016/j.automatica.2014.01.001 10.32614/CRAN.package.higrad 10.1109/TSMCB.2011.2168604 10.1561/2000000039 |
| ContentType | Journal Article |
| Copyright | 2020 The Franklin Institute Copyright Elsevier Science Ltd. Feb 2020 |
| Copyright_xml | – notice: 2020 The Franklin Institute – notice: Copyright Elsevier Science Ltd. Feb 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1016/j.jfranklin.2019.12.039 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2693 0016-0032 |
| EndPage | 1942 |
| ExternalDocumentID | 10_1016_j_jfranklin_2019_12_039 S0016003219309524 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO ADXHL AEIPS AFJKZ AGQPQ AHPAA AIIUN ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AGCQF FR3 KR7 |
| ID | FETCH-LOGICAL-c343t-dcdb8c52b1ea132ab13dc4c36bd2f586193f172e30cb5ce1fe675ad45ce5da4b3 |
| IEDL.DBID | .~1 |
| ISSN | 0016-0032 |
| IngestDate | Sun Sep 07 03:33:34 EDT 2025 Thu Apr 24 22:59:56 EDT 2025 Wed Oct 01 05:22:40 EDT 2025 Fri Feb 23 02:48:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-dcdb8c52b1ea132ab13dc4c36bd2f586193f172e30cb5ce1fe675ad45ce5da4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4550-2285 |
| PQID | 2379002781 |
| PQPubID | 2045917 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2379002781 crossref_primary_10_1016_j_jfranklin_2019_12_039 crossref_citationtrail_10_1016_j_jfranklin_2019_12_039 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2019_12_039 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Elmsford |
| PublicationPlace_xml | – name: Elmsford |
| PublicationTitle | Journal of the Franklin Institute |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Devi, Sabrigiriraj (bib0027) 2018 F. Bagge Carlson, Machine learning and system identification for estimation in physical systems, arXiv Collobert, Bengio (bib0048) 2001; 1 Shubin (bib0021) 2017; 114 Golub, Van Loan (bib0024) 2012; 3 Zhou, Hu, Li, Wu (bib0015) 2017; 136 Deng, Yu (bib0039) 2014; 7 Goodfellow, Bengio, Courville (bib0038) 2016 Ljung (bib0044) 2010; 34 Dogan, Glasmachers, Igel (bib0030) 2016; 17 Zhao, Sun, Du, Zhang, Li (bib0037) 2012; 201 Kivinen, Smola, Williamson (bib0005) 2004; 52 Ning, Qing, Tian, Jing (bib0008) 2018 Berk (bib0012) 2008; 14 Montieri, Ciuonzo, Bovenzi, Persico, Pescapé (bib0032) 2019 Camacho, Alba (bib0018) 2013 Grimaudo, Mellia, Baralis (bib0033) 2012 Söderström, Stoica (bib0042) 1988 Anderson (bib0003) 2008 Aceto, Ciuonzo, Montieri, Persico, Pescapé (bib0014) 2019 (2019). Hespanha (bib0023) 2018 Lu, Sahoo, Zhao, Hoi (bib0025) 2018; 9 Huang, Zhou, Ding, Zhang (bib0029) 2012; 42 Bühlmann, Van De Geer (bib0013) 2011 Lewis, Vrabie, Syrmos (bib0016) 2012 Mohri, Rostamizadeh, Talwalkar (bib0006) 2018 W. Su, Y. Zhu, Statistical inference for online learning and stochastic approximation via hierarchical incremental gradient descent, arXiv Ljung (bib0046) 1998 Wooldridge (bib0043) 2016 Liu, Principe, Haykin (bib0034) 2011 S. Ruder, An overview of gradient descent optimization algorithms, arXiv Jing (bib0009) 2011; 24 Boyd, El Ghaoui, Feron, Balakrishnan (bib0017) 1994 Duchi, Hazan, Singer (bib0040) 2011; 12 Jing (bib0010) 2012; 31 S. C. H. Hoi, D. Sahoo, J. Lu, P. Zhao, Online learning: A comprehensive survey, arXiv Fan, Gong, Li, Sun (bib0019) 2018 Peixoto, Rosvall (bib0022) 2017; 8 Crammer, Dekel, Keshet, Shalev-Shwartz, Singer (bib0007) 2006; 7 Kivinen, Smola, Williamson (bib0035) 2004; 52 (2018). (2016). Lee, Huang (bib0036) 2007; 18 Jing, Cheng (bib0011) 2013; 60 Suykens, Vandewalle (bib0026) 1999; 9 Shalev-Shwartz, Ben-David (bib0004) 2014 Pillonetto, Dinuzzo, Chen, De Nicolao, Ljung (bib0047) 2014; 50 Lu, Hoi, Wang, Zhao, Liu (bib0002) 2016; 17 Devi (10.1016/j.jfranklin.2019.12.039_bib0027) 2018 Shubin (10.1016/j.jfranklin.2019.12.039_bib0021) 2017; 114 Lee (10.1016/j.jfranklin.2019.12.039_bib0036) 2007; 18 Söderström (10.1016/j.jfranklin.2019.12.039_bib0042) 1988 Camacho (10.1016/j.jfranklin.2019.12.039_bib0018) 2013 Bühlmann (10.1016/j.jfranklin.2019.12.039_bib0013) 2011 Dogan (10.1016/j.jfranklin.2019.12.039_bib0030) 2016; 17 Montieri (10.1016/j.jfranklin.2019.12.039_bib0032) 2019 Jing (10.1016/j.jfranklin.2019.12.039_bib0010) 2012; 31 Suykens (10.1016/j.jfranklin.2019.12.039_bib0026) 1999; 9 Lewis (10.1016/j.jfranklin.2019.12.039_bib0016) 2012 Kivinen (10.1016/j.jfranklin.2019.12.039_bib0005) 2004; 52 Boyd (10.1016/j.jfranklin.2019.12.039_sbref0016) 1994 Peixoto (10.1016/j.jfranklin.2019.12.039_bib0022) 2017; 8 Liu (10.1016/j.jfranklin.2019.12.039_sbref0030) 2011 Deng (10.1016/j.jfranklin.2019.12.039_bib0039) 2014; 7 Duchi (10.1016/j.jfranklin.2019.12.039_bib0040) 2011; 12 Anderson (10.1016/j.jfranklin.2019.12.039_bib0003) 2008 Fan (10.1016/j.jfranklin.2019.12.039_bib0019) 2018 Kivinen (10.1016/j.jfranklin.2019.12.039_bib0035) 2004; 52 Jing (10.1016/j.jfranklin.2019.12.039_bib0009) 2011; 24 Berk (10.1016/j.jfranklin.2019.12.039_bib0012) 2008; 14 Mohri (10.1016/j.jfranklin.2019.12.039_bib0006) 2018 Golub (10.1016/j.jfranklin.2019.12.039_bib0024) 2012; 3 Pillonetto (10.1016/j.jfranklin.2019.12.039_bib0047) 2014; 50 Aceto (10.1016/j.jfranklin.2019.12.039_bib0014) 2019 Jing (10.1016/j.jfranklin.2019.12.039_bib0011) 2013; 60 Crammer (10.1016/j.jfranklin.2019.12.039_bib0007) 2006; 7 Ljung (10.1016/j.jfranklin.2019.12.039_bib0044) 2010; 34 Ljung (10.1016/j.jfranklin.2019.12.039_bib0046) 1998 Lu (10.1016/j.jfranklin.2019.12.039_bib0025) 2018; 9 Wooldridge (10.1016/j.jfranklin.2019.12.039_bib0043) 2016 Huang (10.1016/j.jfranklin.2019.12.039_bib0029) 2012; 42 Zhao (10.1016/j.jfranklin.2019.12.039_bib0037) 2012; 201 10.1016/j.jfranklin.2019.12.039_bib0020 10.1016/j.jfranklin.2019.12.039_bib0041 Collobert (10.1016/j.jfranklin.2019.12.039_bib0048) 2001; 1 Goodfellow (10.1016/j.jfranklin.2019.12.039_bib0038) 2016 Ning (10.1016/j.jfranklin.2019.12.039_bib0008) 2018 Shalev-Shwartz (10.1016/j.jfranklin.2019.12.039_bib0004) 2014 Zhou (10.1016/j.jfranklin.2019.12.039_bib0015) 2017; 136 Grimaudo (10.1016/j.jfranklin.2019.12.039_bib0033) 2012 10.1016/j.jfranklin.2019.12.039_bib0001 Lu (10.1016/j.jfranklin.2019.12.039_bib0002) 2016; 17 Hespanha (10.1016/j.jfranklin.2019.12.039_bib0023) 2018 10.1016/j.jfranklin.2019.12.039_bib0045 |
| References_xml | – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: bib0029 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – volume: 24 start-page: 759 year: 2011 end-page: 766 ident: bib0009 article-title: An h-infinity control approach to robust learning of feedforward neural networks publication-title: Neural Netw. – volume: 8 start-page: 582 year: 2017 ident: bib0022 article-title: Modelling sequences and temporal networks with dynamic community structures publication-title: Nat. Commun. – year: 2011 ident: bib0034 article-title: Kernel Adaptive Filtering: A Comprehensive Introduction – year: 1988 ident: bib0042 article-title: System Identification – year: 2011 ident: bib0013 article-title: Statistics for High-dimensional Data: Methods, Theory and Applications – year: 1994 ident: bib0017 article-title: Linear Matrix Inequalities in system and Control Theory – reference: S. Ruder, An overview of gradient descent optimization algorithms, arXiv: – year: 2016 ident: bib0038 article-title: Deep Learning – reference: W. Su, Y. Zhu, Statistical inference for online learning and stochastic approximation via hierarchical incremental gradient descent, arXiv: – year: 2008 ident: bib0003 article-title: The Theory and Practice of Online Learning – volume: 136 start-page: 187 year: 2017 end-page: 199 ident: bib0015 article-title: Online feature selection for high-dimensional class-imbalanced data publication-title: Knowl. Based Syst. – volume: 52 start-page: 2165 year: 2004 end-page: 2176 ident: bib0035 article-title: Online learning with kernels publication-title: IEEE Trans. Signal Process. – reference: (2018). – volume: 7 start-page: 551 year: 2006 end-page: 585 ident: bib0007 article-title: Online passive-aggressive algorithms publication-title: J. Mach. Learn. Res. – start-page: 121 year: 2019 end-page: 128 ident: bib0014 article-title: Know your big data trade-offs when classifying encrypted mobile traffic with deep learning publication-title: Proceedings of the 2019 Network Traffic Measurement and Analysis Conference (TMA) – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: bib0040 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 1 year: 2007 end-page: 13 ident: bib0036 article-title: Reduced support vector machines: A statistical theory publication-title: IEEE Trans. Neural Netw. – year: 2018 ident: bib0006 article-title: Foundations of Machine Learning – reference: F. Bagge Carlson, Machine learning and system identification for estimation in physical systems, arXiv: – start-page: 1 year: 2018 end-page: 9 ident: bib0027 article-title: Feature selection, online feature selection techniques for big data classification:-a review publication-title: Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) – year: 2014 ident: bib0004 article-title: Understanding Machine learning: From Theory to Algorithms – start-page: 463 year: 2012 end-page: 468 ident: bib0033 article-title: Hierarchical learning for fine grained internet traffic classification publication-title: Proceedings of the 2012 Eighth International Wireless Communications and Mobile Computing Conference (IWCMC) – reference: (2016). – volume: 50 start-page: 657 year: 2014 end-page: 682 ident: bib0047 article-title: Kernel methods in system identification, machine learning and function estimation: A survey publication-title: Automatica – year: 2019 ident: bib0032 article-title: A dive into the dark web: Hierarchical traffic classification of anonymity tools publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 17 start-page: 1613 year: 2016 end-page: 1655 ident: bib0002 article-title: Large scale online kernel learning publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 197 year: 2014 end-page: 387 ident: bib0039 article-title: Deep learning: methods and applications publication-title: Found. Trends Signal Process. – reference: (2019). – volume: 114 start-page: 5782 year: 2017 end-page: 5783 ident: bib0021 article-title: Gene regulatory networks and network models in development and evolution publication-title: Proc. Natl. Acad. Sci. – volume: 17 start-page: 1 year: 2016 end-page: 32 ident: bib0030 article-title: A unified view on multi-class support vector classification publication-title: J. Mach. Learn. Res. – volume: 201 start-page: 37 year: 2012 end-page: 52 ident: bib0037 article-title: Online independent reduced least squares support vector regression publication-title: Inf. Sci. – year: 1998 ident: bib0046 article-title: System Identification: Theory for the User – volume: 1 start-page: 143 year: 2001 end-page: 160 ident: bib0048 article-title: Svmtorch: Support vector machines for large-scale regression problems publication-title: J. Mach. Learn. Res. – start-page: 1017 year: 2018 end-page: 1026 ident: bib0019 article-title: Statistical sparse online regression: A diffusion approximation perspective publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics – start-page: 1 year: 2018 end-page: 16 ident: bib0008 article-title: Online identification of nonlinear stochastic spatiotemporal system with multiplicative noise by robust optimal control-based kernel learning method publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2013 ident: bib0018 article-title: Model Predictive Control – volume: 52 start-page: 2165 year: 2004 end-page: 2176 ident: bib0005 article-title: Online learning with kernels publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 45 year: 2018 ident: bib0025 article-title: Sparse passive-aggressive learning for bounded online kernel methods publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib0026 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 60 start-page: 2273 year: 2013 end-page: 2283 ident: bib0011 article-title: An optimal PID control algorithm for training feedforward neural networks publication-title: IEEE Trans. Indust. Electron. – volume: 31 start-page: 33 year: 2012 end-page: 45 ident: bib0010 article-title: Robust adaptive learning of feedforward neural networks via LMI optimizations publication-title: Neural Netw. – volume: 14 year: 2008 ident: bib0012 article-title: Statistical Learning from a Regression Perspective – volume: 34 start-page: 1 year: 2010 end-page: 12 ident: bib0044 article-title: Perspectives on system identification publication-title: Ann. Rev. Control – year: 2018 ident: bib0023 article-title: Linear Systems Theory – year: 2012 ident: bib0016 article-title: Optimal Control – reference: S. C. H. Hoi, D. Sahoo, J. Lu, P. Zhao, Online learning: A comprehensive survey, arXiv: – year: 2016 ident: bib0043 article-title: Introductory Econometrics: A Modern Approach – volume: 3 year: 2012 ident: bib0024 article-title: Matrix Computations – volume: 31 start-page: 33 year: 2012 ident: 10.1016/j.jfranklin.2019.12.039_bib0010 article-title: Robust adaptive learning of feedforward neural networks via LMI optimizations publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.03.003 – year: 2012 ident: 10.1016/j.jfranklin.2019.12.039_bib0016 – volume: 34 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.jfranklin.2019.12.039_bib0044 article-title: Perspectives on system identification publication-title: Ann. Rev. Control doi: 10.1016/j.arcontrol.2009.12.001 – volume: 1 start-page: 143 issue: Feb year: 2001 ident: 10.1016/j.jfranklin.2019.12.039_bib0048 article-title: Svmtorch: Support vector machines for large-scale regression problems publication-title: J. Mach. Learn. Res. – start-page: 1017 year: 2018 ident: 10.1016/j.jfranklin.2019.12.039_bib0019 article-title: Statistical sparse online regression: A diffusion approximation perspective – ident: 10.1016/j.jfranklin.2019.12.039_bib0041 – year: 2018 ident: 10.1016/j.jfranklin.2019.12.039_bib0006 – volume: 18 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.jfranklin.2019.12.039_bib0036 article-title: Reduced support vector machines: A statistical theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.883722 – start-page: 121 year: 2019 ident: 10.1016/j.jfranklin.2019.12.039_bib0014 article-title: Know your big data trade-offs when classifying encrypted mobile traffic with deep learning – volume: 3 year: 2012 ident: 10.1016/j.jfranklin.2019.12.039_bib0024 – year: 2008 ident: 10.1016/j.jfranklin.2019.12.039_bib0003 – volume: 114 start-page: 5782 issue: 23 year: 2017 ident: 10.1016/j.jfranklin.2019.12.039_bib0021 article-title: Gene regulatory networks and network models in development and evolution publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1610618114 – start-page: 463 year: 2012 ident: 10.1016/j.jfranklin.2019.12.039_bib0033 article-title: Hierarchical learning for fine grained internet traffic classification – volume: 8 start-page: 582 issue: 1 year: 2017 ident: 10.1016/j.jfranklin.2019.12.039_bib0022 article-title: Modelling sequences and temporal networks with dynamic community structures publication-title: Nat. Commun. doi: 10.1038/s41467-017-00148-9 – ident: 10.1016/j.jfranklin.2019.12.039_bib0045 – year: 2016 ident: 10.1016/j.jfranklin.2019.12.039_bib0038 – volume: 24 start-page: 759 issue: 7 year: 2011 ident: 10.1016/j.jfranklin.2019.12.039_bib0009 article-title: An h-infinity control approach to robust learning of feedforward neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2011.03.015 – volume: 17 start-page: 1 issue: 45 year: 2016 ident: 10.1016/j.jfranklin.2019.12.039_bib0030 article-title: A unified view on multi-class support vector classification publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 2273 issue: 6 year: 2013 ident: 10.1016/j.jfranklin.2019.12.039_bib0011 article-title: An optimal PID control algorithm for training feedforward neural networks publication-title: IEEE Trans. Indust. Electron. doi: 10.1109/TIE.2012.2194973 – year: 2011 ident: 10.1016/j.jfranklin.2019.12.039_bib0013 – volume: 52 start-page: 2165 issue: 8 year: 2004 ident: 10.1016/j.jfranklin.2019.12.039_bib0005 article-title: Online learning with kernels publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.830991 – volume: 14 year: 2008 ident: 10.1016/j.jfranklin.2019.12.039_bib0012 – volume: 9 start-page: 45 issue: 4 year: 2018 ident: 10.1016/j.jfranklin.2019.12.039_bib0025 article-title: Sparse passive-aggressive learning for bounded online kernel methods publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.jfranklin.2019.12.039_bib0008 article-title: Online identification of nonlinear stochastic spatiotemporal system with multiplicative noise by robust optimal control-based kernel learning method publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 201 start-page: 37 year: 2012 ident: 10.1016/j.jfranklin.2019.12.039_bib0037 article-title: Online independent reduced least squares support vector regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.02.052 – year: 1988 ident: 10.1016/j.jfranklin.2019.12.039_bib0042 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.jfranklin.2019.12.039_bib0026 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 52 start-page: 2165 issue: 8 year: 2004 ident: 10.1016/j.jfranklin.2019.12.039_bib0035 article-title: Online learning with kernels publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.830991 – volume: 136 start-page: 187 year: 2017 ident: 10.1016/j.jfranklin.2019.12.039_bib0015 article-title: Online feature selection for high-dimensional class-imbalanced data publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.09.006 – year: 2019 ident: 10.1016/j.jfranklin.2019.12.039_bib0032 article-title: A dive into the dark web: Hierarchical traffic classification of anonymity tools publication-title: IEEE Trans. Netw. Sci. Eng. – ident: 10.1016/j.jfranklin.2019.12.039_bib0001 – year: 2014 ident: 10.1016/j.jfranklin.2019.12.039_bib0004 – year: 2016 ident: 10.1016/j.jfranklin.2019.12.039_bib0043 – volume: 50 start-page: 657 issue: 3 year: 2014 ident: 10.1016/j.jfranklin.2019.12.039_bib0047 article-title: Kernel methods in system identification, machine learning and function estimation: A survey publication-title: Automatica doi: 10.1016/j.automatica.2014.01.001 – year: 1998 ident: 10.1016/j.jfranklin.2019.12.039_bib0046 – ident: 10.1016/j.jfranklin.2019.12.039_bib0020 doi: 10.32614/CRAN.package.higrad – volume: 17 start-page: 1613 issue: 1 year: 2016 ident: 10.1016/j.jfranklin.2019.12.039_bib0002 article-title: Large scale online kernel learning publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.jfranklin.2019.12.039_bib0018 – year: 2018 ident: 10.1016/j.jfranklin.2019.12.039_bib0023 – year: 1994 ident: 10.1016/j.jfranklin.2019.12.039_sbref0016 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.jfranklin.2019.12.039_bib0029 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2011.2168604 – volume: 7 start-page: 197 issue: 3–4 year: 2014 ident: 10.1016/j.jfranklin.2019.12.039_bib0039 article-title: Deep learning: methods and applications publication-title: Found. Trends Signal Process. doi: 10.1561/2000000039 – year: 2011 ident: 10.1016/j.jfranklin.2019.12.039_sbref0030 – volume: 7 start-page: 551 issue: Mar year: 2006 ident: 10.1016/j.jfranklin.2019.12.039_bib0007 article-title: Online passive-aggressive algorithms publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 10.1016/j.jfranklin.2019.12.039_bib0040 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2018 ident: 10.1016/j.jfranklin.2019.12.039_bib0027 article-title: Feature selection, online feature selection techniques for big data classification:-a review |
| SSID | ssj0017100 |
| Score | 2.2604513 |
| Snippet | In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1909 |
| SubjectTerms | Algorithms Classification Data transmission Feedback control Machine learning Numerical analysis Online instruction Optimal control Robust control |
| Title | Control-based algorithms for high dimensional online learning |
| URI | https://dx.doi.org/10.1016/j.jfranklin.2019.12.039 https://www.proquest.com/docview/2379002781 |
| Volume | 357 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14Xel2ty8TD4RIUCMnSbhtui-EIBDBq7_d2XZLxJhw8NY0nbaZ7s5833b2G4RuLEBknaSS8CxMCI-pJTLWinAeKBYGFliIW9B_GcT9IX8aRaMa6lZ7YVxZpY_9ZUwvorU_0_bebC8nE7fHl0K2ZjDlGOCE0GmCcp64Lga3X5syD-rUa8poDMwZrt6q8Zpa3xnd1Xhlxbqg6xr-d4b6FauLBNQ7QoceOeJO-XLHqGbmJ-jgh57gKbrvloXnxOUmjfPZeAHc_-19hQGaYqdMjLVT8y-VOHCpkoF944jxGRr2Hl67feL7IxDFOFsTrbRMVRRKanIglbmkTCuuWCx1aKMUqBGzgE8MC5SMlKHWADvINYfjSOdcsnNUny_m5gJhHmmbGZvGgc14GsvM6YIZZQHNWnhK0kBx5ROhvHi462ExE1WV2FRsnCmcMwUNBTizgYKN4bLUz9htclc5XWwNBQFRfrdxs_pMws_GlQhZkhW_WOnlf-59hfZDx7aLmu0mqq8_Ps01QJK1bBVjroX2Oo_P_cE3zHrilg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RlR1B68rrS725eJB0MkqMAJEm6b7gshCETw6m93tt0SMSYevDVNp22muzPft539BqEbAxBZxYnALCUxZlFgsIiUxIz5khLfAAuxC_rdXtQesOdhOKygZrkXxpZVuthfxPQ8WrszDefNxmI8tnt8A8jWFKYcBZxA2BbaZiGJLQO7_VzXeQRWvqYIx0Cd4fKNIq-Jca3RbZFXmi8M2rbhv6eoH8E6z0CtA7TvoKP3ULzdIaro2RHa-yYoeIzum0XlObbJSXnZdDQH8v_6tvQAm3pWmthTVs6_kOLwCpkMz3WOGJ2gQeux32xj1yABS8roCiupRCJDIgKdAavMRECVZJJGQhETJsCNqAGAoqkvRSh1YDTQg0wxOA5VxgQ9RdXZfKbPkMdCZVJtksg3KUsikVphMC0NwFkDT4lrKCp9wqVTD7dNLKa8LBOb8LUzuXUmDwgHZ9aQvzZcFAIaf5vclU7nG2OBQ5j_27hefibupuOSExqn-T_W4Pw_975GO-1-t8M7T72XC7RLLPXOC7jrqLp6_9CXgE9W4ioff18gTOQr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control-based+algorithms+for+high+dimensional+online+learning&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Ning%2C+Hanwen&rft.au=Zhang%2C+Jiaming&rft.au=Feng%2C+Ting-Ting&rft.au=Chu%2C+Eric+King-wah&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=357&rft.issue=3&rft.spage=1909&rft.epage=1942&rft_id=info:doi/10.1016%2Fj.jfranklin.2019.12.039&rft.externalDocID=S0016003219309524 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |