Control-based algorithms for high dimensional online learning

In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems, respectively. The proble...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 357; no. 3; pp. 1909 - 1942
Main Authors Ning, Hanwen, Zhang, Jiaming, Feng, Ting-Ting, Chu, Eric King-wah, Tian, Tianhai
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.02.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0016-0032
1879-2693
0016-0032
DOI10.1016/j.jfranklin.2019.12.039

Cover

Abstract In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems, respectively. The problems are formulated as feedback control problems for some low dimensional systems. The novel learning algorithms are then developed via the control problems. Via an efficient polar decomposition, we derive the explicit solutions of the control problems, substantially reducing the corresponding computational complexity, especially for high dimensional large-scale data streams. Comparing with conventional methods, the new algorithm can achieve more robust and accurate performance with faster convergence. This paper demonstrates that optimal control can be an effective approach for developing high dimensional learning algorithms. We have also for the first time proposed a control-based robust algorithm for classification problems. Numerical results support our theory and illustrate the efficiency of our algorithm.
AbstractList In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems, respectively. The problems are formulated as feedback control problems for some low dimensional systems. The novel learning algorithms are then developed via the control problems. Via an efficient polar decomposition, we derive the explicit solutions of the control problems, substantially reducing the corresponding computational complexity, especially for high dimensional large-scale data streams. Comparing with conventional methods, the new algorithm can achieve more robust and accurate performance with faster convergence. This paper demonstrates that optimal control can be an effective approach for developing high dimensional learning algorithms. We have also for the first time proposed a control-based robust algorithm for classification problems. Numerical results support our theory and illustrate the efficiency of our algorithm.
Author Chu, Eric King-wah
Ning, Hanwen
Feng, Ting-Ting
Tian, Tianhai
Zhang, Jiaming
Author_xml – sequence: 1
  givenname: Hanwen
  orcidid: 0000-0003-4550-2285
  surname: Ning
  fullname: Ning, Hanwen
  email: ninghanwen@gmail.com
  organization: Department of Statistics, Zhongnan University of Economics and Law, Wuhan 430073, PR China
– sequence: 2
  givenname: Jiaming
  surname: Zhang
  fullname: Zhang, Jiaming
  email: zjming1994@gmail.com
  organization: Department of Statistics, Zhongnan University of Economics and Law, Wuhan 430073, PR China
– sequence: 3
  givenname: Ting-Ting
  surname: Feng
  fullname: Feng, Ting-Ting
  email: tofengtingting@163.com
  organization: Department of Mathematics, School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, PR China
– sequence: 4
  givenname: Eric King-wah
  surname: Chu
  fullname: Chu, Eric King-wah
  email: eric.chu@monash.edu
  organization: School of Mathematical Science, Monash University, Melbourne, VIC 3800, Australia
– sequence: 5
  givenname: Tianhai
  surname: Tian
  fullname: Tian, Tianhai
  email: tianhai.tian@monash.edu
  organization: School of Mathematical Science, Monash University, Melbourne, VIC 3800, Australia
BookMark eNqNkE1LAzEQhoNUsK3-Bhc875pJ9vPQQyl-QcGLnkM2mW2zbpOabAX_vSkVD170NDPwPjPDMyMT6ywScg00AwrlbZ_1nZf2bTA2YxSaDFhGeXNGplBXTcrKhk_IlMZoSilnF2QWQh_HCiidksXK2dG7IW1lQJ3IYeO8Gbe7kHTOJ1uz2Sba7NAG46wcEmfjGUwGlN4au7kk550cAl591zl5vb97WT2m6-eHp9VynSqe8zHVSre1KlgLKIEz2QLXKle8bDXrirqEhndQMeRUtYVC6LCsCqnz2Bda5i2fk5vT3r137wcMo-jdwceHgmC8aihlVQ0xVZ1SyrsQPHZi781O-k8BVBxdiV78uBJHVwKYiK4iufhFKjPK0RzdSDP8g1-eeIwSPgx6EZRBq1Abj2oU2pk_d3wBytyOrA
CitedBy_id crossref_primary_10_1007_s00521_022_07283_5
crossref_primary_10_1016_j_neucom_2021_04_112
crossref_primary_10_1109_TNNLS_2023_3234427
crossref_primary_10_3390_s24155033
Cites_doi 10.1016/j.neunet.2012.03.003
10.1016/j.arcontrol.2009.12.001
10.1109/TNN.2006.883722
10.1073/pnas.1610618114
10.1038/s41467-017-00148-9
10.1016/j.neunet.2011.03.015
10.1109/TIE.2012.2194973
10.1109/TSP.2004.830991
10.1016/j.ins.2012.02.052
10.1023/A:1018628609742
10.1016/j.knosys.2017.09.006
10.1016/j.automatica.2014.01.001
10.32614/CRAN.package.higrad
10.1109/TSMCB.2011.2168604
10.1561/2000000039
ContentType Journal Article
Copyright 2020 The Franklin Institute
Copyright Elsevier Science Ltd. Feb 2020
Copyright_xml – notice: 2020 The Franklin Institute
– notice: Copyright Elsevier Science Ltd. Feb 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jfranklin.2019.12.039
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
0016-0032
EndPage 1942
ExternalDocumentID 10_1016_j_jfranklin_2019_12_039
S0016003219309524
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AGQPQ
AHPAA
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AGCQF
FR3
KR7
ID FETCH-LOGICAL-c343t-dcdb8c52b1ea132ab13dc4c36bd2f586193f172e30cb5ce1fe675ad45ce5da4b3
IEDL.DBID .~1
ISSN 0016-0032
IngestDate Sun Sep 07 03:33:34 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Wed Oct 01 05:22:40 EDT 2025
Fri Feb 23 02:48:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-dcdb8c52b1ea132ab13dc4c36bd2f586193f172e30cb5ce1fe675ad45ce5da4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4550-2285
PQID 2379002781
PQPubID 2045917
PageCount 34
ParticipantIDs proquest_journals_2379002781
crossref_primary_10_1016_j_jfranklin_2019_12_039
crossref_citationtrail_10_1016_j_jfranklin_2019_12_039
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2019_12_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Journal of the Franklin Institute
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Devi, Sabrigiriraj (bib0027) 2018
F. Bagge Carlson, Machine learning and system identification for estimation in physical systems, arXiv
Collobert, Bengio (bib0048) 2001; 1
Shubin (bib0021) 2017; 114
Golub, Van Loan (bib0024) 2012; 3
Zhou, Hu, Li, Wu (bib0015) 2017; 136
Deng, Yu (bib0039) 2014; 7
Goodfellow, Bengio, Courville (bib0038) 2016
Ljung (bib0044) 2010; 34
Dogan, Glasmachers, Igel (bib0030) 2016; 17
Zhao, Sun, Du, Zhang, Li (bib0037) 2012; 201
Kivinen, Smola, Williamson (bib0005) 2004; 52
Ning, Qing, Tian, Jing (bib0008) 2018
Berk (bib0012) 2008; 14
Montieri, Ciuonzo, Bovenzi, Persico, Pescapé (bib0032) 2019
Camacho, Alba (bib0018) 2013
Grimaudo, Mellia, Baralis (bib0033) 2012
Söderström, Stoica (bib0042) 1988
Anderson (bib0003) 2008
Aceto, Ciuonzo, Montieri, Persico, Pescapé (bib0014) 2019
(2019).
Hespanha (bib0023) 2018
Lu, Sahoo, Zhao, Hoi (bib0025) 2018; 9
Huang, Zhou, Ding, Zhang (bib0029) 2012; 42
Bühlmann, Van De Geer (bib0013) 2011
Lewis, Vrabie, Syrmos (bib0016) 2012
Mohri, Rostamizadeh, Talwalkar (bib0006) 2018
W. Su, Y. Zhu, Statistical inference for online learning and stochastic approximation via hierarchical incremental gradient descent, arXiv
Ljung (bib0046) 1998
Wooldridge (bib0043) 2016
Liu, Principe, Haykin (bib0034) 2011
S. Ruder, An overview of gradient descent optimization algorithms, arXiv
Jing (bib0009) 2011; 24
Boyd, El Ghaoui, Feron, Balakrishnan (bib0017) 1994
Duchi, Hazan, Singer (bib0040) 2011; 12
Jing (bib0010) 2012; 31
S. C. H. Hoi, D. Sahoo, J. Lu, P. Zhao, Online learning: A comprehensive survey, arXiv
Fan, Gong, Li, Sun (bib0019) 2018
Peixoto, Rosvall (bib0022) 2017; 8
Crammer, Dekel, Keshet, Shalev-Shwartz, Singer (bib0007) 2006; 7
Kivinen, Smola, Williamson (bib0035) 2004; 52
(2018).
(2016).
Lee, Huang (bib0036) 2007; 18
Jing, Cheng (bib0011) 2013; 60
Suykens, Vandewalle (bib0026) 1999; 9
Shalev-Shwartz, Ben-David (bib0004) 2014
Pillonetto, Dinuzzo, Chen, De Nicolao, Ljung (bib0047) 2014; 50
Lu, Hoi, Wang, Zhao, Liu (bib0002) 2016; 17
Devi (10.1016/j.jfranklin.2019.12.039_bib0027) 2018
Shubin (10.1016/j.jfranklin.2019.12.039_bib0021) 2017; 114
Lee (10.1016/j.jfranklin.2019.12.039_bib0036) 2007; 18
Söderström (10.1016/j.jfranklin.2019.12.039_bib0042) 1988
Camacho (10.1016/j.jfranklin.2019.12.039_bib0018) 2013
Bühlmann (10.1016/j.jfranklin.2019.12.039_bib0013) 2011
Dogan (10.1016/j.jfranklin.2019.12.039_bib0030) 2016; 17
Montieri (10.1016/j.jfranklin.2019.12.039_bib0032) 2019
Jing (10.1016/j.jfranklin.2019.12.039_bib0010) 2012; 31
Suykens (10.1016/j.jfranklin.2019.12.039_bib0026) 1999; 9
Lewis (10.1016/j.jfranklin.2019.12.039_bib0016) 2012
Kivinen (10.1016/j.jfranklin.2019.12.039_bib0005) 2004; 52
Boyd (10.1016/j.jfranklin.2019.12.039_sbref0016) 1994
Peixoto (10.1016/j.jfranklin.2019.12.039_bib0022) 2017; 8
Liu (10.1016/j.jfranklin.2019.12.039_sbref0030) 2011
Deng (10.1016/j.jfranklin.2019.12.039_bib0039) 2014; 7
Duchi (10.1016/j.jfranklin.2019.12.039_bib0040) 2011; 12
Anderson (10.1016/j.jfranklin.2019.12.039_bib0003) 2008
Fan (10.1016/j.jfranklin.2019.12.039_bib0019) 2018
Kivinen (10.1016/j.jfranklin.2019.12.039_bib0035) 2004; 52
Jing (10.1016/j.jfranklin.2019.12.039_bib0009) 2011; 24
Berk (10.1016/j.jfranklin.2019.12.039_bib0012) 2008; 14
Mohri (10.1016/j.jfranklin.2019.12.039_bib0006) 2018
Golub (10.1016/j.jfranklin.2019.12.039_bib0024) 2012; 3
Pillonetto (10.1016/j.jfranklin.2019.12.039_bib0047) 2014; 50
Aceto (10.1016/j.jfranklin.2019.12.039_bib0014) 2019
Jing (10.1016/j.jfranklin.2019.12.039_bib0011) 2013; 60
Crammer (10.1016/j.jfranklin.2019.12.039_bib0007) 2006; 7
Ljung (10.1016/j.jfranklin.2019.12.039_bib0044) 2010; 34
Ljung (10.1016/j.jfranklin.2019.12.039_bib0046) 1998
Lu (10.1016/j.jfranklin.2019.12.039_bib0025) 2018; 9
Wooldridge (10.1016/j.jfranklin.2019.12.039_bib0043) 2016
Huang (10.1016/j.jfranklin.2019.12.039_bib0029) 2012; 42
Zhao (10.1016/j.jfranklin.2019.12.039_bib0037) 2012; 201
10.1016/j.jfranklin.2019.12.039_bib0020
10.1016/j.jfranklin.2019.12.039_bib0041
Collobert (10.1016/j.jfranklin.2019.12.039_bib0048) 2001; 1
Goodfellow (10.1016/j.jfranklin.2019.12.039_bib0038) 2016
Ning (10.1016/j.jfranklin.2019.12.039_bib0008) 2018
Shalev-Shwartz (10.1016/j.jfranklin.2019.12.039_bib0004) 2014
Zhou (10.1016/j.jfranklin.2019.12.039_bib0015) 2017; 136
Grimaudo (10.1016/j.jfranklin.2019.12.039_bib0033) 2012
10.1016/j.jfranklin.2019.12.039_bib0001
Lu (10.1016/j.jfranklin.2019.12.039_bib0002) 2016; 17
Hespanha (10.1016/j.jfranklin.2019.12.039_bib0023) 2018
10.1016/j.jfranklin.2019.12.039_bib0045
References_xml – volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: bib0029
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
– volume: 24
  start-page: 759
  year: 2011
  end-page: 766
  ident: bib0009
  article-title: An h-infinity control approach to robust learning of feedforward neural networks
  publication-title: Neural Netw.
– volume: 8
  start-page: 582
  year: 2017
  ident: bib0022
  article-title: Modelling sequences and temporal networks with dynamic community structures
  publication-title: Nat. Commun.
– year: 2011
  ident: bib0034
  article-title: Kernel Adaptive Filtering: A Comprehensive Introduction
– year: 1988
  ident: bib0042
  article-title: System Identification
– year: 2011
  ident: bib0013
  article-title: Statistics for High-dimensional Data: Methods, Theory and Applications
– year: 1994
  ident: bib0017
  article-title: Linear Matrix Inequalities in system and Control Theory
– reference: S. Ruder, An overview of gradient descent optimization algorithms, arXiv:
– year: 2016
  ident: bib0038
  article-title: Deep Learning
– reference: W. Su, Y. Zhu, Statistical inference for online learning and stochastic approximation via hierarchical incremental gradient descent, arXiv:
– year: 2008
  ident: bib0003
  article-title: The Theory and Practice of Online Learning
– volume: 136
  start-page: 187
  year: 2017
  end-page: 199
  ident: bib0015
  article-title: Online feature selection for high-dimensional class-imbalanced data
  publication-title: Knowl. Based Syst.
– volume: 52
  start-page: 2165
  year: 2004
  end-page: 2176
  ident: bib0035
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Process.
– reference: (2018).
– volume: 7
  start-page: 551
  year: 2006
  end-page: 585
  ident: bib0007
  article-title: Online passive-aggressive algorithms
  publication-title: J. Mach. Learn. Res.
– start-page: 121
  year: 2019
  end-page: 128
  ident: bib0014
  article-title: Know your big data trade-offs when classifying encrypted mobile traffic with deep learning
  publication-title: Proceedings of the 2019 Network Traffic Measurement and Analysis Conference (TMA)
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: bib0040
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 1
  year: 2007
  end-page: 13
  ident: bib0036
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
– year: 2018
  ident: bib0006
  article-title: Foundations of Machine Learning
– reference: F. Bagge Carlson, Machine learning and system identification for estimation in physical systems, arXiv:
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib0027
  article-title: Feature selection, online feature selection techniques for big data classification:-a review
  publication-title: Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)
– year: 2014
  ident: bib0004
  article-title: Understanding Machine learning: From Theory to Algorithms
– start-page: 463
  year: 2012
  end-page: 468
  ident: bib0033
  article-title: Hierarchical learning for fine grained internet traffic classification
  publication-title: Proceedings of the 2012 Eighth International Wireless Communications and Mobile Computing Conference (IWCMC)
– reference: (2016).
– volume: 50
  start-page: 657
  year: 2014
  end-page: 682
  ident: bib0047
  article-title: Kernel methods in system identification, machine learning and function estimation: A survey
  publication-title: Automatica
– year: 2019
  ident: bib0032
  article-title: A dive into the dark web: Hierarchical traffic classification of anonymity tools
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 17
  start-page: 1613
  year: 2016
  end-page: 1655
  ident: bib0002
  article-title: Large scale online kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 197
  year: 2014
  end-page: 387
  ident: bib0039
  article-title: Deep learning: methods and applications
  publication-title: Found. Trends Signal Process.
– reference: (2019).
– volume: 114
  start-page: 5782
  year: 2017
  end-page: 5783
  ident: bib0021
  article-title: Gene regulatory networks and network models in development and evolution
  publication-title: Proc. Natl. Acad. Sci.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 32
  ident: bib0030
  article-title: A unified view on multi-class support vector classification
  publication-title: J. Mach. Learn. Res.
– volume: 201
  start-page: 37
  year: 2012
  end-page: 52
  ident: bib0037
  article-title: Online independent reduced least squares support vector regression
  publication-title: Inf. Sci.
– year: 1998
  ident: bib0046
  article-title: System Identification: Theory for the User
– volume: 1
  start-page: 143
  year: 2001
  end-page: 160
  ident: bib0048
  article-title: Svmtorch: Support vector machines for large-scale regression problems
  publication-title: J. Mach. Learn. Res.
– start-page: 1017
  year: 2018
  end-page: 1026
  ident: bib0019
  article-title: Statistical sparse online regression: A diffusion approximation perspective
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics
– start-page: 1
  year: 2018
  end-page: 16
  ident: bib0008
  article-title: Online identification of nonlinear stochastic spatiotemporal system with multiplicative noise by robust optimal control-based kernel learning method
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2013
  ident: bib0018
  article-title: Model Predictive Control
– volume: 52
  start-page: 2165
  year: 2004
  end-page: 2176
  ident: bib0005
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 45
  year: 2018
  ident: bib0025
  article-title: Sparse passive-aggressive learning for bounded online kernel methods
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib0026
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 60
  start-page: 2273
  year: 2013
  end-page: 2283
  ident: bib0011
  article-title: An optimal PID control algorithm for training feedforward neural networks
  publication-title: IEEE Trans. Indust. Electron.
– volume: 31
  start-page: 33
  year: 2012
  end-page: 45
  ident: bib0010
  article-title: Robust adaptive learning of feedforward neural networks via LMI optimizations
  publication-title: Neural Netw.
– volume: 14
  year: 2008
  ident: bib0012
  article-title: Statistical Learning from a Regression Perspective
– volume: 34
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib0044
  article-title: Perspectives on system identification
  publication-title: Ann. Rev. Control
– year: 2018
  ident: bib0023
  article-title: Linear Systems Theory
– year: 2012
  ident: bib0016
  article-title: Optimal Control
– reference: S. C. H. Hoi, D. Sahoo, J. Lu, P. Zhao, Online learning: A comprehensive survey, arXiv:
– year: 2016
  ident: bib0043
  article-title: Introductory Econometrics: A Modern Approach
– volume: 3
  year: 2012
  ident: bib0024
  article-title: Matrix Computations
– volume: 31
  start-page: 33
  year: 2012
  ident: 10.1016/j.jfranklin.2019.12.039_bib0010
  article-title: Robust adaptive learning of feedforward neural networks via LMI optimizations
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.03.003
– year: 2012
  ident: 10.1016/j.jfranklin.2019.12.039_bib0016
– volume: 34
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.jfranklin.2019.12.039_bib0044
  article-title: Perspectives on system identification
  publication-title: Ann. Rev. Control
  doi: 10.1016/j.arcontrol.2009.12.001
– volume: 1
  start-page: 143
  issue: Feb
  year: 2001
  ident: 10.1016/j.jfranklin.2019.12.039_bib0048
  article-title: Svmtorch: Support vector machines for large-scale regression problems
  publication-title: J. Mach. Learn. Res.
– start-page: 1017
  year: 2018
  ident: 10.1016/j.jfranklin.2019.12.039_bib0019
  article-title: Statistical sparse online regression: A diffusion approximation perspective
– ident: 10.1016/j.jfranklin.2019.12.039_bib0041
– year: 2018
  ident: 10.1016/j.jfranklin.2019.12.039_bib0006
– volume: 18
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.jfranklin.2019.12.039_bib0036
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.883722
– start-page: 121
  year: 2019
  ident: 10.1016/j.jfranklin.2019.12.039_bib0014
  article-title: Know your big data trade-offs when classifying encrypted mobile traffic with deep learning
– volume: 3
  year: 2012
  ident: 10.1016/j.jfranklin.2019.12.039_bib0024
– year: 2008
  ident: 10.1016/j.jfranklin.2019.12.039_bib0003
– volume: 114
  start-page: 5782
  issue: 23
  year: 2017
  ident: 10.1016/j.jfranklin.2019.12.039_bib0021
  article-title: Gene regulatory networks and network models in development and evolution
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1610618114
– start-page: 463
  year: 2012
  ident: 10.1016/j.jfranklin.2019.12.039_bib0033
  article-title: Hierarchical learning for fine grained internet traffic classification
– volume: 8
  start-page: 582
  issue: 1
  year: 2017
  ident: 10.1016/j.jfranklin.2019.12.039_bib0022
  article-title: Modelling sequences and temporal networks with dynamic community structures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00148-9
– ident: 10.1016/j.jfranklin.2019.12.039_bib0045
– year: 2016
  ident: 10.1016/j.jfranklin.2019.12.039_bib0038
– volume: 24
  start-page: 759
  issue: 7
  year: 2011
  ident: 10.1016/j.jfranklin.2019.12.039_bib0009
  article-title: An h-infinity control approach to robust learning of feedforward neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2011.03.015
– volume: 17
  start-page: 1
  issue: 45
  year: 2016
  ident: 10.1016/j.jfranklin.2019.12.039_bib0030
  article-title: A unified view on multi-class support vector classification
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 2273
  issue: 6
  year: 2013
  ident: 10.1016/j.jfranklin.2019.12.039_bib0011
  article-title: An optimal PID control algorithm for training feedforward neural networks
  publication-title: IEEE Trans. Indust. Electron.
  doi: 10.1109/TIE.2012.2194973
– year: 2011
  ident: 10.1016/j.jfranklin.2019.12.039_bib0013
– volume: 52
  start-page: 2165
  issue: 8
  year: 2004
  ident: 10.1016/j.jfranklin.2019.12.039_bib0005
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830991
– volume: 14
  year: 2008
  ident: 10.1016/j.jfranklin.2019.12.039_bib0012
– volume: 9
  start-page: 45
  issue: 4
  year: 2018
  ident: 10.1016/j.jfranklin.2019.12.039_bib0025
  article-title: Sparse passive-aggressive learning for bounded online kernel methods
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.jfranklin.2019.12.039_bib0008
  article-title: Online identification of nonlinear stochastic spatiotemporal system with multiplicative noise by robust optimal control-based kernel learning method
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 201
  start-page: 37
  year: 2012
  ident: 10.1016/j.jfranklin.2019.12.039_bib0037
  article-title: Online independent reduced least squares support vector regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.02.052
– year: 1988
  ident: 10.1016/j.jfranklin.2019.12.039_bib0042
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.jfranklin.2019.12.039_bib0026
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 52
  start-page: 2165
  issue: 8
  year: 2004
  ident: 10.1016/j.jfranklin.2019.12.039_bib0035
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830991
– volume: 136
  start-page: 187
  year: 2017
  ident: 10.1016/j.jfranklin.2019.12.039_bib0015
  article-title: Online feature selection for high-dimensional class-imbalanced data
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.09.006
– year: 2019
  ident: 10.1016/j.jfranklin.2019.12.039_bib0032
  article-title: A dive into the dark web: Hierarchical traffic classification of anonymity tools
  publication-title: IEEE Trans. Netw. Sci. Eng.
– ident: 10.1016/j.jfranklin.2019.12.039_bib0001
– year: 2014
  ident: 10.1016/j.jfranklin.2019.12.039_bib0004
– year: 2016
  ident: 10.1016/j.jfranklin.2019.12.039_bib0043
– volume: 50
  start-page: 657
  issue: 3
  year: 2014
  ident: 10.1016/j.jfranklin.2019.12.039_bib0047
  article-title: Kernel methods in system identification, machine learning and function estimation: A survey
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.01.001
– year: 1998
  ident: 10.1016/j.jfranklin.2019.12.039_bib0046
– ident: 10.1016/j.jfranklin.2019.12.039_bib0020
  doi: 10.32614/CRAN.package.higrad
– volume: 17
  start-page: 1613
  issue: 1
  year: 2016
  ident: 10.1016/j.jfranklin.2019.12.039_bib0002
  article-title: Large scale online kernel learning
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.jfranklin.2019.12.039_bib0018
– year: 2018
  ident: 10.1016/j.jfranklin.2019.12.039_bib0023
– year: 1994
  ident: 10.1016/j.jfranklin.2019.12.039_sbref0016
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.jfranklin.2019.12.039_bib0029
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume: 7
  start-page: 197
  issue: 3–4
  year: 2014
  ident: 10.1016/j.jfranklin.2019.12.039_bib0039
  article-title: Deep learning: methods and applications
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000039
– year: 2011
  ident: 10.1016/j.jfranklin.2019.12.039_sbref0030
– volume: 7
  start-page: 551
  issue: Mar
  year: 2006
  ident: 10.1016/j.jfranklin.2019.12.039_bib0007
  article-title: Online passive-aggressive algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.jfranklin.2019.12.039_bib0040
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2018
  ident: 10.1016/j.jfranklin.2019.12.039_bib0027
  article-title: Feature selection, online feature selection techniques for big data classification:-a review
SSID ssj0017100
Score 2.2604513
Snippet In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1909
SubjectTerms Algorithms
Classification
Data transmission
Feedback control
Machine learning
Numerical analysis
Online instruction
Optimal control
Robust control
Title Control-based algorithms for high dimensional online learning
URI https://dx.doi.org/10.1016/j.jfranklin.2019.12.039
https://www.proquest.com/docview/2379002781
Volume 357
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14Xel2ty8TD4RIUCMnSbhtui-EIBDBq7_d2XZLxJhw8NY0nbaZ7s5833b2G4RuLEBknaSS8CxMCI-pJTLWinAeKBYGFliIW9B_GcT9IX8aRaMa6lZ7YVxZpY_9ZUwvorU_0_bebC8nE7fHl0K2ZjDlGOCE0GmCcp64Lga3X5syD-rUa8poDMwZrt6q8Zpa3xnd1Xhlxbqg6xr-d4b6FauLBNQ7QoceOeJO-XLHqGbmJ-jgh57gKbrvloXnxOUmjfPZeAHc_-19hQGaYqdMjLVT8y-VOHCpkoF944jxGRr2Hl67feL7IxDFOFsTrbRMVRRKanIglbmkTCuuWCx1aKMUqBGzgE8MC5SMlKHWADvINYfjSOdcsnNUny_m5gJhHmmbGZvGgc14GsvM6YIZZQHNWnhK0kBx5ROhvHi462ExE1WV2FRsnCmcMwUNBTizgYKN4bLUz9htclc5XWwNBQFRfrdxs_pMws_GlQhZkhW_WOnlf-59hfZDx7aLmu0mqq8_Ps01QJK1bBVjroX2Oo_P_cE3zHrilg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RlR1B68rrS725eJB0MkqMAJEm6b7gshCETw6m93tt0SMSYevDVNp22muzPft539BqEbAxBZxYnALCUxZlFgsIiUxIz5khLfAAuxC_rdXtQesOdhOKygZrkXxpZVuthfxPQ8WrszDefNxmI8tnt8A8jWFKYcBZxA2BbaZiGJLQO7_VzXeQRWvqYIx0Cd4fKNIq-Jca3RbZFXmi8M2rbhv6eoH8E6z0CtA7TvoKP3ULzdIaro2RHa-yYoeIzum0XlObbJSXnZdDQH8v_6tvQAm3pWmthTVs6_kOLwCpkMz3WOGJ2gQeux32xj1yABS8roCiupRCJDIgKdAavMRECVZJJGQhETJsCNqAGAoqkvRSh1YDTQg0wxOA5VxgQ9RdXZfKbPkMdCZVJtksg3KUsikVphMC0NwFkDT4lrKCp9wqVTD7dNLKa8LBOb8LUzuXUmDwgHZ9aQvzZcFAIaf5vclU7nG2OBQ5j_27hefibupuOSExqn-T_W4Pw_975GO-1-t8M7T72XC7RLLPXOC7jrqLp6_9CXgE9W4ioff18gTOQr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control-based+algorithms+for+high+dimensional+online+learning&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Ning%2C+Hanwen&rft.au=Zhang%2C+Jiaming&rft.au=Feng%2C+Ting-Ting&rft.au=Chu%2C+Eric+King-wah&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=357&rft.issue=3&rft.spage=1909&rft.epage=1942&rft_id=info:doi/10.1016%2Fj.jfranklin.2019.12.039&rft.externalDocID=S0016003219309524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon