Thermal-hydraulic analysis of the CFETR TF coils when subject to nuclear heat load

•The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF coil.•The proposed reduction of hydraulic length is more effective to increase the temperature margin of TF coil. China Fusion Engineering Test Reac...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 173; p. 112850
Main Authors Wen, Xinghao, Li, Junjun, Sang, Aiguo, Ren, Yong, Liu, Xiaogang, Wu, Yu, Gao, Xiang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0920-3796
1873-7196
DOI10.1016/j.fusengdes.2021.112850

Cover

Abstract •The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF coil.•The proposed reduction of hydraulic length is more effective to increase the temperature margin of TF coil. China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Fusion Reactor (DEMO). The toroidal field (TF) coils play an important role in the tokamak, which provide the main magnetic field to confine the plasma. In order to evaluate the feasibility of superconducting magnets used in CFETR, it is important to predict the magnet performance in terms of temperature margin during normal operation conditions. The simulations confirm the need to increase the mass flow rate, or decrease the hydraulic length of high field windings. The results show that the proposed reduction of hydraulic length is more effective to increase the minimum temperature margin.
AbstractList China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Fusion Reactor (DEMO). The toroidal field (TF) coils play an important role in the tokamak, which provide the main magnetic field to confine the plasma. In order to evaluate the feasibility of superconducting magnets used in CFETR, it is important to predict the magnet performance in terms of temperature margin during normal operation conditions. The simulations confirm the need to increase the mass flow rate, or decrease the hydraulic length of high field windings. The results show that the proposed reduction of hydraulic length is more effective to increase the minimum temperature margin.
•The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF coil.•The proposed reduction of hydraulic length is more effective to increase the temperature margin of TF coil. China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Fusion Reactor (DEMO). The toroidal field (TF) coils play an important role in the tokamak, which provide the main magnetic field to confine the plasma. In order to evaluate the feasibility of superconducting magnets used in CFETR, it is important to predict the magnet performance in terms of temperature margin during normal operation conditions. The simulations confirm the need to increase the mass flow rate, or decrease the hydraulic length of high field windings. The results show that the proposed reduction of hydraulic length is more effective to increase the minimum temperature margin.
ArticleNumber 112850
Author Liu, Xiaogang
Sang, Aiguo
Li, Junjun
Wu, Yu
Gao, Xiang
Wen, Xinghao
Ren, Yong
Author_xml – sequence: 1
  givenname: Xinghao
  surname: Wen
  fullname: Wen, Xinghao
  organization: School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
– sequence: 2
  givenname: Junjun
  surname: Li
  fullname: Li, Junjun
  email: lijunjun73@ipp.ac.cn
  organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
– sequence: 3
  givenname: Aiguo
  orcidid: 0000-0003-2912-8254
  surname: Sang
  fullname: Sang, Aiguo
  organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
– sequence: 4
  givenname: Yong
  orcidid: 0000-0003-2397-8063
  surname: Ren
  fullname: Ren, Yong
  organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
– sequence: 5
  givenname: Xiaogang
  orcidid: 0000-0002-1702-5154
  surname: Liu
  fullname: Liu, Xiaogang
  organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
– sequence: 6
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
  organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
– sequence: 7
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  organization: School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
BookMark eNqNkE1r4zAQhsXSQtOP31DBnp3qw5bswx5K2H5AoVDSs5hI41rGsbKSvEv-fR1S9tBLC8PM5X1ehuecnIxhREKuOVtyxtVNv2ynhOObw7QUTPAl56Ku2A-y4LWWheaNOiEL1ghWSN2oM3KeUs8Y1_MsyMu6w7iFoej2LsI0eEthhGGffKKhpblDurr7vX6h6ztqgx8S_dfhSNO06dFmmgMdJzsgRNohZDoEcJfktIUh4dXHvSCvc8PqoXh6vn9c3T4VVpYyz7sunZRVq-YXhWW6bGpbMen0pq6VZG7jnASEWjeuLkULlQaQUlSlUBx4JS_Iz2PvLoY_E6Zs-jDF-flkhBKlarhSh5Q-pmwMKUVszS76LcS94cwcBJre_BdoDgLNUeBM_vpEWp8h-zDmCH74Bn975HGW8NdjNMl6HC06H2d3xgX_Zcc7fTmSpg
CitedBy_id crossref_primary_10_1016_j_fusengdes_2023_114033
crossref_primary_10_1016_j_fusengdes_2021_112922
crossref_primary_10_1016_j_fusengdes_2022_113286
crossref_primary_10_1016_j_anucene_2023_109802
crossref_primary_10_1007_s41365_024_01459_5
Cites_doi 10.1007/s10894-018-0165-2
10.1109/TASC.2020.2964517
10.1088/1741-4326/ab742d
10.1016/j.ijhydene.2017.07.215
10.1007/s10894-021-00291-8
10.1016/j.fusengdes.2009.01.035
10.1016/j.fusengdes.2016.12.013
10.1088/0953-2048/19/10/R02
10.1109/TASC.2019.2908607
10.1088/0029-5515/55/9/093002
10.1109/TASC.2018.2883130
10.1063/1.4860732
10.1109/77.828413
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.fusengdes.2021.112850
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7196
ExternalDocumentID 10_1016_j_fusengdes_2021_112850
S0920379621006268
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c343t-c384d335f67192c07498c503d7b88630dbdd3aea879d842fa57aa33254261a153
IEDL.DBID .~1
ISSN 0920-3796
IngestDate Fri Jul 25 07:44:49 EDT 2025
Tue Jul 01 01:13:47 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 23 02:37:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CFETR
Superconducting magnet
Nuclear heat load
Thermal-hydraulic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-c384d335f67192c07498c503d7b88630dbdd3aea879d842fa57aa33254261a153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1702-5154
0000-0003-2397-8063
0000-0003-2912-8254
PQID 2624691665
PQPubID 2047562
ParticipantIDs proquest_journals_2624691665
crossref_primary_10_1016_j_fusengdes_2021_112850
crossref_citationtrail_10_1016_j_fusengdes_2021_112850
elsevier_sciencedirect_doi_10_1016_j_fusengdes_2021_112850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fusion engineering and design
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Bottura (bib0009) 2001
Cui (bib0006) 2017; 42
Godeke (bib0014) 2006; 19
Lacroix (bib0008) 2010; 1218
Sang (bib0016) 2021
Zheng (bib0004) 2019; 29
Liu (bib0002) 2020; 60
Bonifetto (bib0018) 2020; 30
Cui (bib0007) 2017; 114
Design Description Document : DDD 11 ITER_D_22HV5L v2.2, Magnet, Section 1, Engineering Description.
Nicolleta (bib0013) 2014; 1573
Li (bib0003) 2019; 38
Bonifetto (bib0017) 2019; 29
Ren (bib0010) 2015; 55
Nicollet (bib0011) 2004
Villari (bib0005) 2009; 84
Bottura (bib0015) 2000; 10
Wu (bib0001) 2021; 40
Nicolleta (10.1016/j.fusengdes.2021.112850_bib0013) 2014; 1573
Bottura (10.1016/j.fusengdes.2021.112850_bib0015) 2000; 10
Cui (10.1016/j.fusengdes.2021.112850_bib0007) 2017; 114
Bonifetto (10.1016/j.fusengdes.2021.112850_bib0017) 2019; 29
Wu (10.1016/j.fusengdes.2021.112850_bib0001) 2021; 40
Godeke (10.1016/j.fusengdes.2021.112850_bib0014) 2006; 19
Bonifetto (10.1016/j.fusengdes.2021.112850_bib0018) 2020; 30
Ren (10.1016/j.fusengdes.2021.112850_bib0010) 2015; 55
Cui (10.1016/j.fusengdes.2021.112850_bib0006) 2017; 42
Nicollet (10.1016/j.fusengdes.2021.112850_bib0011) 2004
Bottura (10.1016/j.fusengdes.2021.112850_bib0009) 2001
Sang (10.1016/j.fusengdes.2021.112850_bib0016) 2021
Lacroix (10.1016/j.fusengdes.2021.112850_bib0008) 2010; 1218
Li (10.1016/j.fusengdes.2021.112850_bib0003) 2019; 38
Villari (10.1016/j.fusengdes.2021.112850_bib0005) 2009; 84
Zheng (10.1016/j.fusengdes.2021.112850_bib0004) 2019; 29
10.1016/j.fusengdes.2021.112850_bib0012
Liu (10.1016/j.fusengdes.2021.112850_bib0002) 2020; 60
References_xml – volume: 29
  start-page: 4
  year: 2019
  ident: bib0004
  article-title: Electromagnetic design and challenges for 14 T high-Tc toroidal field superconducting magnet for CFETR
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 114
  start-page: 141
  year: 2017
  end-page: 156
  ident: bib0007
  article-title: Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR
  publication-title: Fusion Eng. Des.
– volume: 55
  start-page: 19
  year: 2015
  ident: bib0010
  article-title: Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system
  publication-title: Nucl. Fusion
– start-page: 589
  year: 2004
  end-page: 592
  ident: bib0011
  article-title: Evaluation of the ITER cable in conduit conductor heat transfer
  publication-title: Proceedings of the 20th ICEC Conference
– reference: Design Description Document : DDD 11 ITER_D_22HV5L v2.2, Magnet, Section 1, Engineering Description.
– volume: 1218
  start-page: 471
  year: 2010
  end-page: 479
  ident: bib0008
  article-title: Thermo-hydraulic analyses associated with the design of JT-60SA TF coils development and validation of the TACOS/TEXTO tool
  publication-title: Adv. Cryog. Eng.
– volume: 1573
  start-page: 422
  year: 2014
  end-page: 429
  ident: bib0013
  article-title: Short initial length quench on CICC of ITER TF coils
  publication-title: AIP Conf. Proc.
– volume: 42
  start-page: 24263
  year: 2017
  end-page: 24277
  ident: bib0006
  article-title: Evaluation and optimization of tritium breeding, shielding and nuclear heating performances of the helium cooled solid breeder blanket for CFETR
  publication-title: Int. J. Hydrog. Energy
– volume: 84
  start-page: 1947
  year: 2009
  end-page: 1952
  ident: bib0005
  article-title: Neutronic analysis of the JT-60SA toroidal magnets
  publication-title: Fusion Eng. Des.
– volume: 10
  start-page: 1054
  year: 2000
  end-page: 1057
  ident: bib0015
  article-title: A practical fit for the critical surface of NbTi
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 60
  start-page: 10
  year: 2020
  ident: bib0002
  article-title: Progress in the conceptual design of the CFETR toroidal field coil with rectangular conductors”
  publication-title: Nucl. Fusion
– year: 2001
  ident: bib0009
  article-title: A Computer Code for Quench Analysis of Dual Flow CICC's
– volume: 38
  start-page: 113
  year: 2019
  end-page: 124
  ident: bib0003
  article-title: Present state of Chinese magnetic fusion development and future plans
  publication-title: J. Fusion Energy
– volume: 29
  start-page: 5
  year: 2019
  ident: bib0017
  article-title: Thermal-hydraulic analysis of the JT-60SA central solenoid operation
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 40
  start-page: 14
  year: 2021
  ident: bib0001
  article-title: Preliminary design of CFETR TF prototype coil
  publication-title: J. Fusion Energy
– volume: 19
  start-page: 100
  year: 2006
  end-page: 116
  ident: bib0014
  article-title: A general scaling relation for the critical current density in Nb3Sn
  publication-title: Supercond. Sci. Technol.
– year: 2021
  ident: bib0016
  article-title: Optimization of the cooling design of the TF coil case on the CFETR based on an orthogonal theory
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 30
  start-page: 5
  year: 2020
  ident: bib0018
  article-title: Thermal-hydraulic analysis of the DTT toroidal field magnets in DC operation
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 38
  start-page: 113
  issue: 1
  year: 2019
  ident: 10.1016/j.fusengdes.2021.112850_bib0003
  article-title: Present state of Chinese magnetic fusion development and future plans
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-018-0165-2
– volume: 30
  start-page: 5
  issue: 4
  year: 2020
  ident: 10.1016/j.fusengdes.2021.112850_bib0018
  article-title: Thermal-hydraulic analysis of the DTT toroidal field magnets in DC operation
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2020.2964517
– volume: 60
  start-page: 10
  issue: 4
  year: 2020
  ident: 10.1016/j.fusengdes.2021.112850_bib0002
  article-title: Progress in the conceptual design of the CFETR toroidal field coil with rectangular conductors”
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab742d
– volume: 1218
  start-page: 471
  year: 2010
  ident: 10.1016/j.fusengdes.2021.112850_bib0008
  article-title: Thermo-hydraulic analyses associated with the design of JT-60SA TF coils development and validation of the TACOS/TEXTO tool
  publication-title: Adv. Cryog. Eng.
– volume: 42
  start-page: 24263
  issue: 38
  year: 2017
  ident: 10.1016/j.fusengdes.2021.112850_bib0006
  article-title: Evaluation and optimization of tritium breeding, shielding and nuclear heating performances of the helium cooled solid breeder blanket for CFETR
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.07.215
– ident: 10.1016/j.fusengdes.2021.112850_bib0012
– volume: 40
  start-page: 14
  issue: 1
  year: 2021
  ident: 10.1016/j.fusengdes.2021.112850_bib0001
  article-title: Preliminary design of CFETR TF prototype coil
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-021-00291-8
– volume: 84
  start-page: 1947
  issue: 7-11
  year: 2009
  ident: 10.1016/j.fusengdes.2021.112850_bib0005
  article-title: Neutronic analysis of the JT-60SA toroidal magnets
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2009.01.035
– volume: 114
  start-page: 141
  year: 2017
  ident: 10.1016/j.fusengdes.2021.112850_bib0007
  article-title: Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2016.12.013
– volume: 19
  start-page: 100
  issue: 10
  year: 2006
  ident: 10.1016/j.fusengdes.2021.112850_bib0014
  article-title: A general scaling relation for the critical current density in Nb3Sn
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/19/10/R02
– year: 2021
  ident: 10.1016/j.fusengdes.2021.112850_bib0016
  article-title: Optimization of the cooling design of the TF coil case on the CFETR based on an orthogonal theory
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 29
  start-page: 5
  issue: 5
  year: 2019
  ident: 10.1016/j.fusengdes.2021.112850_bib0017
  article-title: Thermal-hydraulic analysis of the JT-60SA central solenoid operation
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2019.2908607
– volume: 55
  start-page: 19
  issue: 9
  year: 2015
  ident: 10.1016/j.fusengdes.2021.112850_bib0010
  article-title: Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/9/093002
– volume: 29
  start-page: 4
  issue: 2
  year: 2019
  ident: 10.1016/j.fusengdes.2021.112850_bib0004
  article-title: Electromagnetic design and challenges for 14 T high-Tc toroidal field superconducting magnet for CFETR
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2018.2883130
– year: 2001
  ident: 10.1016/j.fusengdes.2021.112850_bib0009
– start-page: 589
  year: 2004
  ident: 10.1016/j.fusengdes.2021.112850_bib0011
  article-title: Evaluation of the ITER cable in conduit conductor heat transfer
– volume: 1573
  start-page: 422
  year: 2014
  ident: 10.1016/j.fusengdes.2021.112850_bib0013
  article-title: Short initial length quench on CICC of ITER TF coils
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4860732
– volume: 10
  start-page: 1054
  issue: 1
  year: 2000
  ident: 10.1016/j.fusengdes.2021.112850_bib0015
  article-title: A practical fit for the critical surface of NbTi
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.828413
SSID ssj0017017
Score 2.328593
Snippet •The Gandalf code is coupled with ANSYS model to analyze the TF coil.•Two possible strategies are investigated to increase the temperature margin of TF...
China Fusion Engineering Test Reactor (CFETR) has received much attention over the past several years, aiming at bridging the gap between the International...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112850
SubjectTerms CFETR
Coils (windings)
Engineering test reactors
Hydraulics
Mass flow rate
Nuclear fusion
Nuclear heat
Nuclear heat load
Nuclear power plants
Superconducting magnet
Superconducting magnets
Thermal-hydraulic
Title Thermal-hydraulic analysis of the CFETR TF coils when subject to nuclear heat load
URI https://dx.doi.org/10.1016/j.fusengdes.2021.112850
https://www.proquest.com/docview/2624691665
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuJRKg-soUnsxDYbqqgKCAagUrfIiR0oipKqpEIs_Hbu8qgoQurAEimPi5Kz8_k7574zIedekCY2NS7EJtx3uE18R1WrplpphOehNhOFwvcP4XDEb8fBeI30Wy0MplU22F9jeoXWzZFe483edDLpPbnKd5lQIQQtLtByFPxyLrCvX3wt0jyw3HglmVaoFIarl3K8UpzmeDEW63b7HsppJArw_x6hfmF1NQANdsh2wxzpVf1wu2TN5ntk60c9wX3yCI0OQJs5r59mpufZJKG6KTpCi5QC16P9wfXzI30e0KSYZO_049Xm9H0e42wMLQuaY3ljPaMI0TQrtDkgI7DoD51m0QQnYZyVsJXcMBakoQDylgBDUDIJXGZELGXIXBMbw7TVUigjuZ_qQGjNGMSJEEtpwL9Dsp4XuT0iFH-hea4VKmAQNAqhFQ-s9JUR0mNANI9J2DoqSpqK4riwRRa1qWNv0cLDEXo4qj18TNyF4bQuqrHa5LJtiWipf0QA_auNO23bRc0nCudDn8P7hWFw8p97n5JN3KszXDpkvZzN7RnwlDLuVh2xSzaubu6GD9_hM-TE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMCAeIpHAQ-soUnsxDYbqqjKc4AisVlu7EBRlKDSCrHw27nLowKExMCSIc5FyZ3z-c65746QoyBKE5daH2ITHnrcJaGnyq6pTloRBMjNRKLw9U3cv-cXD9HDHOk2XBhMq6yxv8L0Eq3rM51am52X0ahz56vQZ0LFELT44JbLebLAsc0BTOrjj1meB9YbLznTCqnCcPm3JK8U9zkercPC3WGAfBqJDPzfl6gfYF2uQL1VslK7jvS0ero1MufydbL8paDgBrkFqwPSZt7Tux2baTZKqKmrjtAipeDs0W7vbHBLBz2aFKPslb49uZy-Toe4HUMnBc2xvrEZU8RomhXGbpJ7kOj2vbprgpcwziZwlNwyFqWxAO8tARdBySTymRVDKWPm26G1zDgjhbKSh6mJhDGMQaAIwZQBANwirbzI3Tah-A8t8J1QEYOoUQijeORkqKyQAQNPc4fEjaJ0UpcUx84WmW5yx571TMMaNawrDe8Qfyb4UlXV-FvkpLGE_jZBNGD_38Ltxna6_kZhPA45vF8cR7v_ufchWewPrq_01fnN5R5ZwpEq3aVNWpPx1O2D0zIZHpST8hMjQuZN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal-hydraulic+analysis+of+the+CFETR+TF+coils+when+subject+to+nuclear+heat+load&rft.jtitle=Fusion+engineering+and+design&rft.au=Wen%2C+Xinghao&rft.au=Li%2C+Junjun&rft.au=Sang%2C+Aiguo&rft.au=Ren%2C+Yong&rft.date=2021-12-01&rft.issn=0920-3796&rft.volume=173&rft.spage=112850&rft_id=info:doi/10.1016%2Fj.fusengdes.2021.112850&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2021_112850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon