Continuous-time distributed optimization with strictly pseudoconvex objective functions
In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimizati...
Saved in:
Published in | Journal of the Franklin Institute Vol. 359; no. 2; pp. 1483 - 1502 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.01.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0016-0032 1879-2693 0016-0032 |
DOI | 10.1016/j.jfranklin.2021.11.034 |
Cover
Abstract | In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimization, here we consider the case where the objective function is pseudoconvex. In order to solve this problem, we propose a continuous-time distributed project gradient algorithm. When running the presented algorithm, each agent uses only its own objective function and its own state information and the relative state information between itself and its adjacent agents to update its state value. The communication topology is represented by a time-varying digraph. Under mild assumptions on the graph and the objective function, it shows that the multi-agent system asymptotically reaches consensus and the consensus state is the solution to the optimization problem. Finally, several simulations are carried out to verify the correctness of our theoretical achievements. |
---|---|
AbstractList | In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimization, here we consider the case where the objective function is pseudoconvex. In order to solve this problem, we propose a continuous-time distributed project gradient algorithm. When running the presented algorithm, each agent uses only its own objective function and its own state information and the relative state information between itself and its adjacent agents to update its state value. The communication topology is represented by a time-varying digraph. Under mild assumptions on the graph and the objective function, it shows that the multi-agent system asymptotically reaches consensus and the consensus state is the solution to the optimization problem. Finally, several simulations are carried out to verify the correctness of our theoretical achievements. |
Author | Xu, Hang Lu, Kaihong |
Author_xml | – sequence: 1 givenname: Hang surname: Xu fullname: Xu, Hang – sequence: 2 givenname: Kaihong surname: Lu fullname: Lu, Kaihong email: khong_lu@163.com |
BookMark | eNqNkE1PwzAMhiMEEtvgN1CJc0ucbP04cJgmvqRJXEAcozR1RUqXjCQdjF9PxhAHLnCxZft9bfkZk0NjDRJyBjQDCvlFl3Wtk-al1yZjlEEGkFE-PSAjKIsqZXnFD8mIRmlKKWfHZOx9F8sCKB2Rp4U1QZvBDj4NeoVJo31wuh4CNoldx5b-kEFbk7zp8JzsZir022TtcWissmaD74mtO1RBbzBpB6N2an9CjlrZezz9zhPyeH31sLhNl_c3d4v5MlV8ykNaN7Rm0FZYIBS8zZlkDGYUVUVRtgpVLRWUM5nnnHPV0FmusM1VUyMvSwDgE3K-37t29nVAH0RnB2fiScHyKeUVm8Y4IZd7lXLWe4etUDp8vRWc1L0AKnYsRSd-WIodSwEgIsvoL375106vpNv-wznfOzFC2Gh0wiuNRmGjXWQmGqv_3PEJIIuZiA |
CitedBy_id | crossref_primary_10_1016_j_automatica_2023_111203 crossref_primary_10_1016_j_jfranklin_2023_08_009 crossref_primary_10_1109_TNNLS_2023_3245812 crossref_primary_10_1016_j_jfranklin_2024_107002 crossref_primary_10_1016_j_jfranklin_2025_107611 crossref_primary_10_1016_j_jfranklin_2023_10_041 crossref_primary_10_1016_j_jfranklin_2023_11_017 crossref_primary_10_1007_s11768_023_00181_8 crossref_primary_10_1109_TAC_2024_3453117 crossref_primary_10_1109_TSMC_2023_3331260 |
Cites_doi | 10.1016/j.neunet.2011.09.001 10.1109/TCNS.2019.2915626 10.1016/j.automatica.2017.12.053 10.1109/TAC.2016.2615066 10.1109/LCSYS.2021.3086388 10.1109/TAC.2010.2041686 10.1109/TNNLS.2020.3027381 10.1109/TAC.2019.2915745 10.1109/TAC.2017.2771140 10.1016/j.neunet.2019.12.015 10.1137/080726380 10.1109/TSMCB.2011.2160394 10.1007/BF00940531 10.1109/TNSE.2020.2965999 10.1109/TCYB.2018.2855724 10.1016/j.jfranklin.2020.03.035 10.1109/TAC.2016.2610945 10.1007/0-306-48395-5 10.1109/25.260747 10.1109/TAC.2011.2164733 10.1002/mrm.21391 10.1007/s00332-018-9516-4 10.1016/j.jfranklin.2020.05.043 10.1002/rnc.4547 10.1109/35.714618 10.1016/j.neunet.2018.01.008 10.1109/TAC.2013.2278132 10.1109/TAC.2015.2506262 10.1109/TAC.2018.2852602 10.1007/BF01582255 10.1109/TAC.2020.2994024 10.1109/TSP.2020.2981762 10.1109/TNNLS.2017.2652478 10.1109/TNN.2006.879774 10.1016/j.automatica.2016.01.055 |
ContentType | Journal Article |
Copyright | 2021 The Franklin Institute Copyright Elsevier Science Ltd. Jan 2022 |
Copyright_xml | – notice: 2021 The Franklin Institute – notice: Copyright Elsevier Science Ltd. Jan 2022 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.jfranklin.2021.11.034 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2693 0016-0032 |
EndPage | 1502 |
ExternalDocumentID | 10_1016_j_jfranklin_2021_11_034 S0016003221006979 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62103169 funderid: https://doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2021M691313 funderid: https://doi.org/10.13039/501100002858 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO ADXHL AEIPS AFJKZ AGCQF AGQPQ AHPAA AIIUN ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGRNS BNPGV FR3 KR7 SSH |
ID | FETCH-LOGICAL-c343t-bd0b21f9e7e173f62a22150ec90eafcecbac185a66333cd056cef6cdbe3881113 |
IEDL.DBID | AIKHN |
ISSN | 0016-0032 |
IngestDate | Fri Jul 25 08:17:44 EDT 2025 Thu Sep 18 00:13:22 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 23 02:40:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-bd0b21f9e7e173f62a22150ec90eafcecbac185a66333cd056cef6cdbe3881113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2640392440 |
PQPubID | 2045917 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2640392440 crossref_citationtrail_10_1016_j_jfranklin_2021_11_034 crossref_primary_10_1016_j_jfranklin_2021_11_034 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2021_11_034 |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Journal of the Franklin Institute |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Gharesifard, Cortés (bib0020) 2014; 59 Nedić, Ozdaglar, Parrilo (bib0011) 2010; 55 Lü, Liao, Li, Huang (bib0007) 2020; 7 Carosi, Martein (bib0032) 2006 Yang, Liu, Wang (bib0028) 2017; 62 Xi, Khan (bib0015) 2017; 62 Yang, Liu, Wang (bib0026) 2018; 29 Zhang, You, Cai (bib0008) 2020; 68 Qiu, Liu, Xie (bib0023) 2016; 68 Shi, Hong, Johansson (bib0045) 2012; 57 Lu, Jing, Wang (bib0043) 2018; 63 Hu, Wang (bib0040) 2006; 17 Liu, Qin (bib0037) 2019; 49 Barber (bib0034) 2004 Yuan, Hong, Ho, Jiang (bib0012) 2018; 90 X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent (2017) Karamardian, Schaible (bib0044) 1990; 66 Yuan, Hong, Ho, Xu (bib0013) 2020 Li, Cheng, Wang, Wu (bib0014) 2021; 32 Brockett (bib0046) 1970 Qiu, Xie, You (bib0001) 2019 Ye (bib0003) 2020 Yuan, Xu, Zhao (bib0010) 2011; 41 Lu, Wang (bib0005) 2021 Ram, Nedić, Veeravalli (bib0009) 2009; 20 Wu, Li (bib0002) 2020 Li, Xie, Hong (bib0024) 2019; 29 Adachi, Mamoru, Hirohito (bib0019) 1998; 36 Mo, Hu, Yu (bib0004) 2020; 357 Lu, Jing, Wang (bib0035) 2020; 65 Lu, Zhu (bib0006) 2020 Liu, Yu, Chen (bib0016) 2020 Zhu, Yu, Wen, Chen, Ren (bib0022) 2019; 64 Martin, Hendrickx (bib0042) 2016; 61 Li, Xie, Hong (bib0025) 2020; 7 Bian, Ma, Qin, Xue (bib0038) 2018; 101 . Foschini, Miljanic (bib0039) 1993; 42 Wang (bib0018) 2016 Harker, Pang (bib0041) 1990; 48 Xu, Chai, Qin, Wang, Feng (bib0036) 2020; 124 Wang, Chen, Gupta, Lian (bib0027) 2020; 357 Liu, Guo, Wang (bib0031) 2012; 26 Lustig, Donoho, Pauly (bib0033) 2007; 58 Doostmohammadian, Aghasi, Charalambous, Khan (bib0029) 2022; 6 Niederländer, Cortés (bib0021) 2019; 29 Poudel, Shirvaikar (bib0030) 2010 Li, Lü, Chen, Huang, Dong (bib0017) 2020; 66 Li (10.1016/j.jfranklin.2021.11.034_bib0024) 2019; 29 Liu (10.1016/j.jfranklin.2021.11.034_bib0031) 2012; 26 Harker (10.1016/j.jfranklin.2021.11.034_bib0041) 1990; 48 Martin (10.1016/j.jfranklin.2021.11.034_bib0042) 2016; 61 Shi (10.1016/j.jfranklin.2021.11.034_bib0045) 2012; 57 Mo (10.1016/j.jfranklin.2021.11.034_bib0004) 2020; 357 Li (10.1016/j.jfranklin.2021.11.034_bib0014) 2021; 32 Li (10.1016/j.jfranklin.2021.11.034_bib0025) 2020; 7 Yuan (10.1016/j.jfranklin.2021.11.034_bib0012) 2018; 90 Qiu (10.1016/j.jfranklin.2021.11.034_bib0001) 2019 Li (10.1016/j.jfranklin.2021.11.034_bib0017) 2020; 66 Xu (10.1016/j.jfranklin.2021.11.034_bib0036) 2020; 124 Hu (10.1016/j.jfranklin.2021.11.034_bib0040) 2006; 17 Doostmohammadian (10.1016/j.jfranklin.2021.11.034_bib0029) 2022; 6 Lu (10.1016/j.jfranklin.2021.11.034_bib0006) 2020 Wang (10.1016/j.jfranklin.2021.11.034_bib0027) 2020; 357 Zhang (10.1016/j.jfranklin.2021.11.034_bib0008) 2020; 68 Bian (10.1016/j.jfranklin.2021.11.034_bib0038) 2018; 101 Ye (10.1016/j.jfranklin.2021.11.034_bib0003) 2020 Poudel (10.1016/j.jfranklin.2021.11.034_bib0030) 2010 Yuan (10.1016/j.jfranklin.2021.11.034_bib0010) 2011; 41 Xi (10.1016/j.jfranklin.2021.11.034_bib0015) 2017; 62 Niederländer (10.1016/j.jfranklin.2021.11.034_bib0021) 2019; 29 Yang (10.1016/j.jfranklin.2021.11.034_bib0028) 2017; 62 Carosi (10.1016/j.jfranklin.2021.11.034_bib0032) 2006 Ram (10.1016/j.jfranklin.2021.11.034_bib0009) 2009; 20 Yuan (10.1016/j.jfranklin.2021.11.034_bib0013) 2020 Liu (10.1016/j.jfranklin.2021.11.034_bib0037) 2019; 49 Lu (10.1016/j.jfranklin.2021.11.034_bib0043) 2018; 63 Lustig (10.1016/j.jfranklin.2021.11.034_bib0033) 2007; 58 Barber (10.1016/j.jfranklin.2021.11.034_bib0034) 2004 Brockett (10.1016/j.jfranklin.2021.11.034_bib0046) 1970 Lu (10.1016/j.jfranklin.2021.11.034_bib0005) 2021 Lü (10.1016/j.jfranklin.2021.11.034_bib0007) 2020; 7 Gharesifard (10.1016/j.jfranklin.2021.11.034_bib0020) 2014; 59 Nedić (10.1016/j.jfranklin.2021.11.034_bib0011) 2010; 55 Qiu (10.1016/j.jfranklin.2021.11.034_bib0023) 2016; 68 Wang (10.1016/j.jfranklin.2021.11.034_bib0018) 2016 Yang (10.1016/j.jfranklin.2021.11.034_bib0026) 2018; 29 Foschini (10.1016/j.jfranklin.2021.11.034_bib0039) 1993; 42 Liu (10.1016/j.jfranklin.2021.11.034_bib0016) 2020 Karamardian (10.1016/j.jfranklin.2021.11.034_bib0044) 1990; 66 Wu (10.1016/j.jfranklin.2021.11.034_bib0002) 2020 10.1016/j.jfranklin.2021.11.034_bib0047 Lu (10.1016/j.jfranklin.2021.11.034_bib0035) 2020; 65 Zhu (10.1016/j.jfranklin.2021.11.034_bib0022) 2019; 64 Adachi (10.1016/j.jfranklin.2021.11.034_bib0019) 1998; 36 |
References_xml | – volume: 41 start-page: 1715 year: 2011 end-page: 1724 ident: bib0010 article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms publication-title: IEEE Trans. Syst., Man, Cybern. – volume: 42 start-page: 641 year: 1993 end-page: 646 ident: bib0039 article-title: A simple distributed autonomous power control algorithm and its convergence publication-title: IEEE Trans. Veh. Technol. – volume: 29 start-page: 981 year: 2018 end-page: 992 ident: bib0026 article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 90 start-page: 196 year: 2018 end-page: 203 ident: bib0012 article-title: Optimal distributed stochastic mirror descent for strongly convex optimization publication-title: Automatica – volume: 29 start-page: 1247 year: 2019 end-page: 1272 ident: bib0021 article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics publication-title: J. Nonlinear Sci. – volume: 7 start-page: 1988 year: 2020 end-page: 1999 ident: bib0007 article-title: Achieving acceleration for distributed economic dispatch in smart grids over directed networks publication-title: IEEE Trans. Netw. Sci. Eng. – year: 2021 ident: bib0005 article-title: Online distributed optimization with nonconvex objective functions: sublinearity of first-order optimality condition-based regret publication-title: IEEE Trans. Autom. Control – volume: 57 start-page: 663 year: 2012 end-page: 676 ident: bib0045 article-title: Connectivity and set tracking of multi-agent systems guided by multiple moving leaders publication-title: IEEE Trans. Autom. Control – year: 2020 ident: bib0002 article-title: Distributed robust optimization algorithms over uncertain network graphs publication-title: IEEE Trans. Cybern. – volume: 48 start-page: 161 year: 1990 end-page: 220 ident: bib0041 article-title: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications publication-title: Math. Program. – volume: 65 start-page: 426 year: 2020 end-page: 433 ident: bib0035 article-title: Online distributed optimization with strongly pseudoconvex-sum cost functions publication-title: IEEE Trans. Autom. Control – year: 2020 ident: bib0013 article-title: Distributed mirror descent for online composite optimization publication-title: IEEE Trans. Autom. Control – volume: 61 start-page: 2484 year: 2016 end-page: 2495 ident: bib0042 article-title: Continuous-time consensus under noninstantaneous reciprocity publication-title: IEEE Trans. Autom. Control – volume: 32 start-page: 5723 year: 2021 end-page: 5737 ident: bib0014 article-title: Distributed Nesterov Gradient and Heavy-Ball Double Accelerated Asynchronous Optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 357 start-page: 4855 year: 2020 end-page: 4868 ident: bib0027 article-title: Distributed constrained optimization for multi-agent systems over a directed graph with piecewise stepsize publication-title: J. Frankl. Inst. – volume: 124 start-page: 180 year: 2020 end-page: 192 ident: bib0036 article-title: A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem publication-title: Neural Netw. – volume: 49 start-page: 3946 year: 2019 end-page: 3956 ident: bib0037 article-title: A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization publication-title: IEEE Trans. Cybern. – year: 2020 ident: bib0006 article-title: Distributed algorithms involving fixed step size for mixed equilibrium problems with multiple set constraints publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 63 start-page: 2670 year: 2018 end-page: 2677 ident: bib0043 article-title: Distributed algorithms for solving convex inequalities publication-title: IEEE Trans. Autom. Control – year: 2020 ident: bib0016 article-title: Discrete-time algorithms for distributed constrained convex optimization with linear convergence rates publication-title: IEEE Trans. Cybern. – volume: 66 start-page: 1102 year: 2020 end-page: 1115 ident: bib0017 article-title: Distributed constrained optimization over unbalanced directed networks using asynchronous broadcast-based algorithm publication-title: IEEE Trans. Autom. Control – volume: 6 start-page: 758 year: 2022 end-page: 763 ident: bib0029 article-title: Distributed support vector machines over dynamic balanced directed networks publication-title: IEEE Control Syst. Lett. – volume: 26 start-page: 99 year: 2012 end-page: 109 ident: bib0031 article-title: A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization publication-title: Neural Netw. – reference: X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent (2017) – volume: 36 start-page: 56 year: 1998 end-page: 69 ident: bib0019 article-title: Wideband DS-CDMA for nextgeneration mobile communications systems publication-title: IEEE Commun. Mag. – volume: 62 start-page: 3986 year: 2017 end-page: 3992 ident: bib0015 article-title: Distributed subgradient projection algorithm over directed graphs publication-title: IEEE Trans. Autom. Control – volume: 66 start-page: 37 year: 1990 end-page: 46 ident: bib0044 article-title: Seven kinds of monotone maps publication-title: J. Optim. Theory Appl. – year: 2016 ident: bib0018 article-title: Experimental Implementation of Multi-Agent Distributed Optimization Algorithms With Shortest Distance to Convex Regions – volume: 7 start-page: 74 year: 2020 end-page: 84 ident: bib0025 article-title: Distributed continuous-time nonsmooth convex optimization with coupled inequality constraints publication-title: IEEE Trans. Control Netw. Syst. – volume: 17 start-page: 1487 year: 2006 end-page: 1499 ident: bib0040 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Trans. Neural Netw. – volume: 20 start-page: 691 year: 2009 end-page: 717 ident: bib0009 article-title: Incremental stochastic subgradient algorithms for convex optimization publication-title: SIAM J. Optim. – volume: 64 start-page: 1694 year: 2019 end-page: 1701 ident: bib0022 article-title: Continuous-time distributed subgradient algorithm for convex optimization with general constraints publication-title: IEEE Trans. Autom. Control – start-page: 177 year: 2006 end-page: 188 ident: bib0032 article-title: Some classes of pseudoconvex fractional functions via the Charnes–Cooper transformation publication-title: Generalized Convexity and Related Topics – start-page: 1412 year: 2019 end-page: 1417 ident: bib0001 article-title: Feedback-feedforward control approach to distributed optimization publication-title: 2019 American Control Conference (ACC), Philadelphia, PA, USA – year: 2004 ident: bib0034 article-title: Solid Mechanics and Its Applications – start-page: 51 year: 2010 end-page: 55 ident: bib0030 article-title: Optimization of computer vision algorithms for real time platforms publication-title: 2010 42nd Southeastern Symposium on System Theory (SSST), Tyler, TX – reference: . – volume: 68 start-page: 209 year: 2016 end-page: 215 ident: bib0023 article-title: Distributed constrained optimal consensus of multi-agent systems publication-title: Automatica – volume: 59 start-page: 781 year: 2014 end-page: 786 ident: bib0020 article-title: Distributed continuous-time convex optimization on weight-balanced digraphs publication-title: IEEE Trans. Autom. Control – volume: 101 start-page: 1 year: 2018 end-page: 14 ident: bib0038 article-title: Neural network for nonsmooth pseudoconvex optimization with general convex constraints publication-title: Neural Netw. – volume: 55 start-page: 922 year: 2010 end-page: 938 ident: bib0011 article-title: Constrained consensus and optimization in multi-agent networks publication-title: IEEE Trans. Autom. Control – volume: 357 start-page: 7139 year: 2020 end-page: 7158 ident: bib0004 article-title: Distributed heterogeneous multi-agent networks optimization with nonconvex velocity constraints publication-title: J. Frankl. Inst. – volume: 68 start-page: 2186 year: 2020 end-page: 2198 ident: bib0008 article-title: Distributed dual gradient tracking for resource allocation in unbalanced networks publication-title: IEEE Trans. Signal Process. – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: bib0033 article-title: Sparse MRI: the application of compressed sensing for rapid mr imaging publication-title: Magn. Reson. Med. – year: 1970 ident: bib0046 article-title: Finite-Dimensional Linear Systems – volume: 29 start-page: 3252 year: 2019 end-page: 3266 ident: bib0024 article-title: Distributed continuous-time algorithm for a general nonsmooth monotropic optimization problem publication-title: Int. J. Robust Nonlinear Control – volume: 62 start-page: 3461 year: 2017 end-page: 3467 ident: bib0028 article-title: A multi-agent system with a proportional-integral protocol for distributed constrained optimization publication-title: IEEE Trans. Autom. Control – year: 2020 ident: bib0003 article-title: Distributed Nash equilibrium seeking for games in systems with bounded control inputs publication-title: IEEE Trans. Autom. Control – year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0016 article-title: Discrete-time algorithms for distributed constrained convex optimization with linear convergence rates publication-title: IEEE Trans. Cybern. – volume: 26 start-page: 99 year: 2012 ident: 10.1016/j.jfranklin.2021.11.034_bib0031 article-title: A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization publication-title: Neural Netw. doi: 10.1016/j.neunet.2011.09.001 – volume: 7 start-page: 74 issue: 1 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0025 article-title: Distributed continuous-time nonsmooth convex optimization with coupled inequality constraints publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2019.2915626 – volume: 90 start-page: 196 year: 2018 ident: 10.1016/j.jfranklin.2021.11.034_bib0012 article-title: Optimal distributed stochastic mirror descent for strongly convex optimization publication-title: Automatica doi: 10.1016/j.automatica.2017.12.053 – ident: 10.1016/j.jfranklin.2021.11.034_bib0047 – volume: 62 start-page: 3986 issue: 8 year: 2017 ident: 10.1016/j.jfranklin.2021.11.034_bib0015 article-title: Distributed subgradient projection algorithm over directed graphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2615066 – volume: 6 start-page: 758 year: 2022 ident: 10.1016/j.jfranklin.2021.11.034_bib0029 article-title: Distributed support vector machines over dynamic balanced directed networks publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2021.3086388 – year: 2016 ident: 10.1016/j.jfranklin.2021.11.034_bib0018 – year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0006 article-title: Distributed algorithms involving fixed step size for mixed equilibrium problems with multiple set constraints publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 55 start-page: 922 issue: 4 year: 2010 ident: 10.1016/j.jfranklin.2021.11.034_bib0011 article-title: Constrained consensus and optimization in multi-agent networks publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2041686 – volume: 32 start-page: 5723 issue: 12 year: 2021 ident: 10.1016/j.jfranklin.2021.11.034_bib0014 article-title: Distributed Nesterov Gradient and Heavy-Ball Double Accelerated Asynchronous Optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3027381 – volume: 65 start-page: 426 issue: 1 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0035 article-title: Online distributed optimization with strongly pseudoconvex-sum cost functions publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2019.2915745 – volume: 63 start-page: 2670 issue: 8 year: 2018 ident: 10.1016/j.jfranklin.2021.11.034_bib0043 article-title: Distributed algorithms for solving convex inequalities publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2771140 – volume: 124 start-page: 180 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0036 article-title: A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.015 – year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0002 article-title: Distributed robust optimization algorithms over uncertain network graphs publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 691 issue: 2 year: 2009 ident: 10.1016/j.jfranklin.2021.11.034_bib0009 article-title: Incremental stochastic subgradient algorithms for convex optimization publication-title: SIAM J. Optim. doi: 10.1137/080726380 – volume: 41 start-page: 1715 issue: 6 year: 2011 ident: 10.1016/j.jfranklin.2021.11.034_bib0010 article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/TSMCB.2011.2160394 – volume: 66 start-page: 37 issue: 1 year: 1990 ident: 10.1016/j.jfranklin.2021.11.034_bib0044 article-title: Seven kinds of monotone maps publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940531 – volume: 7 start-page: 1988 issue: 3 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0007 article-title: Achieving acceleration for distributed economic dispatch in smart grids over directed networks publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.2965999 – volume: 49 start-page: 3946 issue: 11 year: 2019 ident: 10.1016/j.jfranklin.2021.11.034_bib0037 article-title: A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2855724 – volume: 357 start-page: 4855 issue: 8 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0027 article-title: Distributed constrained optimization for multi-agent systems over a directed graph with piecewise stepsize publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.03.035 – start-page: 51 year: 2010 ident: 10.1016/j.jfranklin.2021.11.034_bib0030 article-title: Optimization of computer vision algorithms for real time platforms – volume: 62 start-page: 3461 issue: 7 year: 2017 ident: 10.1016/j.jfranklin.2021.11.034_bib0028 article-title: A multi-agent system with a proportional-integral protocol for distributed constrained optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2610945 – start-page: 1412 year: 2019 ident: 10.1016/j.jfranklin.2021.11.034_bib0001 article-title: Feedback-feedforward control approach to distributed optimization – year: 2004 ident: 10.1016/j.jfranklin.2021.11.034_bib0034 doi: 10.1007/0-306-48395-5 – volume: 42 start-page: 641 issue: 4 year: 1993 ident: 10.1016/j.jfranklin.2021.11.034_bib0039 article-title: A simple distributed autonomous power control algorithm and its convergence publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/25.260747 – volume: 57 start-page: 663 issue: 3 year: 2012 ident: 10.1016/j.jfranklin.2021.11.034_bib0045 article-title: Connectivity and set tracking of multi-agent systems guided by multiple moving leaders publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2164733 – year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0003 article-title: Distributed Nash equilibrium seeking for games in systems with bounded control inputs publication-title: IEEE Trans. Autom. Control – volume: 58 start-page: 1182 issue: 6 year: 2007 ident: 10.1016/j.jfranklin.2021.11.034_bib0033 article-title: Sparse MRI: the application of compressed sensing for rapid mr imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 – volume: 29 start-page: 1247 year: 2019 ident: 10.1016/j.jfranklin.2021.11.034_bib0021 article-title: Distributed coordination for nonsmooth convex optimization via saddle-point dynamics publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-018-9516-4 – year: 1970 ident: 10.1016/j.jfranklin.2021.11.034_bib0046 – volume: 357 start-page: 7139 issue: 11 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0004 article-title: Distributed heterogeneous multi-agent networks optimization with nonconvex velocity constraints publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.05.043 – year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0013 article-title: Distributed mirror descent for online composite optimization publication-title: IEEE Trans. Autom. Control – volume: 29 start-page: 3252 issue: 10 year: 2019 ident: 10.1016/j.jfranklin.2021.11.034_bib0024 article-title: Distributed continuous-time algorithm for a general nonsmooth monotropic optimization problem publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4547 – start-page: 177 year: 2006 ident: 10.1016/j.jfranklin.2021.11.034_bib0032 article-title: Some classes of pseudoconvex fractional functions via the Charnes–Cooper transformation – volume: 36 start-page: 56 issue: 9 year: 1998 ident: 10.1016/j.jfranklin.2021.11.034_bib0019 article-title: Wideband DS-CDMA for nextgeneration mobile communications systems publication-title: IEEE Commun. Mag. doi: 10.1109/35.714618 – volume: 101 start-page: 1 year: 2018 ident: 10.1016/j.jfranklin.2021.11.034_bib0038 article-title: Neural network for nonsmooth pseudoconvex optimization with general convex constraints publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.01.008 – volume: 59 start-page: 781 issue: 3 year: 2014 ident: 10.1016/j.jfranklin.2021.11.034_bib0020 article-title: Distributed continuous-time convex optimization on weight-balanced digraphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2013.2278132 – volume: 61 start-page: 2484 issue: 9 year: 2016 ident: 10.1016/j.jfranklin.2021.11.034_bib0042 article-title: Continuous-time consensus under noninstantaneous reciprocity publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2506262 – year: 2021 ident: 10.1016/j.jfranklin.2021.11.034_bib0005 article-title: Online distributed optimization with nonconvex objective functions: sublinearity of first-order optimality condition-based regret publication-title: IEEE Trans. Autom. Control – volume: 64 start-page: 1694 issue: 4 year: 2019 ident: 10.1016/j.jfranklin.2021.11.034_bib0022 article-title: Continuous-time distributed subgradient algorithm for convex optimization with general constraints publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2852602 – volume: 48 start-page: 161 issue: 1–3 year: 1990 ident: 10.1016/j.jfranklin.2021.11.034_bib0041 article-title: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications publication-title: Math. Program. doi: 10.1007/BF01582255 – volume: 66 start-page: 1102 issue: 3 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0017 article-title: Distributed constrained optimization over unbalanced directed networks using asynchronous broadcast-based algorithm publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.2994024 – volume: 68 start-page: 2186 year: 2020 ident: 10.1016/j.jfranklin.2021.11.034_bib0008 article-title: Distributed dual gradient tracking for resource allocation in unbalanced networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2981762 – volume: 29 start-page: 981 issue: 4 year: 2018 ident: 10.1016/j.jfranklin.2021.11.034_bib0026 article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2652478 – volume: 17 start-page: 1487 issue: 6 year: 2006 ident: 10.1016/j.jfranklin.2021.11.034_bib0040 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.879774 – volume: 68 start-page: 209 year: 2016 ident: 10.1016/j.jfranklin.2021.11.034_bib0023 article-title: Distributed constrained optimal consensus of multi-agent systems publication-title: Automatica doi: 10.1016/j.automatica.2016.01.055 |
SSID | ssj0017100 |
Score | 2.367942 |
Snippet | In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1483 |
SubjectTerms | Algorithms Computational geometry Continuous time systems Convex analysis Convexity Graph theory Graphical representations Multiagent systems Optimization Topology |
Title | Continuous-time distributed optimization with strictly pseudoconvex objective functions |
URI | https://dx.doi.org/10.1016/j.jfranklin.2021.11.034 https://www.proquest.com/docview/2640392440 |
Volume | 359 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gXPRgfEYUzR68FrrbtzdCNKiRk0Rum3Z3m0AUiECiF3-7M-2WiInh4LXNNO3s7Hwz25lvAK5jnkZBqFPHywLj-EFKWyrhTiwiZWKM_2NBzclPg7A_9B9GwagGvaoXhsoqre8vfXrhre2VjtVmZz4eU48vR7RGg-REtxslO9AQiPZxHRrd-8f-YP0zgQhsSoeMyTMKbJR5TXI7HB1zRcHbxOjp-X-B1C93XWDQ3QHs2-CRdcv3O4SamR7B3g9KwWN4Ibqp8XSFCb1Dc-OZJmZcGmplNJuhf3izjZeMTmAZ3VPL1082X5iVnhU16B9slk1KP8gI9grLPIHh3e1zr-_Y4QmO8nxv6WTazQTPExMZHnl5KFJUVOAalbgmzZVRWaoQq1OMODxPaYyDlMlDpTPjxTHNnz-F-nQ2NWfAcqF0YDBOijNNE8lTHhhXu1Qbh9GNSJoQVtqSyjKL04CLV1mVkE3kWs2S1Ix5h0Q1N8FdC85Lco3tIjfVcsgNO5EIAduFW9UCSrtVFxI_w0Wz8X33_D_PvoBdQZ0RxelMC-rL95W5xHhlmV3BTvuLX1mr_AYwx-01 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RlR1D14rfT98EaIBORxgsht0-5uEwgCEUj03zvTbomYGA5e20zTzs7OfLOd-QbgMbTiwPNlbDiJpwzXi2lLRZYR2oFQIeL_0Kbm5P7Ab4_c17E3LkGz6IWhskrt-3OfnnlrfaWutVlfTibU42thtEaDtIhuN4gOoOLSUOsyVBqdbnuw_ZlABDa5Q8bkGQV2yrymqR6OjrmibT0Ro6fj_hWkfrnrLAa1TuFEg0fWyN_vDEpqfg7HPygFL-CN6KYm8w0m9AbNjWeSmHFpqJWSbIH-4V03XjI6gWV0T6xnX2y5Uhu5yGrQP9kimeZ-kFHYyyzzEkatl2GzbejhCYZwXGdtJNJMbCuNVKCswEl9O0ZFeaYSkaniVCiRxAJjdYyIw3GERBwkVOoLmSgnDGn-_BWU54u5ugaW2kJ6CnFSmEiaSB5bnjKlSbVxiG7sqAp-oS0uNLM4DbiY8aKEbMq3auakZsw7OKq5CuZWcJmTa-wXeS6Wg-_YCccQsF-4Viwg11t1xfEzTASJrmve_OfZD3DYHvZ7vNcZdG_hyKYuieykpgbl9cdG3SF2WSf32ja_Acmo7xs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous-time+distributed+optimization+with+strictly+pseudoconvex+objective+functions&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Xu%2C+Hang&rft.au=Lu%2C+Kaihong&rft.date=2022-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0016-0032&rft.eissn=0016-0032&rft.volume=359&rft.issue=2&rft.spage=1483&rft_id=info:doi/10.1016%2Fj.jfranklin.2021.11.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |