Validation of simplified tying force method for robustness assessment of RC framed structures

•Validation of a new simplified rational tying force method for the robustness/progressive collapse assessment of reinforced concrete systems.•Simplified tying method to reproduce catenary/membrane phase of reinforced concrete systems explicitly considering rotational ductility.•Comparison between e...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 249; p. 113291
Main Authors Ravasini, S., Sio, J., Franceschini, L., Izzuddin, B.A., Belletti, B.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2021.113291

Cover

Abstract •Validation of a new simplified rational tying force method for the robustness/progressive collapse assessment of reinforced concrete systems.•Simplified tying method to reproduce catenary/membrane phase of reinforced concrete systems explicitly considering rotational ductility.•Comparison between experimental results and simplified tying force to establish the representative level of rotational ductility.•Suitability of the simplified tying force method as a robustness assessment framework for reinforced concrete structures for the next generation of Eurocodes. The robustness of reinforced concrete (RC) structures is an important ongoing research topic in the civil engineering community. Especially in the last decades, the need for structural robustness assessment methods has become urgent, and several design methods have been proposed in codes and guidelines to mitigate the progressive collapse risk of reinforced concrete structures. The most used approaches are the Tying Force and Alternate Load Path methods. The first is typically applied as an indirect and prescriptive method where the building is considered mechanically tied together and able to enhance continuity and the resistance to progressive collapse. The second is a direct method, where the capacity of the structure to sustain the applied loads is evaluated after the loss of a load-bearing element, most effectively using advanced nonlinear structural analysis methods. In the context of the Tying Force method, the Eurocode is recognised to underestimate the tie force demands required by building structures subject to the loss of a load bearing member, which are better reflected in the USA UFC Guidelines. A new Tying Force method has been proposed by Izzuddin & Sio (2021) for the next generation of the Eurocodes, which addresses the shortcomings of the present Eurocode guidance, and provides a more comprehensive treatment than considered in the UFC code. The present paper is aimed specifically at the validation of the new Simplified Tying Force method (Izzuddin & Sio, 2021) for reinforced concrete structures, considering grillage and combined beam/slab floor systems, and considering the rotational ductility of such structures, which is explicitly considered in the new method.
AbstractList •Validation of a new simplified rational tying force method for the robustness/progressive collapse assessment of reinforced concrete systems.•Simplified tying method to reproduce catenary/membrane phase of reinforced concrete systems explicitly considering rotational ductility.•Comparison between experimental results and simplified tying force to establish the representative level of rotational ductility.•Suitability of the simplified tying force method as a robustness assessment framework for reinforced concrete structures for the next generation of Eurocodes. The robustness of reinforced concrete (RC) structures is an important ongoing research topic in the civil engineering community. Especially in the last decades, the need for structural robustness assessment methods has become urgent, and several design methods have been proposed in codes and guidelines to mitigate the progressive collapse risk of reinforced concrete structures. The most used approaches are the Tying Force and Alternate Load Path methods. The first is typically applied as an indirect and prescriptive method where the building is considered mechanically tied together and able to enhance continuity and the resistance to progressive collapse. The second is a direct method, where the capacity of the structure to sustain the applied loads is evaluated after the loss of a load-bearing element, most effectively using advanced nonlinear structural analysis methods. In the context of the Tying Force method, the Eurocode is recognised to underestimate the tie force demands required by building structures subject to the loss of a load bearing member, which are better reflected in the USA UFC Guidelines. A new Tying Force method has been proposed by Izzuddin & Sio (2021) for the next generation of the Eurocodes, which addresses the shortcomings of the present Eurocode guidance, and provides a more comprehensive treatment than considered in the UFC code. The present paper is aimed specifically at the validation of the new Simplified Tying Force method (Izzuddin & Sio, 2021) for reinforced concrete structures, considering grillage and combined beam/slab floor systems, and considering the rotational ductility of such structures, which is explicitly considered in the new method.
The robustness of reinforced concrete (RC) structures is an important ongoing research topic in the civil engineering community. Especially in the last decades, the need for structural robustness assessment methods has become urgent, and several design methods have been proposed in codes and guidelines to mitigate the progressive collapse risk of reinforced concrete structures. The most used approaches are the Tying Force and Alternate Load Path methods. The first is typically applied as an indirect and prescriptive method where the building is considered mechanically tied together and able to enhance continuity and the resistance to progressive collapse. The second is a direct method, where the capacity of the structure to sustain the applied loads is evaluated after the loss of a load-bearing element, most effectively using advanced nonlinear structural analysis methods. In the context of the Tying Force method, the Eurocode is recognised to underestimate the tie force demands required by building structures subject to the loss of a load bearing member, which are better reflected in the USA UFC Guidelines. A new Tying Force method has been proposed by Izzuddin & Sio (2021) for the next generation of the Eurocodes, which addresses the shortcomings of the present Eurocode guidance, and provides a more comprehensive treatment than considered in the UFC code. The present paper is aimed specifically at the validation of the new Simplified Tying Force method (Izzuddin & Sio, 2021) for reinforced concrete structures, considering grillage and combined beam/slab floor systems, and considering the rotational ductility of such structures, which is explicitly considered in the new method.
ArticleNumber 113291
Author Sio, J.
Belletti, B.
Ravasini, S.
Franceschini, L.
Izzuddin, B.A.
Author_xml – sequence: 1
  givenname: S.
  surname: Ravasini
  fullname: Ravasini, S.
  organization: University of Parma, Department of Engineering and Architecture, Parco Area delle Scienze 181/A, Parma, Italy
– sequence: 2
  givenname: J.
  surname: Sio
  fullname: Sio, J.
  organization: Imperial College London, Department of Civil and Environmental Engineering, London SW7 2AZ, United Kingdom
– sequence: 3
  givenname: L.
  surname: Franceschini
  fullname: Franceschini, L.
  organization: University of Parma, Department of Engineering and Architecture, Parco Area delle Scienze 181/A, Parma, Italy
– sequence: 4
  givenname: B.A.
  surname: Izzuddin
  fullname: Izzuddin, B.A.
  organization: Imperial College London, Department of Civil and Environmental Engineering, London SW7 2AZ, United Kingdom
– sequence: 5
  givenname: B.
  surname: Belletti
  fullname: Belletti, B.
  email: beatrice.belletti@unipr.it
  organization: University of Parma, Department of Engineering and Architecture, Parco Area delle Scienze 181/A, Parma, Italy
BookMark eNqNkF1LwzAUhoNMcJv-Bgted540bZdeeDGGXzAQRL2TkKYnM2NNZpIK-_d2VrzwRq8OB97nfDwTMrLOIiHnFGYUaHm5maFdh-g7FWcZZHRGKcsqekTGlM9ZOmcZG5Ex0JymkFXlCZmEsAGAjHMYk9cXuTWNjMbZxOkkmHa3Ndpgk8S9setEO68waTG-uebQJN7VXYgWQ0hkCH1p0cYD-rhMtJdtTw7HdB7DKTnWchvw7LtOyfPN9dPyLl093N4vF6tUsZzFtEaqK6x1wRUDVpc514Xkuqw4Z4CAOYcC67JgFaV5rhoJGWpasrnKK9Ag2ZRcDHN33r13GKLYuM7bfqXISlrk_d-s7FNXQ0p5F4JHLZSJX69HL81WUBAHo2IjfoyKg1ExGO35-S9-500r_f4f5GIgsZfwYdCLoAxahY3x2GcbZ_6c8QlnqZlq
CitedBy_id crossref_primary_10_1016_j_engstruct_2021_113676
crossref_primary_10_1016_j_engstruct_2023_116842
crossref_primary_10_1016_j_jobe_2023_107577
crossref_primary_10_1016_j_engstruct_2023_117375
crossref_primary_10_1016_j_engstruct_2024_118057
crossref_primary_10_1016_j_jobe_2024_110570
crossref_primary_10_1016_j_engstruct_2022_115242
crossref_primary_10_1016_j_engstruct_2024_118646
crossref_primary_10_1016_j_jcsr_2023_107940
crossref_primary_10_1016_j_jobe_2022_104412
crossref_primary_10_1016_j_istruc_2023_105689
crossref_primary_10_1016_j_prostr_2024_09_269
Cites_doi 10.1680/macr.1964.16.46.39
10.3390/app11020599
10.1016/j.engstruct.2016.07.039
10.1061/(ASCE)CF.1943-5509.0000492
10.1061/(ASCE)0733-9445(1984)110:7(1513)
10.1061/(ASCE)ST.1943-541X.0000630
10.1016/j.engstruct.2017.09.043
10.1061/(ASCE)CF.1943-5509.0000493
10.1016/j.engstruct.2012.05.046
10.1016/j.engstruct.2019.05.008
10.14359/51689424
10.1016/j.engstruct.2018.04.097
10.1680/istbu.1997.29834
10.1016/j.engstruct.2019.04.083
10.1061/(ASCE)ST.1943-541X.0002090
10.1016/j.engstruct.2018.06.082
10.1061/(ASCE)ST.1943-541X.0001123
10.14359/51686739
10.1016/j.engstruct.2017.12.052
10.1680/jmacr.18.00123
10.1016/j.engstruct.2016.05.033
10.1016/j.engstruct.2007.08.011
10.1002/suco.201400119
10.1061/(ASCE)CF.1943-5509.0000680
10.1016/j.engstruct.2020.110336
10.1016/j.engstruct.2015.09.024
10.1016/j.engstruct.2017.07.060
10.1061/(ASCE)ST.1943-541X.0002214
10.14359/51688619
10.1177/1369433217746343
10.1016/j.jobe.2019.100986
10.1016/j.engstruct.2021.112259
10.1139/l90-082
10.1016/j.engfailanal.2019.104324
10.1016/j.engstruct.2013.03.026
10.1061/(ASCE)ST.1943-541X.0000959
10.1680/macr.1964.16.48.139
10.1016/j.engstruct.2017.03.039
10.1061/(ASCE)ST.1943-541X.0001046
10.1680/jmacr.17.00009
10.1177/1369433217737120
10.1016/j.istruc.2019.04.011
10.1016/j.engstruct.2016.03.051
10.1061/(ASCE)ST.1943-541X.0000658
10.1016/j.engstruct.2017.07.041
10.1016/j.engstruct.2018.05.074
10.1016/j.engstruct.2018.10.011
10.1016/j.engstruct.2016.09.061
10.1016/j.engstruct.2013.10.040
10.1680/macr.14.00293
10.1016/j.engstruct.2007.07.011
10.1061/(ASCE)CF.1943-5509.0001328
10.1016/j.engstruct.2017.06.059
10.1007/s40999-017-0253-0
10.1061/41016(314)237
10.1016/j.istruc.2020.06.011
10.1016/j.engstruct.2012.04.016
10.1680/jmacr.17.00399
10.1016/j.engstruct.2013.03.053
10.1016/j.engstruct.2017.09.059
10.1016/j.engstruct.2015.06.051
10.1061/(ASCE)CF.1943-5509.0000284
10.1061/(ASCE)ST.1943-541X.0000963
10.1016/j.engstruct.2008.01.019
10.1016/j.engstruct.2011.08.040
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.113291
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_113291
S0141029621014115
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-be1f9ebf58c303b648f5a8f698830e0e4805eb65391144cda02ef1637c490f0a3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 06:31:58 EDT 2025
Thu Oct 02 04:24:52 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Sun Apr 06 06:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Rotational Ductility
Reinforced Concrete
Robustness
Tying Force method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-be1f9ebf58c303b648f5a8f698830e0e4805eb65391144cda02ef1637c490f0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2615429636
PQPubID 2045481
ParticipantIDs proquest_journals_2615429636
crossref_citationtrail_10_1016_j_engstruct_2021_113291
crossref_primary_10_1016_j_engstruct_2021_113291
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_113291
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dat, Hai, Jun (b0255) 2015; 101
Rankin, Long (b0430) 1997; 122
Izzuddin, Sio (b0005) 2021
Jian, Zheng (b0230) 2014; 28
Kunnath, Bao, El-Tawil (b0125) 2018; 144
Adam, Parisi, Sagaseta, Lu (b0015) 2018; 173
Colombo, Martinelli, di Prisco (b0280) 2020
Ravasini S, Scalvenzi M, Parisi F, Belletti B. & Gasperi A. “Evaluation of structural robustness of precast RC structures,” in submitted to Proceeding of Italian Concrete Days 2020, 2020.
Qian, Li (b0365) 2012; 42
Mitchell, Cook (b0460) 1984; 110
Qian, Li (b0095) 2016; 113
Herraiz, Vogel (b0310) 2016; 123
Russell, Sagaseta, Cormie, Jones (b0010) 2019; 20
Wang, Peng, Kang (b0150) 2019; 191
Park (b0300) 1964; 16
Masoero, Darò, Chiaia (b0235) 2013; 54
Lim, Tan, Lee (b0260) 2018; 171
Olmati, Sagaseta, Cormie, Jones (b0160) 2017; 130
Azim I, Yang J, Bhatta S, Wang F. & Liu Q. feng, “Factors influencing the progressive collapse resistance of RC frame structures,” J. Build. Eng., vol. 27, no. October 2019, p. 100986, 2020.
Abbasnia, Nav (b0425) 2016; 17
Hawkins, Mitchell (b0455) 1979; 76
Nav, Usefi, Abbasnia (b0225) 2018; 21
Ceb-Fip, fib Model Code for Concrete Structures 2010. 2013.
Pham, Tan (b0220) 2017; 69
Parisi, Augenti (b0135) 2012; 44
Zhang, Li, Jiang (b0250) 2018; 21
Brunesi, Parisi (b0130) 2017; 152
Ferraioli (b0185) 2019; 17
Yap, Li (b0385) 2011; 108
Biondini F, Frangopol DM. & Restelli S. “On structural robustness, redundancy and static indeterminacy,” Proc. 2008 Struct. Congr. - Struct. Congr. 2008 Crossing Borders, vol. 314, 2008.
Yi, He, Kunnath (b0115) 2008; 105
Belletti, Franceschini, Ravasini (b0345) 2019; 1
Xue H. et al., “Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario,” Journal of Structural Engineering (United States) 2018; 144(7).
Yu, Tan (b0055) 2013; 139
Keyvani, Sasani, Mirzaei (b0165) 2014; 59
Azim (b0140) 2020; 27
Qian, Li (b0375) 2015; 67
Qian, Li (b0180) 2017; 148
Qian, Li (b0350) 2013; 139
Zhang, Li, Wang, Jiang (b0285) 2017
Qian, Li, He, Yi (b0355) 2013; 110
Su, Tian, Song (b0405) 2009; 106
Feng, Xie, Xu, Qian (b0330) 2020; 202
Botte, W., Droogné, D. & Caspeele, R., “Reliability-based resistance of RC element subjected to membrane action and their sensitivity to uncertainties,” Eng. Struct., vol. 238, no. April, 2021.
Droogné, Botte, Caspeele (b0315) 2018; 160
Lim, Tan, Lee (b0090) 2017; 150
Qian K. & Li B. “Dynamic Disproportionate Collapse in Flat-Slab Structures,” J. Perform. Constr. Facil., vol. 29, no. 5, 2014.
Diao M, Li Y, Guan H, Lu X. & Gilbert BP. “Influence of horizontal restraints on the behaviour of vertical disproportionate collapse of RC moment frames,” Eng. Fail. Anal., vol. 109, no. August, 2020.
Brunesi, Nascimbene, Parisi, Augenti (b0190) 2015; 104
Yu J, Luo L. zhong & Fang Q. “Structure behavior of reinforced concrete beam-slab assemblies subjected to perimeter middle column removal scenario,” Eng. Struct., vol. 208, no. February, p. 110336, 2020.
Merola (b0435) 2009
GSA, General Services Administration Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance. General Services Administration, 2016.
Pham, Lim, Tan (b0390) 2017; 150
Yi, Zhang, Kunnath (b0110) 2014; 140
Belletti B, Muttoni A, Ravasini S. & Vecchi F. “Parametric analysis on punching shear resistance of reinforced-concrete continuous slabs,” Mag. Concr. Res., vol. 71, no. 20, 2019.
Bailey, Toh, Chan (b0290) 2008; 105
Ravasini, Belletti, Brunesi, Nascimbene, Parisi (b0210) 2021; 11
Qian, Li, Ma (b0050) 2015; 141
Vecchio, Tang (b0295) 1990; 17
DoD, Unified Facilities Criteria (UFC 4-023-03): Design of Buildings To Resist Progressive Collapse. Department of Defense, Washington DC, 2016.
Lim, Tan, Lee (b0045) 2017; 153
Yu, Rinder, Stolz, Tan, Riedel (b0170) 2014; 140
Ruiz, Muttoni (b0445) 2009; 106
Kang, Tan (b0240) 2017; 141
Qian, Li (b0380) 2012; 26
Dat, Tan (b0085) 2015; 141
Park (b0305) 1964; 16
Kang, Wang, Gao (b0265) 2020; vol. 206
Qian, Li (b0360) 2013; 110
Trung, Truong, Xuan (b0395) 2019; 145
Sasani (b0195) 2008; 30
Zhang, Li, Jiang (b0245) 2019; 71
Kiakojouri, De Biagi, Chiaia, Sheidaii (b0340) 2020; 206
Lu, Lin, Li, Guan, Ren, Zhou (b0420) 2017; 149
Pham AT & Tan KH. “Static and Dynamic Responses of Reinforced Concrete Structures under Sudden Column Removal Scenario Subjected to Distributed Loading,” J. Struct. Eng. (United States), vol. 145, no. 1, 2019.
CEN-EC1, EN 1991-1-7: Eurocode 1 – actions on structures: general actions – accidental actions. Brussels: European Committee for Standardization, 2006.
Feng, Xie, Li, Jin (b0335) 2021; 89
Yu, Tan (b0410) 2013; 55
Muttoni (b0440) 2008; 105
Lew, Bao, Pujol, Sozen (b0060) 2014; 111
Izzuddin, Vlassis, Elghazouli, Nethercot (b0270) 2008; 30
Pham (b0400) 2017
Lu, Lin, Li, Li (b0145) 2018; 168
Feng, Xie, Ning, Liang (b0120) 2019; 33
Xuan Dat, Tan (b0080) 2013; 55
Qian, Weng, Li (b0175) 2018; 177
CEN-EC2, EN 1992: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Brussels: European Committee for Standardization, 2004.
Yu, Tan (b0070) 2017; 114
Wang, Kang (b0215) 2019; 192
Fernández Ruiz, Mirzaei, Muttoni (b0465) 2013; 110
Ren, Li, Lu, Guan, Zhou (b0415) 2016; 118
Qian, Li (b0370) 2015; 29
Xue (b0105) 2018; 144
Vlassis, Izzuddin, Elghazouli, Nethercot (b0275) 2008; 30
Lu (10.1016/j.engstruct.2021.113291_b0145) 2018; 168
Yu (10.1016/j.engstruct.2021.113291_b0170) 2014; 140
Pham (10.1016/j.engstruct.2021.113291_b0390) 2017; 150
Sasani (10.1016/j.engstruct.2021.113291_b0195) 2008; 30
Qian (10.1016/j.engstruct.2021.113291_b0380) 2012; 26
Lew (10.1016/j.engstruct.2021.113291_b0060) 2014; 111
Zhang (10.1016/j.engstruct.2021.113291_b0250) 2018; 21
10.1016/j.engstruct.2021.113291_b0030
Feng (10.1016/j.engstruct.2021.113291_b0335) 2021; 89
10.1016/j.engstruct.2021.113291_b0470
10.1016/j.engstruct.2021.113291_b0075
Parisi (10.1016/j.engstruct.2021.113291_b0135) 2012; 44
Mitchell (10.1016/j.engstruct.2021.113291_b0460) 1984; 110
Yi (10.1016/j.engstruct.2021.113291_b0110) 2014; 140
Qian (10.1016/j.engstruct.2021.113291_b0375) 2015; 67
10.1016/j.engstruct.2021.113291_b0155
10.1016/j.engstruct.2021.113291_b0035
Bailey (10.1016/j.engstruct.2021.113291_b0290) 2008; 105
Vecchio (10.1016/j.engstruct.2021.113291_b0295) 1990; 17
Pham (10.1016/j.engstruct.2021.113291_b0220) 2017; 69
Jian (10.1016/j.engstruct.2021.113291_b0230) 2014; 28
Yu (10.1016/j.engstruct.2021.113291_b0070) 2017; 114
Herraiz (10.1016/j.engstruct.2021.113291_b0310) 2016; 123
Feng (10.1016/j.engstruct.2021.113291_b0120) 2019; 33
Park (10.1016/j.engstruct.2021.113291_b0300) 1964; 16
Masoero (10.1016/j.engstruct.2021.113291_b0235) 2013; 54
Ruiz (10.1016/j.engstruct.2021.113291_b0445) 2009; 106
10.1016/j.engstruct.2021.113291_b0040
Kiakojouri (10.1016/j.engstruct.2021.113291_b0340) 2020; 206
Wang (10.1016/j.engstruct.2021.113291_b0150) 2019; 191
Izzuddin (10.1016/j.engstruct.2021.113291_b0005) 2021
Lim (10.1016/j.engstruct.2021.113291_b0045) 2017; 153
Colombo (10.1016/j.engstruct.2021.113291_b0280) 2020
Azim (10.1016/j.engstruct.2021.113291_b0140) 2020; 27
Trung (10.1016/j.engstruct.2021.113291_b0395) 2019; 145
Russell (10.1016/j.engstruct.2021.113291_b0010) 2019; 20
10.1016/j.engstruct.2021.113291_b0325
10.1016/j.engstruct.2021.113291_b0205
Qian (10.1016/j.engstruct.2021.113291_b0180) 2017; 148
Vlassis (10.1016/j.engstruct.2021.113291_b0275) 2008; 30
10.1016/j.engstruct.2021.113291_b0320
10.1016/j.engstruct.2021.113291_b0200
Qian (10.1016/j.engstruct.2021.113291_b0350) 2013; 139
Qian (10.1016/j.engstruct.2021.113291_b0175) 2018; 177
Ferraioli (10.1016/j.engstruct.2021.113291_b0185) 2019; 17
Ren (10.1016/j.engstruct.2021.113291_b0415) 2016; 118
Fernández Ruiz (10.1016/j.engstruct.2021.113291_b0465) 2013; 110
Abbasnia (10.1016/j.engstruct.2021.113291_b0425) 2016; 17
Zhang (10.1016/j.engstruct.2021.113291_b0245) 2019; 71
Droogné (10.1016/j.engstruct.2021.113291_b0315) 2018; 160
Kang (10.1016/j.engstruct.2021.113291_b0240) 2017; 141
Lu (10.1016/j.engstruct.2021.113291_b0420) 2017; 149
Qian (10.1016/j.engstruct.2021.113291_b0095) 2016; 113
Yap (10.1016/j.engstruct.2021.113291_b0385) 2011; 108
Wang (10.1016/j.engstruct.2021.113291_b0215) 2019; 192
Dat (10.1016/j.engstruct.2021.113291_b0255) 2015; 101
Feng (10.1016/j.engstruct.2021.113291_b0330) 2020; 202
Belletti (10.1016/j.engstruct.2021.113291_b0345) 2019; 1
Qian (10.1016/j.engstruct.2021.113291_b0355) 2013; 110
Yi (10.1016/j.engstruct.2021.113291_b0115) 2008; 105
Muttoni (10.1016/j.engstruct.2021.113291_b0440) 2008; 105
10.1016/j.engstruct.2021.113291_b0450
Dat (10.1016/j.engstruct.2021.113291_b0085) 2015; 141
Qian (10.1016/j.engstruct.2021.113291_b0370) 2015; 29
Rankin (10.1016/j.engstruct.2021.113291_b0430) 1997; 122
Olmati (10.1016/j.engstruct.2021.113291_b0160) 2017; 130
Nav (10.1016/j.engstruct.2021.113291_b0225) 2018; 21
Yu (10.1016/j.engstruct.2021.113291_b0410) 2013; 55
Brunesi (10.1016/j.engstruct.2021.113291_b0130) 2017; 152
Pham (10.1016/j.engstruct.2021.113291_b0400) 2017
Merola (10.1016/j.engstruct.2021.113291_b0435) 2009
Yu (10.1016/j.engstruct.2021.113291_b0055) 2013; 139
Hawkins (10.1016/j.engstruct.2021.113291_b0455) 1979; 76
Keyvani (10.1016/j.engstruct.2021.113291_b0165) 2014; 59
10.1016/j.engstruct.2021.113291_b0020
Izzuddin (10.1016/j.engstruct.2021.113291_b0270) 2008; 30
10.1016/j.engstruct.2021.113291_b0065
Brunesi (10.1016/j.engstruct.2021.113291_b0190) 2015; 104
Kang (10.1016/j.engstruct.2021.113291_b0265) 2020; vol. 206
Lim (10.1016/j.engstruct.2021.113291_b0260) 2018; 171
Ravasini (10.1016/j.engstruct.2021.113291_b0210) 2021; 11
Qian (10.1016/j.engstruct.2021.113291_b0050) 2015; 141
Lim (10.1016/j.engstruct.2021.113291_b0090) 2017; 150
Qian (10.1016/j.engstruct.2021.113291_b0365) 2012; 42
Park (10.1016/j.engstruct.2021.113291_b0305) 1964; 16
Adam (10.1016/j.engstruct.2021.113291_b0015) 2018; 173
10.1016/j.engstruct.2021.113291_b0100
10.1016/j.engstruct.2021.113291_b0025
Xuan Dat (10.1016/j.engstruct.2021.113291_b0080) 2013; 55
Xue (10.1016/j.engstruct.2021.113291_b0105) 2018; 144
Qian (10.1016/j.engstruct.2021.113291_b0360) 2013; 110
Zhang (10.1016/j.engstruct.2021.113291_b0285) 2017
Su (10.1016/j.engstruct.2021.113291_b0405) 2009; 106
Kunnath (10.1016/j.engstruct.2021.113291_b0125) 2018; 144
References_xml – volume: 144
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0105
  article-title: Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario
  publication-title: J. Struct. Eng. (United States)
– volume: 27
  start-page: 1231
  year: 2020
  end-page: 1245
  ident: b0140
  article-title: Semi-analytical model for compressive arch action capacity of RC frame structures
  publication-title: Structures
– volume: 192
  start-page: 145
  year: 2019
  end-page: 155
  ident: b0215
  article-title: Analytical investigation on catenary action in axially-restrained reinforced concrete beams
  publication-title: Eng. Struct.
– volume: 59
  start-page: 554
  year: 2014
  end-page: 564
  ident: b0165
  article-title: Compressive membrane action in progressive collapse resistance of RC flat plates
  publication-title: Eng. Struct.
– volume: 110
  start-page: 319
  year: 2013
  end-page: 330
  ident: b0360
  article-title: Experimental study of drop-panel effects on response of Reinforced Concrete flat slabs after loss of corner column
  publication-title: ACI Struct. J.
– volume: vol. 206
  year: 2020
  ident: b0265
  article-title: Analytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action
  publication-title: Eng. Struct.
– reference: Xue H. et al., “Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario,” Journal of Structural Engineering (United States) 2018; 144(7).
– volume: 33
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0120
  article-title: Investigation of Modeling Strategies for Progressive Collapse Analysis of RC Frame Structures
  publication-title: J. Perform. Constr. Facil.
– year: 2021
  ident: b0005
  article-title: Rational Horizontal Tying Force Method for Practical Robustness Design of Building Structures
  publication-title: Under Rev.
– volume: 20
  start-page: 365
  year: 2019
  end-page: 373
  ident: b0010
  article-title: Historical review of prescriptive design rules for robustness after the collapse of Ronan Point
  publication-title: Structures
– volume: 206
  year: 2020
  ident: b0340
  article-title: Progressive collapse of framed building structures: Current knowledge and future prospects
  publication-title: Eng. Struct.
– volume: 140
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0110
  article-title: Progressive Collapse Performance of RC Flat Plate Frame Structures
  publication-title: J. Struct. Eng.
– volume: 105
  start-page: 440
  year: 2008
  end-page: 450
  ident: b0440
  article-title: Punching shear strength of reinforced concrete slabs without transverse reinforcement
  publication-title: ACI Struct. J.
– volume: 30
  start-page: 1308
  year: 2008
  end-page: 1318
  ident: b0270
  article-title: Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework
  publication-title: Eng. Struct.
– volume: 17
  start-page: 686
  year: 1990
  end-page: 697
  ident: b0295
  article-title: Membrane action in reinforced concrete slabs
  publication-title: Can. J. Civ. Eng.
– reference: Ceb-Fip, fib Model Code for Concrete Structures 2010. 2013.
– volume: 153
  start-page: 613
  year: 2017
  end-page: 627
  ident: b0045
  article-title: Effects of rotational capacity and horizontal restraint on development of catenary action in 2-D RC frames
  publication-title: Eng. Struct.
– volume: 149
  start-page: 91
  year: 2017
  end-page: 103
  ident: b0420
  article-title: Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario
  publication-title: Eng. Struct.
– reference: CEN-EC2, EN 1992: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Brussels: European Committee for Standardization, 2004.
– volume: 54
  start-page: 94
  year: 2013
  end-page: 102
  ident: b0235
  article-title: Progressive collapse of 2D framed structures: An analytical model
  publication-title: Eng. Struct.
– reference: Ravasini S, Scalvenzi M, Parisi F, Belletti B. & Gasperi A. “Evaluation of structural robustness of precast RC structures,” in submitted to Proceeding of Italian Concrete Days 2020, 2020.
– volume: 111
  start-page: 881
  year: 2014
  end-page: 892
  ident: b0060
  article-title: Experimental study of reinforced concrete assemblies under column removal scenario
  publication-title: ACI Struct. J.
– volume: 26
  start-page: 576
  year: 2012
  end-page: 589
  ident: b0380
  article-title: Experimental and analytical assessment on RC interior beam-column subassemblages for progressive collapse
  publication-title: J. Perform. Constr. Facil.
– volume: 55
  start-page: 90
  year: 2013
  end-page: 106
  ident: b0410
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
– volume: 152
  start-page: 579
  year: 2017
  end-page: 596
  ident: b0130
  article-title: Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis
  publication-title: Eng. Struct.
– volume: 17
  start-page: 281
  year: 2019
  end-page: 303
  ident: b0185
  article-title: Dynamic Increase Factor for Nonlinear Static Analysis of RC Frame Buildings Against Progressive Collapse
  publication-title: Int. J. Civ. Eng.
– volume: 28
  start-page: 1
  year: 2014
  end-page: 7
  ident: b0230
  article-title: Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures
  publication-title: J. Perform. Constr. Facil.
– volume: 67
  start-page: 349
  year: 2015
  end-page: 363
  ident: b0375
  article-title: Load-resisting mechanism to mitigate progressive collapse of flat slab structures
  publication-title: Mag. Concr. Res.
– volume: 173
  start-page: 122
  year: 2018
  end-page: 149
  ident: b0015
  article-title: Research and practice on progressive collapse and robustness of building structures in the 21st century
  publication-title: Eng. Struct.
– volume: 16
  start-page: 139
  year: 1964
  end-page: 152
  ident: b0305
  article-title: The ultimate strength and long-term behaviour of uniformly loaded, two-way concrete slabs with partial lateral restraint at all edges
  publication-title: Mag. Concr. Res.
– volume: 71
  start-page: 647
  year: 2019
  end-page: 663
  ident: b0245
  article-title: Collapse resistance of RC beam-slab subassemblies due to column loss at large deflections
  publication-title: Mag. Concr. Res.
– volume: 171
  start-page: 696
  year: 2018
  end-page: 711
  ident: b0260
  article-title: A simplified model for alternate load path assessment in RC structures
  publication-title: Eng. Struct.
– volume: 106
  start-page: 485
  year: 2009
  end-page: 494
  ident: b0445
  article-title: Applications of critical shear crack theory to punching of reinforced concrete slabs with transverse reinforcement
  publication-title: ACI Struct. J.
– reference: Botte, W., Droogné, D. & Caspeele, R., “Reliability-based resistance of RC element subjected to membrane action and their sensitivity to uncertainties,” Eng. Struct., vol. 238, no. April, 2021.
– volume: 113
  start-page: 537
  year: 2016
  end-page: 548
  ident: b0095
  article-title: Resilience of flat slab structures in different phases of progressive collapse
  publication-title: ACI Struct. J.
– volume: 141
  start-page: 373
  year: 2017
  end-page: 385
  ident: b0240
  article-title: Analytical study on reinforced concrete frames subject to compressive arch action
  publication-title: Eng. Struct.
– volume: 69
  start-page: 1115
  year: 2017
  end-page: 1134
  ident: b0220
  article-title: A simplified model of catenary action in reinforced concrete frames under axially restrained conditions
  publication-title: Mag. Concr. Res.
– volume: 30
  start-page: 2478
  year: 2008
  end-page: 2491
  ident: b0195
  article-title: Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns
  publication-title: Eng. Struct.
– start-page: 1
  year: 2020
  end-page: 11
  ident: b0280
  article-title: A Design Approach to Evaluate the Load-Carrying Capacity of Reinforced Concrete Slabs Considering Tensile Membrane Action
  publication-title: Struct. Eng. Int.
– volume: 139
  start-page: 233
  year: 2013
  end-page: 250
  ident: b0055
  article-title: Structural behavior of RC beam-column subassemblages under a middle column removal scenario
  publication-title: J. Struct. Eng.
– volume: 144
  start-page: 1
  year: 2018
  end-page: 18
  ident: b0125
  article-title: Advances in Computational Simulation of Gravity-Induced Disproportionate Collapse of RC Frame Buildings
  publication-title: J. Struct. Eng. (United States)
– volume: 101
  start-page: 45
  year: 2015
  end-page: 57
  ident: b0255
  article-title: A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures
  publication-title: Eng. Struct.
– volume: 44
  start-page: 78
  year: 2012
  end-page: 93
  ident: b0135
  article-title: Influence of seismic design criteria on blast resistance of RC framed buildings: A case study
  publication-title: Eng. Struct.
– volume: 21
  start-page: 1051
  year: 2018
  end-page: 1071
  ident: b0250
  article-title: Modeling structural behavior of reinforced concrete beam–slab substructures subject to side-column loss at large deflections
  publication-title: Adv. Struct. Eng.
– volume: 89
  year: 2021
  ident: b0335
  article-title: Time-dependent reliability-based redundancy assessment of deteriorated RC structures against progressive collapse considering corrosion effect
  publication-title: Struct. Saf.
– volume: 30
  start-page: 1424
  year: 2008
  end-page: 1438
  ident: b0275
  article-title: Progressive collapse of multi-storey buildings due to sudden column loss-Part II: Application
  publication-title: Eng. Struct.
– volume: 110
  start-page: 1513
  year: 1984
  end-page: 1532
  ident: b0460
  article-title: Preventing Progressive Collapse of Slab Structures
  publication-title: J. Struct. Eng.
– reference: DoD, Unified Facilities Criteria (UFC 4-023-03): Design of Buildings To Resist Progressive Collapse. Department of Defense, Washington DC, 2016.
– volume: 105
  start-page: 30
  year: 2008
  end-page: 40
  ident: b0290
  article-title: Simplified and advanced analysis of membrane action of concrete slabs
  publication-title: ACI Struct. J.
– volume: 55
  start-page: 2
  year: 2013
  end-page: 15
  ident: b0080
  article-title: Experimental study of beam-slab substructures subjected to a penultimate-internal column loss
  publication-title: Eng. Struct.
– volume: 29
  start-page: 1
  year: 2015
  end-page: 14
  ident: b0370
  article-title: Analytical evaluation of the vulnerability of RC frames for progressive collapse caused by the loss of a corner column
  publication-title: J. Perform. Constr. Facil.
– reference: Yu J, Luo L. zhong & Fang Q. “Structure behavior of reinforced concrete beam-slab assemblies subjected to perimeter middle column removal scenario,” Eng. Struct., vol. 208, no. February, p. 110336, 2020.
– year: 2017
  ident: b0400
  article-title: Responses of reinforced concrete structures under progressive collapse subjected to different loading methods and loading rates
  publication-title: Nanynang Technological University, PhD Thesis
– reference: Azim I, Yang J, Bhatta S, Wang F. & Liu Q. feng, “Factors influencing the progressive collapse resistance of RC frame structures,” J. Build. Eng., vol. 27, no. October 2019, p. 100986, 2020.
– volume: 202
  year: 2020
  ident: b0330
  article-title: Robustness quantification of reinforced concrete structures subjected to progressive collapse via the probability density evolution method
  publication-title: Eng. Struct.
– reference: Diao M, Li Y, Guan H, Lu X. & Gilbert BP. “Influence of horizontal restraints on the behaviour of vertical disproportionate collapse of RC moment frames,” Eng. Fail. Anal., vol. 109, no. August, 2020.
– volume: 191
  start-page: 479
  year: 2019
  end-page: 492
  ident: b0150
  article-title: Evaluation of compressive arch action of reinforced concrete beams and development of design method
  publication-title: Eng. Struct.
– reference: Qian K. & Li B. “Dynamic Disproportionate Collapse in Flat-Slab Structures,” J. Perform. Constr. Facil., vol. 29, no. 5, 2014.
– volume: 21
  start-page: 1388
  year: 2018
  end-page: 1401
  ident: b0225
  article-title: Analytical investigation of reinforced concrete frames under middle column removal scenario
  publication-title: Adv. Struct. Eng.
– volume: 114
  start-page: 63
  year: 2017
  end-page: 74
  ident: b0070
  article-title: Structural behavior of reinforced concrete frames subjected to progressive collapse
  publication-title: ACI Struct. J.
– year: 2017
  ident: b0285
  article-title: “Theoretical investigations on load-bearing capacity of RC flatplate framed structures.pdf”,
  publication-title: Build.
– volume: 106
  start-page: 600
  year: 2009
  end-page: 607
  ident: b0405
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct. J.
– volume: 16
  start-page: 39
  year: 1964
  end-page: 44
  ident: b0300
  article-title: Tensile membrane behaviour of uniformly loaded rectangular reinforced concrete slabs with fully restrained edges
  publication-title: Mag. Concr. Res.
– volume: 108
  start-page: 543
  year: 2011
  end-page: 587
  ident: b0385
  article-title: Experimental Investigation of Reinforced Concrete Exterior Beam-Column Subassemblages for Progressive Collapse
  publication-title: ACI Struct. J.
– year: 2009
  ident: b0435
  article-title: Ductility and robustness of concrete structures under accidental and malicious load cases
– reference: GSA, General Services Administration Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance. General Services Administration, 2016.
– reference: Pham AT & Tan KH. “Static and Dynamic Responses of Reinforced Concrete Structures under Sudden Column Removal Scenario Subjected to Distributed Loading,” J. Struct. Eng. (United States), vol. 145, no. 1, 2019.
– volume: 145
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0395
  article-title: Effects of Reinforcement Discontinuity on the Collapse Behavior of Reinforced Concrete Beam-Slab Structures Subjected to Column Removal
  publication-title: J. Struct. Eng. (United States)
– volume: 105
  start-page: 433
  year: 2008
  end-page: 439
  ident: b0115
  article-title: Experimental Study on Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures
  publication-title: ACI Struct. J.
– volume: 17
  start-page: 21
  year: 2016
  end-page: 31
  ident: b0425
  article-title: A theoretical method for calculating the compressive arch capacity of RC beams against progressive collapse
  publication-title: Struct. Concr.
– volume: 76
  start-page: 775
  year: 1979
  end-page: 808
  ident: b0455
  article-title: Progressive Collapse of Flat Plate Structures
  publication-title: ACI Struct. J.
– volume: 139
  start-page: 584
  year: 2013
  end-page: 594
  ident: b0350
  article-title: Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario
  publication-title: J. Struct. Eng.
– volume: 150
  start-page: 520
  year: 2017
  end-page: 536
  ident: b0390
  article-title: Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions
  publication-title: Eng. Struct.
– volume: 150
  start-page: 409
  year: 2017
  end-page: 427
  ident: b0090
  article-title: Experimental studies of 3D RC substructures under exterior and corner column removal scenarios
  publication-title: Eng. Struct.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 22
  ident: b0210
  article-title: Nonlinear Dynamic Response of a Precast Concrete Building to Sudden Column Removal
  publication-title: Appl. Sci.
– volume: 110
  start-page: 801
  year: 2013
  end-page: 811
  ident: b0465
  article-title: Post-Punching Behavior of Flat Slabs
  publication-title: ACI Struct. J.
– volume: 130
  start-page: 83
  year: 2017
  end-page: 98
  ident: b0160
  article-title: Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions
  publication-title: Eng. Struct.
– volume: 141
  start-page: 1
  year: 2015
  end-page: 12
  ident: b0085
  article-title: Experimental response of beam-slab substructures subject to penultimate-external column removal
  publication-title: J. Struct. Eng.
– volume: 104
  start-page: 65
  year: 2015
  end-page: 79
  ident: b0190
  article-title: Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis
  publication-title: Eng. Struct.
– volume: 140
  start-page: 1
  year: 2014
  end-page: 13
  ident: b0170
  article-title: Dynamic progressive collapse of an RC assemblage induced by contact detonation
  publication-title: J. Struct. Eng.
– reference: CEN-EC1, EN 1991-1-7: Eurocode 1 – actions on structures: general actions – accidental actions. Brussels: European Committee for Standardization, 2006.
– volume: 148
  start-page: 175
  year: 2017
  end-page: 184
  ident: b0180
  article-title: Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column
  publication-title: Eng. Struct.
– volume: 177
  start-page: 598
  year: 2018
  end-page: 615
  ident: b0175
  article-title: Impact of two columns missing on dynamic response of RC flat slab structures
  publication-title: Eng. Struct.
– volume: 160
  start-page: 56
  year: 2018
  end-page: 70
  ident: b0315
  article-title: A multilevel calculation scheme for risk-based robustness quantification of reinforced concrete frames
  publication-title: Eng. Struct.
– reference: Biondini F, Frangopol DM. & Restelli S. “On structural robustness, redundancy and static indeterminacy,” Proc. 2008 Struct. Congr. - Struct. Congr. 2008 Crossing Borders, vol. 314, 2008.
– volume: 110
  start-page: 845
  year: 2013
  end-page: 855
  ident: b0355
  article-title: Slab effects on response of reinforced concrete substructures after loss of corner column
  publication-title: ACI Struct. J.
– volume: 122
  start-page: 461
  year: 1997
  end-page: 467
  ident: b0430
  article-title: Arching action strength enhancement in laterally-restrained slab strips
  publication-title: Proc. Inst. Civ. Eng. Struct. Build.
– volume: 141
  start-page: 1
  year: 2015
  end-page: 14
  ident: b0050
  article-title: Load-carrying mechanism to resist progressive collapse of RC buildings
  publication-title: J. Struct. Eng.
– volume: 168
  start-page: 721
  year: 2018
  end-page: 735
  ident: b0145
  article-title: New analytical calculation models for compressive arch action in reinforced concrete structures
  publication-title: Eng. Struct.
– volume: 1
  start-page: 57
  year: 2019
  end-page: 64
  ident: b0345
  article-title: Tie force method for reinforced concrete structures
  publication-title: Proceedings of the International fib Symposium on Conceptual Design of Structures
– volume: 118
  start-page: 28
  year: 2016
  end-page: 40
  ident: b0415
  article-title: Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario
  publication-title: Eng. Struct.
– reference: Belletti B, Muttoni A, Ravasini S. & Vecchi F. “Parametric analysis on punching shear resistance of reinforced-concrete continuous slabs,” Mag. Concr. Res., vol. 71, no. 20, 2019.
– volume: 123
  start-page: 313
  year: 2016
  end-page: 329
  ident: b0310
  article-title: Novel design approach for the analysis of laterally unrestrained reinforced concrete slabs considering membrane action
  publication-title: Eng. Struct.
– volume: 42
  start-page: 154
  year: 2012
  end-page: 167
  ident: b0365
  article-title: Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column-Experimental results
  publication-title: Eng. Struct.
– volume: 144
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0125
  article-title: Advances in Computational Simulation of Gravity-Induced Disproportionate Collapse of RC Frame Buildings
  publication-title: J. Struct. Eng. (United States)
– volume: 16
  start-page: 39
  issue: 46
  year: 1964
  ident: 10.1016/j.engstruct.2021.113291_b0300
  article-title: Tensile membrane behaviour of uniformly loaded rectangular reinforced concrete slabs with fully restrained edges
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.1964.16.46.39
– volume: 11
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.engstruct.2021.113291_b0210
  article-title: Nonlinear Dynamic Response of a Precast Concrete Building to Sudden Column Removal
  publication-title: Appl. Sci.
  doi: 10.3390/app11020599
– volume: 149
  start-page: 91
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0420
  article-title: Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.07.039
– volume: 28
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2021.113291_b0230
  article-title: Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000492
– volume: 110
  start-page: 1513
  issue: 7
  year: 1984
  ident: 10.1016/j.engstruct.2021.113291_b0460
  article-title: Preventing Progressive Collapse of Slab Structures
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1984)110:7(1513)
– volume: 145
  start-page: 1
  issue: 11
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0395
  article-title: Effects of Reinforcement Discontinuity on the Collapse Behavior of Reinforced Concrete Beam-Slab Structures Subjected to Column Removal
  publication-title: J. Struct. Eng. (United States)
– ident: 10.1016/j.engstruct.2021.113291_b0035
– year: 2009
  ident: 10.1016/j.engstruct.2021.113291_b0435
– volume: 202
  issue: November
  year: 2020
  ident: 10.1016/j.engstruct.2021.113291_b0330
  article-title: Robustness quantification of reinforced concrete structures subjected to progressive collapse via the probability density evolution method
  publication-title: Eng. Struct.
– volume: 139
  start-page: 584
  issue: 4
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0350
  article-title: Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000630
– year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0285
  article-title: “Theoretical investigations on load-bearing capacity of RC flatplate framed structures.pdf”, Struct Des. Tall Spec
  publication-title: Build.
– volume: 152
  start-page: 579
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0130
  article-title: Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.09.043
– volume: 29
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.engstruct.2021.113291_b0370
  article-title: Analytical evaluation of the vulnerability of RC frames for progressive collapse caused by the loss of a corner column
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000493
– volume: 44
  start-page: 78
  year: 2012
  ident: 10.1016/j.engstruct.2021.113291_b0135
  article-title: Influence of seismic design criteria on blast resistance of RC framed buildings: A case study
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2012.05.046
– volume: vol. 206
  issue: no. July
  year: 2020
  ident: 10.1016/j.engstruct.2021.113291_b0265
  article-title: Analytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action
  publication-title: Eng. Struct.
– volume: 192
  start-page: 145
  issue: February
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0215
  article-title: Analytical investigation on catenary action in axially-restrained reinforced concrete beams
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.05.008
– volume: 114
  start-page: 63
  issue: 1
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0070
  article-title: Structural behavior of reinforced concrete frames subjected to progressive collapse
  publication-title: ACI Struct. J.
  doi: 10.14359/51689424
– volume: 168
  start-page: 721
  issue: April
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0145
  article-title: New analytical calculation models for compressive arch action in reinforced concrete structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.04.097
– volume: 122
  start-page: 461
  issue: 4
  year: 1997
  ident: 10.1016/j.engstruct.2021.113291_b0430
  article-title: Arching action strength enhancement in laterally-restrained slab strips
  publication-title: Proc. Inst. Civ. Eng. Struct. Build.
  doi: 10.1680/istbu.1997.29834
– volume: 191
  start-page: 479
  issue: February
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0150
  article-title: Evaluation of compressive arch action of reinforced concrete beams and development of design method
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.04.083
– ident: 10.1016/j.engstruct.2021.113291_b0470
  doi: 10.1061/(ASCE)ST.1943-541X.0002090
– volume: 173
  start-page: 122
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0015
  article-title: Research and practice on progressive collapse and robustness of building structures in the 21st century
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.06.082
– volume: 141
  start-page: 1
  issue: 7
  year: 2015
  ident: 10.1016/j.engstruct.2021.113291_b0085
  article-title: Experimental response of beam-slab substructures subject to penultimate-external column removal
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001123
– volume: 110
  start-page: 319
  issue: 28
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0360
  article-title: Experimental study of drop-panel effects on response of Reinforced Concrete flat slabs after loss of corner column
  publication-title: ACI Struct. J.
– volume: 111
  start-page: 881
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2021.113291_b0060
  article-title: Experimental study of reinforced concrete assemblies under column removal scenario
  publication-title: ACI Struct. J.
  doi: 10.14359/51686739
– year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0400
  article-title: Responses of reinforced concrete structures under progressive collapse subjected to different loading methods and loading rates
  publication-title: Nanynang Technological University, PhD Thesis
– volume: 160
  start-page: 56
  issue: January
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0315
  article-title: A multilevel calculation scheme for risk-based robustness quantification of reinforced concrete frames
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.12.052
– ident: 10.1016/j.engstruct.2021.113291_b0155
  doi: 10.1680/jmacr.18.00123
– volume: 144
  start-page: 1
  issue: 7
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0105
  article-title: Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario
  publication-title: J. Struct. Eng. (United States)
– volume: 123
  start-page: 313
  year: 2016
  ident: 10.1016/j.engstruct.2021.113291_b0310
  article-title: Novel design approach for the analysis of laterally unrestrained reinforced concrete slabs considering membrane action
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.05.033
– volume: 110
  start-page: 845
  issue: 5
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0355
  article-title: Slab effects on response of reinforced concrete substructures after loss of corner column
  publication-title: ACI Struct. J.
– volume: 30
  start-page: 1424
  issue: 5
  year: 2008
  ident: 10.1016/j.engstruct.2021.113291_b0275
  article-title: Progressive collapse of multi-storey buildings due to sudden column loss-Part II: Application
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2007.08.011
– volume: 17
  start-page: 21
  issue: 1
  year: 2016
  ident: 10.1016/j.engstruct.2021.113291_b0425
  article-title: A theoretical method for calculating the compressive arch capacity of RC beams against progressive collapse
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201400119
– ident: 10.1016/j.engstruct.2021.113291_b0200
  doi: 10.1061/(ASCE)CF.1943-5509.0000680
– volume: 105
  start-page: 30
  issue: 1
  year: 2008
  ident: 10.1016/j.engstruct.2021.113291_b0290
  article-title: Simplified and advanced analysis of membrane action of concrete slabs
  publication-title: ACI Struct. J.
– ident: 10.1016/j.engstruct.2021.113291_b0025
– volume: 105
  start-page: 433
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2021.113291_b0115
  article-title: Experimental Study on Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures
  publication-title: ACI Struct. J.
– volume: 105
  start-page: 440
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2021.113291_b0440
  article-title: Punching shear strength of reinforced concrete slabs without transverse reinforcement
  publication-title: ACI Struct. J.
– ident: 10.1016/j.engstruct.2021.113291_b0100
  doi: 10.1016/j.engstruct.2020.110336
– volume: 104
  start-page: 65
  year: 2015
  ident: 10.1016/j.engstruct.2021.113291_b0190
  article-title: Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.09.024
– volume: 150
  start-page: 520
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0390
  article-title: Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.07.060
– ident: 10.1016/j.engstruct.2021.113291_b0065
  doi: 10.1061/(ASCE)ST.1943-541X.0002214
– volume: 89
  issue: October
  year: 2021
  ident: 10.1016/j.engstruct.2021.113291_b0335
  article-title: Time-dependent reliability-based redundancy assessment of deteriorated RC structures against progressive collapse considering corrosion effect
  publication-title: Struct. Saf.
– year: 2021
  ident: 10.1016/j.engstruct.2021.113291_b0005
  article-title: Rational Horizontal Tying Force Method for Practical Robustness Design of Building Structures
  publication-title: Under Rev.
– volume: 113
  start-page: 537
  issue: 3
  year: 2016
  ident: 10.1016/j.engstruct.2021.113291_b0095
  article-title: Resilience of flat slab structures in different phases of progressive collapse
  publication-title: ACI Struct. J.
  doi: 10.14359/51688619
– ident: 10.1016/j.engstruct.2021.113291_b0205
– volume: 21
  start-page: 1388
  issue: 9
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0225
  article-title: Analytical investigation of reinforced concrete frames under middle column removal scenario
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433217746343
– ident: 10.1016/j.engstruct.2021.113291_b0020
  doi: 10.1016/j.jobe.2019.100986
– ident: 10.1016/j.engstruct.2021.113291_b0325
  doi: 10.1016/j.engstruct.2021.112259
– volume: 1
  start-page: 57
  issue: 1
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0345
  article-title: Tie force method for reinforced concrete structures
  publication-title: Proceedings of the International fib Symposium on Conceptual Design of Structures
– volume: 17
  start-page: 686
  year: 1990
  ident: 10.1016/j.engstruct.2021.113291_b0295
  article-title: Membrane action in reinforced concrete slabs
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/l90-082
– ident: 10.1016/j.engstruct.2021.113291_b0075
  doi: 10.1016/j.engfailanal.2019.104324
– volume: 55
  start-page: 2
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0080
  article-title: Experimental study of beam-slab substructures subjected to a penultimate-internal column loss
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.03.026
– volume: 140
  start-page: 1
  issue: 6
  year: 2014
  ident: 10.1016/j.engstruct.2021.113291_b0170
  article-title: Dynamic progressive collapse of an RC assemblage induced by contact detonation
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000959
– volume: 16
  start-page: 139
  issue: 48
  year: 1964
  ident: 10.1016/j.engstruct.2021.113291_b0305
  article-title: The ultimate strength and long-term behaviour of uniformly loaded, two-way concrete slabs with partial lateral restraint at all edges
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.1964.16.48.139
– start-page: 1
  year: 2020
  ident: 10.1016/j.engstruct.2021.113291_b0280
  article-title: A Design Approach to Evaluate the Load-Carrying Capacity of Reinforced Concrete Slabs Considering Tensile Membrane Action
  publication-title: Struct. Eng. Int.
– volume: 76
  start-page: 775
  issue: 34
  year: 1979
  ident: 10.1016/j.engstruct.2021.113291_b0455
  article-title: Progressive Collapse of Flat Plate Structures
  publication-title: ACI Struct. J.
– volume: 141
  start-page: 373
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0240
  article-title: Analytical study on reinforced concrete frames subject to compressive arch action
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.03.039
– volume: 110
  start-page: 801
  issue: 5
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0465
  article-title: Post-Punching Behavior of Flat Slabs
  publication-title: ACI Struct. J.
– volume: 141
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.engstruct.2021.113291_b0050
  article-title: Load-carrying mechanism to resist progressive collapse of RC buildings
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001046
– volume: 69
  start-page: 1115
  issue: 21
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0220
  article-title: A simplified model of catenary action in reinforced concrete frames under axially restrained conditions
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.17.00009
– volume: 21
  start-page: 1051
  issue: 7
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0250
  article-title: Modeling structural behavior of reinforced concrete beam–slab substructures subject to side-column loss at large deflections
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433217737120
– volume: 20
  start-page: 365
  issue: April
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0010
  article-title: Historical review of prescriptive design rules for robustness after the collapse of Ronan Point
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.04.011
– ident: 10.1016/j.engstruct.2021.113291_b0450
– volume: 118
  start-page: 28
  year: 2016
  ident: 10.1016/j.engstruct.2021.113291_b0415
  article-title: Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.03.051
– volume: 139
  start-page: 233
  issue: 2
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0055
  article-title: Structural behavior of RC beam-column subassemblages under a middle column removal scenario
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000658
– volume: 150
  start-page: 409
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0090
  article-title: Experimental studies of 3D RC substructures under exterior and corner column removal scenarios
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.07.041
– volume: 171
  start-page: 696
  issue: May
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0260
  article-title: A simplified model for alternate load path assessment in RC structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.05.074
– volume: 177
  start-page: 598
  issue: September
  year: 2018
  ident: 10.1016/j.engstruct.2021.113291_b0175
  article-title: Impact of two columns missing on dynamic response of RC flat slab structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.10.011
– volume: 130
  start-page: 83
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0160
  article-title: Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.09.061
– volume: 59
  start-page: 554
  year: 2014
  ident: 10.1016/j.engstruct.2021.113291_b0165
  article-title: Compressive membrane action in progressive collapse resistance of RC flat plates
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.10.040
– volume: 67
  start-page: 349
  issue: 7
  year: 2015
  ident: 10.1016/j.engstruct.2021.113291_b0375
  article-title: Load-resisting mechanism to mitigate progressive collapse of flat slab structures
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.14.00293
– volume: 30
  start-page: 1308
  issue: 5
  year: 2008
  ident: 10.1016/j.engstruct.2021.113291_b0270
  article-title: Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2007.07.011
– volume: 33
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0120
  article-title: Investigation of Modeling Strategies for Progressive Collapse Analysis of RC Frame Structures
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001328
– volume: 148
  start-page: 175
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0180
  article-title: Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.06.059
– volume: 17
  start-page: 281
  issue: 3
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0185
  article-title: Dynamic Increase Factor for Nonlinear Static Analysis of RC Frame Buildings Against Progressive Collapse
  publication-title: Int. J. Civ. Eng.
  doi: 10.1007/s40999-017-0253-0
– ident: 10.1016/j.engstruct.2021.113291_b0320
  doi: 10.1061/41016(314)237
– volume: 106
  start-page: 485
  issue: 4
  year: 2009
  ident: 10.1016/j.engstruct.2021.113291_b0445
  article-title: Applications of critical shear crack theory to punching of reinforced concrete slabs with transverse reinforcement
  publication-title: ACI Struct. J.
– volume: 27
  start-page: 1231
  issue: July
  year: 2020
  ident: 10.1016/j.engstruct.2021.113291_b0140
  article-title: Semi-analytical model for compressive arch action capacity of RC frame structures
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.06.011
– volume: 206
  issue: March
  year: 2020
  ident: 10.1016/j.engstruct.2021.113291_b0340
  article-title: Progressive collapse of framed building structures: Current knowledge and future prospects
  publication-title: Eng. Struct.
– volume: 106
  start-page: 600
  issue: 5
  year: 2009
  ident: 10.1016/j.engstruct.2021.113291_b0405
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct. J.
– ident: 10.1016/j.engstruct.2021.113291_b0030
– volume: 108
  start-page: 543
  issue: 51
  year: 2011
  ident: 10.1016/j.engstruct.2021.113291_b0385
  article-title: Experimental Investigation of Reinforced Concrete Exterior Beam-Column Subassemblages for Progressive Collapse
  publication-title: ACI Struct. J.
– volume: 42
  start-page: 154
  year: 2012
  ident: 10.1016/j.engstruct.2021.113291_b0365
  article-title: Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column-Experimental results
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2012.04.016
– volume: 71
  start-page: 647
  issue: 12
  year: 2019
  ident: 10.1016/j.engstruct.2021.113291_b0245
  article-title: Collapse resistance of RC beam-slab subassemblies due to column loss at large deflections
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.17.00399
– volume: 54
  start-page: 94
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0235
  article-title: Progressive collapse of 2D framed structures: An analytical model
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.03.053
– volume: 153
  start-page: 613
  year: 2017
  ident: 10.1016/j.engstruct.2021.113291_b0045
  article-title: Effects of rotational capacity and horizontal restraint on development of catenary action in 2-D RC frames
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.09.059
– ident: 10.1016/j.engstruct.2021.113291_b0040
– volume: 101
  start-page: 45
  year: 2015
  ident: 10.1016/j.engstruct.2021.113291_b0255
  article-title: A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.06.051
– volume: 26
  start-page: 576
  issue: 5
  year: 2012
  ident: 10.1016/j.engstruct.2021.113291_b0380
  article-title: Experimental and analytical assessment on RC interior beam-column subassemblages for progressive collapse
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000284
– volume: 140
  start-page: 1
  issue: 9
  year: 2014
  ident: 10.1016/j.engstruct.2021.113291_b0110
  article-title: Progressive Collapse Performance of RC Flat Plate Frame Structures
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000963
– volume: 30
  start-page: 2478
  issue: 9
  year: 2008
  ident: 10.1016/j.engstruct.2021.113291_b0195
  article-title: Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2008.01.019
– volume: 55
  start-page: 90
  year: 2013
  ident: 10.1016/j.engstruct.2021.113291_b0410
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.08.040
SSID ssj0002880
Score 2.4242487
Snippet •Validation of a new simplified rational tying force method for the robustness/progressive collapse assessment of reinforced concrete systems.•Simplified tying...
The robustness of reinforced concrete (RC) structures is an important ongoing research topic in the civil engineering community. Especially in the last...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113291
SubjectTerms Building codes
Catastrophic collapse
Civil engineering
Concrete
Concrete structures
Ductility
Frame structures
Guidelines
Load bearing elements
Methods
Reinforced Concrete
Robustness
Rotational Ductility
Structural analysis
Tying Force method
Title Validation of simplified tying force method for robustness assessment of RC framed structures
URI https://dx.doi.org/10.1016/j.engstruct.2021.113291
https://www.proquest.com/docview/2615429636
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AKRWK
  dateStart: 19781001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpHqTywpnUSx3HYqoqqgOgAFHVBlp3YqAilFU1Xfju-OCkUCXVgdOSLrDvnHtF39yF0GSvGqcoiz14G6VEqfU9pn3paxoGiPLLuAX7o34_YcExvJ9Gkgfp1LwzAKivf73x66a2rJ91Km935dNp9LCGKQcICoJv1y0ZzSmNgMeh8fsM8Al6yp8EWD3avYbx0_urGtNpCMfA7Jeu6_1eE-uWrywA02EO7VeaIe-5w-6ih8wO082Oe4CF6ebZZtSNJwjODF1OAixubZOICupmwTVBTjR1pNCzwx0wtFwV4OyxXIzpB9KGPDcC2MuxOvrRV-REaD66f-kOv4k_w0pCGBSjdJFqZiKc2UClGuYkkNyzhPCSaaMqJtQXMprVFEU0zSQJtbH4WpzQhhsjwGDXzWa5PEFZBmoaGEUmkodA5EGYZp1yGKmaZSrJTxGqdibQaLg4cF--iRpG9iZWyBShbOGWfIrISnLv5GptFrmqjiLWrImwU2Czcqs0oqq91IWwVCbRdLGRn_3n3OdqGFYBd_KiFmnaDvrApS6Ha5Z1so63ezd1w9AXdou20
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikKBTywpnUSx3HYUEVVoO0ALeqCLDuxURFKK5qu_HZ8eRSKhBgYk9xF1tm5R_TdfQhdhopxqpLAsYdBOpRK11HapY6WoacoD6x7gB_6gyHrjendJJjUUKfqhQFYZen7C5-ee-vyTru0Zns-nbYfc4iiFzEP6GZdaDTfoIEXQgXW-vjCeXg8p08DGQfE10BeOn0p5rTaStFzWzntuvtbiPrhrPMI1N1FO2XqiK-L1e2hmk730fa3gYIH6PnJptUFSxKeGbyYAl7c2CwTZ9DOhG2GGmtcsEbDBX6fqeUiA3eH5WpGJ6g-dLAB3FaCi5UvbVl-iMbdm1Gn55QECk7sUz8Dq5tIKxPw2EYqxSg3geSGRZz7RBNNObGbAcNpbVVE40QSTxuboIUxjYgh0j9C9XSW6mOElRfHvmFEEmkotA74ScIpl74KWaKipIFYZTMRl9PFgeTiTVQwslexMrYAY4vC2A1EVorzYsDG3ypX1aaItbMibBj4W7lZbaMoP9eFsGUk8HYxn538590XaLM3GvRF_3Z4f4q24AkgX9ygiepWWJ_Z_CVT5_n5_ARlRe9J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+simplified+tying+force+method+for+robustness+assessment+of+RC+framed+structures&rft.jtitle=Engineering+structures&rft.au=Ravasini%2C+S&rft.au=Sio%2C+J&rft.au=Franceschini%2C+L&rft.au=Izzuddin%2C+BA&rft.date=2021-12-15&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=249&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2021.113291&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon