Thermal-hydraulic analysis of the CFETR TF coils when subject to nuclear heat load
•The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF coil.•The proposed reduction of hydraulic length is more effective to increase the temperature margin of TF coil. China Fusion Engineering Test Reac...
Saved in:
Published in | Fusion engineering and design Vol. 173; p. 112850 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.12.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0920-3796 1873-7196 |
DOI | 10.1016/j.fusengdes.2021.112850 |
Cover
Abstract | •The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF coil.•The proposed reduction of hydraulic length is more effective to increase the temperature margin of TF coil.
China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Fusion Reactor (DEMO). The toroidal field (TF) coils play an important role in the tokamak, which provide the main magnetic field to confine the plasma. In order to evaluate the feasibility of superconducting magnets used in CFETR, it is important to predict the magnet performance in terms of temperature margin during normal operation conditions. The simulations confirm the need to increase the mass flow rate, or decrease the hydraulic length of high field windings. The results show that the proposed reduction of hydraulic length is more effective to increase the minimum temperature margin. |
---|---|
AbstractList | China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Fusion Reactor (DEMO). The toroidal field (TF) coils play an important role in the tokamak, which provide the main magnetic field to confine the plasma. In order to evaluate the feasibility of superconducting magnets used in CFETR, it is important to predict the magnet performance in terms of temperature margin during normal operation conditions. The simulations confirm the need to increase the mass flow rate, or decrease the hydraulic length of high field windings. The results show that the proposed reduction of hydraulic length is more effective to increase the minimum temperature margin. •The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF coil.•The proposed reduction of hydraulic length is more effective to increase the temperature margin of TF coil. China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Fusion Reactor (DEMO). The toroidal field (TF) coils play an important role in the tokamak, which provide the main magnetic field to confine the plasma. In order to evaluate the feasibility of superconducting magnets used in CFETR, it is important to predict the magnet performance in terms of temperature margin during normal operation conditions. The simulations confirm the need to increase the mass flow rate, or decrease the hydraulic length of high field windings. The results show that the proposed reduction of hydraulic length is more effective to increase the minimum temperature margin. |
ArticleNumber | 112850 |
Author | Liu, Xiaogang Sang, Aiguo Li, Junjun Wu, Yu Gao, Xiang Wen, Xinghao Ren, Yong |
Author_xml | – sequence: 1 givenname: Xinghao surname: Wen fullname: Wen, Xinghao organization: School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China – sequence: 2 givenname: Junjun surname: Li fullname: Li, Junjun email: lijunjun73@ipp.ac.cn organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China – sequence: 3 givenname: Aiguo orcidid: 0000-0003-2912-8254 surname: Sang fullname: Sang, Aiguo organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China – sequence: 4 givenname: Yong orcidid: 0000-0003-2397-8063 surname: Ren fullname: Ren, Yong organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China – sequence: 5 givenname: Xiaogang orcidid: 0000-0002-1702-5154 surname: Liu fullname: Liu, Xiaogang organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China – sequence: 6 givenname: Yu surname: Wu fullname: Wu, Yu organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China – sequence: 7 givenname: Xiang surname: Gao fullname: Gao, Xiang organization: School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China |
BookMark | eNqNkE1r4zAQhsXSQtOP31DBnp3qw5bswx5K2H5AoVDSs5hI41rGsbKSvEv-fR1S9tBLC8PM5X1ehuecnIxhREKuOVtyxtVNv2ynhOObw7QUTPAl56Ku2A-y4LWWheaNOiEL1ghWSN2oM3KeUs8Y1_MsyMu6w7iFoej2LsI0eEthhGGffKKhpblDurr7vX6h6ztqgx8S_dfhSNO06dFmmgMdJzsgRNohZDoEcJfktIUh4dXHvSCvc8PqoXh6vn9c3T4VVpYyz7sunZRVq-YXhWW6bGpbMen0pq6VZG7jnASEWjeuLkULlQaQUlSlUBx4JS_Iz2PvLoY_E6Zs-jDF-flkhBKlarhSh5Q-pmwMKUVszS76LcS94cwcBJre_BdoDgLNUeBM_vpEWp8h-zDmCH74Bn975HGW8NdjNMl6HC06H2d3xgX_Zcc7fTmSpg |
CitedBy_id | crossref_primary_10_1016_j_fusengdes_2023_114033 crossref_primary_10_1016_j_fusengdes_2021_112922 crossref_primary_10_1016_j_fusengdes_2022_113286 crossref_primary_10_1016_j_anucene_2023_109802 crossref_primary_10_1007_s41365_024_01459_5 |
Cites_doi | 10.1007/s10894-018-0165-2 10.1109/TASC.2020.2964517 10.1088/1741-4326/ab742d 10.1016/j.ijhydene.2017.07.215 10.1007/s10894-021-00291-8 10.1016/j.fusengdes.2009.01.035 10.1016/j.fusengdes.2016.12.013 10.1088/0953-2048/19/10/R02 10.1109/TASC.2019.2908607 10.1088/0029-5515/55/9/093002 10.1109/TASC.2018.2883130 10.1063/1.4860732 10.1109/77.828413 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.fusengdes.2021.112850 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7196 |
ExternalDocumentID | 10_1016_j_fusengdes_2021_112850 S0920379621006268 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c343t-c384d335f67192c07498c503d7b88630dbdd3aea879d842fa57aa33254261a153 |
IEDL.DBID | .~1 |
ISSN | 0920-3796 |
IngestDate | Fri Jul 25 07:44:49 EDT 2025 Tue Jul 01 01:13:47 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Fri Feb 23 02:37:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CFETR Superconducting magnet Nuclear heat load Thermal-hydraulic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-c384d335f67192c07498c503d7b88630dbdd3aea879d842fa57aa33254261a153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1702-5154 0000-0003-2397-8063 0000-0003-2912-8254 |
PQID | 2624691665 |
PQPubID | 2047562 |
ParticipantIDs | proquest_journals_2624691665 crossref_primary_10_1016_j_fusengdes_2021_112850 crossref_citationtrail_10_1016_j_fusengdes_2021_112850 elsevier_sciencedirect_doi_10_1016_j_fusengdes_2021_112850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fusion engineering and design |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Bottura (bib0009) 2001 Cui (bib0006) 2017; 42 Godeke (bib0014) 2006; 19 Lacroix (bib0008) 2010; 1218 Sang (bib0016) 2021 Zheng (bib0004) 2019; 29 Liu (bib0002) 2020; 60 Bonifetto (bib0018) 2020; 30 Cui (bib0007) 2017; 114 Design Description Document : DDD 11 ITER_D_22HV5L v2.2, Magnet, Section 1, Engineering Description. Nicolleta (bib0013) 2014; 1573 Li (bib0003) 2019; 38 Bonifetto (bib0017) 2019; 29 Ren (bib0010) 2015; 55 Nicollet (bib0011) 2004 Villari (bib0005) 2009; 84 Bottura (bib0015) 2000; 10 Wu (bib0001) 2021; 40 Nicolleta (10.1016/j.fusengdes.2021.112850_bib0013) 2014; 1573 Bottura (10.1016/j.fusengdes.2021.112850_bib0015) 2000; 10 Cui (10.1016/j.fusengdes.2021.112850_bib0007) 2017; 114 Bonifetto (10.1016/j.fusengdes.2021.112850_bib0017) 2019; 29 Wu (10.1016/j.fusengdes.2021.112850_bib0001) 2021; 40 Godeke (10.1016/j.fusengdes.2021.112850_bib0014) 2006; 19 Bonifetto (10.1016/j.fusengdes.2021.112850_bib0018) 2020; 30 Ren (10.1016/j.fusengdes.2021.112850_bib0010) 2015; 55 Cui (10.1016/j.fusengdes.2021.112850_bib0006) 2017; 42 Nicollet (10.1016/j.fusengdes.2021.112850_bib0011) 2004 Bottura (10.1016/j.fusengdes.2021.112850_bib0009) 2001 Sang (10.1016/j.fusengdes.2021.112850_bib0016) 2021 Lacroix (10.1016/j.fusengdes.2021.112850_bib0008) 2010; 1218 Li (10.1016/j.fusengdes.2021.112850_bib0003) 2019; 38 Villari (10.1016/j.fusengdes.2021.112850_bib0005) 2009; 84 Zheng (10.1016/j.fusengdes.2021.112850_bib0004) 2019; 29 10.1016/j.fusengdes.2021.112850_bib0012 Liu (10.1016/j.fusengdes.2021.112850_bib0002) 2020; 60 |
References_xml | – volume: 29 start-page: 4 year: 2019 ident: bib0004 article-title: Electromagnetic design and challenges for 14 T high-Tc toroidal field superconducting magnet for CFETR publication-title: IEEE Trans. Appl. Supercond. – volume: 114 start-page: 141 year: 2017 end-page: 156 ident: bib0007 article-title: Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR publication-title: Fusion Eng. Des. – volume: 55 start-page: 19 year: 2015 ident: bib0010 article-title: Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system publication-title: Nucl. Fusion – start-page: 589 year: 2004 end-page: 592 ident: bib0011 article-title: Evaluation of the ITER cable in conduit conductor heat transfer publication-title: Proceedings of the 20th ICEC Conference – reference: Design Description Document : DDD 11 ITER_D_22HV5L v2.2, Magnet, Section 1, Engineering Description. – volume: 1218 start-page: 471 year: 2010 end-page: 479 ident: bib0008 article-title: Thermo-hydraulic analyses associated with the design of JT-60SA TF coils development and validation of the TACOS/TEXTO tool publication-title: Adv. Cryog. Eng. – volume: 1573 start-page: 422 year: 2014 end-page: 429 ident: bib0013 article-title: Short initial length quench on CICC of ITER TF coils publication-title: AIP Conf. Proc. – volume: 42 start-page: 24263 year: 2017 end-page: 24277 ident: bib0006 article-title: Evaluation and optimization of tritium breeding, shielding and nuclear heating performances of the helium cooled solid breeder blanket for CFETR publication-title: Int. J. Hydrog. Energy – volume: 84 start-page: 1947 year: 2009 end-page: 1952 ident: bib0005 article-title: Neutronic analysis of the JT-60SA toroidal magnets publication-title: Fusion Eng. Des. – volume: 10 start-page: 1054 year: 2000 end-page: 1057 ident: bib0015 article-title: A practical fit for the critical surface of NbTi publication-title: IEEE Trans. Appl. Supercond. – volume: 60 start-page: 10 year: 2020 ident: bib0002 article-title: Progress in the conceptual design of the CFETR toroidal field coil with rectangular conductors” publication-title: Nucl. Fusion – year: 2001 ident: bib0009 article-title: A Computer Code for Quench Analysis of Dual Flow CICC's – volume: 38 start-page: 113 year: 2019 end-page: 124 ident: bib0003 article-title: Present state of Chinese magnetic fusion development and future plans publication-title: J. Fusion Energy – volume: 29 start-page: 5 year: 2019 ident: bib0017 article-title: Thermal-hydraulic analysis of the JT-60SA central solenoid operation publication-title: IEEE Trans. Appl. Supercond. – volume: 40 start-page: 14 year: 2021 ident: bib0001 article-title: Preliminary design of CFETR TF prototype coil publication-title: J. Fusion Energy – volume: 19 start-page: 100 year: 2006 end-page: 116 ident: bib0014 article-title: A general scaling relation for the critical current density in Nb3Sn publication-title: Supercond. Sci. Technol. – year: 2021 ident: bib0016 article-title: Optimization of the cooling design of the TF coil case on the CFETR based on an orthogonal theory publication-title: IEEE Trans. Appl. Supercond. – volume: 30 start-page: 5 year: 2020 ident: bib0018 article-title: Thermal-hydraulic analysis of the DTT toroidal field magnets in DC operation publication-title: IEEE Trans. Appl. Supercond. – volume: 38 start-page: 113 issue: 1 year: 2019 ident: 10.1016/j.fusengdes.2021.112850_bib0003 article-title: Present state of Chinese magnetic fusion development and future plans publication-title: J. Fusion Energy doi: 10.1007/s10894-018-0165-2 – volume: 30 start-page: 5 issue: 4 year: 2020 ident: 10.1016/j.fusengdes.2021.112850_bib0018 article-title: Thermal-hydraulic analysis of the DTT toroidal field magnets in DC operation publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2020.2964517 – volume: 60 start-page: 10 issue: 4 year: 2020 ident: 10.1016/j.fusengdes.2021.112850_bib0002 article-title: Progress in the conceptual design of the CFETR toroidal field coil with rectangular conductors” publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab742d – volume: 1218 start-page: 471 year: 2010 ident: 10.1016/j.fusengdes.2021.112850_bib0008 article-title: Thermo-hydraulic analyses associated with the design of JT-60SA TF coils development and validation of the TACOS/TEXTO tool publication-title: Adv. Cryog. Eng. – volume: 42 start-page: 24263 issue: 38 year: 2017 ident: 10.1016/j.fusengdes.2021.112850_bib0006 article-title: Evaluation and optimization of tritium breeding, shielding and nuclear heating performances of the helium cooled solid breeder blanket for CFETR publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.07.215 – ident: 10.1016/j.fusengdes.2021.112850_bib0012 – volume: 40 start-page: 14 issue: 1 year: 2021 ident: 10.1016/j.fusengdes.2021.112850_bib0001 article-title: Preliminary design of CFETR TF prototype coil publication-title: J. Fusion Energy doi: 10.1007/s10894-021-00291-8 – volume: 84 start-page: 1947 issue: 7-11 year: 2009 ident: 10.1016/j.fusengdes.2021.112850_bib0005 article-title: Neutronic analysis of the JT-60SA toroidal magnets publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2009.01.035 – volume: 114 start-page: 141 year: 2017 ident: 10.1016/j.fusengdes.2021.112850_bib0007 article-title: Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2016.12.013 – volume: 19 start-page: 100 issue: 10 year: 2006 ident: 10.1016/j.fusengdes.2021.112850_bib0014 article-title: A general scaling relation for the critical current density in Nb3Sn publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/19/10/R02 – year: 2021 ident: 10.1016/j.fusengdes.2021.112850_bib0016 article-title: Optimization of the cooling design of the TF coil case on the CFETR based on an orthogonal theory publication-title: IEEE Trans. Appl. Supercond. – volume: 29 start-page: 5 issue: 5 year: 2019 ident: 10.1016/j.fusengdes.2021.112850_bib0017 article-title: Thermal-hydraulic analysis of the JT-60SA central solenoid operation publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2019.2908607 – volume: 55 start-page: 19 issue: 9 year: 2015 ident: 10.1016/j.fusengdes.2021.112850_bib0010 article-title: Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/9/093002 – volume: 29 start-page: 4 issue: 2 year: 2019 ident: 10.1016/j.fusengdes.2021.112850_bib0004 article-title: Electromagnetic design and challenges for 14 T high-Tc toroidal field superconducting magnet for CFETR publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2018.2883130 – year: 2001 ident: 10.1016/j.fusengdes.2021.112850_bib0009 – start-page: 589 year: 2004 ident: 10.1016/j.fusengdes.2021.112850_bib0011 article-title: Evaluation of the ITER cable in conduit conductor heat transfer – volume: 1573 start-page: 422 year: 2014 ident: 10.1016/j.fusengdes.2021.112850_bib0013 article-title: Short initial length quench on CICC of ITER TF coils publication-title: AIP Conf. Proc. doi: 10.1063/1.4860732 – volume: 10 start-page: 1054 issue: 1 year: 2000 ident: 10.1016/j.fusengdes.2021.112850_bib0015 article-title: A practical fit for the critical surface of NbTi publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.828413 |
SSID | ssj0017017 |
Score | 2.328593 |
Snippet | •The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF... China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112850 |
SubjectTerms | CFETR Coils (windings) Engineering test reactors Hydraulics Mass flow rate Nuclear fusion Nuclear heat Nuclear heat load Nuclear power plants Superconducting magnet Superconducting magnets Thermal-hydraulic |
Title | Thermal-hydraulic analysis of the CFETR TF coils when subject to nuclear heat load |
URI | https://dx.doi.org/10.1016/j.fusengdes.2021.112850 https://www.proquest.com/docview/2624691665 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuJRKg-soUnsxDYbqqgKCAagUrfIiR0oipKqpEIs_Hbu8qgoQurAEimPi5Kz8_k7574zIedekCY2NS7EJtx3uE18R1WrplpphOehNhOFwvcP4XDEb8fBeI30Wy0MplU22F9jeoXWzZFe483edDLpPbnKd5lQIQQtLtByFPxyLrCvX3wt0jyw3HglmVaoFIarl3K8UpzmeDEW63b7HsppJArw_x6hfmF1NQANdsh2wxzpVf1wu2TN5ntk60c9wX3yCI0OQJs5r59mpufZJKG6KTpCi5QC16P9wfXzI30e0KSYZO_049Xm9H0e42wMLQuaY3ljPaMI0TQrtDkgI7DoD51m0QQnYZyVsJXcMBakoQDylgBDUDIJXGZELGXIXBMbw7TVUigjuZ_qQGjNGMSJEEtpwL9Dsp4XuT0iFH-hea4VKmAQNAqhFQ-s9JUR0mNANI9J2DoqSpqK4riwRRa1qWNv0cLDEXo4qj18TNyF4bQuqrHa5LJtiWipf0QA_auNO23bRc0nCudDn8P7hWFw8p97n5JN3KszXDpkvZzN7RnwlDLuVh2xSzaubu6GD9_hM-TE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMCAeIpHAQ-soUnsxDYbqqjKc4AisVlu7EBRlKDSCrHw27nLowKExMCSIc5FyZ3z-c65746QoyBKE5daH2ITHnrcJaGnyq6pTloRBMjNRKLw9U3cv-cXD9HDHOk2XBhMq6yxv8L0Eq3rM51am52X0ahz56vQZ0LFELT44JbLebLAsc0BTOrjj1meB9YbLznTCqnCcPm3JK8U9zkercPC3WGAfBqJDPzfl6gfYF2uQL1VslK7jvS0ero1MufydbL8paDgBrkFqwPSZt7Tux2baTZKqKmrjtAipeDs0W7vbHBLBz2aFKPslb49uZy-Toe4HUMnBc2xvrEZU8RomhXGbpJ7kOj2vbprgpcwziZwlNwyFqWxAO8tARdBySTymRVDKWPm26G1zDgjhbKSh6mJhDGMQaAIwZQBANwirbzI3Tah-A8t8J1QEYOoUQijeORkqKyQAQNPc4fEjaJ0UpcUx84WmW5yx571TMMaNawrDe8Qfyb4UlXV-FvkpLGE_jZBNGD_38Ltxna6_kZhPA45vF8cR7v_ufchWewPrq_01fnN5R5ZwpEq3aVNWpPx1O2D0zIZHpST8hMjQuZN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal-hydraulic+analysis+of+the+CFETR+TF+coils+when+subject+to+nuclear+heat+load&rft.jtitle=Fusion+engineering+and+design&rft.au=Wen%2C+Xinghao&rft.au=Li%2C+Junjun&rft.au=Sang%2C+Aiguo&rft.au=Ren%2C+Yong&rft.date=2021-12-01&rft.issn=0920-3796&rft.volume=173&rft.spage=112850&rft_id=info:doi/10.1016%2Fj.fusengdes.2021.112850&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2021_112850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon |