Continuous-time distributed optimization with strictly pseudoconvex objective functions

In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimizati...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 359; no. 2; pp. 1483 - 1502
Main Authors Xu, Hang, Lu, Kaihong
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.01.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0016-0032
1879-2693
0016-0032
DOI10.1016/j.jfranklin.2021.11.034

Cover

Abstract In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimization, here we consider the case where the objective function is pseudoconvex. In order to solve this problem, we propose a continuous-time distributed project gradient algorithm. When running the presented algorithm, each agent uses only its own objective function and its own state information and the relative state information between itself and its adjacent agents to update its state value. The communication topology is represented by a time-varying digraph. Under mild assumptions on the graph and the objective function, it shows that the multi-agent system asymptotically reaches consensus and the consensus state is the solution to the optimization problem. Finally, several simulations are carried out to verify the correctness of our theoretical achievements.
AbstractList In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimization, here we consider the case where the objective function is pseudoconvex. In order to solve this problem, we propose a continuous-time distributed project gradient algorithm. When running the presented algorithm, each agent uses only its own objective function and its own state information and the relative state information between itself and its adjacent agents to update its state value. The communication topology is represented by a time-varying digraph. Under mild assumptions on the graph and the objective function, it shows that the multi-agent system asymptotically reaches consensus and the consensus state is the solution to the optimization problem. Finally, several simulations are carried out to verify the correctness of our theoretical achievements.
Author Xu, Hang
Lu, Kaihong
Author_xml – sequence: 1
  givenname: Hang
  surname: Xu
  fullname: Xu, Hang
– sequence: 2
  givenname: Kaihong
  surname: Lu
  fullname: Lu, Kaihong
  email: khong_lu@163.com
BookMark eNqNkE1PwzAMhiMEEtvgN1CJc0ucbP04cJgmvqRJXEAcozR1RUqXjCQdjF9PxhAHLnCxZft9bfkZk0NjDRJyBjQDCvlFl3Wtk-al1yZjlEEGkFE-PSAjKIsqZXnFD8mIRmlKKWfHZOx9F8sCKB2Rp4U1QZvBDj4NeoVJo31wuh4CNoldx5b-kEFbk7zp8JzsZir022TtcWissmaD74mtO1RBbzBpB6N2an9CjlrZezz9zhPyeH31sLhNl_c3d4v5MlV8ykNaN7Rm0FZYIBS8zZlkDGYUVUVRtgpVLRWUM5nnnHPV0FmusM1VUyMvSwDgE3K-37t29nVAH0RnB2fiScHyKeUVm8Y4IZd7lXLWe4etUDp8vRWc1L0AKnYsRSd-WIodSwEgIsvoL375106vpNv-wznfOzFC2Gh0wiuNRmGjXWQmGqv_3PEJIIuZiA
CitedBy_id crossref_primary_10_1016_j_automatica_2023_111203
crossref_primary_10_1016_j_jfranklin_2023_08_009
crossref_primary_10_1109_TNNLS_2023_3245812
crossref_primary_10_1016_j_jfranklin_2024_107002
crossref_primary_10_1016_j_jfranklin_2025_107611
crossref_primary_10_1016_j_jfranklin_2023_10_041
crossref_primary_10_1016_j_jfranklin_2023_11_017
crossref_primary_10_1007_s11768_023_00181_8
crossref_primary_10_1109_TAC_2024_3453117
crossref_primary_10_1109_TSMC_2023_3331260
Cites_doi 10.1016/j.neunet.2011.09.001
10.1109/TCNS.2019.2915626
10.1016/j.automatica.2017.12.053
10.1109/TAC.2016.2615066
10.1109/LCSYS.2021.3086388
10.1109/TAC.2010.2041686
10.1109/TNNLS.2020.3027381
10.1109/TAC.2019.2915745
10.1109/TAC.2017.2771140
10.1016/j.neunet.2019.12.015
10.1137/080726380
10.1109/TSMCB.2011.2160394
10.1007/BF00940531
10.1109/TNSE.2020.2965999
10.1109/TCYB.2018.2855724
10.1016/j.jfranklin.2020.03.035
10.1109/TAC.2016.2610945
10.1007/0-306-48395-5
10.1109/25.260747
10.1109/TAC.2011.2164733
10.1002/mrm.21391
10.1007/s00332-018-9516-4
10.1016/j.jfranklin.2020.05.043
10.1002/rnc.4547
10.1109/35.714618
10.1016/j.neunet.2018.01.008
10.1109/TAC.2013.2278132
10.1109/TAC.2015.2506262
10.1109/TAC.2018.2852602
10.1007/BF01582255
10.1109/TAC.2020.2994024
10.1109/TSP.2020.2981762
10.1109/TNNLS.2017.2652478
10.1109/TNN.2006.879774
10.1016/j.automatica.2016.01.055
ContentType Journal Article
Copyright 2021 The Franklin Institute
Copyright Elsevier Science Ltd. Jan 2022
Copyright_xml – notice: 2021 The Franklin Institute
– notice: Copyright Elsevier Science Ltd. Jan 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jfranklin.2021.11.034
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
0016-0032
EndPage 1502
ExternalDocumentID 10_1016_j_jfranklin_2021_11_034
S0016003221006979
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62103169
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M691313
  funderid: https://doi.org/10.13039/501100002858
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AGCQF
AGQPQ
AHPAA
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGRNS
BNPGV
FR3
KR7
SSH
ID FETCH-LOGICAL-c343t-bd0b21f9e7e173f62a22150ec90eafcecbac185a66333cd056cef6cdbe3881113
IEDL.DBID AIKHN
ISSN 0016-0032
IngestDate Fri Jul 25 08:17:44 EDT 2025
Thu Sep 18 00:13:22 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Fri Feb 23 02:40:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-bd0b21f9e7e173f62a22150ec90eafcecbac185a66333cd056cef6cdbe3881113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2640392440
PQPubID 2045917
PageCount 20
ParticipantIDs proquest_journals_2640392440
crossref_citationtrail_10_1016_j_jfranklin_2021_11_034
crossref_primary_10_1016_j_jfranklin_2021_11_034
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2021_11_034
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Journal of the Franklin Institute
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Gharesifard, Cortés (bib0020) 2014; 59
Nedić, Ozdaglar, Parrilo (bib0011) 2010; 55
Lü, Liao, Li, Huang (bib0007) 2020; 7
Carosi, Martein (bib0032) 2006
Yang, Liu, Wang (bib0028) 2017; 62
Xi, Khan (bib0015) 2017; 62
Yang, Liu, Wang (bib0026) 2018; 29
Zhang, You, Cai (bib0008) 2020; 68
Qiu, Liu, Xie (bib0023) 2016; 68
Shi, Hong, Johansson (bib0045) 2012; 57
Lu, Jing, Wang (bib0043) 2018; 63
Hu, Wang (bib0040) 2006; 17
Liu, Qin (bib0037) 2019; 49
Barber (bib0034) 2004
Yuan, Hong, Ho, Jiang (bib0012) 2018; 90
X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent (2017)
Karamardian, Schaible (bib0044) 1990; 66
Yuan, Hong, Ho, Xu (bib0013) 2020
Li, Cheng, Wang, Wu (bib0014) 2021; 32
Brockett (bib0046) 1970
Qiu, Xie, You (bib0001) 2019
Ye (bib0003) 2020
Yuan, Xu, Zhao (bib0010) 2011; 41
Lu, Wang (bib0005) 2021
Ram, Nedić, Veeravalli (bib0009) 2009; 20
Wu, Li (bib0002) 2020
Li, Xie, Hong (bib0024) 2019; 29
Adachi, Mamoru, Hirohito (bib0019) 1998; 36
Mo, Hu, Yu (bib0004) 2020; 357
Lu, Jing, Wang (bib0035) 2020; 65
Lu, Zhu (bib0006) 2020
Liu, Yu, Chen (bib0016) 2020
Zhu, Yu, Wen, Chen, Ren (bib0022) 2019; 64
Martin, Hendrickx (bib0042) 2016; 61
Li, Xie, Hong (bib0025) 2020; 7
Bian, Ma, Qin, Xue (bib0038) 2018; 101
.
Foschini, Miljanic (bib0039) 1993; 42
Wang (bib0018) 2016
Harker, Pang (bib0041) 1990; 48
Xu, Chai, Qin, Wang, Feng (bib0036) 2020; 124
Wang, Chen, Gupta, Lian (bib0027) 2020; 357
Liu, Guo, Wang (bib0031) 2012; 26
Lustig, Donoho, Pauly (bib0033) 2007; 58
Doostmohammadian, Aghasi, Charalambous, Khan (bib0029) 2022; 6
Niederländer, Cortés (bib0021) 2019; 29
Poudel, Shirvaikar (bib0030) 2010
Li, Lü, Chen, Huang, Dong (bib0017) 2020; 66
Li (10.1016/j.jfranklin.2021.11.034_bib0024) 2019; 29
Liu (10.1016/j.jfranklin.2021.11.034_bib0031) 2012; 26
Harker (10.1016/j.jfranklin.2021.11.034_bib0041) 1990; 48
Martin (10.1016/j.jfranklin.2021.11.034_bib0042) 2016; 61
Shi (10.1016/j.jfranklin.2021.11.034_bib0045) 2012; 57
Mo (10.1016/j.jfranklin.2021.11.034_bib0004) 2020; 357
Li (10.1016/j.jfranklin.2021.11.034_bib0014) 2021; 32
Li (10.1016/j.jfranklin.2021.11.034_bib0025) 2020; 7
Yuan (10.1016/j.jfranklin.2021.11.034_bib0012) 2018; 90
Qiu (10.1016/j.jfranklin.2021.11.034_bib0001) 2019
Li (10.1016/j.jfranklin.2021.11.034_bib0017) 2020; 66
Xu (10.1016/j.jfranklin.2021.11.034_bib0036) 2020; 124
Hu (10.1016/j.jfranklin.2021.11.034_bib0040) 2006; 17
Doostmohammadian (10.1016/j.jfranklin.2021.11.034_bib0029) 2022; 6
Lu (10.1016/j.jfranklin.2021.11.034_bib0006) 2020
Wang (10.1016/j.jfranklin.2021.11.034_bib0027) 2020; 357
Zhang (10.1016/j.jfranklin.2021.11.034_bib0008) 2020; 68
Bian (10.1016/j.jfranklin.2021.11.034_bib0038) 2018; 101
Ye (10.1016/j.jfranklin.2021.11.034_bib0003) 2020
Poudel (10.1016/j.jfranklin.2021.11.034_bib0030) 2010
Yuan (10.1016/j.jfranklin.2021.11.034_bib0010) 2011; 41
Xi (10.1016/j.jfranklin.2021.11.034_bib0015) 2017; 62
Niederländer (10.1016/j.jfranklin.2021.11.034_bib0021) 2019; 29
Yang (10.1016/j.jfranklin.2021.11.034_bib0028) 2017; 62
Carosi (10.1016/j.jfranklin.2021.11.034_bib0032) 2006
Ram (10.1016/j.jfranklin.2021.11.034_bib0009) 2009; 20
Yuan (10.1016/j.jfranklin.2021.11.034_bib0013) 2020
Liu (10.1016/j.jfranklin.2021.11.034_bib0037) 2019; 49
Lu (10.1016/j.jfranklin.2021.11.034_bib0043) 2018; 63
Lustig (10.1016/j.jfranklin.2021.11.034_bib0033) 2007; 58
Barber (10.1016/j.jfranklin.2021.11.034_bib0034) 2004
Brockett (10.1016/j.jfranklin.2021.11.034_bib0046) 1970
Lu (10.1016/j.jfranklin.2021.11.034_bib0005) 2021
Lü (10.1016/j.jfranklin.2021.11.034_bib0007) 2020; 7
Gharesifard (10.1016/j.jfranklin.2021.11.034_bib0020) 2014; 59
Nedić (10.1016/j.jfranklin.2021.11.034_bib0011) 2010; 55
Qiu (10.1016/j.jfranklin.2021.11.034_bib0023) 2016; 68
Wang (10.1016/j.jfranklin.2021.11.034_bib0018) 2016
Yang (10.1016/j.jfranklin.2021.11.034_bib0026) 2018; 29
Foschini (10.1016/j.jfranklin.2021.11.034_bib0039) 1993; 42
Liu (10.1016/j.jfranklin.2021.11.034_bib0016) 2020
Karamardian (10.1016/j.jfranklin.2021.11.034_bib0044) 1990; 66
Wu (10.1016/j.jfranklin.2021.11.034_bib0002) 2020
10.1016/j.jfranklin.2021.11.034_bib0047
Lu (10.1016/j.jfranklin.2021.11.034_bib0035) 2020; 65
Zhu (10.1016/j.jfranklin.2021.11.034_bib0022) 2019; 64
Adachi (10.1016/j.jfranklin.2021.11.034_bib0019) 1998; 36
References_xml – volume: 41
  start-page: 1715
  year: 2011
  end-page: 1724
  ident: bib0010
  article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Trans. Syst., Man, Cybern.
– volume: 42
  start-page: 641
  year: 1993
  end-page: 646
  ident: bib0039
  article-title: A simple distributed autonomous power control algorithm and its convergence
  publication-title: IEEE Trans. Veh. Technol.
– volume: 29
  start-page: 981
  year: 2018
  end-page: 992
  ident: bib0026
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 90
  start-page: 196
  year: 2018
  end-page: 203
  ident: bib0012
  article-title: Optimal distributed stochastic mirror descent for strongly convex optimization
  publication-title: Automatica
– volume: 29
  start-page: 1247
  year: 2019
  end-page: 1272
  ident: bib0021
  article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics
  publication-title: J. Nonlinear Sci.
– volume: 7
  start-page: 1988
  year: 2020
  end-page: 1999
  ident: bib0007
  article-title: Achieving acceleration for distributed economic dispatch in smart grids over directed networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– year: 2021
  ident: bib0005
  article-title: Online distributed optimization with nonconvex objective functions: sublinearity of first-order optimality condition-based regret
  publication-title: IEEE Trans. Autom. Control
– volume: 57
  start-page: 663
  year: 2012
  end-page: 676
  ident: bib0045
  article-title: Connectivity and set tracking of multi-agent systems guided by multiple moving leaders
  publication-title: IEEE Trans. Autom. Control
– year: 2020
  ident: bib0002
  article-title: Distributed robust optimization algorithms over uncertain network graphs
  publication-title: IEEE Trans. Cybern.
– volume: 48
  start-page: 161
  year: 1990
  end-page: 220
  ident: bib0041
  article-title: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications
  publication-title: Math. Program.
– volume: 65
  start-page: 426
  year: 2020
  end-page: 433
  ident: bib0035
  article-title: Online distributed optimization with strongly pseudoconvex-sum cost functions
  publication-title: IEEE Trans. Autom. Control
– year: 2020
  ident: bib0013
  article-title: Distributed mirror descent for online composite optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 61
  start-page: 2484
  year: 2016
  end-page: 2495
  ident: bib0042
  article-title: Continuous-time consensus under noninstantaneous reciprocity
  publication-title: IEEE Trans. Autom. Control
– volume: 32
  start-page: 5723
  year: 2021
  end-page: 5737
  ident: bib0014
  article-title: Distributed Nesterov Gradient and Heavy-Ball Double Accelerated Asynchronous Optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 357
  start-page: 4855
  year: 2020
  end-page: 4868
  ident: bib0027
  article-title: Distributed constrained optimization for multi-agent systems over a directed graph with piecewise stepsize
  publication-title: J. Frankl. Inst.
– volume: 124
  start-page: 180
  year: 2020
  end-page: 192
  ident: bib0036
  article-title: A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem
  publication-title: Neural Netw.
– volume: 49
  start-page: 3946
  year: 2019
  end-page: 3956
  ident: bib0037
  article-title: A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization
  publication-title: IEEE Trans. Cybern.
– year: 2020
  ident: bib0006
  article-title: Distributed algorithms involving fixed step size for mixed equilibrium problems with multiple set constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 63
  start-page: 2670
  year: 2018
  end-page: 2677
  ident: bib0043
  article-title: Distributed algorithms for solving convex inequalities
  publication-title: IEEE Trans. Autom. Control
– year: 2020
  ident: bib0016
  article-title: Discrete-time algorithms for distributed constrained convex optimization with linear convergence rates
  publication-title: IEEE Trans. Cybern.
– volume: 66
  start-page: 1102
  year: 2020
  end-page: 1115
  ident: bib0017
  article-title: Distributed constrained optimization over unbalanced directed networks using asynchronous broadcast-based algorithm
  publication-title: IEEE Trans. Autom. Control
– volume: 6
  start-page: 758
  year: 2022
  end-page: 763
  ident: bib0029
  article-title: Distributed support vector machines over dynamic balanced directed networks
  publication-title: IEEE Control Syst. Lett.
– volume: 26
  start-page: 99
  year: 2012
  end-page: 109
  ident: bib0031
  article-title: A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization
  publication-title: Neural Netw.
– reference: X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent (2017)
– volume: 36
  start-page: 56
  year: 1998
  end-page: 69
  ident: bib0019
  article-title: Wideband DS-CDMA for nextgeneration mobile communications systems
  publication-title: IEEE Commun. Mag.
– volume: 62
  start-page: 3986
  year: 2017
  end-page: 3992
  ident: bib0015
  article-title: Distributed subgradient projection algorithm over directed graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 66
  start-page: 37
  year: 1990
  end-page: 46
  ident: bib0044
  article-title: Seven kinds of monotone maps
  publication-title: J. Optim. Theory Appl.
– year: 2016
  ident: bib0018
  article-title: Experimental Implementation of Multi-Agent Distributed Optimization Algorithms With Shortest Distance to Convex Regions
– volume: 7
  start-page: 74
  year: 2020
  end-page: 84
  ident: bib0025
  article-title: Distributed continuous-time nonsmooth convex optimization with coupled inequality constraints
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 17
  start-page: 1487
  year: 2006
  end-page: 1499
  ident: bib0040
  article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 20
  start-page: 691
  year: 2009
  end-page: 717
  ident: bib0009
  article-title: Incremental stochastic subgradient algorithms for convex optimization
  publication-title: SIAM J. Optim.
– volume: 64
  start-page: 1694
  year: 2019
  end-page: 1701
  ident: bib0022
  article-title: Continuous-time distributed subgradient algorithm for convex optimization with general constraints
  publication-title: IEEE Trans. Autom. Control
– start-page: 177
  year: 2006
  end-page: 188
  ident: bib0032
  article-title: Some classes of pseudoconvex fractional functions via the Charnes–Cooper transformation
  publication-title: Generalized Convexity and Related Topics
– start-page: 1412
  year: 2019
  end-page: 1417
  ident: bib0001
  article-title: Feedback-feedforward control approach to distributed optimization
  publication-title: 2019 American Control Conference (ACC), Philadelphia, PA, USA
– year: 2004
  ident: bib0034
  article-title: Solid Mechanics and Its Applications
– start-page: 51
  year: 2010
  end-page: 55
  ident: bib0030
  article-title: Optimization of computer vision algorithms for real time platforms
  publication-title: 2010 42nd Southeastern Symposium on System Theory (SSST), Tyler, TX
– reference: .
– volume: 68
  start-page: 209
  year: 2016
  end-page: 215
  ident: bib0023
  article-title: Distributed constrained optimal consensus of multi-agent systems
  publication-title: Automatica
– volume: 59
  start-page: 781
  year: 2014
  end-page: 786
  ident: bib0020
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Trans. Autom. Control
– volume: 101
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0038
  article-title: Neural network for nonsmooth pseudoconvex optimization with general convex constraints
  publication-title: Neural Netw.
– volume: 55
  start-page: 922
  year: 2010
  end-page: 938
  ident: bib0011
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans. Autom. Control
– volume: 357
  start-page: 7139
  year: 2020
  end-page: 7158
  ident: bib0004
  article-title: Distributed heterogeneous multi-agent networks optimization with nonconvex velocity constraints
  publication-title: J. Frankl. Inst.
– volume: 68
  start-page: 2186
  year: 2020
  end-page: 2198
  ident: bib0008
  article-title: Distributed dual gradient tracking for resource allocation in unbalanced networks
  publication-title: IEEE Trans. Signal Process.
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bib0033
  article-title: Sparse MRI: the application of compressed sensing for rapid mr imaging
  publication-title: Magn. Reson. Med.
– year: 1970
  ident: bib0046
  article-title: Finite-Dimensional Linear Systems
– volume: 29
  start-page: 3252
  year: 2019
  end-page: 3266
  ident: bib0024
  article-title: Distributed continuous-time algorithm for a general nonsmooth monotropic optimization problem
  publication-title: Int. J. Robust Nonlinear Control
– volume: 62
  start-page: 3461
  year: 2017
  end-page: 3467
  ident: bib0028
  article-title: A multi-agent system with a proportional-integral protocol for distributed constrained optimization
  publication-title: IEEE Trans. Autom. Control
– year: 2020
  ident: bib0003
  article-title: Distributed Nash equilibrium seeking for games in systems with bounded control inputs
  publication-title: IEEE Trans. Autom. Control
– year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0016
  article-title: Discrete-time algorithms for distributed constrained convex optimization with linear convergence rates
  publication-title: IEEE Trans. Cybern.
– volume: 26
  start-page: 99
  year: 2012
  ident: 10.1016/j.jfranklin.2021.11.034_bib0031
  article-title: A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2011.09.001
– volume: 7
  start-page: 74
  issue: 1
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0025
  article-title: Distributed continuous-time nonsmooth convex optimization with coupled inequality constraints
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2019.2915626
– volume: 90
  start-page: 196
  year: 2018
  ident: 10.1016/j.jfranklin.2021.11.034_bib0012
  article-title: Optimal distributed stochastic mirror descent for strongly convex optimization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.12.053
– ident: 10.1016/j.jfranklin.2021.11.034_bib0047
– volume: 62
  start-page: 3986
  issue: 8
  year: 2017
  ident: 10.1016/j.jfranklin.2021.11.034_bib0015
  article-title: Distributed subgradient projection algorithm over directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2615066
– volume: 6
  start-page: 758
  year: 2022
  ident: 10.1016/j.jfranklin.2021.11.034_bib0029
  article-title: Distributed support vector machines over dynamic balanced directed networks
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2021.3086388
– year: 2016
  ident: 10.1016/j.jfranklin.2021.11.034_bib0018
– year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0006
  article-title: Distributed algorithms involving fixed step size for mixed equilibrium problems with multiple set constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  ident: 10.1016/j.jfranklin.2021.11.034_bib0011
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2041686
– volume: 32
  start-page: 5723
  issue: 12
  year: 2021
  ident: 10.1016/j.jfranklin.2021.11.034_bib0014
  article-title: Distributed Nesterov Gradient and Heavy-Ball Double Accelerated Asynchronous Optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3027381
– volume: 65
  start-page: 426
  issue: 1
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0035
  article-title: Online distributed optimization with strongly pseudoconvex-sum cost functions
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2915745
– volume: 63
  start-page: 2670
  issue: 8
  year: 2018
  ident: 10.1016/j.jfranklin.2021.11.034_bib0043
  article-title: Distributed algorithms for solving convex inequalities
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2771140
– volume: 124
  start-page: 180
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0036
  article-title: A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.12.015
– year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0002
  article-title: Distributed robust optimization algorithms over uncertain network graphs
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 691
  issue: 2
  year: 2009
  ident: 10.1016/j.jfranklin.2021.11.034_bib0009
  article-title: Incremental stochastic subgradient algorithms for convex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/080726380
– volume: 41
  start-page: 1715
  issue: 6
  year: 2011
  ident: 10.1016/j.jfranklin.2021.11.034_bib0010
  article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/TSMCB.2011.2160394
– volume: 66
  start-page: 37
  issue: 1
  year: 1990
  ident: 10.1016/j.jfranklin.2021.11.034_bib0044
  article-title: Seven kinds of monotone maps
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940531
– volume: 7
  start-page: 1988
  issue: 3
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0007
  article-title: Achieving acceleration for distributed economic dispatch in smart grids over directed networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.2965999
– volume: 49
  start-page: 3946
  issue: 11
  year: 2019
  ident: 10.1016/j.jfranklin.2021.11.034_bib0037
  article-title: A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2855724
– volume: 357
  start-page: 4855
  issue: 8
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0027
  article-title: Distributed constrained optimization for multi-agent systems over a directed graph with piecewise stepsize
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.03.035
– start-page: 51
  year: 2010
  ident: 10.1016/j.jfranklin.2021.11.034_bib0030
  article-title: Optimization of computer vision algorithms for real time platforms
– volume: 62
  start-page: 3461
  issue: 7
  year: 2017
  ident: 10.1016/j.jfranklin.2021.11.034_bib0028
  article-title: A multi-agent system with a proportional-integral protocol for distributed constrained optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2610945
– start-page: 1412
  year: 2019
  ident: 10.1016/j.jfranklin.2021.11.034_bib0001
  article-title: Feedback-feedforward control approach to distributed optimization
– year: 2004
  ident: 10.1016/j.jfranklin.2021.11.034_bib0034
  doi: 10.1007/0-306-48395-5
– volume: 42
  start-page: 641
  issue: 4
  year: 1993
  ident: 10.1016/j.jfranklin.2021.11.034_bib0039
  article-title: A simple distributed autonomous power control algorithm and its convergence
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/25.260747
– volume: 57
  start-page: 663
  issue: 3
  year: 2012
  ident: 10.1016/j.jfranklin.2021.11.034_bib0045
  article-title: Connectivity and set tracking of multi-agent systems guided by multiple moving leaders
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2164733
– year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0003
  article-title: Distributed Nash equilibrium seeking for games in systems with bounded control inputs
  publication-title: IEEE Trans. Autom. Control
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: 10.1016/j.jfranklin.2021.11.034_bib0033
  article-title: Sparse MRI: the application of compressed sensing for rapid mr imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 29
  start-page: 1247
  year: 2019
  ident: 10.1016/j.jfranklin.2021.11.034_bib0021
  article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-018-9516-4
– year: 1970
  ident: 10.1016/j.jfranklin.2021.11.034_bib0046
– volume: 357
  start-page: 7139
  issue: 11
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0004
  article-title: Distributed heterogeneous multi-agent networks optimization with nonconvex velocity constraints
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.05.043
– year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0013
  article-title: Distributed mirror descent for online composite optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 29
  start-page: 3252
  issue: 10
  year: 2019
  ident: 10.1016/j.jfranklin.2021.11.034_bib0024
  article-title: Distributed continuous-time algorithm for a general nonsmooth monotropic optimization problem
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4547
– start-page: 177
  year: 2006
  ident: 10.1016/j.jfranklin.2021.11.034_bib0032
  article-title: Some classes of pseudoconvex fractional functions via the Charnes–Cooper transformation
– volume: 36
  start-page: 56
  issue: 9
  year: 1998
  ident: 10.1016/j.jfranklin.2021.11.034_bib0019
  article-title: Wideband DS-CDMA for nextgeneration mobile communications systems
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/35.714618
– volume: 101
  start-page: 1
  year: 2018
  ident: 10.1016/j.jfranklin.2021.11.034_bib0038
  article-title: Neural network for nonsmooth pseudoconvex optimization with general convex constraints
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.01.008
– volume: 59
  start-page: 781
  issue: 3
  year: 2014
  ident: 10.1016/j.jfranklin.2021.11.034_bib0020
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2013.2278132
– volume: 61
  start-page: 2484
  issue: 9
  year: 2016
  ident: 10.1016/j.jfranklin.2021.11.034_bib0042
  article-title: Continuous-time consensus under noninstantaneous reciprocity
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2506262
– year: 2021
  ident: 10.1016/j.jfranklin.2021.11.034_bib0005
  article-title: Online distributed optimization with nonconvex objective functions: sublinearity of first-order optimality condition-based regret
  publication-title: IEEE Trans. Autom. Control
– volume: 64
  start-page: 1694
  issue: 4
  year: 2019
  ident: 10.1016/j.jfranklin.2021.11.034_bib0022
  article-title: Continuous-time distributed subgradient algorithm for convex optimization with general constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2852602
– volume: 48
  start-page: 161
  issue: 1–3
  year: 1990
  ident: 10.1016/j.jfranklin.2021.11.034_bib0041
  article-title: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications
  publication-title: Math. Program.
  doi: 10.1007/BF01582255
– volume: 66
  start-page: 1102
  issue: 3
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0017
  article-title: Distributed constrained optimization over unbalanced directed networks using asynchronous broadcast-based algorithm
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.2994024
– volume: 68
  start-page: 2186
  year: 2020
  ident: 10.1016/j.jfranklin.2021.11.034_bib0008
  article-title: Distributed dual gradient tracking for resource allocation in unbalanced networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2981762
– volume: 29
  start-page: 981
  issue: 4
  year: 2018
  ident: 10.1016/j.jfranklin.2021.11.034_bib0026
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2652478
– volume: 17
  start-page: 1487
  issue: 6
  year: 2006
  ident: 10.1016/j.jfranklin.2021.11.034_bib0040
  article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.879774
– volume: 68
  start-page: 209
  year: 2016
  ident: 10.1016/j.jfranklin.2021.11.034_bib0023
  article-title: Distributed constrained optimal consensus of multi-agent systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.01.055
SSID ssj0017100
Score 2.367942
Snippet In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1483
SubjectTerms Algorithms
Computational geometry
Continuous time systems
Convex analysis
Convexity
Graph theory
Graphical representations
Multiagent systems
Optimization
Topology
Title Continuous-time distributed optimization with strictly pseudoconvex objective functions
URI https://dx.doi.org/10.1016/j.jfranklin.2021.11.034
https://www.proquest.com/docview/2640392440
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gXPRgfEYUzR68FrrbtzdCNKiRk0Rum3Z3m0AUiECiF3-7M-2WiInh4LXNNO3s7Hwz25lvAK5jnkZBqFPHywLj-EFKWyrhTiwiZWKM_2NBzclPg7A_9B9GwagGvaoXhsoqre8vfXrhre2VjtVmZz4eU48vR7RGg-REtxslO9AQiPZxHRrd-8f-YP0zgQhsSoeMyTMKbJR5TXI7HB1zRcHbxOjp-X-B1C93XWDQ3QHs2-CRdcv3O4SamR7B3g9KwWN4Ibqp8XSFCb1Dc-OZJmZcGmplNJuhf3izjZeMTmAZ3VPL1082X5iVnhU16B9slk1KP8gI9grLPIHh3e1zr-_Y4QmO8nxv6WTazQTPExMZHnl5KFJUVOAalbgmzZVRWaoQq1OMODxPaYyDlMlDpTPjxTHNnz-F-nQ2NWfAcqF0YDBOijNNE8lTHhhXu1Qbh9GNSJoQVtqSyjKL04CLV1mVkE3kWs2S1Ix5h0Q1N8FdC85Lco3tIjfVcsgNO5EIAduFW9UCSrtVFxI_w0Wz8X33_D_PvoBdQZ0RxelMC-rL95W5xHhlmV3BTvuLX1mr_AYwx-01
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RlR1D14rfT98EaIBORxgsht0-5uEwgCEUj03zvTbomYGA5e20zTzs7OfLOd-QbgMbTiwPNlbDiJpwzXi2lLRZYR2oFQIeL_0Kbm5P7Ab4_c17E3LkGz6IWhskrt-3OfnnlrfaWutVlfTibU42thtEaDtIhuN4gOoOLSUOsyVBqdbnuw_ZlABDa5Q8bkGQV2yrymqR6OjrmibT0Ro6fj_hWkfrnrLAa1TuFEg0fWyN_vDEpqfg7HPygFL-CN6KYm8w0m9AbNjWeSmHFpqJWSbIH-4V03XjI6gWV0T6xnX2y5Uhu5yGrQP9kimeZ-kFHYyyzzEkatl2GzbejhCYZwXGdtJNJMbCuNVKCswEl9O0ZFeaYSkaniVCiRxAJjdYyIw3GERBwkVOoLmSgnDGn-_BWU54u5ugaW2kJ6CnFSmEiaSB5bnjKlSbVxiG7sqAp-oS0uNLM4DbiY8aKEbMq3auakZsw7OKq5CuZWcJmTa-wXeS6Wg-_YCccQsF-4Viwg11t1xfEzTASJrmve_OfZD3DYHvZ7vNcZdG_hyKYuieykpgbl9cdG3SF2WSf32ja_Acmo7xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous-time+distributed+optimization+with+strictly+pseudoconvex+objective+functions&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Xu%2C+Hang&rft.au=Lu%2C+Kaihong&rft.date=2022-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0016-0032&rft.eissn=0016-0032&rft.volume=359&rft.issue=2&rft.spage=1483&rft_id=info:doi/10.1016%2Fj.jfranklin.2021.11.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon